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In this article, we introduce img_pipe, our open source python package for

preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and

intracranial stereo-EEG analyses. The process of electrode localization, labeling, and

warping for use in ECoG currently varies widely across laboratories, and it is usually

performed with custom, lab-specific code. This python package aims to provide a

standardized interface for these procedures, as well as code to plot and display results

on 3D cortical surface meshes. It gives the user an easy interface to create anatomically

labeled electrodes that can also be warped to an atlas brain, starting with only a

preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities

of our imaging pipeline and present a step-by-step protocol for users.

Keywords: intracranial recordings, electrode localization, electrocorticography, epilepsy, surgery, image

coregistration, subdural electrodes, open science

INTRODUCTION

High-density electrocorticography (ECoG) is an invasive method where recordings are obtained
directly from the surface of the brain in patients with medically intractable epilepsy. This
approach provides millimeter spatial and millisecond temporal resolution neurophysiological data
from awake, behaving humans, which complements the information obtained from noninvasive
approaches such as, fMRI, EEG, and MEG (Chang, 2015). Preprocessing of ECoG data typically
relies on aligning a preoperative MRI scan to a postoperative CT scan or postoperative MRI, then
electrodes are localized either manually or in a semi-automated fashion (Kovalev et al., 2005; Miller
et al., 2007; Dalal et al., 2008; Hermes et al., 2010; Oostenveld et al., 2011; Dykstra et al., 2012;
Yang et al., 2012; Groppe et al., 2016; LaPlante et al., 2016). Once electrodes are localized in the
MRI, they are assigned anatomical labels, and then potentially warped to a common MNI atlas
space for comparisons across subjects. While many labs that perform ECoG research have their
own methods for performing these steps, to our knowledge there exists no software package that
incorporates all steps of image processing necessary for ECoG electrode localization and warping
from start to finish.

Here, we present a protocol to perform all of these steps, from pial surface reconstruction to
CT coregistration, electrode identification and anatomical labeling, and warping to a common
atlas space. We take advantage of tools provided in the nipy software package (https://github.
com/nipy/nipy/), dural surface reconstruction from ielu (LaPlante et al., 2016), 3D plotting in
mayavi (http://mayavi.sourceforge.net/; Ramachandran, 2001), and extend on functions available
in the MATLAB-based CTMR package (Hermes et al., 2010). This protocol has been used to
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localize and label electrodes in our previously published work
(Dichter et al., 2016; Hamilton et al., 2016; Leonard et al., 2016;
Moses et al., 2016; Muller et al., 2016b; Tang et al., 2017). In an
effort to promote open and affordable access to these tools, all
requirements to run the pipeline (aside from physical hardware)
are freely available for download at no cost to the user. We hope
that this software will facilitate more efficient workflows within
ECoG research labs and will aid in reproducibility across studies.

MATERIALS AND METHODS

Subjects
Here, we present electrode localizations from human subjects
undergoing surgical treatment for intractable epilepsy. Subjects
were implanted with high-density subdural intracranial electrode
grids (AdTech 256 channels, 4mm center-to-center spacing and
1.17mm diameter), subdural electrode strips (1 cm spacing),
and/or depth electrodes (5mm spacing) as part of their clinical
evaluation for epilepsy surgery. This study was carried out
in accordance with the recommendations of the University of
California, San Francisco Institutional Review Board with written
informed consent from all subjects. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.
This protocol was approved by the University of California, San
Francisco Institutional Review Board.

Example Data
We include sample data for use with this pipeline so that the
user may follow along with each of these steps and check
their results. Sample data is available at https://doi.org/10.5281/
zenodo.996813 and includes an AC-PC aligned T1 MRI scan,
CT scan, and all intermediate and final files from the execution
of img_pipe. This subject’s data is shown in Figure 1A. Other
figures include data from this subject and others to illustrate a
wide variety of scenarios that could be encountered when using
our software. We suggest that users who wish to follow along
download this data set, then copy the files from the acpc and
CT directories to a new Freesurfer subject directory. The user
can then start from the prep_recon() step. The montage and
electrode device details are specified in the dataset README file
and accompanying montage file.

Operating System Requirements
1. Computer running Linux or Mac OS X. (Windows users

should run this code on a virtual machine running Linux—
plotting code will work natively on Windows, but freesurfer
will not.)

2. Processor speed: at least 2GHz
3. RAM: 8 GB or higher recommended
4. Graphics card (optional): 3D graphics card and accelerated

OpenGL drivers

Installation and Third-Party Software
Requirements
In order to use the software described in this paper, the user will
need to install the following third-party software packages:

1. gcc compiler (for Apple, can be downloaded through Apple
Developer Command Line tools in XCode) or C++ compiler
(available for Windows at http://aka.ms/vcpython27)

2. Anaconda Python 2.7 or 3.5 (we recommend
Anaconda python for ease of installation https://www.
continuum.io/downloads). Python 3.6 is not currently
supported.

3. conda installer (included with Anaconda python installation)
4. Freesurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/

DownloadAndInstall). Be sure to register and copy the
license.txt file to the appropriate directory. If the user is
running Windows, they will have to run Freesurfer through a
virtual machine running Linux (see https://surfer.nmr.mgh.
harvard.edu/fswiki/Installation/FreeSurferVirtualImage).

5. For warping depth electrodes, libboost C++ libraries (v1.41)
(http://www.boost.org/users/history/version_1_41_0.html).

6. Optional: If using an NVIDIA graphics card, some
computations can be sped up by downloading and installing
the CUDA libraries (we have found that CUDA v5.5 works
with Freesurfer)

7. For converting dicom to niftii, either use SPM12 or use
dcm2nii binary (https://www.nitrc.org/plugins/mwiki/index.
php/dcm2nii:MainPage).

After installing the software above, the img_pipe module is
installed by running the following commands at the terminal. We
also suggest installing packages in a conda environment to avoid
conflicts with any other installed software.
For Python 2.7, using conda located in your Python 2.7
installation directory:

$ git clone https://github.com/changlabucsf/

img_pipe

$ conda env create -f img_pipe/environment

_py27.yml

$ source activate img_pipe_py2

$ ipython

$ import img_pipe

For Python 3.5, using conda located in your Python 3.5
installation directory:

$ git clone https://github.com/

changlabucsf/img_pipe

$ conda env create -f img_pipe/environment

_py35.yml

$ source activate img_pipe_py3

$ ipython

$ from img_pipe import img_pipe

RESULTS AND STEPWISE PROCEDURES

Overview of the Image Preprocessing and
Electrode Localization Pipeline
This paper describes how to use the img_pipe package,
which will allow the user to take a T1 structural MRI scan
and a CT scan with intracranial electrodes from the same
patient, identify electrodes for visualization on the pial surface,
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FIGURE 1 | (A) The final results of the imaging pipeline are (A) anatomically labeled surface electrodes in the subject’s native space (left) and in nonlinearly warped

atlas space (right) and (B) anatomically labeled depth electrodes in subject (left) and atlas (right) space. (C,D) show segmented, labeled MRI volumes from freesurfer in

the native (C) and atlas (D) space, with one example electrode in the hippocampus identified in red.

automatically label electrodes with anatomical labels according
to the Desikan-Killany atlas (Desikan et al., 2006) and/or
Destrieux atlas (Fischl et al., 2004), and nonlinearly warp
electrodes onto a common atlas brain while preserving their

anatomical locations. Results of this procedure are shown in
Figure 1.

The full process is described in Figure 2, which shows a flow
chart of each step in this protocol.
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FIGURE 2 | Flow chart schematic of imaging pipeline and use of the class img_pipe.freeCoG for electrode localization, anatomical identification, and warping.

Setting up the Directory Structure and
Paths
• Set up the paths. If using the bash shell, edit ∼/.bashrc,

∼/.bash_profile to add the following lines:

$ export FREESURFER_HOME=''/path/to/
freesurfer''

$ source $FREESURFER_HOME/

SetUpFreeSurfer.sh

$ export SUBJECTS_DIR=''/path/to/
freesurfer/subjects''

$ export

DYLD_FALLBACK_LIBRARY_PATH=''/usr/
lib:$DYLD_LIBRARY_PATH''
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FIGURE 3 | (A) Unaligned T1 scan. From left to right: axial view shows vertical crosshair unaligned with longitudinal fissure, which can be corrected by adjusting yaw.

Next, another axial view depicts unequal size in eyes, which can be corrected by adjusting roll. Coronal view shows vertical crosshair unaligned with longitudinal

fissure, which can also be corrected by adjusting roll. Lastly, the sagittal view shows that the horizontal crosshair is not aligned with the anterior commissure (AC) and

posterior commissure (PC), which can be fixed by adjusting pitch. (B) Reoriented, ACPC aligned T1 scan with corrections in yaw, roll, and pitch. From left to right:

axial view shows crosshairs aligned with longitudinal fissure. Another axial view shows equal sized eyes. Next, coronal view shows vertical crosshair aligned with

longitudinal fissure. Finally, sagittal view shows the anterior commissure (AC) and posterior commissure (PC) aligned on the horizontal axis. The origin (0, 0, 0) is set to

the anterior commissure.

For example FREESURFER_HOME might be
/Applications/freesurfer/ or /usr/local

/freesurfer; SUBJECTS_DIR is a directory of the user’s
choosing but is often /usr/local/freesurfer/

subjects or /Applications/freesurfer/

subjects.

• After adding these lines to ∼/.bashrc or ∼/.bash_

profile and saving the file, be sure to run:

$ source ~/.bash_profile

in the terminal. This will run these commands to set the
appropriate environmental variables for use by img_pipe and
Freesurfer.

• Running img_pipe requires a good quality, high resolution
(preferably 1mm isotropic) pre-operative T1 structural
scan and a post-operative CT scan for the patient, both
in nifti format. For specific requirements regarding T1
pulse sequences that work best, consult the Freesurfer
beginners guide (https://surfer.nmr.mgh.harvard.edu/fswiki/
FreeSurferBeginnersGuide). In general, a Siemens MPRAGE
or GE SPGR sequence with excellent gray/white matter
contrast will work well.

• After downloading and installing the packages described
above, create a new subject directory with the patient ID
(for this paper, we will use the example ‘test_subj’) in
the freesurfer subjects directory (for example /usr/local/
freesurfer/subjects/test_subj). In a terminal, run:

$ mkdir $SUBJECTS_DIR/test_subj

• In this directory, create the directories acpc and CT:

$ mkdir $SUBJECTS_DIR/test_subj/acpc

$ mkdir $SUBJECTS_DIR/test_subj/CT

• Place the niftii format T1 scan in the acpc directory, and the
niftii format CT scan in the CT directory. The T1 scan should
be named T1_orig.nii and the CT scan should be named
CT.nii.

Alignment of T1 Scan to AC-PC Axis
It is recommended that the user align T1 scans to the anterior
commissure-posterior commissure axis before processing in
Freesurfer. This will provide better initial conditions for later
warping steps, and will result in the creation of meshes in a
standard orientation. While some programs are able to perform
this alignment automatically (e.g., the Automatic Registration
Toolbox, available as a linux command line tool: https://
www.nitrc.org/projects/art), here we describe how to perform
this process manually. Note: it is also possible to perform
this alignment on the final surfaces and electrode files using
Freesurfer’s talairach.xfm file—see Section Other Notes for how
to do this.

• Alignment of the T1 scan to the anterior commissure-
posterior commissure axis is performed in Freeview
(Figure 3). Open Freeview and load the unaligned T1
scan in the Volumes tab. To aid in axis alignment, change the
cursor style “long” in Preferences : Cursor style “Long.” The
color may also be changed if desired.
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• To adjust the rotation and translation of the image, select Tools
: Transform Volume. Adjust the roll (with Y (P-A)) and yaw
(with Z (I-S)) as necessary to make sure the head is aligned.
Check the axial view to make sure the eyes show equally in
the same slice (see Figure 3A vs. Figure 3B, second panel for
unaligned and aligned examples). Make sure the midsagittal
line is vertical in the axial view (see Figure 3A vs. Figure 3B,
first and third panels) and in the coronal view. Choose Sample
method “Cubic”.

• Select the anterior commissure and adjust the pitch of the
head so that it is in line with the posterior commissure on the
horizontal axis (Figures 3A,B, last panel).

• Finally, move to the (0, 0, 0) RAS coordinate (not TkReg RAS,
just RAS). In the Transform Volume tool, translate the image
until the cursor is at the anterior commissure.

• Once the brain is in a good orientation, click “Save Reg. . . ”
and save the transformation matrix in the acpc directory
as T1_reorient.lta. Then, click “Save as. . . ” and save the
reoriented T1 file as T1.nii in the acpc directory (e.g.
/usr/local/freesurfer/subjects/test_subj/acpc).

Overview of the Class FreeCoG
• The img_pipe.py python module centers around the use of the

class freeCoG, which is first initialized to contain information
about a specific patient’s data and has a number of methods
that can be called to perform image coregistration, pial surface
extraction, electrode anatomical labeling, and warping of
electrodes into common space.

• The freeCoG class contains the following attributes that should
be specified during initialization:

◦ subj: [string] the name of the subject ID. In this
protocol, we will use 'test_subj' as the subject ID.

◦ hem: [string], 'lh', 'rh', or 'stereo'. The
hemisphere of implantation (can also be 'stereo' for
bilateral coverage)

◦ zero_indexed_electrodes: [boolean,

default=True], if False, will use one-indexed
numbering for electrodes. This is important to note
if your montage starts with electrode channel 1 vs.
electrode channel 0 (since zero-indexing is the python
default).

• The following should be specified during initialization if not
already in the user’s path. By default they will be set to the value
in the environmental variables defined previously.

◦ subj_dir: [string]: specify the location of the
freesurfer $SUBJECTS_DIR

◦ fs_dir [string]: the directory containing the
Freesurfer executables, e.g., ‘/Applications/freesurfer’

• The class freeCoG also contains the following methods:

◦ prep_recon()

This method sets up the directory structure before
running the Freesurfer pipeline.

◦ get_recon()

This method starts the Freesurfer recon-all pipeline,
which takes a T1 scan and performs automatic
extraction of the pial surface.

◦ convert_fsmesh2mlab()

This method converts the Freesurfer pial surfaces
to triangle-mesh format for use/visualization in
MATLAB and python.

◦ reg_img()

This method registers the CT to the T1 MRI.

◦ get_surface_warp()

This method performs the sulcal-based cortical
surface warping for surface electrode warping to MNI
atlas space.

◦ get_subcort()

This method performs automatic parcellation of the
subcortical structures (from freesurfer’s atlas-based
parcellation), and saves them to triangle-mesh.mat
files for use in MATLAB or python.

◦ get_cvsWarp()

This method performs a combined surface-based,
volumetric, and elastic warping of single subject
brains to an atlas space for accurate warping of depth
electrodes into common space.

◦ apply_cvsWarp()

This method applies the resulting warp from
get_cvsWarp() to the electrode coordinates.

◦ checkDepthWarps()

This method produces a PDF of each depth electrode
in the subject’s native space and in the common atlas
space for error checking of warps.

◦ label_elecs()

This method automatically labels electrodes based on
the freesurfer atlas parcellation.

◦ plot_recon_anatomy()

This method plots the anatomically labeled electrodes
on a surface reconstruction.

◦ warp_all()

This method is a wrapper method for warping the
electrodes and creating pdfs for quality checking.

◦ plot_brain()

This method is a wrapper function for plotting the
surface reconstruction and electrodes.
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Running Surface Reconstructions in
img_pipe
Pial surface meshes are created in freesurfer, but freesurfer
code is called from within img_pipe for ease of use. First we
must initialize the patient object, after which we may call the
appropriate methods to execute surface reconstructions.

Initializing the Patient in img_pipe
• After AC-PC alignment as described above, start an ipython

session and initialize the patient object. (Note: this processmay
be started in a Unix “screen” or “tmux” session if running on a
remote server to avoid processes stopping after logout).

» import img_pipe

» subj = 'test_subj'
» hem = 'rh'
» patient = img_pipe.freeCoG(subj = subj,

hem = hem)

Creating Pial Surface Reconstructions in Freesurfer
• Next, prepare the directory structure for running Freesurfer by

running the following command in an ipython session:

» patient.prep_recon()

This will create the directories elecs, mri, and mri/orig,
and will copy the acpc-aligned T1.nii to mri/orig and
convert it to Freesurfer mgz format.

• Next, run the following step, which will call freesurfer’s recon-
all script.

» patient.get_recon()

This will create the directories bem, label, mri,

scripts, src, stats, surf, tmp, touch, and
trash and will run through the entire Freesurfer pipeline,
which will produce a skull-stripped MRI, left and right
hemisphere pial surfaces (as well as white matter and inflated
surfaces), and anatomical labels for the surface and MRI files.
More information on this process is provided in the Freesurfer
documentation (https://surfer.nmr.mgh.harvard.edu/fswiki) and
is not discussed here.

• The Freesurfer pial surfaces will be in the surf directory
(surf/lh.pial for left hemisphere, surf/rh.pial for
right hemisphere), and the skull-stripped MRI will be in
mri/brain.mgz

• Pause point: Check the pial surfaces in freeview (Figure 4)
to assure that there is good correspondence between the pial
surface and the gray/CSF boundary. To check the pial surfaces,
call patient.check_pial(), which will open a Freeview
window with the MRI and pial surface loaded. Scroll through
the slices and check whether the pial surface accurately
corresponds to the MRI. Figure 4A shows an example of a
poor correspondence in the temporal lobe due to anatomical
lesion – this pial surface would need to be corrected using
edits to the white matter surface (https://surfer.nmr.mgh.
harvard.edu/fswiki/FsTutorial/WhiteMatterEdits_freeview).

Figure 4B shows good correspondence between the pial
surface (yellow) and the underlying MRI. Figure 4C shows
how this surface appears in the 3D view. Given a high quality
T1 scan with minimal motion, the user should be able to
extract a good quality pial surface that looks relatively smooth
(without spiky artifacts) and that follows the underlying
anatomy.

• Note for those running code on a cluster: The user may
change the call to recon-all in get_recon() to use a queue
submission procedure of choice. For example, the call to
recon-all can be specified in a ‘qsub’ command to send the
command to an SGE cluster computing system.

Converting Freesurfer Meshes to Triangle/Vertex

Meshes for Use in MATLAB/Python
• The lh.pial and rh.pial surfaces in freesurfer contain

the data for plotting a triangle/vertex mesh, which can be
used later in any 3D program (for example mayavi in python,
Blender, Unity, or MATLAB).

• To convert the freesurfer format to arrays of vertex coordinates
(in surface RAS) and triangle indices, call the following
method. By default, this will create the pial surfaces for both
the left and right hemisphere.

» patient.convert_fsmesh2mlab()

• This method can also be called with the optional
keyword argument, which can also convert lh.white,
rh.white, lh.inflated, and rh.inflated to
triangle/vertex files.

» patient.convert_fsmesh2mlab(mesh_name =

'inflated')

• The surface meshes created will be available as the mat files
/your/Freesurfer/subjects_dir/test_subj/

Meshes/lh_pial_trivert.mat and /your/Free

surfer/subjects_dir/test_subj/ Meshes/

rh_pial_trivert.mat, can now be plotted with the
following command, which plots the pial meshes of both
hemispheres:

» patient.plot_brain()

Creation of Subcortical Meshes
• In addition to the cortical pial surface meshes, the user can

create surface meshes for the subcortical structures identified
in freesurfer. These surface meshes are created using a script
created by Anderson M. Winkler (http://brainder.org), which
takes freesurfer labels (e.g., the voxels labeled as hippocampus,
Figure 5A), and creates a 3D triangle mesh from these labels
(Figure 5B). This method will create meshes for all subcortical
structures labeled in Freesurfer (Figure 5C), including the left
and right nucleus accumbens, amygdala, brain stem, caudate
nucleus, ventricles (lateral, inferior lateral, third, and fourth),
globus pallidus, hippocampus, putamen, thalamus, and ventral
diencephalon.

» patient.get_subcort()
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FIGURE 4 | Pial surfaces identified by freesurfer during get_recon() are used to create a triangle-vertex mesh. (A) Example of an incorrect pial surface outline

generated by freesurfer—these must be corrected by manually editing the white matter mask in freeview (see https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/

WhiteMatterEdits_freeview for details). (B) Example of correctly outlined pial surface outline. (C) The 3D mesh generated from the pial surface from (B).

• The meshes will be stored in the subjects directory within
Meshes/subcortical/. These meshes can also now be viewed
with the following commands:

>>> subcort_roi = patient.roi

(name='your_subcortical_roi')
>>> patient.plot_brain(rois=[subcort_roi])

• To show these ROIs in conjunction with the pial surface, they
can be plotted simultaneously, while controlling color and
opacity.

>>> subcort_roi = patient.roi (name =

'your_subcortical_roi', color=(1.0, 0.0,

0.0))

>>> pial_roi = patient.roi (name =

'lh_pial', opacity=0.5)

>>> patient.plot_brain(rois=[pial_roi,

subcort_roi])

Co-registration of CT and MRI Scans
In order to identify electrodes on the pial surface, we must
transform the posteroperative CT scan into the same space as

the T1 MRI. We use the normalized mutual information cost
function (Ashburner and Friston, 1997) to perform this cross-
modal registration in nipy.

» patient.reg_img()

◦ The user may also choose to specify the CT and MRI
scans to align explicitly, using keyword arguments,
though this is not necessary if the directory structure is
set up as described. The CT scan is assumed to be in the
CT directory, and the MRI scan is assumed to be in the
mri directory.

» patient.reg_img(source='CT.nii',
target='orig.mgz')

• Check the coregistration of the CT and MRI in freeview
(Figure 6A). One way to do this is to load the CT on top
of the MRI in the Volumes tab, then decrease the opacity of
the CT to inspect the alignment of the bones in the skull. We
recommend using the ‘heat’ colormap for the CT and grayscale
for the MRI. Check sagittal, coronal, and axial views to ensure
that the bones of the skull are aligned properly in both images.
When plotting the maximum intensity projection of the CT
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FIGURE 5 | Subcortical mesh generation. (A) Subcortical meshes are generated from parcellating the aseg.mgz file, which assigns a numeric value to each region of

interest. Labels of interest are extracted from the aseg volume, and a marching cubes algorithm is run to generate a surface mesh. In this case, the volume label for

the hippocampus (yellow, number value = 17) is shown in yellow. (B) The resulting 3D hippocampal mesh after marching cubes, shown with a bisecting coronal slice

of the medial temporal lobe. (C) Subcortical meshes on the template brain, cvs_avg35_inMNI152. 23 subcortical meshes in the left and right hemisphere cortical

meshes are shown. Subcortical meshes are colored to match the FreeSurferColorLUT (look up table).

(Figure 6B), the user should also verify that the grids and strips
are in roughly the right place.

• Note: It is common that when the CT is aligned to the pre-op
MRI, lateral grids may appear as though they are underneath
the brain’s surface. This is common because the placement
of these grids results in a deformation of the brain surface
(Hermes et al., 2010). We solve this by later projecting these
electrodes to the pial surface.

• Quality check step: If the CT alignment fails, the user
may need to change the initial alignment of the CT scan.
Often, poor registrations can be traced back to poor initial
conditions [T1 is not aligned to the AC-PC, or the CT scan’s
original position is at a very different orientation from the
desired registered output (Figure 6C)]. The user may need to

manually align the CT for an initial placement, then rerun
the coregistration to get a precise alignment between CT
and MRI). This can be done in freeview, SPM, or other
neuroimaging programs.

Manual Identification of Electrodes
While other methods have been developed to automatically
determine the 3D spatial location of electrodes in a CT scan
(LaPlante et al., 2016), in practice it is often difficult to fully
automate the process given the limited resolution of most clinical
CT scans, especially for high-density grids with<=4mm spacing
often employed in our research (Chang, 2015; Muller et al.,
2016a,b). Here we describe the process for manually identifying
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FIGURE 6 | (A) Transverse view in Freeview of a CT and an MRI that have been co-registered- the electrodes are the orange points in the left hemisphere. Note how

the skull in both the CT and MRI are aligned after registration. (B) An intensity projection view. (C) CT and T1 scan in original native space before alignment. The CT

shown here (in “heat” colormap) was unable to be aligned to the T1 scan (grayscale image) because of poor initial conditions. To align, the CT was translated and

rotated to be in rough alignment with the T1 scan, and then reregistered in img_pipe.

electrodes that will later be automatically labeled according to
their nearest anatomical location (based on Freesurfer atlas
segmentation). This step also ensures that electrode numbering
will match the clinical or research montage for ease of future
analysis.

Electrode Identification on the Co-registered CT Scan
• Electrodes will be identified in the postoperative, co-

registered CT scan using an electrode picker GUI
(Figure 7). The coordinates obtained can be used to
plot the electrodes on the meshes (Figure 7A, top
right). To start the electrode identification process, call
patient.mark_electrodes(). This will launch an
interactive python GUI that will overlay the registered CT
scan on top of the skull-stripped MRI. Instructions for use are
detailed below. The user can also press ‘h’ (for help) while in
the GUI for a list of possible commands.

• Click to navigate the crosshairs to electrode 1 of a device
(a strip, depth, or grid). Numbering for depths and strips is
usually distal to proximal. Intraoperative photos can be useful
to verify the numbering of grids. It can also be useful to view
the CT intensity projection map (bottom right subplot in the
GUI, shown in Figures 7A,B) to get a sense of the arrangement
of the electrodes.

• Add a new device by pressing the ‘n’ key. This will prompt
the user to enter the device name in the python console (this
may be behind the figure window). If marking corners of
a high density grid, this could be called ‘hd_grid_corners’.
If marking a hippocampal depth, this could be called
‘hippocampal_depth’. Another good heuristic is to use the
labels from a provided clinical electrode montage.

• Ensure that the crosshairs are in the center of the electrode
artifact in the coronal, axial and sagittal views. Tip: When
clicking on an electrode, the user can quickly identify the
correct placement in all views by clicking on an electrode in,
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FIGURE 7 | Example of identification of electrode coordinates using electrode picker. (A) Demonstrates the process of picking the coordinate for the most posterior

inferior grid corner. On the left, the GUI is shown with the electrode selected. The pial surface, rCT, and skull stripped MRI are displayed. The upper left shows the

electrode selected in the sagittal view. The upper right shows the coronal view. The bottom left shows an axial view. The lower right displays the intensity projection

map of the CT, which is useful for visualizing the entire grid. To save the coordinate, press “n” to name a new device. With the center of the electrode artifact localized

by the crosshairs in the axial, sagittal, and coronal views, press “e” to add a point. The coordinates are automatically saved to the “elecs” folder. The location of these

points in 3D can be viewed by launching a separate 3D viewer by pressing “3.” This plot can be seen in the right panel. If the coordinates appear buried in the Mesh

due to post-operative brain shift, additional steps can be taken to project the electrode to the surface, shown in Figure 8. (B) Example of identification of an electrode

that is part of a subtemporal strip. The strip can be seen in the rCT.nii intensity projection map in the lower right panel. The coordinate is recorded from the center of

the electrode artifact, seen in sagittal, coronal, and axial views. This coordinate can then be visualized on the 3D surface mesh, seen in the right panel, by typing “3.”

for example, the coronal view, then zooming in to the CT scan
(on a Mac, using the scroll wheel), which will re-center the
other image views with the marked electrode in the center.

• Click ‘e’ to add an electrode at the crosshair position. The
user should now see a colored circle in all views (sagittal,
axial, and coronal) for this electrode, and a legend showing the
device name will appear in the maximum intensity projection
plot. Electrodes will automatically be saved to the variable
‘elecmatrix’ in a file in the elecs directory, which will be named
according to the device name given by the user. Add multiple
electrodes to the same device by pressing ‘e’ for each. To start
adding to a new device, simply press ‘n’ to initialize a new
device and enter the name into the python console and start
the process as before.

• While marking electrodes, the user can zoom in and out on the
plot using the mouse scroll wheel or trackpad scroll, pan with
the arrow keys, and move through single slices using the “page
up” and “page down” keys. They can also simply click on any
of the views to move to that location in the CT and MRI.

• To change the plot view of the maximum intensity projection,
choose ‘s’ for sagittal (the default), ‘c’ for coronal, or ‘a’ for axial.
Themaximum intensity projection is calculated for the current

slice ± 15 slices, so it may be useful to scroll through this plot
as well.

• The outline of the pial surface is plotted in yellow for reference.
Toggle this on and off using the ‘t’ key.

• It can be helpful to plot elecmatrix on the 3D brain to check
the placement of the grids and depths. To inspect a 3D
visualization of the currently identified electrodes, press the
number ‘3’ key. Simply close the 3D window to continue
marking electrodes.

• The pial surface is created from a preoperative MRI, and
postoperative brain shift can cause strips and grids in rCT.nii
to appear buried within the pial surface. This shift is most
noticeable in lateral grids, and can be corrected using a mean
normal projection, described below. For some strips this shift
is less pronounced and can be corrected manually during
the electrode identification process in the electrode picker or
Freeview. With lh.pial or rh.pial displayed on top of
rCT, pick a coordinate near the electrode that places it on the
surface of the brain. Plotting elecmatrix on the brain during
this manual projection can ensure the coordinate is on the
surface and looks appropriate with respect to the rest of the
device.
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FIGURE 8 | (A) The grid’s corner electrodes are manually located. We interpolate the locations of the rest of the grid electrodes using these corner coordinates, giving

us the electrode grid shown in red. The green arrows are the four normal vectors calculated from the corners, and the black arrow is the mean of those normal vectors

and will act as our projection direction. (B) Projection of the interpolated grid (red) to the convex hull of the pial surface (blue) using the mean normal vector (black

arrow). The final projected electrode grid is shown in blue. (C) Axial and (D) coronal views of the co-registered CT overlaid on the T1 MRI, showing the location of the

electrodes prior to surface projection.

Grid Interpolation for High-Density ECoG Grids
• When using high-density (<=4mm center-to-center spacing)

grids, the resolution of the CT scan may prohibit easy
identification of individual electrodes in the scan. Thus, to
circumvent this issue, we use the locations of the corners of the
grid and interpolate between them in evenly spaced intervals
depending on the grid dimensions.

• To use grid interpolation, first identify the coordinates of the
electrode grid’s four corners, in channel order (for example,
in a 16 x 16, 256-channel grid, corner 1 is electrode 1, corner
2 is electrode 16, corner 3 is electrode 241, and electrode 4 is
channel 256). Name this file hd_grid_corners.mat and
place in the elecs directory.

• In img_pipe, call the following:

◦ patient.interp_grid(nrows = 16, ncols

= 16, grid_basename = 'hd_grid')

• This will create the file hd_grid_orig.mat in
elecs/individual_elecs, which will then be projected
to the surface in the next step.

Projection of Subdural Surface Electrodes to the Pial

Surface
• To project the electrodes to the pial surface, we use the four

corner electrodes (Figure 8A) of the grid to obtain a set of
four vectors that outline the grid. Using these outline vectors,
we can obtain a set of four normal vectors, one corresponding
to each corner (Figure 8B). We then take the mean of these
vectors to obtain a mean normal vector, which will be the
projection direction for the unprojected interpolated electrode
grid. Using this mean normal vector, we then project every
electrode in the interpolated grid outwards to the smoothed
dural surface of the pial mesh (Figures 8C,D). Note that,
when projecting an orbitofrontal grid, the dural surface of
the cortical mesh without temporal lobe is used to ensure
projection to the bottom surface of the orbitofrontal cortex.

• patient.project_electrodes(elecfile_prefix

= 'hd_grid')
• To project a grid on the orbitofrontal cortex, use:
patient.project_electrodes(elecfile_

prefix = 'OFC_grid', surf_type = 'OFC')
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• To visualize these electrodes on the brain, use the plot_
brainmethod:

>>> grid_elecs = patient.get_elecs

(elecfile_prefix='hd_grid')['elecmatrix']
>>> patient.plot_brain(elecs=grid_

elecs)

Creation of the Elecs_all.mat File
• The elecs_all.mat file combines the individual device

coordinates to represent the electrodes in the recording
montage order. elecs_all.mat contains elecmatrix
and eleclabels. elecmatrix contains the x, y, z
coordinates of each device, combined in the appropriate
montage order. eleclabels contains device descriptors
corresponding to these devices, shortened device ID (e.g. G1)
in column 1, long device ID (e.g. L256GridElectrode1) in
column 2, and device type (e.g. grid) in column 3. The possible
values for “device type” should be ‘grid’, ‘strip’, or ‘depth’. Short
and long device ID names should be unique. For an example
of what this will look like, see Table 1.

• After creating the.mat files for each electrode device in
patient.mark_electrodes(), initialize ‘elecs_all.mat’ by calling
patient.make_elecs_all(), which will prompt the user for the
information mentioned above, and automatically create the
‘elecs_all.mat’ file.

Automated Anatomical Labeling of
Electrodes
• To automatically label the electrodes, call the
label_elecs()method:

» patient.label_elecs(elecfile_prefix

='elecs_all', atlas_surf='desikan-
killiany', atlas_depth='destrieux')

• This will add a fourth column to the elecs_all.mat

file that will match labels from the Desikan-Killiany atlas
(Desikan et al., 2006) or the Destrieux atlas (Fischl et al., 2004).
The Desikan-Killiany atlas is a coarser parcellation that we
generally use for surface labeling, whereas the more complex
Destrieux atlas is used for labeling depth electrodes.

TABLE 1 | Example structure of the anatomy variable in elecs_all.mat.

Shortened

device ID

Long device ID Device type Anatomical

location

G1 L256GridElectrode1 grid superiortemporal

G2 L256GridElectrode2 grid superiortemporal

. . . . . . . . . . . .

G256 L256GridElectrode256 grid rostralmiddlefrontal

AD1 LAmygdalaDepth1 depth Left-hippocampus

AD2 LAmygdalaDepth2 depth Left-hippocampus

AD3 LAmygdalaDepth3 depth Left-amygdala

AD4 LAmygdalaDepth4 depth Left-amygdala

AD5 LAmygdalaDepth5 depth Left-amygdala

AD6 LAmygdalaDepth6 depth Left-amygdala

• For surface electrodes, labeling is performed by finding the
closest surface vertex (according to Euclidean distance) and
determining the Freesurfer label of that point from the
annotation file associated with the atlas of interest. For
depth electrodes, the label is assigned according to the voxel
label in the parcellated volume (aparc+aseg.mgz or

aparc.a2009s+aseg.mgz).

Pause Point: Quality Checking Anatomical Labeling
• Quality checking the anatomical labeling is done using the

method plot_recon_anatomy().

» patient.plot_recon_anatomy()

• The automatic labeling will sometimes mislabel electrodes
that lie on the border between two areas. For example,
in Figure 9A, an electrode on superior temporal gyrus
(label: superiortemporal) is labeled pars triangularis (label:
parstriangularis), and an electrode on the caudal middle
frontal gyrus is labeled pars opercularis.

• To correct an anatomical label, use the
edit_elecs_all() method. The arguments include
label names as keys and lists of electrode numbers as values,
and the prefix of the electrode file. For example, to correct the
two mislabeled electrodes in Figure 9, the user would perform
the following:

◦ revision_dict =

{'superiortemporal':[246],
'caudalmiddlefrontal':[174]}

◦ patient.edit_elecs_all(revision_dict,

elecfile_prefix = 'elecs_all')

Warping Surface and Depth Electrodes to a
Common Atlas
To warp electrodes from the native space to a common
atlas space, call patient.warp_all(elecfile_prefix
= 'elecs_all'), which will by default warp the subject
brain to the cvs_avg35_inMNI152 brain, and generate the
warped coordinates for both surface and depth electrodes in
elecs_all.mat. Options passed into this method may be changed if
the user wishes to warp a subset of electrodes, such as only surface
or only depth electrodes, or if they wish to use a different template
brain.

The surface warps are generated by projecting the pial
surfaces of the subject and template brains into a spherical
coordinate space, and aligning the surfaces in that space – this
is shown in Figures 10A–D. Depth warping is performed using a
combination of volumetric and surface warping (Postelnicu et al.,
2009). We have found that surface warping the strip and grids
results in more accurate placement of the warped electrodes on
the same gyri as in the native space, whereas for depth electrodes
a volumetric and surface warping is necessary.

Note that warping depth electrodes takes significantly longer
than warping surface electrodes.

Pause Point: Quality Checking Warps
• patient.warp_all() will have generated PDFs in the

subject’s elecs directory (∗_recon_anatomy.pdf and
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FIGURE 9 | Surface electrodes are labeled by Freesurfer using the Desikan-Killiany atlas—each color represents a different anatomical region. Electrodes are labeled

using the anatomical label of the nearest vertex in the brain mesh. (A) Anatomical labeling of surface electrodes with errors identified as yellow circles. (B) Corrected

anatomical labeling.

FIGURE 10 | Surface warping procedure. (A) Electrodes on native brain. Gyri are colored according to anatomical designation by Freesurfer. An example electrode

localized to the native STG can be seen circled. Electrodes are warped from the subject’s native brain to the cvs_avg35_inMNI152 average brain in spherical surface

space. The native lh.sphere is shown in (B), with the location of the same STG electrode marked in red. lh.sphere is shown with curvature and anatomical color

coding. Warping occurs when the native lh.sphere is warped to match the lh.sphere for the cvs_avg35_inMNI152 average brain, shown in (C). The same STG

electrode is now shown in red on the average brain. Finally, the localization in spherical space is used to localize the electrode on the pial surface of the

cvs_avg35_inMNI152 average brain, shown in (D).

∗_warped_recon_anatomy.pdf) of the electrodes
and their warps. To check the warp interactively,
use patient.plot_recon_anatomy_compare_

warped(template = 'cvs_avg35_inMNI152',
elecfile_prefix = 'TDT_elecs_all').

Pause Point: Quality Checking Depth Electrode

Warping
• patient.check_depth_warps() will generate a pdf in the

subject’s elecs directory, depthWarpsQC.pdf comparing an
electrode’s original location in the subject brain compared

to its warped location in the template brain. Figures 11A,B
shows an accurate warp, and Figures 11C,D shows an
inaccurate warp. If an electrode’s warped location is
inaccurate, either remove the electrode from the warped
electrode coordinate matrix, or manually choose the location
in the template brain.

Plotting Electrodes and Activity on the Pial
Surface
• patient.plot_recon_anatomy() plots anatomically

labeled electrodes on the brain.
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FIGURE 11 | Examples of accurate depth warp (A,B) and inaccurate depth warp (C,D). Colors correspond to anatomical label, and the red circle marks electrode in

single subject brain (A,B) and the location it is warped to in the CVS brain (C,D). The electrode of interest in (A) retains its anatomical label, left hippocampus, when

warped to the CVS brain in (B). However, the electrode of interest in (C) is incorrectly warped from right hippocampus in the single subject brain to cerebellar cortex in

the CVS brain (D).

• Warped electrodes can be plotted on a template brain by
calling patient.plot_recon_anatomy(elecfile_

prefix = 'warped_elecs_file', template =

'your_template').
• To plot electrode activity on the brain’s surface, use

the method plot_brain(). The user can control
the opacity of the brain mesh, wireframe/surface
representation, electrode colors, and colormap. For
example:

>>> pial = patient.roi('pial', color=

(0.6,0.3,0.6), opacity=0.1, representation

='wireframe', gaussian=True)

>>> hipp = patient.roi('lHipp', color=

(0.5,0.1,0.8), opacity = 1.0,

representation='surface', gaussian=True)

>>> elecs = patient.get_elecs()

['elecmatrix']
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FIGURE 12 | Examples using the plot_brain() function, (A) Gaussian representation of electrode weights on a superior temporal gyrus ROI, red-blue color map. (B)

simulated electrode weights on precentral and postcentral ROIs represented as colored spheres, colored using a red-purple color map.

>>> patient.plot_brain(rois=[pial,hipp],

elecs=elecs, weights=np.random.uniform

(0,1,(elecs.shape[0])))

• The following code will allow the user to show activity on
the superior temporal gyrus as interpolated gaussian blobs
(Figure 12A):

>>> elecmatrix = patient.get_elecs(roi =

'superiortemporal')['elecmatrix']
>>> pial = patient.roi('lh_pial',

color=(0.8,0.8,0.8), opacity=0.2,

representation='wireframe',
gaussian=False)

>>> patient.make_roi_mesh

('superiortemporal',
label_list=['superiortemporal'])

>>> stg_roi = patient.roi

('lh_superiortemporal',
color=(0.3,0.6,0.8), opacity=1.0,

representation='surface',
gaussian=True)

>>> patient.plot_brain(rois =

[pial,stg_roi], elecs=elecmatrix,

weights=np.random.uniform(-1,0,

elecmatrix.shape[0]), showfig=True,

screenshot=True, cmap='RdBu')

Here’s another example, plotting regions of interest (ROIs)
for the pre- and postcentral gyri as well as electrode activity
(Figure 12B).

>>> #get all coordinates of elecs in

precentral+postcentral

>>> elecmatrix = np.concatenate

([patient.get_elecs(roi=

'postcentral')['elecmatrix'],
patient.get_elecs(roi ='precentral')
['elecmatrix']],axis=0)

>>> #get meshes of precentral,

postcentral gyri, and pial surface

>>> patient.make_roi_mesh('precentral',
label_list=['precentral'])

>>> patient.make_roi_mesh('postcentral',
label_list=['postcentral'])

>>> precentral_roi = patient.roi

('lh_precentral',
color=(0.3,0.6,0.8), opacity=1.0,

representation='wireframe',
gaussian=False)

>>> postcentral_roi = patient.roi

('lh_postcentral',
color=(0.5,0.8,0.5), opacity=1.0,

representation='wireframe',
gaussian=False)

>>> pial = patient.roi('lh_pial',
(0.8,0.8,0.8),1.0,'surface',False)

>>> #calculate distances from two random

electrodes' coordinates.

>>> distance1 = np.array

(map(np.linalg.norm, elecmatrix-np.tile

(elecmatrix[30,:], (67,1))))

>>> distance2 = np.array

(map(np.linalg.norm, elecmatrix-np.

tile(elecmatrix[20,:], (67,1))))

>>> patient.plot_brain

(rois=[pial,sub_roi,sub_roi2],

elecs=elecmatrix,

weights=scipy.stats.zscore

(distance1 + distance2),

showfig=True,

screenshot=True,

cmap='RdPu')
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Other Notes
• It is possible to launch specific sub-methods of img_pipe in

separate python sessions. For example, the user may wish to
launch patient.get_recon() 1 day, then open another
python session later for patient.mark_electrodes().
To do this, simply reinitialize the patient according to
instructions in section Initializing the Patient in img_pipe, and
then continue with the next step.

• If the user prefers not to AC-PC orient the images to start
(and assuming that this does not affect the quality of the
warping step), it is possible to reorient the final surface and
electrode.mat files using Freesurfer’s talairach.xfm file, which
will put them into a common orientation. To do this, the user
could perform the following step on the native space electrodes
and surface:

◦ patient.apply_xfm

(xfm_dir='mri/transforms',
xfm_file='talairach.xfm',
source_file='elecs/TDT_elecs_all.mat',
target_file='elecs/
TDT_elecs_all_2tal.mat',
file_type='elecs')

◦ patient.apply_xfm

(xfm_dir='mri/transforms',
xfm_file='talairach.xfm',
source_file='Meshes/
rh_pial_trivert.mat',
target_file='Meshes/
rh_pial_trivert_2tal.mat',
file_type='surf')

◦ patient.apply_xfm

(xfm_dir='mri/transforms',
xfm_file='talairach.xfm',
source_file='Meshes/
lh_pial_trivert.mat',
target_file='Meshes/
lh_pial_trivert_2tal.mat',
file_type='surf')

DISCUSSION AND CONCLUSION

Here we have described a full pipeline for obtaining high quality
3D surface renderings, labeled, localized electrodes, and atlas-
warped electrodes from an input T1 and CT scan. This process
has been optimized from start to finish to allow the user to easily
create the needed files for later functional analyses. Our software
relies on completely free, easily downloadable, open source tools.
We also provide plotting tools so that users may easily plot
localized electrodes in either the native subject space or a warped
subject space.

Common Problems/Troubleshooting
In previous sections we described some pause points for quality
checking in between each of the steps in this protocol. However,
for convenience we also provide here some potential pitfalls that
users may encounter while running this pipeline.

Installation Issues
Most installation issues can be avoided by following the
instructions above and using the conda environment to install
the required packages. Using the conda environment avoids
potential version conflicts (for example VTK 6.3.0 is required
when using Python 2.7, but VTK 7.0.0 is required for Python
3.5. In addition, pyqt version 4 is required rather than the most
recent version 5). Be sure that environmental variables are set
for FREESURFER_HOME and SUBJECTS_DIR, and that paths
are set appropriately. Note that Freesurfer does not currently run
on Windows, so for users running Windows we suggest running
a Linux virtual machine with VirtualBox or other virtualization
software.

If issues are encountered when importing img_pipe despite
following the conda environment instructions, the user should
attempt the import outside the img_pipe directory. Check
that the version imported is located in a directory such as
∼/anaconda/lib/python2.7/site-packages/

img_pipe.

AC-PC Alignment Issues
The user may find that aligning scans in Freeview causes part of
the volume to be cut off, especially where the image itself must be
translated over a large distance (more than a centimeter or two).
We have found that this issue is most common with Freeview
v1.0, and does not occur with Freeview v2.0.

Issues with Freesurfer Reconstruction
If the freesurfer reconstruction fails or is of poor quality, there
are a number of potential reasons. The most common in our
experience are (1) poor image contrast due to scanner parameters
or due to subject motion, (2) poor image resolution (greater than
1 × 1 × 1mm voxel size), and (3) images with GAD contrast
used in clinical procedures. In all of these cases, the best course of
action is to obtain a better scan or see if one is already available.
Suggestions for scanning parameters are available on freesurfer’s
website. However, if no other scans are available, it is usually
better to use a high resolution scan with GAD contrast than a
low resolution scan without contrast. The surface reconstruction
will likely include some defects where the blood vessels interfere
with good gray/white matter boundary detection, but the surfaces
are usually acceptable, if mediocre. For subjects with large lesions
or tumors, manual segmentation may be necessary and is not
described here.

Problems with CT to MRI Coregistration
For appropriate CT to MRI coregistration, the user should
select the highest resolution T1 and CT scans, both without
contrast. The initial conditions of these two scans may also
influence whether good coregistration is achieved. As mentioned
previously, if the coregistration step fails, the CT and the
T1 scan should first be roughly aligned (this can be done
in Freeview, SPM, or other neuroimaging programs), and
then coregistration re-attempted. Other parameters that can
be adjusted in the coregistration method are the smoothing
parameter, interpolation method, and tolerance parameters for
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function minimization. These parameters are described in the
docstring for img_pipe.reg_img.

Problems with Manual Electrode Localization
At times, relatively poor resolution of a CT scan may make it
difficult to localize individual electrodes as they tend to blur into
one another. In this case, the user may opt to identify the first
and last electrodes in a depth electrode, for example, and linearly
interpolate between them. This is not currently implemented
directly in img_pipe, but can be performed in python with
minimal effort.

Other issues with identifying electrodes can be aided by
using the 3D viewer [press ‘3’ while in patient.mark_

electrodes() mode]. This can help the user to determine
whether they are correctly identifying a strip electrode curving
around the temporal lobe, or whether they have correctly labeled
two depth electrodes that cross one another.

Problems with Electrode Projection
One common problem with electrode projection is that
electrodes will be projected to the wrong hemisphere. In this
case, the problem is that the hemisphere of implantation was set
incorrectly when initializing the patient.

Another potential problem can occur when projecting
electrodes to the bottom surface of the brain (for example,
subtemporal electrodes), since the surface may be concave
and electrodes may appear to be “off” of the brain. In this
case, we suggest using the smoothed dural surface rather than
the convex hull for projection. In addition, we provide the
option of projecting to an orbitofrontal ROI (with the option
elecfile_prefix='OFC_grid', see section Projection of
Subdural Surface Electrodes to the Pial Surface), which can
circumvent problems where the temporal lobe interferes with a
normal projection.

Problems with Electrode Labeling
Poor electrode labeling is usually a result of poor image quality
and thus poor segmentation of the T1 scan by freesurfer. It is best
to quality check the results of the pipeline at each step, so that
the freesurfer labeled segmentation (aseg.mgz) nicely follows the
anatomy of the T1. If this is not the case, you may need to start
over with a new T1 scan with better gray/white matter contrast,
or if this is not possible, manually correct any labels that were
classified incorrectly.

Problems with Electrode Warping
Electrode warping issues may be encountered when using
electrodes that have been projected to the convex hull. This
is because, prior to warping, electrodes must be snapped to
their nearest surface vertex. Sometimes the closest surface
vertex ends up moving the electrode to the incorrect gyrus
(for example, an STG electrode might end up above the
Sylvian Fissure). If this occurs, the best course of action
is to create a temporary file with the electrode coordinates,
manually correcting the electrode location to the closest
surface vertex on the correct gyrus. Then, perform the warp
using this input file (change elecfile_prefix to the temporary
name).

Other Problems
Other problemsmay be encountered if the user incorrectly enters
the hemisphere of implantation (patient.hem must be set to “lh”
or “rh” if surface grids are used, otherwise if a stereo EEG case
with no grids, “stereo” will suffice).

While this software provides an easy way to perform electrode
localization, it is not without the common caveats inherent
to all surface ECoG research. In particular, deformation of
the brain surface results in a nonlinear warping of the brain’s
surface (Hermes et al., 2010; Dykstra et al., 2012), which means
that even with perfect co-registration of a post-operative CT
to a pre-operative MRI, the localization of electrodes must be
verified independently with intraoperative photos when possible,
and localization should be reconciled with recorded functional
properties.

Future Work
In future work, we hope to incorporate automated identification
of surface electrodes to the pipeline. We have found that current
algorithms work well for low-density grids (LaPlante et al.,
2016), but often fail for grids with 4mm or less pitch. The
failure modes of automated electrode localization packages often
result in labor-intensive correction procedures (e.g,. removing
false positives, reordering electrodes so they are in the correct
montage order). We have found this error correction to be slower
than manual electrode identification by an experienced user,
thus here we present only manual methods, although ideally
the full pipeline would be automated. It is possible that with
improvements in electrode detection algorithms, coupled with
higher resolution CT scans, a fully automated solution would be
possible.

Despite these limitations, our software is free, flexible, easy
to use, and we hope will provide a way for ECoG labs to create
automatically labeled and warped electrodes for ease of future
analysis.

AUTHOR CONTRIBUTIONS

LH, DC, ML, and EC conceived of the work; LH,
DC, and ML performed analysis; LH and DC wrote
the analysis code; all authors contributed to drafting
and revising the article and approved of the final
version.

FUNDING

This work was supported by grants from the NIH (F32
DC014192-01 Ruth L. Kirschstein postdoctoral fellowship, to LH,
and DP2-OD00862 and R01-DC012379 to EC). This work was
also funded by the Defense Advanced Research Projects Agency
(DARPA) under Cooperative Agreement Number W911NF-14-
2-0043, issued by the Army Research Office contracting office in
support of DARPA’S SUBNETS program. The views, opinions,
and/or findings expressed are those of the author(s) and should
not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government. EC
is a New York Stem Cell Foundation-Robertson Investigator.

Frontiers in Neuroinformatics | www.frontiersin.org 18 October 2017 | Volume 11 | Article 62

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Hamilton et al. ECoG Electrode Localization and Warping

This research was also supported by The New York Stem Cell
Foundation, The McKnight Foundation, The Shurl and Kay
Curci Foundation, and The William K. Bowes Foundation. We
gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Tesla K40 GPU used for this
research.

ACKNOWLEDGMENTS

The authors would like to acknowledge Yulia Oganian for beta

testing. Additional thanks goes to Matthew Leonard and Zachary

Greenberg for assistance with early code development, and Lilla

Zollei for assistance with the depth warping procedure.

REFERENCES

Ashburner, J., and Friston, K. J. (1997). Spatial transformation of images. Hum.

Brain Funct. 43–58.

Chang, E. F. (2015). Towards large-scale, human-based, mesoscopic

neurotechnologies. Neuron 86, 68–78. doi: 10.1016/j.neuron.2015.03.037

Dalal, S. S., Edwards, E., Kirsch, H. E., Barbaro, N. M., Knight, R. T., and

Nagarajan, S. S. (2008). Localization of neurosurgically implanted electrodes

via photograph-MRI-radiograph coregistration. J. Neurosci. Methods 174,

106–115. doi: 10.1016/j.jneumeth.2008.06.028

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,

D., et al. (2006). An automated labeling system for subdividing the human

cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage

31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Dichter, B. K., Bouchard, K. E., and Chang, E. F. (2016). Dynamic structure of

neural variability in the cortical representation of speech sounds. J. Neurosci.

36, 7453–7463. doi: 10.1523/JNEUROSCI.0156-16.2016

Dykstra, A. R., Chan, A. M., Quinn, B. T., Zepeda, R., Keller, C. J.,

Cormier, J., et al. (2012). Individualized localization and cortical surface-

based registration of intracranial electrodes. Neuroimage 59, 3563–3570.

doi: 10.1016/j.neuroimage.2011.11.046

Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.

H., et al. (2004). Automatically parcellating the human cerebral cortex. Cereb.

Cortex 14, 11–22. doi: 10.1093/cercor/bhg087

Groppe, D. M., Bickel, S., Dykstra, A., Wang, X., Megevand, P., Mercier, M., et al.

(2016). iELVis: an open source MATLAB toolbox for localizing and visualizing

human intracranial electrode data. bioRxiv 1–20. doi: 10.1101/069179

Hamilton, L. S., Edwards, E., and Chang, E. F. (2016). Parallel streams define

the temporal dynamics of speech processing across human auditory cortex.

bioRxiv. doi: 10.1101/097485

Hermes, D., Miller, K. J., Noordmans, H. J., Vansteensel, M. J., and Ramsey,

N. F. (2010). Automated electrocorticographic electrode localization on

individually rendered brain surfaces. J. Neurosci. Methods 185, 293–298.

doi: 10.1016/j.jneumeth.2009.10.005

Kovalev, D., Spreer, J., Honegger, J., Zentner, J., Schulze-Bonhage, A., and

Huppertz, H.-J. (2005). Rapid and fully automated visualization of subdural

electrodes in the presurgical evaluation of epilepsy patients. Am. J. Neuroradiol.

26, 1078–1083. Available on line at: http://www.ajnr.org/content/26/5/1078/

tab-article-info

LaPlante, R. A., Tang, W., Peled, N., Vallejo, D. I., Borzello, M., Dougherty,

D. D., et al. (2016). The interactive electrode localization utility: software

for automatic sorting and labeling of intracranial subdural electrodes. Int. J.

Comput. Assist. Radiol. Surg. 12, 1829–1837. doi: 10.1007/s11548-016-1504-2

Leonard, M. K., Baud, M. O., Sjerps, M. J., and Chang, E. F. (2016). Perceptual

restoration of masked speech in human cortex. Nat. Commun. 7:13619.

doi: 10.1038/ncomms13619

Miller, K. J., Makeig, S., Hebb, A. O., Rao, R. P. N., denNijs, M., and Ojemann,

J. G. (2007). Cortical electrode localization from X-rays and simple mapping

for electrocorticographic research: The “Location on Cortex” (LOC) package

forMATLAB. J. Neurosci. Methods 162, 303–308. doi: 10.1016/j.jneumeth.2007.

01.019

Moses, D. A., Mesgarani, N., Leonard, M. K., and Chang, E. F. (2016). Neural

speech recognition: continuous phoneme decoding using spatiotemporal

representations of human cortical activity. J. Neural Eng. 13, 1–19.

doi: 10.1088/1741-2560/13/5/056004

Muller, L., Felix, S., Shah, K. G., Lee, K., Pannu, S., and Chang, E. F.

(2016a). “Thin-film, high-density micro-electrocorticographic decoding of a

human cortical gyrus,” in IEEE 38th Annual International Conference of

the Engineering in Medicine and Biology Society (EMBC) (Orlando, FL),

1528–1531.

Muller, L., Hamilton, L. S., Edwards, E., Bouchard, K. E., and Chang, E.

F. (2016b). Spatial resolution dependence on spectral frequency in

human speech cortex electrocorticography. J. Neural Eng. 13:56013.

doi: 10.1088/1741-2560/13/5/056013

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip:

open source software for advanced analysis of MEG, EEG, and

invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869.

doi: 10.1155/2011/156869

Postelnicu, G., Zöllei, L., and Fischl, B. (2009). Combined volumetric

and surface registration. IEEE Trans. Med. Imaging 28, 508–522.

doi: 10.1109/TMI.2008.2004426

Ramachandran, P. (2001). “MayaVi: a free tool for CFD data visualization,” in

Annual. CFD Symposium (Bangalore).

Tang, C., Hamilton, L. S., and Chang, E. F. (2017). Intonational speech

prosody encoding in human auditory cortex. Science 357, 797–801.

doi: 10.1126/science.aam8577

Yang, A. I., Wang, X., Doyle, W. K., Halgren, E., Carlson, C., Belcher,

T. L., et al. (2012). Localization of dense intracranial electrode

arrays using magnetic resonance imaging. Neuroimage 63, 157–165.

doi: 10.1016/j.neuroimage.2012.06.039

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Hamilton, Chang, Lee and Chang. This is an open-access

article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 19 October 2017 | Volume 11 | Article 62

https://doi.org/10.1016/j.neuron.2015.03.037
https://doi.org/10.1016/j.jneumeth.2008.06.028
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1523/JNEUROSCI.0156-16.2016
https://doi.org/10.1016/j.neuroimage.2011.11.046
https://doi.org/10.1093/cercor/bhg087
https://doi.org/10.1101/069179
https://doi.org/10.1101/097485
https://doi.org/10.1016/j.jneumeth.2009.10.005
http://www.ajnr.org/content/26/5/1078/tab-article-info
http://www.ajnr.org/content/26/5/1078/tab-article-info
https://doi.org/10.1007/s11548-016-1504-2
https://doi.org/10.1038/ncomms13619
https://doi.org/10.1016/j.jneumeth.2007.01.019
https://doi.org/10.1088/1741-2560/13/5/056004
https://doi.org/10.1088/1741-2560/13/5/056013
https://doi.org/10.1155/2011/156869
https://doi.org/10.1109/TMI.2008.2004426
https://doi.org/10.1126/science.aam8577
https://doi.org/10.1016/j.neuroimage.2012.06.039
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography
	Introduction
	Materials and Methods
	Subjects
	Example Data
	Operating System Requirements
	Installation and Third-Party Software Requirements

	Results and Stepwise Procedures
	Overview of the Image Preprocessing and Electrode Localization Pipeline
	Setting up the Directory Structure and Paths
	Alignment of T1 Scan to AC-PC Axis
	Overview of the Class FreeCoG
	Running Surface Reconstructions in img_pipe
	Initializing the Patient in img_pipe
	Creating Pial Surface Reconstructions in Freesurfer
	Converting Freesurfer Meshes to Triangle/Vertex Meshes for Use in MATLAB/Python
	Creation of Subcortical Meshes

	Co-registration of CT and MRI Scans
	Manual Identification of Electrodes
	Electrode Identification on the Co-registered CT Scan
	Grid Interpolation for High-Density ECoG Grids
	Projection of Subdural Surface Electrodes to the Pial Surface
	Creation of the Elecs_all.mat File

	Automated Anatomical Labeling of Electrodes
	Pause Point: Quality Checking Anatomical Labeling

	Warping Surface and Depth Electrodes to a Common Atlas
	Pause Point: Quality Checking Warps
	Pause Point: Quality Checking Depth Electrode Warping

	Plotting Electrodes and Activity on the Pial Surface
	Other Notes

	Discussion and Conclusion
	Common Problems/Troubleshooting
	Installation Issues
	AC-PC Alignment Issues
	Issues with Freesurfer Reconstruction
	Problems with CT to MRI Coregistration
	Problems with Manual Electrode Localization
	Problems with Electrode Projection
	Problems with Electrode Labeling
	Problems with Electrode Warping
	Other Problems

	Future Work

	Author Contributions
	Funding
	Acknowledgments
	References


