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Large models of complex neuronal circuits require specifying numerous parameters, with
values that often need to be extracted from the literature, a tedious and error-prone
process. To help establishing shareable curated corpora of annotations, we have
developed a literature curation framework comprising an annotation format, a Python API
(NeuroAnnotation Toolbox; NAT), and a user-friendly graphical interface (NeuroCurator).
This framework allows the systematic annotation of relevant statements and model
parameters. The context of the annotated content is made explicit in a standard way
by associating it with ontological terms (e.g., species, cell types, brain regions). The
exact position of the annotated content within a document is specified by the starting
character of the annotated text, or the number of the figure, the equation, or the table,
depending on the context. Alternatively, the provenance of parameters can also be
specified by bounding boxes. Parameter types are linked to curated experimental values
so that they can be systematically integrated into models. We demonstrate the use of this
approach by releasing a corpus describing different modeling parameters associated with
thalamo-cortical circuitry. The proposed framework supports a rigorous management of
large sets of parameters, solving common difficulties in their traceability. Further, it allows
easier classification of literature information and more efficient and systematic integration
of such information into models and analyses.
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INTRODUCTION

In the context of large-scale, highly detailed, and data-driven realistic modeling of the brain,
developers are faced with the daunting task of reviewing voluminous, and ever growing,
body of scientific papers to extract all information useful in constraining the large number
of parameters involved in the modeling process. Without a rigorous approach to support
this process, the extracted information is often not reusable outside of the project for
which it has been built. Curated information from the literature that has been embedded
into models are also often vulnerable to issues regarding the traceability of its origin. This
happens for example when the embedding does not provide a means to trace back (1)
the publication from which a numerical value has been extracted, (2) the exact place in
the paper from where the information has been taken, or (3) the precise method used to
transform published numbers into the values inserted into models. The last point is particularly
important and applied transformations can take different forms. The most evident is unit
conversion. But more subtle alterations are often applied such as changing the nature of the
variable (e.g., passing from area to volume by considering hypotheses or supplementary factors,
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as it is the case when using cell counts per area from stereology
studies to model neuronal volumetric densities) or combining
different measures (e.g., taking the median of values reported by
different sources).

In this paper, we present a collaborative framework for
systematic curation of literature and creation of annotation
corpora that aims at solving these issues. Corpora created
through this system can be queried programmatically so that
curated literature information can be integrated into modeling
workflows in a systematic, reproducible, and traceable way. More
specifically, we report on the development of an annotation
format for scientific literature curation and on the public release
of open-access tools to assist in the creation and management of
annotation corpora. The presentation of the broader workflow,
including the systematic integration of annotated information
into modeling pipelines will be discussed in the sequel.

The proposed annotation system has been designed to allow,
among other things, systematic annotation of numerical values
reported in scientific publications so that experimental outcome
can be efficiently synthesized and integrated into models. We
demonstrate the usefulness of this approach by presenting an
example of an open-access repository of annotations that has
been created for modeling the thalamo-cortical loop in the
context of the Blue Brain Project (EPFL, 2017).

Terminology

The process of curating or annotating documents or datasets
is defined in various ways depending on the context. To avoid
confusion, we first define these concepts, as they are used in the
current project.

By literature curation, we refer to the process in which the
curator (i.e., the person performing the curation) identifies
documents relevant to a specific topic and annotates (i.e.,
produces annotations) relevant information within these
documents. An annotation is defined as a structured set of data
specifying the precise localization of a subpart of a document
which is of strategic interest. It is generally be supplemented with
additional information (e.g., ontological terms describing in a
formal way some characteristics of the annotated content). It may
also contain a free-form comment to make explicit the relevance
of the annotation, although such comments can be omitted if
the highlighted part of the document is self-explanatory (e.g.,
“region X is connected to region Y with Z% probability”). Note
that this process is significantly different from “annotating” as
the (generally automated) process of extracting syntactic (e.g.,
part-of-speech) or morphological/semantic (e.g., identifying
named entities) information from a text.

Requirements
We established a set of requirements that a methodological
framework for the curation and model-integration of the
literature information should consider. These are presented in
subsequent sections.

Collaborative Workflow

The approach should allow for collaborative curation
of a body of literature, meaning that annotations on a
particular document can be made by different curators in a

concurrent fashion. It must therefore be possible to easily
merge produced annotations and to trace the history of
modifications.

Reusable

The result of the curation process should be easily reusable
by other researchers. It must therefore not rely on implicit
knowledge of the curator. The important information associated
with the annotations must be explicitly specified.

Easily Machine-Readable

The output of the curation process must be easily machine-
readable. Although any computer file is “machine-readable;” what
makes it easily readable is the use of a consistent formatting
(e.g., CSV files, text files containing a well-defined JSON data
structure) with fields using a highly consistent terminology (i.e.,
controlled vocabulary). This terminology should ideally by linked
with identifiers from externally recognized entities (e.g., terms
from public lexica or ontologies) allowing cross-referencing,
indexing, and searching annotations in relation with specific
concepts (e.g., species, brain regions, cell types, experimental
paradigms). In that sense, free-form text fields are not easily
machine-readable and should constitute only a limited part of the
annotations.

Localizable

Annotations must be precisely and reliably localizable in the
document of origin. This requires the specification of unique
identifiers for annotated documents as well as the unambiguous
localization, within the document, of the position and the extent
of the annotated content.

User-Friendly

The process of annotating a document must be as light as
possible. The curation process is expected to be performed
mainly by domain-experts, which are performing this task as part
of other overarching goals. Therefore, it must not be perceived as
implying a supplementary workload when compared to a more
informal review of the literature. Not meeting this criterion is
likely to result in poor user adoption and consequently, limited
use of the proposed framework.

Integration with the Existing Software Ecosystem

The design of the system should rest on well-established tools
such that its design is simpler, requires less maintenance, and is
more sustainable. It should also integrate with existing tools that
might be used to produce annotations (e.g., text-mining tools)
or to consume annotations (e.g., external user interfaces such as
web-based neuroscience portals).

Support for Modeling Parameters

In order for this curation process to be useful in modeling
projects, the proposed tool must provide the features necessary
to annotate systematically and unambiguously numerical values
reported from experiments.
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Respect of Legal Environment

Annotations should be sharable without involving copyright
issues. For example, they cannot be embedded in documents that
are copyrighted.

Existing Solutions

Many projects have been conducted in the past years to support
the annotation process in various contexts. For example, the
online annotation service https://hypothes.is, proposes to add a
supplementary layer to the Internet so that web pages can be
directly annotated and commented (Perkel, 2015). WebAnno
(Yimam and Gurevych, 2013) and BRAT (Stenetorp et al,
2012) are other examples of relevant projects but are more
targeted along providing web-based collaborative environments
for typical natural language processing tasks, such as annotating
part-of-speech and syntactic dependencies, identifying named
entities, etc. Other research teams have worked on developing
pipelines for text-mining and automatic generation of annotation
from papers (e.g., WhiteText French et al, 2015, Sherlok
Richardet et al., 2015) or on manually annotating in great
details corpora of scientific papers (e.g., the CRAFT Bada
et al., 2012 and the GENIA Kim et al., 2003 corpora) to serve
as benchmark in evaluating automated annotators. However,
although these initiatives provide interesting tools to support the
annotation process, none constitute a complete solution meeting
our objectives: to provide an annotation framework which allows
the collaborative construction of corpora containing literature-
curated facts that can be integrated directly in models. Thus,
these projects should not be seen as competitors or alternatives to
the framework we are proposing. They are more complementary
tools, which we aim to interface with, rather than replace.

DESIGN

Collaborative Structure

At the heart of this project is the idea to provide a
simple, flexible, and collaborative framework for producing and
reproducibly consuming literature annotations. For this reason,
each publication is associated with one plain-text file containing
the related annotations (i.e., it is a standoff format Thompson
and McKelvie, 1997), as opposed, for example to a database-
centric design or an in-text annotation system. These plain-
text files, which structure is discussed in Section Annotation
Format, are stored, versioned, and shared through GIT, a free
and open-source distributed version control system. Aside from
allowing easy sharing of annotation corpora through existing
GIT servers (e.g., GitHub), it allows concurrent work on
annotations, resolution of merging conflicts, and bookkeeping of
modifications. Interaction with the GIT system has been made
as transparent as possible to the user (e.g., automatic commit
when changes to annotations are saved, dialog box asking if the
modifications should be pushed to the server when exiting the
application) although the underlying GIT repository can always
be accessed directly in case of need.

Ontologies

Use of Standard Ontologies

Annotations are tagged with terms from neuroscience ontologies
to describe their context and allow the programmatic retrieval

of subsets of annotations relevant to specific modeling or
analysis objectives. Further, these tags constitute a direct bridge
for interacting with third-party applications using the same
ontologies.

However, although promising initiatives such as the Open
Biomedical Ontologies (OBO) Foundry (Smith et al., 2007)
have been put in place to promote good design practices,
standardization, and interoperability, the world of ontologies is
still a messy one. Many propositions are available with different,
sometimes overlapping, coverage of the concepts related to
neuroscience. Two common problems are the overdefinition of
a concept (i.e., the same concept being partly or completely
defined by different ontological terms) and its underdefinition
(i.e., no ontological term defining completely or specifically a
given concept). The first problem arises most acutely when trying
to model a large field such as neuroscience by combining different
ontologies, whose coverage overlaps (Ghazvinian et al., 2011).
The second problem is intrinsic in modeling of an expanding
knowledge involving dynamic creation of new concepts.

The proposed curation framework integrates terms from the
SciCrunch resource registry (formerly the resources branch of
Neurolex Larson and Martone, 2013) and the full Neuroscience
Information Framework Standard Ontology (NIFSTD), and
provides a large coverage of the neuroscience field through the
integration of many domain-specific ontologies (Imam et al,
2012; Ozyurt et al., 2016; Grethe et al. personal communication).
It also provides supports for integrating ontological terms from
the Neuroinformatics Platform (NIP) of the Human Brain
Project since it contains many terms useful for modeling
neural networks (e.g., a comprehensive classification of cortical
neurons). Integrating the NIFSTD and NIP ontologies is
complicated by the huge size of these ontologies. This problem
has been addressed by storing locally every term previously
used, and fetching online new terms whenever required (see
Supplementary Materials Section Integration of NIFSTD and
NIP Ontologies for an extended discussion of this issue).
Although using both ontologies may contribute to overdefining
some terms, this effect is limited since both ontology services
reuse some common third-party ontologies (e.g., the Allen Brain
Institute ontology). Interacting with both NIP and NIFSTD
ontologies is made easy by the fact that they share a very similar
REST API (see O’Reilly, 2016a for an IPython Notebook example
of programmatic interaction with these ontologies).

Definition of New Terms

New ontological terms have been defined to complement existing
ontologies only when no alternative was available. For example,
the nomenclature of ionic currents was not fine-grained enough
to be used to model neurons with a detailed electrophysiology
like those of the Blue Brain Project (Markram et al.,, 2015).
This use case required completing the existing hierarchy of ionic
currents with new terms. In such cases, new terms have been
defined in a separate CSV file (additionsToOntologies.csv) which
is part of the NeuroAnnotation Toolbox (described below) source
code. Providing such a mechanism for easily adding new terms
is important for the flexibility of the system. However, these
terms are not meant to constitute a separated ontology and will
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hopefully, at some point, be migrated toward more standard
resources, such as the NIFSTD or NIP ontologies.

A more comprehensive effort has been undertaken in
developing a controlled vocabulary for Modeling Parameter
(MPCV) since no available resource was providing an adequate
coverage for the framework proposed herein. Parameter types
used here must be defined unambiguously and operationally with
a sufficient level of granularity so that their annotated values can
be directly used to instantiate model variables. Related ontologies
such as the Computational Neuroscience Ontology (Le Franc
et al.,, 2012) could be invaluable in adding a semantic level to
the modeling parameters listed in the MPCV. However, they
cannot be used directly in place of the MPCV because they
do not currently provide the sufficient level of granularity. The
descriptive level required by the proposed framework would
be closer to the list of parameters defined in a project like
NeuroElectro (Tripathy et al., 2014). However, this list is yet
too limited! to be directly reused for the use case described
here. Further, from a practical point of view, the need of rapidly
adding new terms to the MPCV would make the adoption of
an external resource very cumbersome in the current phase
of development. Thus, for reason of coverage, precision, and
flexibility, MPCV terms have been specified directly in the
NeuroAnnotation Toolbox source code as a separate CSV file
(modelingDictionary.csv). Collectively, these terms are defined as
a tree structure, which can be visualized online at https://github.
com/BlueBrain/nat/blob/master/notebooks/parameterTree.png.

Annotation Format

To provide an annotation format that is flexible enough to be
adapted to future unforeseen needs of the community while
remaining simple to read and write, we adopted a JSON
serialization approach. Annotations for any given publication
are written as a plain-text list of pretty-printed® JSON strings
(see Figure 5D for an example). A schema of the structure
of an annotation is shown in Figurel (see O’Reilly, 2016b
for a complete definition). In short, it contains mainly unique
identifiers for the annotation and the publication, a list of tags,
the identity of the authors of the annotation, the version of
the annotation format, a free-form comment, a list of modeling
parameters, a list of experiment properties, and a localizer. More
explanation is given on the nature of some of these items below.

Unique Identifiers

Every annotated publication is associated with a unique
identifier. For that purpose, we use the DOI whenever one
has been attributed to the publication. Otherwise, we set it to
“PMID_" followed by the PubMed (NCBI, 2017) identification
number (PMID) if the paper has been attributed one. Papers that

'This project currently curates 47 electrophysiological —properties.
Correspondences between NeuroElectro and MPCV terms have been made
explicit in a CSV file (modelingDictionary_relationships.csv) part of the NAT code
base, pending the restructuration of MPCV in a more formal ontology.

2Pretty-printing and fixed JSON element ordering are not necessary for syntactic
validity of the annotation files but allows for better human-readability and, most
importantly, it makes the use of GIT to track modifications or resolve merging

conflicts much more practical.

are not referenced by PubMed and that have no DOI cannot
currently be managed by this system. This is not a serious
limitation because (1) most relevant papers have a DOI and/or
a PubMed ID and (2) DOI numbers can be freely generated by
third-party services for research documents that have none (e.g.,
see ResearchGate, 2017).

Unique identification numbers are generated on the fly using
the uuidl() function of Python’s uuid package and are attributed
to every annotation and parameter instances.

Tags
Tags are provided using ontological terms, as discussed in Section
Ontologies.

Parameters

Modeling parameters are specified as a list of PARAMETER
objects (see O’Reilly, 2016b for the format definition) which
contains the following elements (described below): a description,
a list of required tags, a relationship, and a boolean flag stating
whether this parameter is an experimental property (e.g., liquid
junction potential, temperature, age of the animals) or not.
In the description of these different attributes, we will refer
to corresponding examples provided in Table SI, provided
in Supplementary Materials. These references will have the
following format (Table S1; 1/27-39) to specify the line 27-39 of
the example of the first row.

Required tags associated with particular types of
parameters are defined in the MPCV. They are specified
to ensure that a minimal set of information is gathered
about annotated parameters, making these annotations
more useful for modeling and analyses. For example,
the modeling parameter conductance_ion_curr_max (i.e.,
the conductance of the transmembrane ionic flow when
all ionic channels related to a particular ionic current
are open simultaneously) has the following required tag
specification: {“nifext_8054”:“Transmembrane ionic current;’
“sa01813327414”:“Cell”}. This means that when the users are
annotating values for this type of parameter, they should specify
ontological terms for the kind of ionic current and the cell type
involved. Both selected terms should be defined in the ontology
as children of the “Transmembrane ionic current” and “Cell”
terms, respectively (Table S1; 1/27-39). This task is made simple
using the NeuroCurator, which automatically populates combo
boxes with the available choices.

The relationship object is used to specify the entities to
which the parameter is related. It can be left undefined, or be
specifying a single entity (e.g., an ion current type for a maximal
conductance parameter; Table S1; 1/19-23), two entities linked
by a directed relationship (e.g., the strength of connectivity from
one type of cell to another type of cell; Table S1; 3/26-36) or an
undirected relationship (e.g., the correlation of the activity of two
brain regions; Table S1; 2/41-51).

Parameter descriptions are associated with a specific type of
modeling parameter (e.g., the conductance of the leak sodium
channels), taken from the list of MPCV terms. They can be
defining three types of data: numerical traces, functions, and point
values.
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FIGURE 1 | High-level schema of the annotation format. The block at the top of the schema (ANNOTATION) lists as bullet points all the fields of an annotation
record. A thin font is used for simple attributes (e.g., strings); a bold font is used for attributes which are themselves complex JSON structures. The hierarchical
relationships between the top-level object and its complex attributes are shown by arrows. The internal structure of the lower-level objects (PARAMETERS,
LOCALIZER, etc.) has been omitted because both the hierarchical structure and the definition of the objects are context-dependent (e.g., there are 5 different types of
LOCALIZER, with different internal structures; the variability of the hierarchical structure is due to compositionality of experimental values, as exemplified in Figure 2).

Numerical traces are used to specify a set of values for an
independent variable (e.g., inactivation time constant) which are
associated with values of a dependent variable (e.g., membrane
potential) (Table S1; 5/2-37).

The function data type is needed to save parameter values
when they are obtained by fitting some analytical function to
experimental recordings. For example, two parameters (V7,, and
k) are needed to model the steady-state inactivation of a class of
ion channels by fitting experimental values to a simple Boltzmann
function

f=1/{1+exp(V—Vip)/k}

where V is the membrane potential, V;/, is the membrane
potential at f = 0.5, and k is a slope factor (Martina and Jonas,
1997). In such a case, reporting values for V7, and k makes sense
only if they are associated with the expression of the modeling
function f. These relationships are preserved by the function data
type (Table S1; 4/2-28).

Point values are used for parameters that are not part of
a functional relationship or of a numerical trace (e.g., resting
membrane potential; Table S1; 1/3-15).

Further, any value encapsulated in these data types (i.e.,
numerical trace, function, and point value) can be either specified
as a simple value or a compound value. Compound values are
aggregates of simple values which are logically related such
as X, Y, and Z in “X £ Y (N = Z),” where X is typically a

sample mean value, Y its standard error, and Z the size of
the sample (e.g., “[..] input resistance (55 £ 19 MQ; n =
94), resting membrane potential (—60 = 4 mV; n = 67), and
spike amplitude (64 & 7 mV; n = 80) are similar to those
of LGN relay neurons [..]” in Li et al. (2003); see also Table
S1; 2/5-34 for another example of compound values). These
X, Y, and Z values must be saved together since they form
an interdependent set of statistics such that, for example, Y
(a standard error around the mean) is meaningless if reported
alone, without X (the mean) and Z (the sample size used to
compute the standard error). Finally, simple values can be either
“raw” values (i.e., the default category; e.g., the value 5 in “the
peak conductance density for the non-inactivating Kt current
was chosen to be 5 pS/um?” (Haeusler and Maass, 2006) is
a “raw” value in the sense that it is not a statistic computed
from a sample) or some statistics (e.g., mean, median, standard
deviation, maximum, etc.; see also Table S1; 2/8-12 for an
example of a annotation of a mean value) and they are always
specified as lists of floating-point values with one or more items
depending on the availability of single or repeated measures. This
complex hierarchical encapsulation of value types is illustrated in
Figure 2.

Annotated values should be identical to published numbers
and should not be transformed in any ways. Values are saved
alongside with their unit (as specified in the paper) and are
checked for consistency using Python’s quantities package.
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FIGURE 2 | Schema of the hierarchy of data type encapsulation. Different types of data are color coded. Only the upper branch of this recursive tree is
completely defined. For example, the whole tree starting at “parameter values” would need to be reproduced at “parameter values 1,” the whole tree of “numerical

4 raw —>» float list
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Experimental Properties

Annotated parameters can be marked as experimental properties
so that they can be associated with other annotations to
specify the experimental context. For example, an annotation
defining a “slice_thickness” parameter can be associated as
an experimental property of a second annotation specifying
a “neuron_density” parameter in mm~2 (e.g., evaluated with
the dissector method). Such an association allows, before
integrating this density to a model, to convert its value
from a surface density (published value) to a volume density
(value needed for modeling) by dividing the annotated
“neuron_density” per the “slice_thickness” used for the counting
procedure.

Note, that two different types of information define
the complete experimental context: categorical (through
tagging; e.g., “Wister rat”) and numerical (through annotated
parameters marked as experimental properties; e.g., age =
14 days).

Localizer

Various ways to localize annotations are provided to account
for the different use cases. A text type of annotation is defined
by a segment of text and the exact position (specified as the
character number) where it starts in the curated document.

To provide an unambiguous localization, the publication PDF
is first parsed to generate a corresponding plain-text file,
which is kept as a reference (see Supplementary Materials
Section Verification of publication access rights for details).
To preserve the reliability of annotation localization, once
created, this file should never be changed or replaced. For
that reason, this localization key is saved centrally on a
server (see Supplementary Materials Section Avoiding Copyright
Issues for copyright issues related with sharing this key with
clients).

In general, if the information to annotate is contained in a
figure, a table, or an equation, these can be entered using the
respective annotation type and specifying the respective number.
These numbers are encoded as strings rather than integers to
allow more flexibility for the different use cases (e.g., “1,” “l.c,”

11 “from 4 to 10,” “1, upper-left panel”). For tables, the user
can also specify a row and a column number, if those are not
ambiguous (i.e., row and column numbers are not ambiguous
when the shape of the table is such that it can be represented as a
matrix). Finally, the position type is provided for situations where
all other types are not appropriate. This can be the case, e.g., if
the curator wants to annotate a very specific portion of a figure.
These annotations are specified by the number of the page and
the coordinate of a bounding box encompassing the content to be
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annotated. These are specified on the reference PDF file. These
are freely accessible for open access publications. For copyrighted
material, access is granted only to users who have demonstrated
that they already own a copy of the paper.

Zotero Library

The proposed architecture integrates a citation database
synchronized with a Zotero library (http://www.zotero.org). This
citation management software has been chosen because it is
free, cross-platform, and open-source. It is maintained by a
University center (Roy Rosenzweig Center for History and New
Media from George Mason University) and it offers a convenient

3 Although PDF versions of publications are fairly consistent, some sources add
for example front pages. Alternative versions may also include Supplementary
documents or not. Different scanning of a same paper may have different
alignments due, for example, to different page format at scanning time. For all these
reasons, it is important to provide a consistent reference version of publication
PDFs.

Python APIL Using Zotero allows integrating this framework
more naturally with the existing software environment and avoid
creating custom solutions for features already well covered by
existing software. For the creation of our corpus, collaborative
curation work was promoted by synching with a group library.

Global Software Infrastructure

The complete system is composed of a few components:
a front-end (NeuroCurator), a back-end (NeuroAnnotation
Toolbox; NAT), a RESTful service for managing localization
keys, RESTful ontology services (NIFSTD and NIP), the Zotero
server for centralizing the citation library, and a GIT server for
versioning the annotation corpus. This architecture is depicted in
Figure 3.

User Interface
A graphical user interface (GUI) named NeuroCurator has
been created as a front-end to provide all the functionalities

ONLINE

<> interface front-end
. - (NeuroCurator)

QT-based Graphical user

OFFLINE

LR
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GUI user

&
£ 3

Python API back-end
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(PDF & TXT)
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|
k/

|
< NIP Ontology
RESTful service
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Annotation localization
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] it pu
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(GIT repository)
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I repository (e.g., GitHub)
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with a remote one.

FIGURE 3 | Software infrastructure proposed for literature curation. Constitution and consultation of annotation corpora can be made either through a
user-friendly graphical interface (NeuroCurator) or programmatically in Python using the NAT package. Both the NeuroCurator and the NAT package can be used
offline. They require connectivity only when new resources (i.e., resources not already stored locally) are needed or for synching the local GIT version of the corpus
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required for a flexible and efficient curation process. It is
coded using PySide (Python bindings for QT, a cross-platform
C++ toolbox for creating GUIs). It allows displaying the
publications contained in the Zotero library (Figure SI), to
create new annotations, visualize or modify existing ones,
associate tags to annotations by selecting ontological terms
from those stored locally or by searching the ontologies
online (Figure S2), to annotate new modeling parameters
(Figure S3), and to search for annotations in the corpus
according to flexible user-defined queries (Figure S4). The
development of the NeuroCurator is an ongoing project and
the main objective is to provide an efficient and enjoyable user
experience to stimulate the adoption of this framework by the
community.

The code of the NeuroCurator has been separated from
the back-end, which constitute a Python package named
NeuroAnnotation Toolbox (NAT). This separation allows
interacting with annotation corpora programmatically (e.g.,
from an IPython Notebook) without having to install the
NeuroCurator and its dependencies.

The front-end supports creating annotations using the full
expressiveness of the annotation format described previously.
Specifically, concerning the localization of the annotations, a
citation can be localized by pasting a snippet of text and
clicking on the “Localize” button. This action initiate a search
for corresponding text and proposes options to the user if
more than one similar text is found in the document. For
localization according to position in the PDEF the interface
allows the user to specify the region of interest by drawing
a bounding box over any page of the PDF. For the other
types of annotations, the user has to specify it as plain text
(i.e., number of the figure, table or equation). The graphical
interface does not allow yet to visualized annotated information
overlaid on the PDF. Implementation of such a functionality
using a third-party PDF viewer is considered for future
work.

CASE STUDY: CORPUS OF ANNOTATION
FOR THE MODELING OF THE
THALAMO-CORTICAL LOOP

The Corpus

An example of annotation corpus is already available on
GitHub (see Table 1). At the moment of writing, this corpus
was containing 435 manually made annotations and 257
annotated parameters from 80 different publications. This
corpus is centered on the biologically detailed modeling of
the thalamo-cortical loop for the somatosensory cortex of the
rat. It is an ongoing curation task in the context of the Blue
Brain Project. A histogram showing the number of annotated
parameters for the 30 most annotated parameter types is shown
on Figure 4. A Jupyter notebook has been included to the code
base of the NAT project, which allows to compute and show an
up-to-date version of these information (https://github.com/
BlueBrain/nat/blob/master/notebooks/Status_thalamus_corpus.
ipynb).

TABLE 1 | List of key open-access resources constituting the annotation
framework.

Resource Location

1 NeuroAnnotation Toolbox https://github.com/BlueBrain/nat

2 NeuroCurator application https://github.com/BlueBrain/

neurocurator

3 Thalamo-cortical loop annotation
corpus

https://github.com/BlueBrain/corpus-

thalamus

4 REST end-point for annotation
localization®

5 Documentation of the REST API
for the NIP ontology*

6 REST end-point for the NIP
ontology*,*

7 Documentation of the REST API
for the NIFSTD ontology*

8 REST end-point for the NIFSTD
ontology*,*

https://bbpteam.epfl.ch/

https://collab.humanbrainproject.eu/#/
collab/47/nav/7267

https://nip.humanbrainproject.eu/api/
scigraph/

http://trinity.neuinfo.org:9000/scigraph/
docs/

http://trinity.neuinfo.org:9000/scigraph/

*These resources are not under the responsibility of the authors, but are used as external
services by the infrastructure.

#These resources are the root of the REST APl end-point. Thus, they cannot be directly
opened as a web page. A sub-command must be added (e.g., http://trinity.neuinfo.org:
9000/scigraph/graph/properties)

Interaction with the Corpus

First Example

Figure 5 gives an example of how NAT can be used to interact
programmatically with a corpus. Figure 5A first shows how
to get a local copy of our sample corpus by performing a
“git clone” operation through Python. Then, it describes how
to search for values of a specific parameter and visualize the
corresponding data. In this example, we are querying for all
annotated values of maximal ionic conductance and plot those
that are defined as specific conductance only (i.e., conductance
normalized by area of cell membrane). The Figure 5B illustrates
the resulting violin plot, separating annotated values per type
of ionic currents. The code in Figure 5C shows how to get
a specific annotation and print its JSON representation (see
Figure 5D for the output). Finally, the code in Figure 5E
demonstrates how to display this annotated content in its
context. In this case, it is a fext annotation so its context is
defined by the surrounding text. Figure 5F shows the output:
the annotated text displayed in bold, surrounded by the 400
preceding and following characters. The complete Jupyter
notebook reproducing this example can be consulted online
(O’Reilly, 2016¢).

Second Example

In this second example, we are interested in collecting all the
information about neuron densities annotated from stereological
studies and express them in a homogeneous format so that
they can be integrated in a modeling processes. Skipping corpus
download and package imports (see O’Reilly, 2016d for the
complete and executable notebook related to this example),
Figure 6A shows how to query the corpus to obtain the values
for the “neuron_density” parameter and Figure 6B shows an
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extract of the resultDF table. As can be seen in this tables,
units are not homogeneous (mm~2 and um™3). Figure 6C shows
how these units can be normalized, using when necessary the
annotated slice thickness to transform from area to volume.
In the same table, we can see that the values are also
specified in a heterogeneous way. The first and fourth rows of
the extract show two annotations that are actually numerical
traces. In total, in the current corpus, there are three such
annotations of cell densities. Corresponding numerical traces
can be plotted as shown in Figure 6D (code) and Figure 6E
(resulting plots). Also, other parameters specify compound
values (row 2 and 3 in Figure 6B) as mean =+ standard error
(N = sample size). To homogenize these different value formats,
we interpolate numerical traces to obtain densities at 14 days
old (supposing that this is the age of the rat brain we want
to model) and take only the mean of compound values (see
code in Figure 6F). The resulting table (see Figure 6G for an
extract) now contains parameters that are homogeneous in units
and values, making them appropriate for integration into a
model of a rat! thalamus with different cell types and brain
regions.

AVAILABILITY
This project aims at promoting collaborative literature
curation and reproducible integration of literature

information into neuronal modeling pipelines and analyses.
Accordingly, the resources described in this paper are
all open-access. Tablel list location of the different
resources.

4Not shown here is the fact that all these annotations are associated with “rat”
ontological terms.

DISCUSSION

A Better Literature Curation for a More

Integrated Knowledge in Neuroscience

The study of neuroscience is challenged by the extreme
complexity of the brain functioning, the broad spectrum of
expertise required to pull together all the evidences from different
fields, and the wide range of scales involved in understanding
the mechanisms at play. This often results in different research
threads being performed in silo (i.e., in parallel, without synergy),
with too little cross-scale and cross-discipline integration of
the knowledge. At the same time, all the efforts invested in
understanding how the brain works have resulted in an explosion
of both the amount of experimental data produced and the size
of the published literature. This can be seen as a curse if no
infrastructure is put in place to manage this big data, or it can
be turned into a blessing if a contrario tools and methodologies
are adopted to integrate this knowledge synergistically. To
contribute into this direction, we have developed a framework
that supports collaborative curation of literature so that corpora
of relevant facts and experimental values can be built and
shared across brain modeling projects. All the tools developed
in this project are open-access. They are and will continue
to be in heavy development as they are part of the large-
scale modeling endeavor being conducted within the Blue Brain
Project. Contributions from the community in the form of
feedback, constructive criticism, code patches or extensions are
most welcome.

Limitations

There is a real challenge in developing a literature annotation
framework that captures the different kind of data published in
the literature, and yet to provide some means to homogenize
them in a format that is usable in modeling, without
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A

# Standard imports

import sys, os

import matplotlib.pylab as plt

import seaborn as sns

import quantities as pg

import numpy as np

from git import Repo

# NAT imports

from nat.annotationSearch import ParameterSearch, ConditionAtom

# Downloading the corpus

git_url = "https://github.com/BlueBrain/corpus-thalamus.git"
repo_dir = os.path.join(os.getcwd(), "neurocuratorDB")
Repo.clone_from(git_url, repo_dir)

# Searching for annotated maximal ionic current conductances
searcher = ParameterSearch (repo_dir)
searcher.setSearchConditions (ConditionAtom ("Parameter name",
"conductance ion curr max"))

searcher.expandRequiredTags = True
searcher.onlyCentralTendancy = True

resultDF = searcher.search()

# Checking which conductances have been specified as “epecific conductances" (i.e.,
conductance densities) and normalizing the units.
isSpecific = []
allConductances = []
for v, u in zip(resultDF["Values"], resultDF["Unit"]):
try':
allConductances.append (float (pg.Quantity (v, u).rescale('S/cm**2')))
isSpecific.append (True)
except:
isSpecific.append (False)
resultDF = resultDF[isSpecific]
resultDF["Values"] = np.logl0(allConductances)

# Plotting a violin plot for annotated values for specific conductances

# of the various kind of ionic currents

g = sns.violinplot (y="Transmembrane ionic current", x="Values", data=resultDF,
bw=0.25)

g = sns.swarmplot ( y="Transmembrane ionic current", x="Values", data=resultDF)
g.set_ylabel ("")

g.set_xlabel ("Specific conductance ($S/cm”2$)")

g.set_xticklabels([('%.0e' % 10**nb) for nb in g.get xticks()])

plt.plot()

plt.savefig('example currents.png', bbox inches='tight', transparent=True, dpi=200)
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FIGURE 5 | Continued
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C

import json
record =

resultDF [resultDF["Transmembrane ionic current"]

print (json.dumps (record["obj annotation"].values[0].toJSON(),
sort_keys=True,

"Fast voltage-gated potassium (Kf) current"]

indent=4, separators=(',"', ': ')))

D

{
"annotId":
"authors": [
"iavarone",
"oreilly"
1,
"comment":

"localizer": ({
"location":
"text":

"type": "text"
bo

"parameters": [

{

}
}I
"type":
}l

nign:

{

}
I
"type":
by

nigr

FIGURE 5 | Continued

"8e3edaeb-ef34-11e5-ba5d-c869cd917532",

"Fast potassium current parameters",
"experimentProperties":

26404,

"The gKIR and the\nfast voltage-gated potassium channel
conductances of 20 \u0002s/\ncm2 and 50 mS/cm2,
potassium channels had reversal\npotentials of 100 mv.",

"description": {
"depVar": {

"typeId":

"values": {

"ed7c93ba-ffdc-11e5-8b78-64006a4c56ef",
"isExperimentProperty":
"requiredTags": [

Hid" .
"name" :
"rootId":

nign.
"name":
"rootId":

"description": {
"depvVar": {

"typeId":

"values": {

"ed7c95c2-ffdc-11e5-8b78-64006a4c56ef",
"isExperimentProperty":
"requiredTags": [

[l

had
Both

( gKIf)
respectively.

"BBP-030003",

Tsitakistiec™: "naw",
"type": "simple",
"unit®s "mS/cm’2";
"values": [

500

"pointvalue"

false,

"BBP_nlx_0020",
"Fast voltage-gated potassium
"nifext 8054"

(Kf) current",

"NIFCELL:nifext 41",
"Thalamocortical cell",
"sa0l813327414"

"BBP-011001",

"statistic™: “raw";
"type": "simple",
"unit": VImVIVI
"values": [

-100.0

"pointvalue"

false,
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"id": "BBP_nlx 0020",
"name":

}
]I

"Fast voltage-gated potassium (Kf)
"rootId": "nifext 8054"

"id": "NIFCELL:nifext 41",
"name": "Thalamocortical cell",
"rootId": "saol813327414"

current",

from IPython.display import HTML
HTML (context [ :nbContextChar] +
+ '</b>"

'<b>"'
+ context[-nbContextChar:])

"pubId": "10.1523/JNEUROSCI.2740-15.2015",
"tags": [
{
"id": "NIFINV:birnlex 2300",
"name": "Computational model"
}I
{
"id": "NIFCELL:nifext 46",
"name": "Thalamus interneuron small"
}l
{
"id": "NIFORG:birnlex 160",
"name": "Rat"
}
]I
"version": "1"
}
E
nbContextChar = 400
context = record["obj annotation"].values[0].getContext (nbContextChar)

+ context [nbContextChar:-nbContextChar]

F

st. Thus,

rather than conductance,

our final model comprised the following: gLEAK was modeled with a reversal
potential of X79 mV and conductance of 150 Us/cm 2,
X45 mV and peak conductance of 150 Os/cm 2. T-type Ca2€ channels
with a reversal potential of 120 mV and a permeability of 0.7 [m/s. The gCAN had a
conductance of 250 [IS/cm 2 and reversal potential of X20 mV. The gKIR and the fast
voltage-gated potassium channel ( gKf) had conductances of 20
respectively. Both potassium channels had reversal potentials of X100 mV. The gNa had
conductance of 50 mS/cm 2 and reversal potential of 50 mV. Throughout this manuscript,
when referring to the ability of gT to provide current,
rather than “permeability.” Whereas the model is in actuality based on permeability
we use this naming convention to simplify the text.
Simulations were solved with a fixed time step of

and gH had a reversal potential of
( gT) were modeled

s/ em 2 and 50 mS/cm 2,

we use the term “conductance”

the annotated text).

FIGURE 5 | (A) Python code to query the corpus and plotting maximal conductances for various ionic currents. (B) Resulting set of violin plots showing the
distribution of maximal conductances of ionic currents annotated in the corpus. (C) Querying for the annotation of a specific point in the plot. (D) JSON representation
of the corresponding annotation. (E) Query to get the annotated text within its context. (F) Localized text in its context (in this case, 400 characters before and after

losing traceability. In the development of this annotation
framework, the focus has been placed on capturing faithfully
the variability. There is still a need for developing a more
comprehensive set of routines for homogenizing the annotated
data into a consumable form for the different modeling

requirements.
The current framework also misses a systematic
support for cross-referencing between publications, for

example to capture in a formal way (as opposed to a

free-form comment) the normalization of a parameter
annotated in one paper by a factor annotated in a second
paper.

Finally, ontologies have been embedded in this annotation
framework mainly as controlled vocabularies used for systematic
tagging. Semantically richer possibilities (e.g., adding more
complex ontological constructs involving relationships
between entities of an annotated text) was out of our
scope. On a related topic, the MPCV created for this work
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A

searcher = ParameterSearch (pathDB="neurocuratorDB")
searcher.setSearchConditions (ConditionAtom("Parameter name", "neuron density"))
searcher.expandRequiredTags = True

searcher.onlyCentralTendancy = True

resultDF = searcher.search()

resultDF["Species"] = [tag[0].name for tag in resultDF["Species"]]
resultDF["Values"] = [param.valuesText() for param in resultDF["obj parameter"]]
B

Cell Regional part of brain Values Unit
Thalamic reticular nucleus Thalamic reticular nucleus [142.9, 178.5, 185.1, mmA-2
cell - GABAergic 215.8] +/-[17.3, 26.4, ...
Thalamus relay cell Lateral geniculate body 246.8 +/- 38.9 (n=5) mmA-2
Thalamus interneuron small  Ventral posteromedial nucleus 13.3 +/- 0.6 (n=5) mmA”-2
Thalamus relay cell Ventral posterior nucleus [0.0002782, 0.0001703, umA-3

8.88744e-05, 5.1258...

C

paramGetter ParameterGetter (pathDB="neurocuratorDB")
values = []
units =[]

def rescale2DStereo (paramID, thicknessvValue=1.0, thicknessUnit="um", desiredUnit="mm"-
3!!) .

density = paramGetter.getParam(paramID)

thickness = pg.Quantity(thicknessValue, thicknessUnit)

return (density/thickness) .rescale (desiredUnit)

for param, annot, (index, row) in zip(resultDF["obj parameter"],
resultDF["obj annotation"],
resultDF.iterrows()) :
try:
param = param.rescale ("mm"-3")
except ValueError:
thicknessInstanceId = [param.instanceId for param in
annot.experimentProperties
if getParameterTypeNameFromID (param.paramTypeld) ==

"slice_thickness"]

if len(thicknessInstanceId) ==
thicknessParameter = paramGetter.getParam(thicknessInstanceId[0])
if len(thicknessParameter.values) ==
param = rescale2DStereo (param.id,
thicknessValue=thicknessParameter.values[0],
thicknessUnit=thicknessParameter.unit,
desiredUnit="mm"-3")
units.append (param.unit)
values.append (param.valuesText ())

resultDF.loc[index, "obj parameter"] = param
resultDF["Values"] = values
resultDF["Unit"] = units
resultDF = resultDF[resultDF["Unit"] == "1/mm**3"]

FIGURE 6 | Continued
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D

def getFigTrace (param, title="", xlim=None, context=None, index=0):
if context is None:
fig, axes = plt.subplots()
else:
fig, axarr = context
if isinstance(axarr, collections.Iterable):

axes = axarr[index]
else:
axes = axarr
axes.plot (param.indepValues[0], param.means, "-o")

if not xlim is None:
axes.set xlim(xlim)
else:

axes.set ylabel (param.name + " (" + param.unit + ")")

axes.set xlabel (param.indepNames[0] + " (" + param.indepUnits[0] + ")")
axes.set title(title)

return fig

paramTraces = resultDF[resultDF["Result type"] ==
"numericalTrace"] ["obj parameter"].values

cellTypes = resultDF[resultDF["Result type"] == "numericalTrace"]["Cell"].values
context = plt.subplots(2, 2, figsize=(15, 10))
for no, (paramTrace, cellType) in enumerate (zip (paramTraces, cellTypes)) :

fig = getFigTrace (paramTrace, title=cellType, context=context,

index=(int (no/2), no%2))
context[1][1, 1].axis("off")

axes.set xlim([min (param.indepValues[0]) -2.5, max(param.indepValues[0])+2.5])

E
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F
finalValues = np.zeros((len(resultDF["Result type"])))
for ind, (paramTrace, resType) in enumerate (zip (resultDF["obj parameter"],
resultDF["Result type"])):
if resType == "numericalTrace":
val = paramTrace.getInterpldvValues (14, statsToReturn=["mean"])
if isinstance(val, list):
val = val[0]
finalValues[ind] = float(val)
for ind, (param, resType) in enumerate (zip (resultDF["obj parameter"], resultDF["Result
type"1)):
if resType != "numericalTrace":
finalValues[ind] = np.mean (param.means)
resultDF["Values"] = finalValues
G
Cell Regional part of brain Values Unit
Thalamic reticular nucleus cell - GABAergic Thalamic reticular nucleus 157140 1/mm**3
Thalamus relay cell Lateral geniculate body 246800 1/mm**3
Thalamus interneuron small Ventral posteromedial nucleus 13300 1/mm**3
Thalamus relay cell Ventral posterior nucleus 51011.02 1/mm**3

FIGURE 6 | (A) Code to list annotated neuronal densities. (B) Extract of the resulting table from (A). (C) Code to rescale to mm~—3 unit (applying 2D to 3D
transformation using slice thickness whenever appropriate) and to keep only the annotations that could successfully be rescaled. (D) Code to display the three
annotations that are specified as numerical traces. (E) Resulting plots from (D). (F) Code for keeping only the values interpolated at 14 days old for numerical traces
and only the mean for compound values. (G) Resulting table from (F), which displays homogeneous values and units.

could arguably be improved and made into a stand-alone
ontology development project following OBO Foundry’s
principles.

Future Directions

This paper is the first of a two-paper series. In the second
paper, we will discuss how created corpora can be integrated
into modeling workflows to support a reproducible and
traceable use of literature information. It is also in our future
goals to better connect this framework with existing tools,
either by interfacing them as producers (i.e., integrating
annotations made by other software such text-mining
applications or with different annotation interfaces such as
https://hypothes.is) or as consumer (i.e., publishing curated
information in third-party portals such as knowledge-
space.org). The resources necessary to address the limitations
described previously will be invested depending on the
evolution of the needs expressed by the neuroscientific
community.
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