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To date, automated or semi-automated software and algorithms for segmentation of

neurons from three-dimensional imaging datasets have had limited success. The gold

standard for neural segmentation is considered to be the manual isolation performed by

an expert. To facilitate the manual isolation of complex objects from image stacks, such

as neurons in their native arrangement within the brain, a new Manual Segmentation Tool

(ManSegTool) has been developed. ManSegTool allows user to load an image stack,

scroll down the images and to manually draw the structures of interest stack-by-stack.

Users can eliminate unwanted regions or split structures (i.e., branches from different

neurons that are too close each other, but, to the experienced eye, clearly belong to

a unique cell), to view the object in 3D and save the results obtained. The tool can

be used for testing the performance of a single-neuron segmentation algorithm or to

extract complex objects, where the available automated methods still fail. Here we

describe the software’s main features and then show an example of how ManSegTool

can be used to segment neuron images acquired using a confocal microscope. In

particular, expert neuroscientists were asked to segment different neurons from which

morphometric variables were subsequently extracted as a benchmark for precision. In

addition, a literature-defined index for evaluating the goodness of segmentation was used

as a benchmark for accuracy. Neocortical layer axons from a DIADEM challenge dataset

were also segmented with ManSegTool and compared with the manual “gold-standard”

generated for the competition.
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INTRODUCTION

Understanding how the brain works is arguably one of the greatest challenges of our time
(Alivisatos et al., 2012). A fundamental limitation for exploring the function of complex neural
circuits and their alterations in pathological brain processes is our lack of knowledge on the
microarchitecture and organization of neurons in the brain. To understand the structure-function
relationship in the brain, the first step is to identify the 3D (three-dimensional) arrangement of a
single cell in its native environment within the brain from neuroimaging data. This key task could
enable studying the morphological properties of neurons, to investigate the factors influencing
neural development and alterations related to specific diseases (Iannicola et al., 2000; Solis et al.,
2007; Billeci et al., 2013), the relationships between neuronal shape and function (Costa Lda et al.,
2002; Brown et al., 2005; White, 2007) or the effects of specific compounds on neuron geometry
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that could give useful information for designing new drugs
(Seeman and Lee, 1975; Robinson and Kolb, 1999). In
addition, single cell reconstructions can be used to simulate
electrophysiological behavior based on empirical microscopic
data (Hines and Carnevale, 1997), to generate models that can
be used to make predictions about high-level organization (Egger
et al., 2014), or to develop algorithmic descriptions of neurons
based on statistical analyses (Ascoli and Krichmar, 2000; Ascoli,
2002).

Numerous advances in imaging have enabled inspection
of the brain at cellular resolution. In particular, confocal
and multi-photon microscopy have revolutionized neuro-
biological discoveries by allowing the study of micro-structure
(Ntziachristos, 2010). However, even these methods cannot
image intact brain samples more than few hundred micrometers
in thickness (Oheim et al., 2001). To overcome this limit,
the recently developed clarification methods render the brain
optically transparent (Regehr et al., 2009; Hama et al., 2011;
Chung and Deisseroth, 2013; Chung et al., 2013; Kuwajima
et al., 2013; Ertürk et al., 2014; Poguzhelskaya et al., 2014;
Richardson and Lichtman, 2015; Magliaro et al., 2016), allowing
a notable increase of light penetration depth, which enables
the visualization of the global arrangement of large brain cell
populations.

While brain tissue imaging methods are constantly improving
in their performance, powerful computational algorithms and
tools to segment neural structures, such as soma and neurites,
are still lacking (Meijering, 2010), despite the organization
of competitions in the field [e.g., the DIADEM (Digital
Reconstruction of Axonal and Dendritic Morphology) challenge
(Ascoli, 2009)]. In fact, different tools for the extraction of 3D
neural structures have been presented in the literature (Kass et al.,
1988; Osher and Sethian, 1988; Glaser and Glaser, 1990; Paragios
et al., 2001; Dima et al., 2002; Vese andChan, 2002; Rohlfing et al.,
2004; Wolf et al., 2009; Basu et al., 2013; Mukherjee et al., 2013;
Quan et al., 2016), but none of them represents a robust system
with general applicability. Beyond the technical limitations of
these approaches, two basic aspects have to be underlined:
on one hand, since these tools usually just perform three-
dimensional neuron tracing through skeletonization, the neurons
extracted have scarce information on their morphology (i.e.,
surface and volume of the whole neuron, dendrite diameters).
On the other hand, the methods for validation of the three-
dimensional reconstruction are often difficult and arbitrary. To
date, manual segmentation operated by neuroscience experts is
considered the gold standard (Al-Kofahi et al., 2003; Meijering,
2010) and is considered necessary as a yardstick against which
new reconstruction algorithms can be compared.

During the DIADEM challenge, a metric was established
to evaluate the goodness of segmentation. This metric, freely
released open-source on the DIADEM challenge website,
quantifies the similarity between two different reconstructions
of the same neuron (i.e., manual and via the algorithm being
evaluated) by matching the location of the bifurcations and
terminations between the reconstructed arbors. This method
was purposely designed to capture the most critical aspects
in neuronal segmentation. However, new methods continue to

be validated in different ways in different reports. How the
manual segmentation is operated remains elusive andmost of the
evaluations are not duly detailed, making it difficult to perform
comparative assessments of the goodness of reconstruction.

The most popular tool for manual segmentation from
three-dimensional datasets is represented by Neurolucida
(MicroBrightField, Inc., Williston, VT; Glaser and Glaser, 1990).
Despite the power of the software and its packages, it is
very expensive and cannot always be justified as a sustainable
investment, particularly for the validation of novel algorithms.
A good alternative to Neurolucida is the ITK-based 3D Slicer
(Fedorov et al., 2012); however its use is confined to trained
experts. Indeed, the interface is not intuitive and manual
segmentation is quite laborious.

Other tools such as FilamentTracer (Imaris Bitplane Inc.,
Zurich), only provide methods for manual neuron tracing—
and not segmentation. On the other hand, software like ITK-
SNAP (Yushkevich et al., 2006) or CellSegm (Hodneland et al.,
2013) are not purposely developed for manual segmentation of
three-dimensional structures: this makes the operation tricky
and labor-intensive. Finally, some tools have been developed for
computer-assisted segmentation (for example the Segmentation
Editor ImageJ plug-in Schindelin et al., 2012 or the method
developed by Schmitt et al., 2004), but, since they rely on
internal criteria to “help” segmenting, they cannot be considered
good candidates for validating other tools. To the best of our
knowledge, none of the above returns information on the time
spent to perform the segmentation, which can be useful, for
example, to compare the outputs of different tools and objectively
judge their performance.

To address these limitations, we implemented a user-friendly
tool, ManSegTool (Manual Segmentation Tool) to facilitate the
manual segmentation of neurons from image stacks. Firstly,
ManSegTool can be a valid alternative for neuron segmentation
when the automatic tools available in the state of art have limited
success for a specific application. Moreover, it could also be
considered as robust and easy-to-use manual segmentation tool
for the validation of neuron reconstruction software, comparing
the outputs in terms of computational timing using goodness of
segmentation indices defined in the literature (Zhang, 1996).

In this paper, after outlining the features of ManSegTool,
we describe how the tool was rigorously assessed for accuracy
and precision, by segmenting Purkinje cells from 3D image
stacks of clarified murine cerebellum acquired using a confocal
microscope. In order to show that ManSegTool can deal
with different neuron types, an online dataset representing
Neocortical Layer neurons from the DIADEM challenge was also
manually segmented and compared to the manual segmentation
available online. The comparison was quantified using a metric
similar to the one employed in the challenge.

AN OUTLINE OF ManSegTool

ManSegTool is an open-source software, developed in
Matlab R© (The Mathworks-Inc, USA) and downloadable at
https://mansegtool.wordpress.com/. It has a Graphical User
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FIGURE 1 | (A) ManSegTool Graphical User Interface. (B) An example of the i-th image from a confocal stack automatically shown to zoom and segment the object

of interest (i.e., neurons). (C) An example of the transparent image overlapping which helps to keep track of the segmented object between the stack planes.

Interface, shown in Figure 1A, designed to facilitate the manual
segmentation of complex objects (e.g., Purkinje neurons in
mouse cerebella) from three-dimensional stacks (which may be
acquired with a confocal microscope). Users can load a stack,

segment one or more three-dimensional objects within it, while
keeping track of the time spent to perform each segmentation
and monitoring the accuracy of the manually selected regions.
They can also view and save the results obtained. A detailed
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description of all the features of the software is reported in the
following sections.

Original Stack Loading and Datamatrix
Construction
The user can load an 8-, 12-, or 16-bit grayscale ∗.tiff image stack,
that is converted into a three-dimensional matrix M∗N∗Z (i.e.,
Z images of size M∗N stacked one on top of another) matrix.
All Z images can be displayed in the upper panel of the GUI by
scrolling a slider.

The GUI automatically creates a structure, nominated
“datamatrix” and stores one or more segmented neurons and
their related information extracted during the processing. For
each segmented object, the datamatrix is purposely designed to
provide and store:

(i) The volumetric representation as an M∗N∗Z matrix of
logical values, that are true (i.e., 1) for the foreground and
false (i.e., 0) for the background.

(ii) The information needed to define the shape of the object
surface (in terms of faces and vertices constituting the
polygon mesh) from the volumetric binary data:

(iii) The time (in seconds) spent to perform each segmentation.

Alternatively, the user can load a previously saved datamatrix,
where segmented structures and the related information have
already been stored. After that, he/she can choose to start a new
segmentation ex-novo, or continue the processing on a partially
segmented neuron already stored in the file.

The result of the manual segmentation is shown in the lower
panel of the GUI (Figure 1A). The toggle button between the
panels allows the user to scroll the images together: this may be
useful to facilitate the operation and avoid errors.

Starting Segmentation
After choosing the i-th image (with i= 1:Z) of the original stack,
the operation can proceed using a designated button: a figure
is automatically shown (Figure 1B), representing the i-th image,
and the red LED on the GUI switches to green. In general, the
counter measuring the time spent to perform the segmentation
only runs when the LED is green and stops when it is red.

The user can iteratively zoom the i-th image to magnify
a region of interest and then, by clicking and dragging the
mouse, draw a freehand shape representing the section of the
complex three-dimensional object to be segmented. If the shape
the user draws is not perfectly closed, the algorithm automatically
connects the last point drawn with the first one. It is possible to
draw more than one region, to include neuron branches. Finally,
the algorithm returns a binary image that is the same size of
the i-th image with ones inside the freehand selection and zeros
elsewhere. The i-th position of the volumetric binary dataset
is automatically displayed in the lower panel of the GUI. To
continue the segmentation on a consecutive image (i.e., the i−1-
th or the i+1-th one), the user scrolls the slider and the figure is
automatically refreshed, ready to be segmented.

If the user is not satisfied with the freehand selection or
wrongly chooses a region not belonging to the object to segment,
the “Undo” button deletes these unwanted parts after clicking on

them. In case of optical artifacts in the confocal datasets, some
regions of the image may be ambiguous. For example, neurites
too close each other can appear as the same structure, although
they belong to different branches, of the same neuron or to a
different ones. The “Split” button allows the user to manually
separate the structures by simply drawing a line between them.

Sometimes the segmentation can be particularly tricky, for
example in case of a slice containing many neuron branches to
be followed in different images constituting the original stack.
In order to facilitate the manual segmentation processing, the
GUI provides transparent overlapping of the i-th original image
with the i−1-th or the i+1-th binary one (Figure 1C). The
transparency allows the user to easily segment the objects because
it helps to keep track of structures in consecutive parts of the
entire volume.

Graphic Display and Datamatrix Saving
At any time, the user can pause the segmentation to display the
three-dimensional object as a polygonal mesh and monitor the
results.

In addition, one can click on the “Merge and go to ImageJ”
button to create and save a new stack in which the segmented
object is highlighted within the original stack. The visualization
of this dataset can be performed using the 3D Viewer ImageJ
plug-in (Rasband, 2011) or other software with a 3D viewer tool
for grayscale three-dimensional stacks.

At the end of the operations, the datamatrix can be
automatically saved in a user-specified folder, and, if needed,
re-loaded to start segmenting another neuron in the same
confocal dataset or to continue a previously started one.

A typical example of the graphical output of the ManSegTool
at the end of the segmentation (i.e., the single segmented
neurons) is shown in Figure 2, while Video 1 (see Supplementary
Materials) is an animation of the result of the “Merge and go to
ImageJ” function.

MATERIALS AND METHODS

PCs Segmentation
Murine Tissue Preparation Brain Clarification
A L7GFP mouse was obtained from the Department of
Translational Research New Technologies in Medicine and
Surgery of the University of Pisa (Italy). The experiments
were conducted in conformity with the European Communities
Council Directive of 24 November 1986 (86/609/EEC and
2010/63/UE) and in agreement with the Italian DM26/14.
Experiments were approved by the Italian Ministry of Health
and Ethical Committee of the University of Pisa. The mouse
was processed as in Magliaro et al. (2016). Briefly, the adult
mouse was anesthetized and perfused with 20 mL of ice cold
Phosphate Buffered Saline (PBS 1X, Sigma-Aldrich, Milan,
Italy) and then with 20 mL of ice cold hydrogel solution (4%
acrylamide, 0.05% bis-acrylamide (BioradLabInc., California,
USA), 4% formaldehyde (PFA, Sigma-Aldrich) and 0.25% VA-
044 thermally triggered initiator (Wako Chemicals, Neuss,
Germany). After brain extraction and hydrogel polymerization, 1
mm-thick slices were cut using a Leica VT1200s vibratome (Leica
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FIGURE 2 | An example of the 3D graphical output of the ManSegTool,

representing a Purkinje cell from mouse cerebellum manually segmented from

a confocal stack.

FIGURE 3 | A Purkinje cell from a clarified mouse cerebellum slice acquired

using a Nikon1 confocal microscope and segmented by the six users using

the ManSegTool.

Microsystems, Nussloch, Germany), obtaining two cerebellum
slices. The slices were immersed in 20 mL of clearing solution
(200 mM Boric Acid (Farmitalia Carlo Erba spa, Italy) and
4% Sodium Dodecyl Sulfate (SDS, Sigma-Aldrich), pH adjusted
to 8.5 by adding 1M NaOH) for 5 days. As demonstrated in
Magliaro et al. (2016), this length of time for brain clarification
is the best compromise between the increase in light penetration
and the decrease in fluorescent signal.

Confocal Stack Acquisition
After the clarification step, slices were mounted on a glass slide
with FocusClearTM (Celexplorer Labs Co., Hsinchu, Taiwan)
and then acquired using a confocal microscope (Nikon A1). In
particular, acquisitions were performed using a 40x objective with
a pixel-to-micron ratio of 0.62 µm/pixel on a 512 × 512 matrix.
During the acquisition, no limits were imposed on the depth of
the dataset, thus the height of different z-stacks is variable for
each acquisition and dependent on biological variability (i.e., the

different spatial distribution of PCs in different mouse cerebella).
In order to minimize signal loss during the acquisitions (i.e., due
to fluorescence bleaching), the z-step size selected was double
that of the in-plane resolution.

Manual Segmentation Using ManSegTool
All the confocal acquisitions were processed with the
ManSegTool in order to segment the PCs. In particular, 6
expert neuroscientists with no specific computational skills from
the School of Medicine, University of Pisa, segmented the same 4
PCs from 4 different confocal stacks. The neuroscientists worked
on their own on the segmentation, so they did not influence each
other during the operation.

ManSegTool Performance Evaluation
In order to evaluate the performance of ManSegTool,
morphometric parameters were extracted from the segmented
neurons. In particular, the volume and the area obtained from
the isosurface data were extracted for all the neurons segmented
by the users.

Since both the volume and the area give global information
about the precision of segmentation, the Sholl analysis (Sholl,
1955) on the neuron skeleton (Lee et al., 1994) was also
performed, to locally evaluate the complex arborization of
the dendritic tree. In particular, this method evaluates neurite
arborization by drawing a series of concentric spheres of
increasing radii around the cell soma and then counting the
number of times the neurites intersect with each sphere. The
Sholl analysis was performed using the ImageJ (Rasband, 2011)
plug-in described in Ferreira et al. (2014) and downloadable at
https://imagej.net/Sholl_Analysis.

In addition, a further analysis to evaluate the goodness of
neuron segmentation was also performed. In particular, the Gray-
level Uniformity index (GU) was calculated, since it does not
require a priori knowledge of a reference segmentation (Zhang,
1996).

Statistical Analysis
To evaluate user differences in segmenting the four objects, the
Friedman test was carried out on neuron volume, neuron area
and GU respectively, setting significance at p < 0.05.

As regards the Sholl analysis, the Friedman test was performed
for each neuron segmented by the 6 users, comparing the number
of neurite intersections with the spheres of increasing radii, again
setting significance at p < 0.05.

DIADEM Challenge Dataset Segmentation
To show that ManSegTool is able to segment different
neuron types, a dataset from the DIADEM challenge was also
manually segmented. In particular, a two-photon laser scanning
microscopy dataset representing Neocortical Layer 1 Axons
was downloaded from http://diademchallenge.org/neocortical_
layer_1_axons_readme.html. Then, the six neuroscience experts
segmented the same neuron with the ManSegTool.

ManSegTool Performance Evaluation
Since a corresponding gold standard for manually-traced digital
reconstructions, obtained with Neurolucida (Glaser and Glaser,
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FIGURE 4 | (A) Neuron Volume (p = 0.223), (B) Neuron Area (p = 0.965), and (C) GU index (p = 0.182) for the four Purkinje cells segmented by each of the six users.

FIGURE 5 | Sholl analysis for the four neurons segmented by the six experts. For a better visual comparison of the results, data for each user are fitted to a straight

line (p-values: Neuron #1 = 0.058; Neuron #2 = 0.235; Neuron #3 = 0.066; Neuron #4 = 0.137).

1990), is also available for the DIADEM dataset, we evaluated
ManSegTool’s performance using a metric similar to the
one designed during the DIADEM challenge. The DIADEM
challenge metric is a topology-based multi-step process that
scores the connection between each node in the gold standard
reconstruction based on whether or not the test reconstruction
captures that connection (Gillette et al., 2011). In particular,
the comparison is performed on a reference set of points of
interest within the dataset (i.e., three-dimensional coordinates of
bifurcations, branches, end-points, etc.). Specifically, the data are
stored in a ∗.swc file and evaluated through the application of
an Euclidean distance threshold, that involves separate checks for
XY distance and Z distance, as the on-plane and the intra-plane
resolutions are often different.

Since the ManSegTool output is a structure constituting
the whole neuron, and not only a set of points of interest
detected by the user, we searched the ManSegTool output points

which minimized the 3D-Euclidean distance from the ∗.swc file
points through an ad-hoc developed Matlab (The Mathworks
Inc.) script. In this way it was possible to obtain a one-to-one
mapping between the DIADEM reference points of interest and
the ManSegTool ones. Then, for each pair of points, the XY
and Z Euclidean distance were calculated. The points whose
distances were bigger than the threshold value defined for the
specific dataset in the DIADEM challenge metric were marked
as “missing”; on the other hand, those points whose distance was
below the threshold were marked as “matched points”.

RESULTS

PCs Performance Evaluation
Figure 3 shows an example of a neuron extracted by each of
the 6 experts: all the users were able to entirely follow neurite
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arborization, without missing segmentation of any part of the
neuron within the confocal stack.

The morphological features and the homogeneity index are
shown in Figure 4, while the Sholl analysis to evaluate local
changes in the neurite distribution is reported in Figure 5. The
figures represent the log-log ratio of the number of intersections
in the Sholl sphere volume as a function of Sholl sphere radius.
The Friedman test confirms that there are no statistically relevant
differences between the observers in terms of neuron volume (p-
value: 0.223), neuron area (p-value: 0.965), GU (p-value: 0.182)
and number of neurite intersections with the spheres (p-values:
0.058, 0.235, 0.066, 0.137).

DIADEM Challenge Dataset Evaluation
Figure 6 shows the Neocortical Layer 1 axon from the DIADEM
challenge dataset segmented by the six users. On each neuron,
both the three-dimensional coordinates extracted from the gold
standard ∗.swc (i.e., the white markers in Figure 6) and those
extracted from the segmented neuron (i.e., the black markers in
Figure 6) are also plotted. As shown in the figure, all the users
were able to precisely follow the axon arborization. Note that the
DIADEM metric cannot be exhaustive for neuron segmentation,
since it just gives geometrical, skeleton-based information about
neuron shape, while ManSegTool allows volume segmentation.

To quantify the goodness of the segmentation with a metric
similar to the one defined during the DIADEM challenge, we
report the percentage of matched points on both XY plane and
Z axis for all the six neuroscientists. In particular, the three-
dimensional coordinates for which the Euclidean distances are
below the thresholds (i.e., 4.76 pixels for the XY plane and 17
pixels for the Z axis) are considered “matched points.” As shown
in Table 1, all the users were able to accurately follow axon
arborization using ManSegTool: in fact, at least the 95.46% of the
points are considered “matched points” on the XY plane, while
99.36% of the points are considered “matched points” on the
Z one.

Users were also asked to answer to the Scale Usability Test
(SUS) questionnaire (Brooke, 1996), a reliable and frequently
used tool for measuring GUI usability. In particular, the SUS
consists of 10 items with five response options (i.e., from strongly
agree to strongly disagree), used to evaluate ManSegTool’s
usability. The results, reported in Figure 7 as median ± median

TABLE 1 | ManSegTool scoring in the DIADEM challenge for a neocortical layer 1

axon.

User XY matched points (%) Z matched points (%)

#1 98.06 99.36

#2 96.11 99.36

#3 96.11 99.36

#4 95.46 99.36

#5 97.41 99.36

#6 97.41 100

The percentage of pairs of points obtained by ManSegTool within 4.76 pixels (XY) or 17

pixels (Z) of a corresponding reference marked pair by the DIADEM challenge.

absolute deviation (MAD), show that the tool is easy to use and
learn, since it does not require specific training.

DISCUSSION

The reconstruction and the study of neuronal morphology
from three-dimensional image stacks is considered a crucial
task in neuro-scientific research, as it could help elucidate the
relationship between structure and function in the brain. Despite
the considerable efforts channeled in this field, the task is far from
being solved: in fact, an automatic, general-purpose and robust
method to deal with the large variability of neuro-image datasets
is still lacking.

ManSegTool is an open-source software purposely developed
to facilitate the manual segmentation of complex objects in
a three-dimensional environment represented by image stacks.
In particular, the software is constructed in a GUI framework
written in Matlab that allows the user to scroll down the images
constituting the stack and to manually identify the structures
of interest constituting the object to segment. In this work,
we show that ManSegTool is a precise and accurate tool for
manual segmentation by evaluating morphometric parameters
and a homogeneity index to measure respectively the accuracy
of segmentation and the goodness of the operation.

ManSegTool was also tested on different types of datasets (i.e.,
confocal stacks of Purkinje cells from clarified mouse cerebella
and Neocortical Layer 1 Axons from two-photon microscopy
datasets from the DIADEM challenge). The positive results
obtained are a strong indication of the general applicability
of ManSegTool to manually segment any kind of datasets
in order to isolate a single neuron. Moreover, as shown in
Figure 8, additional data for the definition of a gold standard in

FIGURE 6 | The 3D graphical output of the ManSegTool tool, representing

Neocortical Layer 1 axons from mouse brain manually segmented by six

neuroscientists. On each neuron, the white marker are the DIADEM reference

points of interest, while the black ones are those extracted from the segmented

neuron (as detailed in Section ManSegTool Performance Evaluation).
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FIGURE 7 | SUS questionnaire results, expressed as median ± MAD.

FIGURE 8 | (A) An example of neuron segmented by a neuroscientist from the

DIADEM challenge two-photon microscopy dataset. (B) The set of points of

interest stored in the *.swc file for that neuron.

neuron segmentation can be obtained, such as neuron surface
and volume, which increases the information derived from the
segmentation process. We show that ManSegTool is easy to use
for non-expert users. Notably, as illustrated in Figure 7, all the
users agree on the labor-intensiveness of the tool for extracting
a single neuron, highlighting the need of an automatic system
to perform the task. Finally, since ManSegTool is open-source,
it can be widely used as a tool to extract and represent any kind
of datasets.

Although the tool was tested on neurons in their own
arrangement within the brain, it can be easily used to segment
other complex objects (i.e., vasculature, glia cells, porous
scaffolds) imaged using different techniques (e.g., two photon
microscopy, microCT). Moreover, due to the characteristics of
ManSegTool’s outputs, the three-dimensional neurons extracted

with ManSegTool could also be useful for further studies, such as
for simulating the neuron electrophysiological behavior based on
empirical microscopic data.

In conclusion, ManSegTool is proposed here as a robust
and simple tool to segment complex structures, where
automatic or semi-automatic tools and algorithms still
fail. The tool could be of interest to researchers involved
in developing single-neuron segmentation algorithms.
Researchers can test their own results comparing those
obtained with ManSegTool in terms of accuracy, precision and
time.
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