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Electroencephalographic (EEG) recordings are thought to reflect the network-wide
operations of canonical neural computations, making them a uniquely insightful measure
of brain function. As evidence of these virtues, numerous candidate biomarkers of
different psychiatric and neurological diseases have been advanced. Presumably, we
would only need to apply powerful machine-learning methods to validate these ideas
and provide novel clinical tools. Yet, the reality of this advancement is more complex:
the scale of data required for robust and reliable identification of a clinical biomarker
transcends the ability of any single laboratory. To surmount this logistical hurdle,
collective action and transparent methods are required. Here we introduce the Patient
Repository of EEG Data + Computational Tools (PRED+CT: predictsite.com). The
ultimate goal of this project is to host a multitude of available tasks, patient datasets, and
analytic tools, facilitating large-scale data mining. We hope that successful completion
of this aim will lead to the development of novel EEG biomarkers for differentiating
populations of neurological and psychiatric disorders.

Keywords: EEG, open data, pattern classification, databases as topic, clinical neuroscience

INTRODUCTION

There is a critical need to standardize and quantify the diagnostic criteria for psychiatric
and neurological disorders. A lack of uniform diagnostic schema and reliance on phenotypic
assessment has resulted in critical gaps in clinical practice between institutions. A growing number
of reports suggest that biomarkers or endophenotypes (endogenous phenotypes) will be more
effective for diagnosis and disease classification than an expanded phenotypic characterization
(Gould and Gottesman, 2006; Diaz-Arrastia et al., 2009; Robbins et al., 2012).

Our long-term goal is to develop and maintain an open-source website that leverages the
power of collective action to address this need using electroencephalography (EEG). By quantifying
the emergence of psychological operations at their source, EEG provides a mechanistic means
to transcend the descriptive, correlative, and phenotypic descriptions of symptomatology that
currently characterizes this field. EEG is less expensive, more readily available, highly portable,
and simpler to operate than competing imaging recourses, making it logistically viable.

While there are a large number of open-source EEG data repositories, these are sparsely
populated (Table 1). Patient-specific online repositories tend not to have EEG data. While some
sites may contain both EEG data and patient groups, they sometimes require formal requests and
selective processes for data acquisition, and tend to not include matched controls. The absence of
open-source software infrastructure for standardized and large-scale EEG data reflects a failure of
basic biomedical planning and initiative. We aim to fill this gap with a one-stop open-source site
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TABLE 1 | Examples of online EEG data repositories.

Sparsely populated online EEG data repositories

• http://archive.ics.uci.edu/ml/datasets/EEG+Database

• http://engineuring.wordpress.com/2009/07/08/downloadable-eeg-data/

• http://headit.ucsd.edu/

• http://openvibe.inria.fr/?q=datasets

• http://sccn.ucsd.edu/∼arno/fam2data/publicly_available_EEG_data.html

• http://sites.google.com/site/projectbci/

• http://www.bbci.de/competition/

• http://www.brainsignals.de/

• http://www.cs.colostate.edu/eeg/eegSoftware.html#keirndata

• http://www.eecs.qmul.ac.uk/mmv/datasets/deap/

• http://www.phypa.org/benchmarking.html

• http://www.physionet.org/pn4/eegmmidb/

• http://www.physionet.org/pn6/chbmit/

• http://www2.hu-berlin.de/eyetracking-eeg/testdata.html

• http://sleeptight.isr.uc.pt/ISRUC_Sleep/

• http://www.ceams-carsm.ca/en/mass

• http://www.tcts.fpms.ac.be/∼devuyst/#Databases

• see: https://sccn.ucsd.edu/∼arno/fam2data/publicly_available_EEG_data.html

Patient-specific online repositories that may contain EEG data

Autism:

• https://sfari.org/resources/autism-cohorts/simons-vip

• https://ndar.nih.gov/ndar_data_dictionary.html;jsessionid=7D268A92ACF3FCC2EEA35BF07892D394.node1

• http://aed.newcastle.edu.au/

Epilepsy:

• http://www.fdm.uni-freiburg.de/groups/timeseries/epi/EEGData/

• http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3

• http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database

• http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-nonrandomness-nonlinear-dependence-and

Epilepsy (intracranial recordings):

• https://www.ieeg.org/

Traumatic brain injury:

• https://fitbir.nih.gov/

Alzheimer’s disease:

• http://adni.loni.usc.edu/

Multi-purpose data repositories with restrictive access

• http://www.brainnet.net/

• https://physionet.org/physiobank/database/#neuro

Note that this is not an exhaustive list of EEG data sharing sites. PRED+CT would be a beneficial addition to this ecosystem due to its clear focus on pattern classification
of patient EEG. Moreover, PRED+CT could link to external sites, repositories, and databases beneficial to this aim, facilitating an open network of interactive sites.

for gathering, storing, and analyzing clinically relevant data. In
this report we present the Patient Repository of EEG Data +
Computational Tools (PRED+CT1).

CURRENT AND FUTURE USE OF EEG AS
A BIOMARKER

Electroencephalography-based biomarkers are particularly
salient due to current widespread use in neurology clinics,
which increases the likelihood that a novel advancement will
have immediate clinical significance. Some neural deficits

1www.predictsite.com

like epilepsy are objectively diagnosable following an EEG;
other complications like tumors and stroke can be inferred.
Yet disorders that affect higher cognitive functions remain
opaque following any type of routine imaging. The future
use of EEG as a clinical biomarker aims to capitalize on this
existing diagnostic infrastructure via knowledge advancements,
facilitating greater diagnostic utility from already routine
scanning sessions.

Electroencephalography is uniquely sensitive to canonical
neural operations which underlie emergent psychological
constructs (Fries, 2009; Siegel et al., 2012; Cavanagh and
Castellanos, 2016), making it well suited for discovery of aberrant
neural mechanisms that underlie complicated disease states
(Insel et al., 2010; Montague et al., 2012). As an example,

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2017 | Volume 11 | Article 67

http://archive.ics.uci.edu/ml/datasets/EEG+Database
http://engineuring.wordpress.com/2009/07/08/downloadable-eeg-data/
http://headit.ucsd.edu/
http://openvibe.inria.fr/?q=datasets
http://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
http://sites.google.com/site/projectbci/
http://www.bbci.de/competition/
http://www.brainsignals.de/
http://www.cs.colostate.edu/eeg/eegSoftware.html#keirndata
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
http://www.phypa.org/benchmarking.html
http://www.physionet.org/pn4/eegmmidb/
http://www.physionet.org/pn6/chbmit/
http://www2.hu-berlin.de/eyetracking-eeg/testdata.html
http://sleeptight.isr.uc.pt/ISRUC_Sleep/
http://www.ceams-carsm.ca/en/mass
http://www.tcts.fpms.ac.be/~devuyst/#Databases
https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
https://sfari.org/resources/autism-cohorts/simons-vip
https://ndar.nih.gov/ndar_data_dictionary.html;jsessionid=7D268A92ACF3FCC2EEA35BF07892D394.node1
http://aed.newcastle.edu.au/
http://www.fdm.uni-freiburg.de/groups/timeseries/epi/EEGData/
http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3
http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-nonrandomness-nonlinear-dependence-and
https://www.ieeg.org/
https://fitbir.nih.gov/
http://adni.loni.usc.edu/
http://www.brainnet.net/
https://physionet.org/physiobank/database/#neuro
www.predictsite.com
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-11-00067 November 17, 2017 Time: 15:3 # 3

Cavanagh et al. PREDiCT

consider how error-related EEG activities can sensitively and
specifically dissociate generalized anxiety participants from
healthy controls (Cavanagh et al., 2017). This finding follows
positive reports from two meta-analyses with 37 and 46 studies,
and 1757 and 1616 participants, respectively (Moser et al.,
2013; Cavanagh and Shackman, 2014). If even a fraction of the
studies included in these meta-analyses were openly available,
a widely generalizable set of discriminating features would
already be available for extended research and possible clinical
application.

THE NEED FOR AN ONLINE
REPOSITORY DEDICATED TO THIS
PURPOSE

Findings in cognitive neuroscience tend to advance through
independent laboratories working separately, with each group
developing their own stimulus presentation tasks and data
analysis parameters. While this flexibility is beneficial, it is
also a threat to external validity. Generalizability is critical
to consider since the scale of data required to effectively
characterize clinical biomarkers transcends the abilities of any
single laboratory. To realize this goal of differential diagnostic
biomarkers, open-source collaboration across institutions will be
required. Currently, the field of EEG lacks even a rudimentary
foundation for this goal.

The need for open-source data sharing and a focus on
replicability has been widely approached in the MRI community,
with varied types of data repositories (Gorgolewski et al., 2015;
Eickhoff et al., 2016; Iyengar, 2016; Nichols et al., 2017; Poldrack
et al., 2017), including patient-specific databases and depictions
of classification goals (Woo et al., 2017). PRED+CT uses the
OpenfMRI project (Poldrack et al., 2013) as a model. PRED+CT
will not only be the first open-source EEG database for patient
data, but it will work to standardize assessment and analytic tools,
facilitating the overarching goal of distributed data collection and
data mining.

PRIOR APPROACHES

It is important to note that although this basic clinical goal
has been addressed with these basic techniques for a long time,
the approach we advance here offers a significant advancement
from the status quo. While visual inspection of EEG is still
the normative procedure in neurology, the clear potential
of computer-based assessments spawned a more quantitative
approach over a generation ago.

Quantitative EEG (QEEG) summarizes an approach to EEG
assessment on a few minutes of artifact-free data in a resting
state, usually on a 19-channel clinical setup (John et al., 1988;
Nuwer, 1997; Prichep, 2005; Coburn et al., 2006). The most
common QEEG approaches use fast Fourier transforms (FFTs)
to compute absolute and relative power at sites, hemispheric
asymmetry of power, power ratios between pre-defined frequency
bands, squared correlation of activity (“coherence”), phase lag

times between electrode sites, or other related measures. These
features are used to populate large-scale normative datasets to
contrast with patient-specific databases, oftentimes statistically
controlling for spurious variables like age. Finally, classification
procedures like cross-validation and algorithms like discriminant
analysis or neural networks may be applied in order to identify
features that maximally discriminate patients from controls. This
approach rests on the thesis that reliable statistical differentiation
in the spatial representations of these multidimensional activities
can differentiate a wide variety of psychiatric, congenital, and
neurological disorders.

Notable successes include a Food and Drug Administration-
approved prognostic biomarker for Attention-Deficit
Hyperactivity Disorder in the ratio of theta to beta band
power at the vertex electrode (Food and Drug Administration,
2013), and a candidate biomarker for acute traumatic brain
injury (Thatcher et al., 1989; Naunheim et al., 2010; Prichep et al.,
2014). While the validity and appropriate clinical utilization of
these procedures remain highly debated (Arns et al., 2013; Saad
et al., 2015; Gloss et al., 2016), resolution of these issues may
be hamstrung by questionable premises underlying the general
practice of QEEG (described below). We believe that the analytic
approach motivated by PRED+CT will successfully address these
problems and facilitate significant advancement in this field.

This QEEG approach has been highly controversial for a
long time for a large number of reasons (Nuwer, 1997; Kaiser,
2000; Thatcher et al., 2003; Nuwer et al., 2005; Coburn et al.,
2006). First, simple dissociation from statistical normality can
easily be caused by the influence of spurious variables. Statistical
dissociation has neither face-valid clinical implication nor clinical
utility, as it doesn’t demonstrate that the differentiation will be
faithfully reflected at the level of an individual (Amyot et al.,
2015). Second, the QEEG approach relies primarily on resting
activity, which has highly varied reliability across derived features
(Nuwer et al., 2005), and lacks content and construct validity
for assessing psychiatric and neurological disorders. Diagnostic
criteria may even be the wrong target for associating with brain
scans: identification of aberrant neural mechanisms underlying
a disorder may be a more fruitful target than phenotypic
characterization (Insel et al., 2010; Montague et al., 2012; Gillan
and Daw, 2016). Third, the overleveraging of the FFT offers
only a superficial decomposition of brain activities. Few studies
have aimed to apply highly novel analytic techniques to derive
maximally dissociating features of specific diseases (cf. Allen
and Cohen, 2010; Lainscsek et al., 2013). Together, these issues
reflect a fundamental failure to appreciate how EEG activities
mechanistically reflect unique neural computations that may
most parsimoniously define disease states.

In some cases, black-box techniques for pre-processing and
quantification have been intertwined with privatization and
commercialization. While commercialization is an important
positive step toward clinical utility, it is sometimes necessarily
closed source and has unfortunately been associated with
overzealous advertisement and dubious claims (Nuwer et al.,
2005; Coburn et al., 2006). In sum, while QEEG is a promising
and selectively successful approach, current practice is highly
limited. PRED+CT aims to motivate a common platform for
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methodological advancement, predicated on fully transparent
databases and computational tools. Importantly, bigger data and
increased algorithmic complexity are only part of the solution:
we would like to highlight that success may depend on the
ability to identify the right task to probe the aberrant mechanism
underlying a specific disorder.

PRED+CT

The ultimate goal of this project is to host a multitude of
tasks and patient datasets, facilitating large-scale data mining
(Figure 1). We hope that successful completion of this aim will
lead to development of novel EEG biomarkers with enhanced
predictive power above and beyond phenotypic assessments
for differentiating populations of neurological and psychiatric
disorders.

Tasks
To facilitate standardization across laboratories, we have
developed software applications for oddball-type tasks (Sutton
et al., 1965) and an Eriksen flankers task (Eriksen and Eriksen,
1974). These applications are coded in the Java programming
language and work on Windows, but can also be run on other
platforms through a Windows emulator. Each application allows
the user to input a range of configurations to comprehensively
cover parameter variations (inter-trial interval, visual or auditory
modality, error feedback, instructions, etc.). A user can save a
configuration file with these parameters, as well as any type of
response requirement. This latter feature facilitates the creation
of a variety of passive and active tasks, including go/no-go
and vigilance tasks. By providing these programs, we hope to
encourage smaller site-specific patient studies to include an

additional short assessment to their protocols for the purpose of
open-source data sharing.

If popular, we hope to include a multitude of task types in the
future, such as reward gambling, stop-signal, basic language, and
motor tasks, etc. Some existing task batteries for EEG assessment
capitalize on simultaneous acquisition of a large number of EEG
events/ERP components (Kappenman and Luck, 2012; Kieffaber
et al., 2016; Nair et al., 2016); this may be a promising direction
for future expansion.

Upload and Download
An upload tab facilitates user requests for contributing data
to PRED+CT. A download tab contains study information
(Table 2) and will be fully open (no log in or request required).
All data will be hosted in Matlab readable format (.mat or .set
files, which are interchangeable) for a few reasons. Matlab is
the current most common platform for academic EEG research,
and the popular EEGLab suite (Delorme and Makeig, 2004) will
be utilized as a common data structure. Many native file types
contain information that could be a threat to confidentiality, and
EEGLab import tools strip many of these markers. Matlab files are
easily imported into other (open-source) programs like Octave,
Python, and R, so this common structure should not be limiting
in any way.

Confidentiality
The most likely threats to personal health information in
candidate PRED+CT database entries are names or initials,
locations, and dates. The user is required to ensure that none
of these remain in the subject identifier or in the EEG metadata:
for example, BrainVision.vhdr files contain times and .vmrk files
contain a date stamp. EEGLab import to Matlab strips the data
of such possible hidden threats to confidentiality. PRED+CT

FIGURE 1 | Screenshot of the PRED+CT home screen (www.predictsite.com).
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administrators will perform a double check on potential threats
to confidentiality and can assist with the translation from native
formats into .mat files. Most institutional review boards (IRBs)
do not consider data sharing itself to fall under the definition of
“human subjects research,” but interested users should request
a determination from their IRB. Including such language in the
informed consent is the best way to ensure that ethical issues are
proactively well-managed.

Data Organization
It is highly recommended that users include data in its raw form
prior to any pre-processing; however, this may be infeasible in
some cases. In many instances, important recording information
is embedded in the native data format (sampling rate, reference,
electrode labels) and is translated directly into the EEG data
structure. If this information is missing (i.e., data are from a
clinical system) then the user should include a readme file with
this information.

For data other than rest, is important that users can
understand what trigger types (TTL pulses) are used to represent
each type of event. At minimum, a comprehensive list of trigger
types needs to be included, and we highly recommend that users
include the stimulus presentation script (i.e., Eprime run file,
Matlab Psychtoolbox files, etc.). Ideally, the task was designed so
that behavioral responses can be recoverable from the triggers;
if not then upload of separate behavioral logs is encouraged.
While there are common neuroinformatics structures that can
facilitate sophisticated data organization schemes across studies

TABLE 2 | Information required for datasets (EEG files) and tools (computer
programs for analysis) to be contributed to PRED+CT.

Necessary information:
datasets and tools

Necessary information:
datasets only

Useful information:
datasets only

Project name Patient group/no. Symptom scores

Lead investigator Controls?/no. Extended
demographics

Funding (if applicable) EEG system Neuropsych scores

Publication link (if
applicable)

Number of electrodes Stimulus presentation
files

Task .mat file used for import

Brief description

Email† Necessary information:
dataset upload

Useful information:
tools only

EEG data files README-type
description

Age and sex of each
participant

Example dataset

Description of trigger types
and any pre-processing
performed
If not discernable from raw
dataset: sampling rate,
reference, electrode labels

†Email will only used for communication with PRED+CT administrators and will not
be made public.

(Teeters et al., 2008; Landis et al., 2016; Plis et al., 2016;
Wiener et al., 2016), we opted for a more simplified approach in
PRED+CT based on simple and well-documented descriptions
of idiosyncratic TTL triggers.

Computational Tools
Pattern classifiers use cross-validation or bootstrap approaches
where the whole dataset is partitioned into non-overlapping
training and test sets. The classifiers involve optimizing
information theoretic and multidimensional metrics to generate
models based on signal shapes and do not over-fit the
data as traditional predictive models do (Parra et al., 2005;
Pereira et al., 2009; Lemm et al., 2011). Such pattern-based
classification is thus necessary to generalize predictive models for
diagnostic subtyping and recovery trajectory to other groups (aka
biomarkers).

There are a number of tutorials for general brain science
classification (Pereira et al., 2009; Lemm et al., 2011), EEG-
specific tutorials (Parra et al., 2005; Dyrholm and Parra, 2006;
Schirrmeister et al., 2017), and open-source sets of analytic
tools (Detre et al., 2006; Hanke et al., 2009). Our goal is not
to replicate these resources, but to provide a repository for
computational approaches that can bolster feature selection or
patient classification, particularly on existing datasets in the
archive. While we envision hosting a multitude of scripts, there
is no reason that entries on this page couldn’t link to external
resources (i.e., github or NITRC).

Intellectual Property and Credit
Unless otherwise noted, this database and its contents are made
available under the Public Domain Dedication and License v1.0
whose full text can be found at: https://opendatacommons.
org/licenses/pddl/1.0/. We hope that all users will follow the
ODC Attribution/Share-Alike Community Norms, including the
expectation that there will be no attempt to de-anonymize any
data.

Example
Figure 2 shows an example of the type of outcome we hope to
cultivate with PRED+CT. This figure shows a receiver operating
characteristic plot detailing classification of Parkinson’s patients
on and off medication vs. well-matched controls based on
three-auditory oddball task conditions (Cavanagh et al., under
review). That report details the reasons why aberrant orienting
to novelty is mechanistically interesting in Parkinson’s disease,
and why EEG is uniquely well-suited to assess to biomarker
potential of the associated neural response. These raw data
and scripts are available on the PRED+CT website (accession
nos.: d001 and t001). Since this task is very brief and very
easy for patients to perform, we encourage other groups to
contribute similar datasets to examine the generalizability of this
phenomenon.

Updates
Interested users can follow @PREDiCT_Admin or #PREDiCT +
#UNM on Twitter for updates, including new dataset and tool
contributions.
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FIGURE 2 | Example support vector machine (SVM) classification of Parkinson’s patients ON and OFF medication vs. well-matched controls based on three-auditory
oddball task conditions. (A) A receiver operating characteristic plot shows the true vs. false positive rates of PD vs. CTL discrimination for each medication and task
condition. (B) Total accuracy (average of sensitivity and specificity) for each condition. (C) Correlation of SVM confidence and years diagnosed for each condition.
EEG data are available under Downloads (accession no.: d001) and Matlab scripts are available under Computational Tools (accession no.: t001).

FUTURE CHALLENGES TO SURMOUNT

Challenges in Data Processing
While data sharing is “good,” a prevalent challenge is to share
high-quality usable data (Kennedy, 2004). By archiving EEG
and metadata in a common EEGLab structure, we can fulfill
these criteria. Substantive hardware and software advancements
over time are unlikely to change basic aspects of EEG data.
Numerous algorithms exist to assist in pre-processing EEG data
(Delorme and Makeig, 2004; Nolan et al., 2010; Oostenveld et al.,
2011; Bigdely-Shamlo et al., 2015; Chaumon et al., 2015). In the
Computational Tools section, we have provided our Algorithmic
Pre-Processing Line for EEG (APPLE.m; accession no.: t002),
which leverages a combination of FASTER (Nolan et al., 2010),
ADJUST (Mognon et al., 2011), EEGLab, and custom algorithms
for automatically interpolating bad channels, removing bad
epochs, and identifying the most likely independent component
associated with eye blinks.

Electroencephalography datasets come in a variety of
reference schemes, topographical layouts, and sampling
rates, complicating integration. However, these are addressable
problems. Use of the average reference and relative measurements
(decibel, percent change, relative power) facilitate common
analytic space. EEG data tends to be oversampled, so down-
sampling to a common lowest denominator is a viable option.

As pattern classifiers leverage any difference between training
sets, it will be critical to ensure that spurious differences between
combined datasets do not interfere with the aim of classifying
patients from controls. Having an equal number of patients and
well-matched controls in each dataset is a good first step for
experimental control over this issue, but additional steps like
controlled randomization of training and testing sets may be
required to control for dataset-specific biases.

Once pre-processed, EEG data offer a rather simple data
structure that is accessible by non-experts. A two-dimensional
matrix of channels ∗ time can be easily restructured to
include a third dimension based on discrete events (i.e., the
EEG.data field of EEGlab), and no special software, opaque
statistical constraints, advanced processing, or other complicated
considerations are strictly necessary for interpretation. We hope
this increases the appeal to computer and data scientists, who
should be able to manage EEG data as an input variable with very
minimal special training.

Challenges in Prediction
A well-known adage in machine learning is that achieving 80%
classification accuracy is easy, and closing the gap toward 100%
accuracy will take between a few years and eternity. We think
that PRED+CT can assist with strategies for (partially) closing
this gap, which we detail in order of their intuitiveness. The most
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straightforward solution to boost generalizability is to utilize
larger training sets (i.e., more EEG data), which is the primary
purpose of the site. Another immediately apparent solution is to
leverage algorithmic advancements. In isolation it is hard to know
how revolutionary different classification procedures will be, but
open communication may help set standards and constraints on
parameter selection which otherwise act as a hidden threat to
generalizability. It is important to note that theoretical validation
requires the ability to interpret which of the input features led
to successful classification (cf. Steele et al., 2014; Cavanagh and
Castellanos, 2016; Doshi-Velez and Kim, 2017).

We submit that the best way to achieve these overarching
goals will involve taking advantage of the EEG feature(s)
reflecting the neural computations that maximally discriminate
groups. While resting activities may be the optimal solution
for some patient groups, specifically designed active tasks
are likely necessary to elicit the requisite brain responses
that characterize the nature of the departure from statistical
normality. Error signaling in anxiety has already been described
above as a defining neural computation related to the etiology
of the disorder, but other candidate responses have been
advanced for other disorders, including diminished reward
signals for major depression (Proudfit, 2015), a broken
target-updating P3b in schizophrenia (Ford, 1999), a reduced
novelty orienting P3a in Parkinson’s (Solís-Vivanco et al.,
2015), and reduced brainstem evoked responses in acute
traumatic brain injury (Kraus et al., 2016) to name just
a few.

Finally, a less intuitive recipe for success may be to simply
ask more specific questions. More constrained hypotheses can
help to collapse insurmountable prior probabilities into the
realm of plausibility. Consider that the base rate for any specific
neurological or psychiatric disease is low enough to dismiss
the plausibility of a new EEG-based diagnostic test with viable
sensitivity and specificity. Yet if a patient is already being treated
for a disease, this obviates some base rate problems. For example,
instead of trying to develop a fast and easy brain scan to identify
if someone has major depressive disorder, it is more plausible
to ask if a diminished brain response to reward can help guide
treatment options to address melancholic vs. atypical features of
depression.

Challenges in Diagnostics
To be medically useful, a test must have positive prognostic value
above and beyond current status quo, or reduce time, cost, or
uncertainty (Nuwer et al., 2005). While brain-based diagnostics
may achieve impressive sensitivity, they are often associated
with high false positives (low specificity), which is a particular
deterrent to clinical use for differential diagnosis (Nuwer et al.,
2005). These challenges are addressable, especially since direct

clinical application is not a necessary outcome of brain-based
patient classification.

High sensitivity in the context of low specificity may
nevertheless have important clinical utility for rapidly assessing
the potential presence of diagnostic complications (Hanley et al.,
2013; Ayaz et al., 2015), quantifying the degree of injury severity
(Thatcher et al., 2001), or for tracking differences in disease
progression in treatment studies. Identification of the maximally
discriminable neural computation that defines a patient group
has additional translational utility: for instance it could be used as
concurrent validation of a novel imaging or biomarker measure.
In sum, reliable novel findings are important successes even if
they do not lead to direct clinical translation.

CONCLUSION

The genesis of PRED+CT was motivated by an understanding
of the strength of EEG measurements and methods, but
equally matched frustration in the logistical constraints of
advancing beyond small-scale validation studies. EEG is a
uniquely powerful measure of canonical neural operations,
and machine learning has already led to profound social
advancements. Surely we should have some firm answers
to important clinical neuroscience questions by now. Yet
single laboratory contributions to clinical science remain slow,
expensive, time-consuming, and oftentimes led to beautiful
but neglected datasets as interests and energies are applied to
new funding opportunities. Only through collective action and
full transparency can we hope to realize the utility of EEG-
derived features of underlying neural computations for clinical
neuroscience research.
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