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The use of automatic electrical stimulation in response to early seizure detection has

been introduced as a new treatment for intractable epilepsy. For the effective application

of this method as a successful treatment, improving the accuracy of the early seizure

detection is crucial. In this paper, we proposed the application of a frequency-based

algorithm derived from principal component analysis (PCA), and demonstrated improved

efficacy for early seizure detection in a pilocarpine-induced epilepsy rat model. A total of

100 ictal electroencephalographs (EEG) during spontaneous recurrent seizures from 11

epileptic rats were finally included for the analysis. PCA was applied to the covariance

matrix of a conventional EEG frequency band signal. Two PCA results were compared:

one from the initial segment of seizures (5 sec of seizure onset) and the other from the

whole segment of seizures. In order to compare the accuracy, we obtained the specific

threshold satisfying the target performance from the training set, and compared the False

Positive (FP), False Negative (FN), and Latency (Lat) of the PCA based feature derived

from the initial segment of seizures to the other six features in the testing set. The PCA

based feature derived from the initial segment of seizures performed significantly better

than other features with a 1.40% FP, zero FN, and 0.14 s Lat. These results demonstrated

that the proposed frequency-based feature from PCA that captures the characteristics

of the initial phase of seizure was effective for early detection of seizures. Experiments

with rat ictal EEGs showed an improved early seizure detection rate with PCA applied

to the covariance of the initial 5 s segment of visual seizure onset instead of using the

whole seizure segment or other conventional frequency bands.

Keywords: electroencephalography, principal component analysis, seizure onset, early seizure detection,

frequency-based feature

INTRODUCTION

Neuromodulation therapy such as vagus nerve stimulation (VNS), deep brain stimulation
(DBS) or responsive neurostimulation (RNS) have recently been applied for patients with
intractable epilepsy (Howland, 2014; Lee, 2014). In the closed loop neuromodulation
system, which involves combined early seizure detection with automatic cortical
stimulation, the accuracy of a seizure detection algorithm is crucial to improve therapeutic
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efficacy (Liang et al., 2013; Howbert et al., 2014; Moghim
and Corne, 2014). Various methods for early seizure detection
have been introduced, based on electroencephalographic (EEG)
features such as frequency bands or magnitude variation (Guo
et al., 2010; Howbert et al., 2014; Moghim and Corne, 2014).
Especially, the selection of discriminative features is imperative
for improving the accuracy and reliability of a seizure detection
algorithm (Liang et al., 2010b).

To select discriminative features for accurate and reliable
seizure detection, understanding of characteristics of seizure
by phase change is a critical issue on early seizure detection.
Epileptic seizure represents discriminative phase alteration over
relevant time. In the previous studies, the epileptiform discharges
and ictal rhythms were identified and analyzed over several
window representatives of relevant time intervals during seizures.
For examples, the electrographic seizures were partitioned into
phases based on spatio-temporal evolution of ictal EEG phase
changes (Niedermeyer and Lopes da Silva, 2005; Chaudhary
et al., 2012). In another study, the ictal phases were divided
into ictal onset, ictal established and late ictal periods (Thornton
et al., 2010). The ictal onset phase was characterized by
relatively prominent beta activity apparent. The late ictal phase
was characterized by prominent gamma frequency band. In a
more recent study, with the concept that the characteristics
of epileptiform discharges could be distinguished even within
several seconds during a seizure, the seizure dynamics was
defined as the pre-seizure, the early seizure, the middle seizure,
and the late seizure windows (Martinet et al., 2017).

Principal component analysis (PCA) can find a linear
combination of frequency features with the maximum variance
(Jolliffe, 1993), and is employed for EEG feature enhancement
(Jolliffe, 1993; Liang et al., 2010a; Subasi and Ismail Gursoy,
2010; Yu et al., 2014) or EEG dimensionality reduction (Ghosh-
Dastidar et al., 2008; Lekshmi et al., 2014; Siuly and Li, 2015)
or de-noising (Kevric and Subasi, 2014). In a previous study
(Ghosh-Dastidar et al., 2008), parameters were selected from the
five physiological EEG subbands including delta, theta, alpha,
beta, and gamma frequency ranges. The EEG subbands were then
quantified in the form of the correlation dimension (CD), the
largest Lyapunov exponent (LLE), and the standard deviation
(STD). The PCA was employed for dimension reduction by
transforming 9-dimensional feature spaces into a new feature
space which was more amenable to subsequent EEG classification
(Ghosh-Dastidar et al., 2008). In another study, the PCA was
applied to 16 features (an approximate entropy and the powers
of the 15 frequency subbands) and the resultant principle
components (PCs) were fed to the classifiers for seizure detection.
The PCA based features were regarded as the second feature type
and the numbers of the PCs were determined based on the best
performance of each classifier (Liang et al., 2010a). The above
studies employed the PCA-based time-frequency EEG analysis to
detect the seizure onset (Stafstrom, 2011; Perucca et al., 2013),
which monitors frequency components of ictal EEGs (Guo et al.,
2010; Subasi and Ismail Gursoy, 2010; Howbert et al., 2014).
Other study described the effect of PCA as de-noising method
in terms of epileptic seizure detection (Kevric and Subasi, 2014).
They applied PCA de-noising method to EEG segments prior to

Power Spectral Density (PSD) estimation. Although PCA is not
a novel method, it is one of the conventional methods that has
been widely used and tested to validate the accuracy for seizure
detection. Besides, PCA is an easy and fast method that can be an
important merit to develop as a real-time analysis method.

In the present study, we used a frequency-based algorithm
derived from PCA to extract features of EEG changes during
seizures. The main purpose of this study was to extract a
representative EEG feature for seizure onset from all frequency
bands to improve the performance. In addition, we compared
the results between EEG features from early segment of seizure
vs. those from the whole seizure segment. These two issues are
one of the most important parts in seizure detection regardless
classification method are used for this purpose. So, in this
study, we wanted to test these fundamental elements related to
seizure detection, rather than developing another new analysis
technique. For this purpose, it would be better to use a straight
forward method rather than a new method that has not been
verified yet.

We applied the PCA in terms of the frequency-energy
distribution of sub-frequency bands (Figure 1). We compared
the energies of various frequency bands and additional features
with different weights on these frequency bands depending
on how the specific frequency bands change during seizures
over time. To this end, we proposed employing a dominant
eigenvector with the maximum eigenvalue from the covariance
matrix to characterize the ictal EEG changes. In addition, we
compared the eigenvectors for the whole segment of seizures and
only the initial segment of seizures to capture the characteristics
of seizure patterns. Interestingly, we could detect the seizure
onset even more accurately by using the covariance of the
initial segment of seizures, especially the initial 5 s from the
seizure onset when compared with the whole seizure segments.
This study contributes to improve the accuracy of early seizure
detection algorithm by extracting discriminatory features from
the EEG signals during seizures, especially from the initial
segment of ictal EEG seizure rather than the whole seizure
segments.

METHODS

Animal Preparation and Seizure Recording
for Analysis
A total of 15 adults (4 weeks old) male Sprague-Dawley rats
(Orient: KOATECH, Gyeonggi-do, Korea) weighting 280–300
g were used initially for this study. Before the surgery, all rats
were in a controlled environment with a 12-h light-dark cycle
and the temperature was set at 22–23◦C. The experimental
animals could freely access food and water. The rats were
anesthetized with a mixture of ketamine (80mg/kg) and xylane
(5.2mg/kg), and the skull was drilled after a scalp incision with
the animal’s head placed on a stereotaxic frame for epidural
electrode insertion. Two epidural electrodes were placed on the
left and right central cortical C3 and C4 regions using One
Channel Electrode System with Ground Preclinical Component
(PlasticsOne, Inc., Roanoke, VA, USA), respectively (AP= 3, ML
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FIGURE 1 | A schematic flowchart shows an overview of the steps involved in developing PCA-based EEG features in each subband energy from ictal EEGs in

training set and application for early seizure detection to ictal EEG segments in test set. The top panel shows ictal EEGs trains for 11 pilocarpine-induced epileptic

rats. The mid-left plot in the top panel represents seizure signal and the mid-right plot in the same panel represents non-seizure signal. The random samplings for Train

and Test sets are displayed by orange and blue line. In step 3 and step 4,
−→
ei and

−→
ew represent principal component (PC) vector extracted from initial segment of

seizures and whole seizures, respectively.

=±3.5). Additional two screw electrodes were fixed to the frontal
and parietal bone as the reference and ground, respectively. After
surgery, the rats were left to recover for 1 week before the EEG
recording, which was carried out in a separate cage. One animal
died during the anesthesia and another died after the surgical
procedure.

All animals were administered with pilocarpine hydrochloride
(300–380mg/kg i.p., Sigma-Aldrich) for inducing seizure as
described previously (Turski et al., 1983; Hamani and Mello,
2002; Kobayashi et al., 2003; Kumar and Buckmaster, 2006;

Kwak et al., 2006; Curia et al., 2008). Diazepam was received
8.6mg/kg (Sigma-Aldrich) depending on the seizure severity
after 120min of initial status epilepticus (SE) to reduce the
mortality rate and to minimize suffering from seizure. Additional
diazepam was provided 30–40min later if the SE had not
stopped, and the animals were included for long-term recording.
Two further animals died during the process of inducing SE
and valium injection. Finally, the remaining 11 animals were
included for long-term recording. Euthanasia was determined
at the end of the EEG recording. After the end of monitoring,
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we performed euthanasia using a carbon dioxide (CO2)
chamber. This study was approved by the Ethical Committee
for Animal Investigation of the Ewha Womans University
School of Medicine, and the protocol was carried out in
accordance with the recommendations of the National Institutes
of Health (NIH) Guidelines for the Care and Use of Laboratory
animals.

For long-term monitoring, all rats were placed individually
in custom-made 15 × 40 × 25 cm Acryl cages. Non-seizure
EEG signals for normal conditions were recorded for 2 h before
the pilocarpine injection. The EEG amplifier systems contained
separate ground and reference inputs using the Grass Telefactor
long-term EEG monitoring system (the Grass Technologies
Inc., West Warwick, RI, USA). A total of 4 EEG channels
were acquired using 16-bit A/D conversion, 200Hz sampling
frequency (fs), 90 dB common mode rejection ratio, and a 0.1–
70.0Hz band pass filter.

All of the 11 surviving animals developed the initial
SE and later spontaneous recurrent seizures (SRS), which
were monitored for 24 h per day for up to 6 weeks after
the pilocarpine injection by using a continuous video-EEG
monitoring system (Twin 7.0, Grass-Telefactor, West Warwick,
RI, USA). Approximately 1–2 weeks after the initial SE, the
rats developed SRS. A total of 100 ictal EEG segments from
11 epileptic rats that survived were chosen for inclusion in
this study. First, the entire recordings after the initial 7 days
of pilocarpine injection were reviewed to identify ictal EEG
segments for SRS by experienced neurologists (HWL, HJK) and
neuroscientist (YSC). The onset and offset timing of ictal EEGs
during SRS were determined by using traditional visual analysis
methods. Criteria for selection included: (i) at least 4 weeks of
prolonged EEG recordings with good quality after pilocarpine
injection, (ii) prolonged EEG recordings in which one or more
seizures were captured, (iii) at least 10 s of total seizure duration
for comparison of the initial 5-s seizure segments and the whole
seizure segments, and (iv) at least stage 3–5 seizures according
to the modified Racine’s classification (Racine, 1972). For each
animal, up to the first 10 seizures were included initially, and
ictal EEG segments that had movement or electrode artifacts
were excluded by visual inspection, finally giving a total of
100 ictal EEG segments remained and included for the further
analysis. Among the final 100 ictal EEG segments, 50 segments
were chosen randomly as training dataset to minimize possible
bias during selection, and the remaining 50 segments were used
for validation of the proposed PCA method as test dataset.
The ictal EEG segment for each seizure was clipped from
60 s before the visual seizure onset until 60 s after the visual
seizure offset. The electrode impedance was <10,000 � for each
electrode.

PCA to Extract EEG Features for Seizure
Onset Detection
Subband Partition of EEG

In this research, a total of 100 ictal EEGs were partitioned
into 50 training sets and 50 testing sets. After we identified
epileptic seizure segments, samples for train and test

process were randomly sampled to minimize any bias during
selection.

The key steps for the analysis was outlined in Figure 2. The
EEG signal was transformed to the frequency domain using the
fast Fourier transform (FFT), and was then partitioned into five
conventional EEG frequency bands: delta (δ: 1–4Hz), theta (θ: 4–
8Hz), alpha (α: 8–13Hz), beta (β: 13–25Hz), and gamma (γ: 25–
55Hz) ranges. In this research, the delta band excluded 0–1Hz to
avoid offset noise and the gamma band was included up to 55Hz
to eject AC line power frequency noise of 60Hz (Watrous et al.,
2011; Sharif and Jafari, 2017). The time window for FFT analysis
was 2 s. We represented time domain EEG data as x (n). Since the
magnitude of ictal EEG tends to be inversely proportional to the
frequency (Osorio et al., 1998), this tendency was overcome using
a simple difference filter as shown in Equation (1), and the signal
was then transformed to the frequency domain:

X[k] =

N−1
∑

n = 0

[x(n+ 1)− x(n)]e−j 2πN kn (0 ≤ k ≤ N − 1), (1)

where X[k] is the Discrete Fourier Transform of EEG after
passing the difference filter, and N is the number of samples in
the window, which is fs∗2 s = 400. From the transformed EEG
X[k], the signal energy of five subbands was obtained as shown in
Equation (2):

Xsubband =

fe,subband
∑

fb,subband

|X[k]|2, subband ∈ {δ, θ , α, β , γ }. (2)

The vector of the five subbands frequency band energies, Xδ , Xθ ,
Xα , Xβ , and Xγ , at time n was represented as vector Xn:

Xn = [Xδn Xθn Xαn Xβn Xγ n]
T (1 ≤ n ≤ W) . (3)

In Equation (3), W is the number of windows of which the size
was 2 s with a 1 s overlap. Each component of Xn represents
the energy of each subband during the 2 s window. The original
signal and energies of each frequency band in seizure No. 1 are
plotted in Figure 2. Immediately after seizure onset, the β band
showed an obvious increase followed by the α, δ, θ, and γ band
powers. In the mid-to-late seizure, unlike the initial segment, the
θ band power revealed a significant increase, followed by the γ, α,
and remaining β or δ band powers.

Principal Component as a Feature Vector

The PCA was applied to the covariance matrix of 50 ictal
EEG training seizures using the Statistical Toolbox and Signal
Processing Toolbox in Matlab 8.2 (MathWorks, Natick, MA,
USA). With each threshold obtained from the random sampled
training set, we compared the performance of the seven feature
vectors on the test seizures for validation of the PCA method:
two PCA based features from the initial and the whole segment
of seizures as well as the energy from each of the five subbands in
the testing set with 50 seizures chosen randomly. The covariance
matrix C = 1

N

∑

XnXn
T was calculated from the training seizure

signal vector, Xn. The covariance matrix is a summation over
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FIGURE 2 | Plot of an ictal EEG in training set and each subband energy. (A) Plot of the ictal EEG, seizure No. 1 in the training set. The x-axis denotes time (sec), and

the y-axis represents the amplitude of the iEEG signal. Onset time is defined as t = 0. (B) Plot of energy distribution of the same seizure in each EEG subband. The

y-axis represents the amplitudes of subbands and the x-axis denotes time. The five subbands are derived from one recording channel. The blue line, bold red line,

yellow line, bold purple line, and green line indicate the energy of the delta (δ: 1–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), beta (β: 13–25 Hz), and gamma (γ: 25–55

Hz) frequency bands, respectively. In (B), the short black arrow represents the initial 5 s of seizure (i) and the long black arrow represents the whole segment of the

seizure (w). The prominent change of energy in the beta band can be observed in the initial segment of the seizure. In the latter portion of the seizure, the energy of the

theta and beta band is dominant. Thus, for early detection of the onset, it is more accurate to use a feature that has more weight on the beta band.

50 training seizures. A feature vector, eigenvector −→e , combined
with eigenvalue λ was then obtained from Equation (4):

C−→e = λ
−→e (4)

The dominant eigenvector with the maximum eigenvalue, −→ed
was selected as a feature for onset detection. The eigenvector
from covariance matrix C represented the principal direction of
the ictal subband energies. In this experiment, the PCA based
feature u for seizure detection was obtained by the dot product
of Xn and −→ed (Equation 5), which was the energy component
along the major ictal energy direction −→ed . Here, the directions of
the non-seizure vector differed from those of the first principal
component vector of the ictal energy; therefore, the feature
signal for the non-seizure was quite small, which reduced FP
significantly.

un =
−→ed · Xn (5)

The rhythmic activities of the seizures varied with the progression
of time (Stafstrom, 2011; Perucca et al., 2013). Therefore, the
initial segment of seizure immediately after the onset revealed
a quite different frequency-energy distribution from the latter
phase of the seizure. For further analysis in our study, we

compared the combined EEG features of frequency-energy
between the early seizure vs. the whole seizure segments. Since
the goal of our work was the extraction of features for early
detection of a seizure, it was essential that the feature could
capture those characteristics of the initial segment of seizures that
were distinct from the latter phase. We adopted an eigenvector
with the maximum eigenvalue of the covariance matrix from
the initial segment of training seizures as a feature for onset
detection, and verified the effectiveness of the proposed feature
using testing seizures. We confirmed the efficacy of the proposed
feature from experiments.

We set a feature vector −→ew to be the feature vector extracted
from the whole segment of seizures, and set−→ei to be the proposed
feature using the initial 5 s of seizures in the training set. We
compared the angle between the two feature vectors−→ei and

−→ew as
shown in Figure 3; the angle would be zero if the feature vectors
had identical characteristics. The angle between the two vectors
was derived from a dot product from Equation (6):

−→ew ·
−→ei =

∣

∣

∣

∣

−→ew
∣

∣

∣

∣

∣

∣

∣

∣

−→ei
∣

∣

∣

∣ cos θ (6)

As shown in Figure 3, the two feature vectors,−→ei and
−→ew , showed

quite different tendencies; the angle between the two feature
vectors was 33.1◦. The weight on the theta band was dominant in
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FIGURE 3 | Dominant eigenvectors from the initial segment vs. the whole

seizure segment. The dominant eigenvector from the principal component

analysis for the initial 5 s after the seizure onset (
−→
ei ) vs. the whole segment

(
−→
ew ) of seizures. The y-axis represents the normalized values of the dominant

eigenvectors and the x-axis denotes the five subbands. The red line is the

eigenvector of the initial 5 s and the blue dashed line represents the

eigenvector of the whole seizure segment. The beta frequency band is

dominant in the initial segment of seizure (red line), while the theta frequency is

strong during the whole seizure segment (blue dashed line). The two feature

vectors,
−→
ei and

−→
ew, show quite different tendencies.

−→ew which is from the whole ictal EEG segment, while the weight
on the β band was dominant in−→ei . Dot products calculated from
each of these feature vectors became the PCA based feature for
seizure detection, ui and uw. With these two PCA based features
and the energy of the 5 subbands, we tested whether PCA based
features were more effective for early detection of seizures, and
especially for the application of the proposed feature, PCA, on
the initial segment of seizures: the proposed PCA feature showed
better performance than that on the whole segments of seizures.

Estimations of Thresholds, False Positive,
and False Negative
We adopted a straightforward thresholding algorithm for an
intuitive comparison of various features in onset detection,
because the purpose of this work is to select an effective feature
for seizure detection instead of implementing a detector. While it
was known that employing a sophisticated classifier can enhance
the accuracy, a simple thresholding algorithm manifested the
comparison of different performances among the features. We
used quantitativemetrics such as false positive (FP), false negative
(FN), and latency (Lat), as statistical measures to test reliability of
performance for this kind of EEG analysis method (Singh and
Aktas, 2016). Lat was defined as the time delay of the detected
onset using a feature from the onset defined by neurologists. Our
aim for seizure detection was to apply a therapeutic pulse before
a “significant symptom” manifested; therefore, we limited the Lat
to 5 s. Thus, a seizure which was not detected within 5 s was
classified as FN. FN in this study was the ratio of undetected
seizures to the total number of test seizures. FP referred to

a portion of misjudged non-seizure signals as seizures. Non-
seizure samples with total duration 1.5 h were used to test for
the FP. The number of non-seizure windows of which the feature
amplitude was greater than a given threshold was counted as FP.
FP decreased as the threshold increased. FP is represented by a
blue line in Figure 4B.

The thresholds were determined from median values of
thresholds of training seizures. Range (red arrow in Figure 4B)
for target performance is as follows: FP was less than 5%,
FN is zero, and Lat was less than a specified value of 2 s
(Figure 4A). FP decreased with increasing threshold; therefore,
the threshold must be high enough to maintain a low FP (5% in
our experiment), which was denoted as EFP= 0.05. On the other
hand, FN and Lat increased with increasing threshold. Therefore,
the threshold should be low to avoid FN. Lat was a crucial
measure for onset detection. If Lat was longer than 5 s, it was
classified as FN as shown in the lower graph of Figure 4B. The
threshold for a specified latency, for example 2 s, was represented
as ELat = 2. The arithmetic average of thresholds for EFP =

0.05 and ELat = 2 was a good candidate for threshold for a
given training seizure. We then selected the median among the
thresholds of the training seizures.

Additional Validation for Comprehensive
Data Analysis
For further comparison to improve validity, we additionally
tested the rate of FP during 5-days of non-seizure data (425,100 s)
to verify the proposed method. The non-seizure data included
not only interictal spikes, but also moving artifacts of rats
and electrical artifacts (Supplementary Figure 1). The non-
seizure samples were taken between SRS at least 1 h before and
after seizures. In Supplementary Figures 1A,B show interictal
spikes, while Supplementary Figures 1C,D represent electrical
or moving artifacts. The detected feature is normalized against
the corresponding threshold value, therefore, magnitude over 1
means FP. In comparison, the proposed feature with low value
less than 1 means minimal FP.

RESULTS

Feature extraction and testing for seizure detection were
performed with 100 ictal EEG events: 50 ictal EEGs for training
and the remaining 50 for the test. To elucidate whether the size
of training dataset had some effects on the proposed algorithm,
we compared the PCA features derived from the initial seizure
and the whole seizure segments using different training dataset
of 10, 20, 30, and 50 ictal EEGs. The average of the PCA-
based eigenvectors showed similar characteristics regardless of
the sample size; however the standard deviation increased as the
sample size decreased.When compared the eigenvectors from the
initial seizure vs. the whole seizure segments, the discrepancy of
the PCA vectors according to the size of training dataset from
the latter was more evident. To be specific, the overall trend of
eigenvectors from the initial seizure segments showed similar
findings across different numbers of the training dataset, that
is, the highest weight was on the beta band followed by the
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FIGURE 4 | Reliability of algorithm based on false positive (FP), false negative (FN) and latency vs. threshold. (A) Threshold range (red arrow) for stable seizure

detection on a plot of the features. Onset time is defined as t = 0 s. The y-axis represents the energy of a feature and the x-axis denotes time. (B) Energy threshold

range (red arrow) for stable seizure detection in terms of standard accuracy indices: Lat ≤ 2 s, FN = 0 s and FP ≤ 5%. The x-axis represents a threshold that is the

same as the energy of the feature in (A). The left y-axis represents the probability of FP: 0.05 is 5% and 1 is 100%. The blue dotted curve shows FP, which decreases

with increasing threshold. The right y-axis denotes time in seconds and the green line represents latency. Latency increases with increasing threshold. When the

latency is greater than 5 s (green dotted line), it is classified as FN, as shown by the vertical black dashed line. The threshold range for stable seizure detection is

shown as the red bidirectional horizontal arrow, which is the range of the feature threshold from EFP = 0.05 to ELat = 2. The wide threshold range means that the

feature has a sufficient noise margin, which guarantees reliable onset detection.

alpha band and the lowest weight was on the delta band. On
the other hand, those from the whole seizure segments revealed
that the larger numbers of the training dataset, the more evident
characteristics of the weight on the five subbands were, especially
in the theta and beta bands (Supplementary Figure 2). PCA was
applied to the covariance matrix of the training seizures. The
covariance matrix was constructed from the initial segment of
seizures and then from the whole segments for comparison. From
each of the two covariance matrices, we obtained two PCA based
feature vectors,−→ei and

−→ew . The two PCA results were used as the
feature vector in the testing set. The seven features, including ui
and uw, were compared from two perspectives: (i) the standard
accuracy index (FP, FN, and Lat) and (ii) the threshold range for
stable seizure detection.

Standard Accuracy Indices: FP, FN, and Lat
vs. Thresholds
The standard accuracy indices were investigated for each feature
at the median threshold (Th1) obtained from the training set.
In addition to the threshold, we measured the performance
indices after changing the threshold to 0.2, 0.5, 0.8, 1.2, 1.5,
and 2 times the median value. The results for the standard

accuracy indices are shown in Figure 5. The horizontal axes
showed the threshold change and the vertical axes showed
FP (%), FN (%), and Lat (sec). The threshold values are
normalized to 1 in the plot. We observed that the higher
threshold results in the lower FP as shown in Figure 5A. The
proposed feature ui showed the lowest FP of all threshold
ranges, followed by the other PCA based feature, uw: FP of
ui is 1.4% and FP of uw is 2.9%. The theta band feature
showed the worst performance with 41.7% FP at the median
threshold.

The FN increased with increasing threshold (Figure 5B). The
FNwas zero, regardless of the threshold change from 0.2 to 1.2 for
four features: θ, β, ui, and uw. However, when the threshold was
increased by 1.5 times, FN of the other features increased further
than the proposed PCA feature, ui. The δ and γ band features
showed worse performance within the given range of threshold
change. The expected tendency of the higher Lat with higher
threshold was observed in Figure 5C. For the normalized range
from 0.2 to 1.2, the Lat of ui showed the smallest latency time.
For example, at the threshold 1, Lat of ui was 0.14 s, followed by
Lat of Xα of 0.26 s. In contrast, the θ and γ band features showed
longer latency than the other subband features, which is similar
to the tendency of FN.
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FIGURE 5 | Performances of seven EEG features vs. threshold levels. The normalized median threshold (Th1) and scaled thresholds at 0.2, 0.5, 0.8, 1.2, 1.5, and 2

times of the normalized median value are compared for seizure detection. The sky-blue plus sign-pointed line, orange circle-pointed line, yellow star-pointed line,

purple dot-pointed line, green cross-pointed line, bold blue square-pointed line, and bold red diamond-pointed line indicate the delta (δ), theta (θ), alpha (α), beta (β),

gamma (γ) band features, the PCA based feature from the initial segment of the seizure segment (ui ), and the other PCA based feature from the whole seizure (uw ),

respectively. (A) Plot of FP at the scaled Th1. The Th1 is derived from the training set. The y-axis represents FP from a test set and the x-axis represents the different

scales of the Th1. (B) Plot of FN vs. the threshold. The y-axis represents the FN in percentage, and the x-axis represents the threshold. (C) Plot of Lat vs. threshold

change.

Threshold Range for Stable Seizure
Detection
From these standard accuracy indices, we can determine the
range of threshold values. The range of threshold values is also
crucial for the stable operation of seizure detecting devices (Shoeb
and Guttag, 2009). Thus, we estimated the range of threshold
values for each feature in all test seizures and then determined the
ranking of widths. Figure 6 shows the average ranking of all test
seizures for each feature. The PCA based feature, ui, was ranked
highest with 1.88 ± 0.84 among the seven features, followed by
another PCA based feature, uw, with 2.46 ± 1.40. The θ band
feature, Xδ , was ranked lowest with 5.5 ± 1.17 and the γ band
feature, Xγ , ranked sixth with 5.1 ± 1.84. Overall, the worse
performance in the θ and γ band features has a similar tendency
to the result of 3.1 as shown in Figure 5. Moreover, we counted
the number of first ranks for each feature as shown in Figure 7. In
Figure 7, the x-axis shows the seven features and the y-axis shows
the number of the first rank.

Consequently, ui had the greatest number of first rankings
with 21 among 50 test seizures. The uw followed ui and the rest
of the features had fewer than 3 times for the first rank. From

the result, the two PCA based features showed a more flexible
threshold range than the other features; especially, the PCA based
feature derived from the initial segment of seizures, ui, showed
the highest stability. In conclusion, with these two experiment
results, we confirmed that ui revealed the best performance
among all the seven features with relatively low FP and Lat, which
will guarantee safe operation margins in early detection of onset.

Examples of Non-seizure Segments
Detected as False Positives
Supplementary Figure 1 shows examples of artifacts; interictal
spikes (A,B), electrical artifacts (C) and moving artifacts (D). The
detected feature has been normalized against the corresponding
threshold value, therefore, magnitude over 1 means false positive.
The proposed feature, ui maintains low value less than 1,
which means FP was minimal. The proposed PCA feature
during interictal spikes, electrical and moving artifacts shows low
magnitude less than 1 for most of the time.

Low FP results for artifacts also support the superiority
of the proposed feature in comparison with other features.
Supplementary Table 1 shows the rates of FP for the additional
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FIGURE 6 | Average of the rank for stable seizure detection in a testing set.

The y-axis represents the average of the ranks and the x-axis denotes the

seven features. The average is calculated from the 50 testing seizures and the

standard deviation is represented by a black line. The principal component

from the initial segment of seizures, ui , performs the best rank among all the

seven features with relatively low false posivie (FP) and latency (Lat).

data for 5 days including non-seizure data including artifacts in
the initial and the whole seizure segments. The rate of FP for the
proposed feature, ui, was quite low and comparable between the
initial and the whole seizure segments.

DISCUSSION

In the present study, we investigated the performance of seizure
features for early detection. The main findings of this study were:
(i) the PCA based feature based on weighted average of five EEG
frequency bands was better in detecting the seizure onset than the
individual frequency band, (ii) the PCA feature from the initial
segment of seizures showed higher accuracy than that from the
whole segment of seizures. Feature extraction by PCA algorithm
and the features extracted from five EEG frequency bands have
been used in previous researches. However, the main purpose
of this study was to investigate characteristics and usefulness
of the features extracted from the initial part of the seizures
for early seizure detection compared with those from the whole
seizures. Our findings indicated that PCA is useful for extracting
the feature of seizures and PCA from the initial segment of ictal
EEG could detect a seizure more accurately than the principal
component from the whole seizure segments. The FP of the
proposed method was 1.4%, while the second best was 2.88%
using PCA of the whole seizure segments. Lat was 0.14 s, and the
second-best performance was 0.26 s using the alpha channel.

In previous studies, PCA was applied to the whole
segment (Srinivasan et al., 2005; Kevric and Subasi, 2014) or
dimensionality reduction (Polat and Güneş, 2008; Subasi and
Ismail Gursoy, 2010; Yu et al., 2014). In a study (Ghaffari and
Ebrahimi Orimi, 2014), wavelet packet transform (WPT) was

FIGURE 7 | Number of first ranking in 50 testing seizures. The y-axis

represents the number of first rankings among the 50 testing seizures and the

x-axis denotes the seven features. Similar to the result of the average of the

rank in Figure 6, the principal component from the initial segment of seizures,

ui , performs the best ranking among all the seven features with relatively low

FP and Lat.

used in each of the frequency bands, while the energy and
entropy functions were composed of the wavelet coefficients
and used as feature vectors. After feature selection, 15 energy
and entropy features were selected as the final features for
seizure detection. However, with the wavelet-analysis, the infinite
number of wavelets and the width of the scaling function should
be circumvented (Valens, 1999).

From our results, we verified that the PCA based feature
vector extracted from the initial 5 s since the seizure onset
outperformed the frequency subband as well as the PCA based
feature vector extracted from the whole segment of seizures.
The two feature vectors for the initial seizure (−→ei ) and the
whole seizure (−→ew ) segments, showed different characteristics
in terms of energies in different frequency bands. The weight
on the theta band was dominant in −→ew , while the weight on
the β band was dominant in −→ei . In fact, the strong weight on
the β band in −→ei is more comparable to the previous findings
(Chaudhary et al., 2012). Thus, the initial segment of seizures
seems to be good for extracting characteristic features during
seizures, which can be advantageous for real-time EEG recording
for early seizure detection. One possible explanation for the
difference in the frequency band energy distribution of the initial
segment of seizures from the latter part of the seizures was
rhythmic build-up and/or propagation of seizure activities. Other
studies also demonstrated that various EEG indices showing EEG
rhythms and functional networks revealed different patterns at
the seizure onset, during seizure propagation, and at seizure
termination (Kramer et al., 2010, 2012; Kramer and Cash, 2012).
The initial segment of seizures revealed prominent and robust
changes, and these characteristics could be encoded in the PCA.
Therefore, the proposed feature could detect the seizure onset
with higher accuracy while maintaining low latency. Thus, once
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the seizure detection algorithm with our PCA based feature
was embedded in a medical device such as a real-time seizure
detector, we could anticipate improvement of therapeutic efficacy
with better performance. The proposed algorithm requires a
pre-computation of eigenvectors from training seizures. This
eigenvector has five weighting factors for the corresponding
subbands, and the feature for seizure detection is a weighted
average of five subbands of the EEG signal. Therefore, the
overhead for feature calculation is five multiplications and four
additions, which are negligible compared to the subband division
of the EEG signal. In this study, we additionally selected 5 days of
non-seizure EEG signals including interictal spikes and electrical
artifacts (425,100 s) to verify the proposed method. Results of the
FP from these artifact samples further validated that the proposed
feature showed a reliable FP rate comparable between in the
initial and the whole seizure segments.

Future works include focusing on applying the feature to
more elaborate classifiers. The proposed PCA feature could be
applied to othermethods such as Support VectorMachine (SVM)
for robust and precise detection of seizure onset. A patient-
specific SVM can improve the performance of neuro-stimulators
(Shoeb and Guttag, 2009) and another study compared the
performance of three SVM types: weighted SVM, one-class
SVM, and support vector data description (SVDD) for seizure
detection in an animal model of chronic epilepsy (Nandan
et al., 2010). Therefore, with the proposed feature and patient-
specific classifier such as SVM, we can anticipate the improved
performance in early seizure detection. Moreover, this feature
could be used for a closed-loop system with a therapeutic pulse,
because of the robust and accurate detection of the seizure onset.

In summary, we observed that the PCA based features
applying different weights for various frequency bands, especially
from the initial segment within 5 s after the seizure onset were
effective for early seizure detection for ictal EEG events of
spontaneous seizures in the Pilocarpine-induced rat epilepsy
model. This research can contribute to real-time seizure
detection, in which the EEG characteristics are analyzed in
clinical settings where the timing of seizure detection is crucial
for aborting the seizure activities. The presented PCA feature

derived from the initial segment of seizures is simple and fast
in the calculation point of view, which can be adaptable to
the future clinical application of real-time EEG monitoring
for early seizure detection. Therefore, the detection electronic
circuitry can be designed to consume less power for seizure
feature estimation. Our findings could enable us to develop a
robust and accurate algorithm for automatic and real-time early
seizure detection in future studies. With this approach, advanced
closed loop neuro-stimulation methods for patients with drug-
resistant intractable epilepsy can be implemented with further
validation.
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