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Previous work using simultaneously acquired electroencephalography (EEG) and

functional magnetic resonance imaging (fMRI) data has shown that the slow temporal

dynamics of resting state brain networks (RSNs), e.g., default mode network (DMN),

visual network (VN), obtained from fMRI are correlated with smoothed and down sampled

versions of various EEG features such as microstates and band-limited power envelopes.

Therefore, even though the down sampled and smoothed envelope of EEG gamma

band power is correlated with fMRI fluctuations in the RSNs, it does not mean that the

electrical substrates of the RSNs fluctuate with periods<100ms. Based on the scale free

properties of EEG microstates and their correlation with resting state fMRI fluctuations

in the RSNs, researchers have speculated that truly high frequency electrical substrates

may exist for the RSNs, which would make resting fluctuations obtained from fMRI more

meaningful to typically occurring fast neuronal processes in the sub-100ms time scale.

In this study, we test this critical hypothesis using an integrated framework involving

simultaneous EEG/fMRI acquisition, fast fMRI sampling (TR = 200ms) using multiband

EPI (MB EPI), and EEG/fMRI fusion using parallel independent component analysis (pICA)

which does not require the down sampling of EEG to fMRI temporal resolution. Our results

demonstrate that with faster sampling, high frequency electrical substrates (fluctuating

with periods <100ms time scale) of the RSNs can be observed. This provides a sounder

neurophysiological basis for the RSNs.

Keywords: resting state brain networks, default mode network, primary visual cortex, simultaneous EEG-fMRI,

parallel independent component analysis, neurophysiological basis of DMN
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) reveals
spontaneous low-frequency (<0.1–0.15Hz) fluctuations of
a large number of anatomically separate brain areas that are
temporally correlated and functionally linked to each other at rest
and these brain areas are called “resting state networks” (RSNs)
(Biswal et al., 1995; Greicius et al., 2003; Fox and Raichle, 2007).
It has been observed that task related response accounts for <5%
of cerebral metabolism, whereas most of cerebral metabolism
corresponds to resting state activity (Raichle and Mintun, 2006).
Multiple studies in the previous decade have shown that the
alterations in resting state brain connectivity can be associated
with neurological or psychiatric diseases (Fornito and Bullmore,
2010). Therefore, RSNs have become a very popular method
for assessing brain function in patient populations because it is
possible to perform fMRI without stimulation which is helpful
for such subjects who can have difficulties while performing tasks
(Auer, 2008).

Even though blood oxygenation level dependent (BOLD)
fMRI has been used to detect spatially consistent RSNs across
subjects, it is still unclear when using that modality alone, if the
correlated resting state activity is purely neuronal in origin or is
due to low frequency physiological or scanner related artifacts
(Lund, 2001; Maldjian, 2001) or vascular structure (Vigneau-Roy
et al., 2014). BOLD fMRI is an indirect measure of neural activity
(Logothetis, 2008) and it is also unclear whether correlated
resting state activity observed from very slow fluctuations with
periods of the order of 10 s of seconds are related to neuronal
dynamics which occur in the sub-100ms time scale.

Contrary to fMRI, electroencephalogram (EEG) is a direct
measure of electrical activity in the brain measured at its scalp.
It is the sum of the synchronous activity of neurons in the
area below the electrode on the scalp (Arieli et al., 1996;
Tsodyks et al., 1999). There has been some evidence showing
that spontaneous resting state EEG activity fluctuates coherently
and they are macroscopically organized across the brain (Laufs,
2008). Though EEG has very high temporal resolution for
measuring resting state neuronal activity, its spatial resolution is
very poor and hence limits our ability to make physiologically
meaningful inferences about the neural basis of RSNs observed
from fMRI.

In order to noninvasively understand the neural and electrical
basis of RSNs observed from fMRI in humans, we need to
combine EEG and fMRI signals such that we get both high
spatial and temporal resolution of the underlying neuronal
activity (Horwitz and Poeppel, 2002; Debener et al., 2006). There
have been several studies related to simultaneous acquisition
of EEG and fMRI signals which show that the EEG power
envelope at specific frequency bands correlates with fMRI signals
in many different RSNs (Goldman et al., 2002; Laufs et al.,
2003; Moosmann et al., 2003). However, EEG is made up of
a wide frequency spectrum (Varela et al., 2001; Buzsaki and
Draguhn, 2004), and hence the correlation between neuronal
activities only at specific frequencies and the BOLD RSNs
limits possible interpretation (Laufs et al., 2006). It has been
shown that the time course of RSNs can be associated with

EEG power envelopes at more than one frequency band
(Mantini et al., 2007). Similar studies have been carried out
with magnetoencephalography (MEG) (de Pasquale et al., 2010;
Brookes et al., 2011). There are two fundamental issues regarding
the approaches described above. First, the EEG/MEG power
envelope corresponding to various EEG/MEG frequency bands
still represents a low frequency amplitude modulated signal,
even though the frequency bands themselves can be of high
frequency. Second, in order to match the temporal resolution
of EEG/MEG to that of fMRI, these studies downsampled
EEG/MEG data/power to that of fMRI temporal resolution.
These two factors make it impossible to assess whether the
correlations between EEG/MEG power envelope and BOLD
RSNs, such as the default mode network (DMN), have a neural
basis in millisecond-scale fast neuronal dynamics. However, they
do point to the fact that RSNs have an electrical basis and
cannot be purely based on BOLD-based physiological artifacts
(Bridwell et al., 2013) or vascular structure (Vigneau-Roy et al.,
2014).

Recently, EEG microstates have been shown to be scale-
free and have been proposed as potential electrophysiological
substrates of spontaneous BOLD activity (Britz et al., 2010;
Musso et al., 2010). There is speculation that this points to the
existence of truly high frequency electrical substrates of RSNs,
which wouldmake resting fluctuations obtained from fMRImore
meaningful with respect to typically occurring fast neuronal
processes in the sub-100ms time scale. However, the idea that
RSNs have a neuronal basis related to truly high frequency
electrical activity (as opposed to downsampled and smoothed
power envelopes) has only been explored very recently. For
example, Lewis et al. showed that fast fMRI during a visual
stimulation paradigm can detect oscillatory neural activity in
humans (Lewis et al., 2016). Therefore, in this study, we tested
this critical hypothesis for both DMN and VN, which are
important commonly found RSNs (Greicius et al., 2003; Fox
and Raichle, 2007). We used parallel independent component
analysis (pICA) of simultaneously acquired EEG-fMRI data
during resting state for fusing data from both modalities without
sacrificing the native resolutions of either modality (Eichele et al.,
2008).

In addition, we acquired whole brain fMRI data with TRs as
short as 200ms using multiband EPI sequence (Feinberg et al.,
2010) (MB-EPI) to test the hypothesis that faster sampling would
enable us to better detect the true high frequency electrical
substrates of RSNs. ICA is one of the multivariate methods
used to identify RSNs and does not require any a priori seed
region (Calhoun et al., 2001; Beckmann et al., 2005). Here we
applied ICA separately to EEG and fMRI data, to get statistically
independent time courses (tICA) and statistically independent
spatial maps (sICA), respectively. pICA is a second level analysis
(Calhoun and Adali, 2009; Calhoun and Allen, 2013) which
uses first level results to recover spatial maps from fMRI and
time courses from EEG and match these components across the
modalities to achieve multimodal integration for simultaneous
resting state data. In contrast to Liu et al. (Liu and Calhoun,
2007; Liu et al., 2009) where they used a constraint to maximize
the correlation between the mixing matrices of two modalities in
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pICA, here we used the same pICA algorithm and constraints to
maximize the correlation but instead of running pICA algorithm
once, we ran multiple pICAs to see which combination of EEG
component with the fMRI-DMN or fMRI-VN component gave
the highest correlation between the mixing matrices of two
modalities. We further elaborate on this aspect in the following
section.

In this study, we hypothesize that resting state fluctuations
in fMRI may be associated with not only low frequency, but
also high frequency electrical dynamics. To test this hypothesis,
we acquired simultaneous EEG and fMRI data with faster fMRI
sampling and combined them using pICA which enabled us
to evaluate relationships between resting state network maps
obtained from the fMRI and electrical time courses obtained
from the EEG.

MATERIALS AND METHODS

Subjects, Tasks, and Ethical Approval
Six adult subjects with no history of neurological or cardiological
disorders participated in this simultaneous EEG-fMRI resting
state study. The subjects were instructed to lie supine, stay
awake with eyes open and not to think of anything in particular.
Cushions were placed inside the coil to absorb the pressure from
the EEG electrodes on the head and to restrict head movement in
the coil. Subjects were also provided with earplugs to avoid any
harmful effect fromMRI acoustic noise. The entire study for each
subject contained a single session of resting state simultaneous
EEG-fMRI data acquisition using both traditional EPI sequence
as well as the multiband EPI sequence. We optimized the MB-
EPI sequences (by reducing the flip angle) such that its SAR
(specific absorption rate) was equivalent to that obtained by the
regular EPI sequence (which Brain Products, the manufacturer
of the EEG system, has approved for simultaneous EEG/fMRI
acquisition) so as to ensure safe acquisition of EEG/fMRI. The
safety of acquiring simultaneous EEG and MB-EPI data was
first tested using phantoms and then author GD self-tested the
acquisition procedure multiple times on himself. The phantom
testing was empirical just to make sure that it is safe for the
PI to self-test on himself. No temperature measurements were
performed. This was necessary because it is not customary to
acquire MB-EPI data simultaneously with EEG and at the time of
the experiment, this was the first study to do so according to our
knowledge. However, at the time that this report was being peer-
reviewed, we learned that others had performed simultaneous
multiband fMRI and EEG, albeit with different equipment (Lewis
et al., 2016; Foged et al., 2017). In fact Foged et al showed, using
temperaturemeasurements, that it is safe to combine high density
EEG with fast fMRI techniques such as multiband EPI (Foged
et al., 2017). Subsequent to our in-house testing, the procedure
was approved by Auburn University’s Institutional Review Board
(IRB) as well as the MR safety committee. This study was
carried out in accordance with the recommendations of Auburn
University’s IRB with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki.

fMRI Data Acquisition
Resting state fMRI data were collected on a 3T Siemens Verio
scanner using

(1) single-shot gradient-recalled EPI sequence with 29ms TE,
1,000ms TR, 90◦Flip angle, 64× 64× 16 acquisition matrix
and voxel size of 3.5× 3.5× 6.75mm for six healthy subjects,

(2) MB-EPI sequence (obtained from the University of
Minnesota) with multiband factor of 8 (MB8) (Feinberg
et al., 2010) with 40ms TE, 200ms TR, 50◦Flip angle, 64
× 64 × 16 acquisition matrix and voxel size of 3.5 × 3.5
× 6.3mm for six healthy subjects. Split slice GRAPPA
(also referred to as leak block) was utilized in order to
minimize spurious correlations that may appear between
slices acquired simultaneously. In-plane acceleration was
not used, in part to preserve SNR lost by simultaneous
multi-slice acquisition. However, we used thicker slices in
order to minimize signal dropout and spatial distortion.

All the fMRI data was acquired using a standard Siemens receive–
only 12-channel matrix head coil. The different TEs, flip angles
and slightly different voxel sizes were necessitated because we
wanted to optimize the sequence for minimum TR and whole
brain coverage.

EEG Data Acquisition
For simultaneous EEG-fMRI acquisition, we used MR-
compatible 64 channel EEG amplifiers (Brain Products,
GmBH, Germany), MR-compatible EEG cap (BrainCap MR,
Falk Minow Services, Herrsching–Breitbrunn, Germany) with
63 10–20 system distributed scalp electrodes and ECG electrode.
We collected 10,000 data points per TR by synchronizing the
EEG data acquisition clock to the MRI scanner clock using
Brain Products’ SyncBox. EEG data were then digitized with a
sampling frequency of 5 kHz, 0.5 µV resolution, with reference
to FCz and within a DC-250Hz frequency range. For all the EEG
recordings, impedance at electrodes was <20 k�.

fMRI Data Pre-processing
The functional MRI data obtained from each subject was
realigned by taking the first image as the reference for all other
scans for motion correction. The images were then resliced
and spatially normalized to EPI MNI template and spatially
smoothed with a Gaussian filter with 6mm FWHM using the
SPM 12 toolbox (Friston et al., 1995). The fMRI signal time
courses at each voxel were then detrended followed by removal
of white matter and cerebrospinal fluid (CSF) signal using Data
Processing Assistant for Resting-State fMRI (Chao-Gan and Yu-
Feng, 2010) which is based on SPM and the Resting-State fMRI
Data Analysis Toolkit (Song et al., 2011).

EEG Data Pre-processing
The Brain Vision Analyzer 2.0 software (Brain Products) was
used to perform preprocessing of simultaneously acquired EEG
data to reduce MRI gradient artifact, cardioballistic artifact,
and ocular artifact arising from the simultaneous EEG–fMRI
environment as detailed below.
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(i) For reducing MRI scanning artifacts, we used an artifact
template created by averaged artifact subtraction (AAS)
method (Allen et al., 2000) in which the EEG data was
segmented and averaged according to the onset of each
volume within a sliding window consisting of 41 consecutive
volumes, and subtracted from the raw EEG data.

(ii) For reducing cardioballistic artifacts, we used an artifact
template created by moving template subtraction approach
(Allen et al., 1998) in which R peaks were detected in the
low-pass-filtered ECG signal and used to construct a delayed
average artifact template over 21 consecutive heartbeat
events in a sliding-window approach, which was subtracted
from the original EEG signal.

(iii) The Ocular artifact was removed by applying ICA (Lee et al.,
1999; Delorme and Makeig, 2004). ICA was also used to
remove any residual artifacts after steps (i) and (ii).

The resulting EEG data from the above three steps were
then downsampled to 250Hz, and then re-referenced to
FCz. Figure 1A shows the flowchart illustrating the EEG
preprocessing steps.

Group Spatial ICA of fMRI Data (sICA)
We performed group ICA on fMRI data (Calhoun and
Adali, 2012) using the GIFT toolbox (Calhoun et al., 2001,
2008). The fMRI signals [x1 (v) , x2 (v) , . . . , xN (v)], where
v represents voxels, were assumed to be a linear mixture
of statistically independent hemodynamic source locations
[s1 (v) , s2 (v) , . . . , sN (v)] such that at a given voxel, it contains
a weighted mixture of the sources, aj1s1 (v) + aj2 s2 (v) + . . . +

ajNsN (v) , each of which fluctuates according to its weighted

FIGURE 1 | Schematics illustrating (A) EEG preprocessing steps before

performing the first level EEG analysis using temporal ICA (B) Parallel ICA: The

first level analysis results consisting of 20 spatial and 20 temporal components

that were derived from spatial and temporal ICA, respectively, were given as

input to parallel ICA.

hemodynamic time course, for all j. The weights were multiplied
by each source’s hemodynamic time course. The observed fMRI
signal is given by, xj (v) = aj1s1 (v) + aj2 s2 (v) + . . . +

ajNsN (v) where x = [x1 (v) , x2 (v) , . . . , xN(v)]T , s =

[s1 (v) , s2 (v) , . . . , sN(v)]T and A the mixing matrix with aij
elements. We assume that the number of discrete time points
acquired with the scanner is very large compared to actual
sources in the brain. The fMRI data was pre-whitened to remove
any correlations in the data and reduced via principal component
analysis (PCA) by removing non-significant components and
retaining only the principal components which contain the major
proportion of variance. The principal components were then
concatenated across subjects to form group data. The infomax
ICA algorithm (Bell and Sejnowski, 1995) was then applied
to the group data to get the independent components. 20
group components were generated as in Rosazza et al. (2012)
and individual subject components were computed using back
reconstruction (Erhardt et al., 2011) and the components were
scaled to Z-scores to remove the arbitrary units of spatial maps
and time courses during the back-reconstruction step. Finally,
the mean, standard deviation and t-maps were calculated for
the group data. Please note that the above steps are done
automatically in the GIFT toolbox.

Group Temporal ICA of EEG Data (tICA)
The EEG data was analyzed with group temporal ICA using
the EEGIFT toolbox and 20 components were generated as in
Eichele et al. (2011). The EEG signal [x1 (t) , x2 (t) , . . . , xN (t)],
where t represents time, was assumed to be a linear mixture
of statistically independent non-Gaussian source time series
[s1 (t) , s2 (t) , . . . , sN (t)] such that at a given time point,
it contains the weighted mixture of the sources [aj1s1 (t) +

aj2 s2 (t) + . . . + ajNsN (t)], for all j (Ullsperger and Debener,
2010). The observed EEG signal is given by xj (t) = aj1s1 (t) +

aj2 s2 (t)+ . . .+ ajNsN (t)where x = [x1 (t) , x2 (t) , . . . , xN(t)]T ,

s = [s1 (t) , s2 (t) , . . . , sN(t)]T and A the mixing matrix with
aij elements. The preprocessed EEG data was pre-whitened to
remove any correlations in the data and reduced via PCA by
removing non-significant components and retaining only the
principal components which contain the major proportion of
variance. The principal components were then concatenated
across subjects to form group data. The ICA was then applied
to the group data to obtain the independent source time-
series/components.

Parallel Independent Component Analysis
(pICA)
Parallel independent component analysis (pICA) is a second
level analysis procedure which combines spatially independent
sources obtained from fMRI and temporally independent sources
obtained from EEG such that the correlation between the fMRI
and EEG mixing matrices is maximized. When ICA is separately
applied to EEG and fMRI we assume the acquired signals to be,
XEEG = AEEG SEEG and XFMRI = AFMRI SFMRI respectively,
whereAEEG andAFMRI are themixingmatrices for EEG and fMRI
respectively and SEEG and SFMRI are statistically independent
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non-Gaussian Source time series and spatial maps, respectively.
In order to determine the unmixed componentsUEEG andUFMRI ,
we have to find WEEG and WFMRI such that it approximates
inverse of AEEG and AFMRI

UEEG = WEEGXEEG (1)

UFMRI = WFMRIXFMRI (2)

First, the dimensionality of the observed data XEEG and XFMRI

were reduced using the Principal component analysis to get
new data YEEG and YFMRI that is of the same dimension as
of component matrix (S). Then the INFOMAX algorithm (Bell
and Sejnowski, 1995), which employs gradient ascent learning
rules was used to maximize the independence for the two
modalities, and in determining the relationship between them.
The maximization of mutual entropy (H) was used to derive
the independence (as shown in equations below), and the
relationship between them was determined by maximizing the
squared correlation between Amatrices.

max : H(YEEG),H(YFMRI)

subject to : [WEEG,WFMRI]

= arg max (AEEG,AFMRI ,UEGG,UFMRI) (3)

max {H (YEEG) + H (YFMRI) + Corr (AEEG,AFMRI)
2
}

= {−E[ln fy(YEEG)] − E[ln fy(YFMRI)]

+
Cov

(

AEEGi,AFMRIj

)2

var(AEEGi).var(AFMRIj)
} (4)

YEEG =
1

1+ e−(UEEG)
;

YFMRI =
1

1+ e−(UFMRI)
; (5)

Where fy (YEEG) and fy (YFMRI) are the probability density
functions of YEEG and YFMRI . Corr is the correlation function,
Cov is the covariance function, E is the expected value, H is the
entropy function and i & j are the indices of the components.

The pICA toolbox [Calhoun, Fusion ICA Toolbox (FIT)]1

was used to find the parallel components as shown in Figure 1B.
Please refer to Liu and Calhoun (2007) and Liu et al. (2009) for
more details on the pICA algorithm.

The inputs to the parallel ICA algorithm are fMRI
(Components-by-voxels) and EEG (Components-by-time
points) components which are ordered such that the first fMRI
component corresponds to the first EEG component and so
on. In this study, we obtained 20 fMRI and EEG components
from first-level ICA analysis. However, we do not know a
priori, the correspondence between the first-level EEG and fMRI
components. This information is required for them to be entered
into the pICA algorithm.

In order to determine the correspondence between the first-
level EEG and fMRI components, we made the assumption that
if we applied pICA to the matched components then we should
get the highest correlation between the mixing matrices of EEG

1http://mialab.mrn.org/software/fit/

and fMRI. Since we had 20 components from GIFT and 20
components from EEGIFT, so could potentially match the first-
level EEG and fMRI components in 400 ways. We identified
fMRI ICA components corresponding to the DMN and VN, and
ran parallel ICA separately for the two networks. There are 20
ways that the DMN or VN fMRI component can be matched
to the 20 first-level EEG components. So, we ran parallel ICA
20 times separately for DMN and VN to see which combination
of EEG component when paired with the fMRI-DMN or fMRI-
VN component gave the highest correlation between the mixing
matrices. For all 20 iterations, the order of the fMRI components
remained the same with the first component being DMN or
VN, but the orders of EEG components were changed, with
only the first EEG component, i.e., the one being paired with
the fMRI DMN or fMRI VN component, being changed from
component 1 to component 20 across iterations. The procedure
is schematically illustrated in Figure 2 for the DMN and the
procedure was similar for the VN. The idea is to keep the pairings
of all components except the first one constant so that differences
in the correlations between EEG and fMRI mixing matrices
across iterations can be attributed to the different pairings of the
first component corresponding to the DMN or VN.

RESULTS

First level analysis of individual subject resting state EEG/fMRI
data was carried out for data obtained from EPI (TR= 1,000ms)
and multiband EPI with factor 8 (MB8, TR= 200ms) sequences.
Using tICA and sICA, 20 temporal and 20 spatial components
were obtained from EEG and fMRI, respectively, and input
to a second level analysis wherein 20 parallel independent
components (pICs) were derived using pICA. The EEG pIC
corresponding to the fMRI pIC representing the DMN or VN
was obtained by maximizing the cross correlation coefficient
between their mixing matrices. The fMRI pIC maps were
expressed in terms of z-scores with z > 1. Here the z-scores
are used for descriptive purposes and have no definite statistical
interpretation (McKeown et al., 1998). The resultant DMN and
VN fMRI pIC map for EPI and MB8 data are shown in Figure 3.

As described previously, we paired the fMRI DMN/VN pIC
with all available EEG pICs in order to determine the EEG pIC
which corresponds to the fMRI DMN/VN pIC. The correlation
between the mixing matrices for all the 20 iterations are
summarized in Tables 1, 2 for DMN/VN obtained from EPI and
MB8 data, respectively. Only one of the EEG pIC components
for both EPI and MB8 data was significantly correlated (p < 0.05
corrected) with the fMRI DMN and VN components. This EEG
pIC was assumed to represent the electrophysiological signature
of the corresponding fMRI network. We wish to emphasize that
it is just a co-incidence that only one EEG component was
significantly correlated with respective fMRI networks (DMN
and VN). It is entirely possible that multiple EEG components
may be associated with resting state networks given the fact that
RSNs can evolve over multiple time scales and temporal modes.

It was shown in previous studies (Liu and Calhoun, 2007; Liu
et al., 2009) that the parallel ICA algorithm is robust and shows
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FIGURE 2 | Schematic illustrating parallel ICA iterations for determining matched EEG and fMRI components for the default mode network. The correspondence

between the first-level 20 EEG and 20 fMRI components is unknown, so the parallel ICA was run 20 times to see which combination of EEG component mixing matrix

gives the highest correlation coefficient with the fMRI-DMN component mixing matrix.

improved performance compared to regular ICA (Infomax). In
order to investigate whether the pICA algorithm provided any
advantage over simply correlating the mixing matrices found
from the application of regular spatial and temporal ICA for
our data, we took the mixing matrices corresponding to fMRI
DMN/VN component (fromGIFT) and the EEGmixingmatrices
(for 20 components- from EEGIFT) and found the correlation
between those mixing matrices. Table 3 shows the maximum
correlation values between the mixing matrices of two modalities
found by applying parallel ICA (2nd level analysis) and regular
ICA (1st level analysis). It can be seen that the correlation values
found for regular ICA are lower compared to the correlation
values found after using parallel ICA.

The EEG component corresponding to DMN or VN fMRI
component for both EPI and MB8 condition was considered

and its power spectral density was calculated. The percentage
of cumulative power spectral density vs. frequency was plotted
for the linked DMN EEG pIC for EPI (Figure 4A, blue) and
MB8 (Figure 4A, red), as well as for the VN EEG pIC for
EPI (Figure 4B, blue) and MB8 (Figure 4B, red). The frequency
bands considered here are delta band from 0 to 4Hz, theta band
5 to 8Hz, alpha band from 9 to 12Hz, beta band from 13 to
30 hz, and gamma band from 31 to 60Hz. From both DMN and
VN, the percentage of cumulative power of the corresponding
EEG pIC was relatively larger in lower frequency bands for
regular EPI data (Figures 4A,B, blue), whereas for the MB-EPI
data (Figures 4A,B, red) the relative power was more distributed
across frequency bands with more power at higher frequencies
(beta, gamma) when compared with EPI data. Table 4 shows the
percent cumulative EEG power values in all frequency bands for

Frontiers in Neuroinformatics | www.frontiersin.org 6 December 2017 | Volume 11 | Article 74

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Kyathanahally et al. High-Frequency Electrical Substrates of Resting-State-Networks

FIGURE 3 | (A) DMN fMRI pIC map for EPI and MB8 sequences, (B) VN fMRI

pIC map for EPI and MB8 sequences. The anatomical images used for overlay

are a standard template (i.e., not derived from our data) employed in Brain Net

Viewer software.

EPI and MB8 data. Note that the power at lower frequency bands
such as delta, theta and alpha was higher for EPI data compared
toMB8 data whereas the power at higher frequency bands such as
beta and gamma was lower for EPI data compared to MB8 data.

The chosen EEG component from pICA was convolved with
a standard canonical HRF and downsampled (to match fMRI
sampling frequency). We then separately calculated the cross
power spectral density (CPSD) between the mean fMRI time
series extracted from the DMN/VN and the corresponding
convolved, downsampled EEG pIC time series using in-built
MATLAB code based on Welch’s method. The CPSD shown in
Figure 5 shows predominant low frequency (range of [0.008,
0.1] Hz) cross-spectral power, indicating that when EEG pICs
corresponding to DMN and VN are convolved with the HRF
and downsampled, they are correlated with corresponding fMRI
time series in the low frequency bands ranging from 0.008
to 0.1Hz. Subsequently, we calculated time-domain correlation
between mean fMRI time series obtained from DMN/VN and
corresponding HRF-convolved and downsampled EEG pIC time
series. The results, shown in Table 5 indicates that they were
significantly correlated. Further, similar analysis using time series
obtained from other EEG pICs did not reveal a significant
correlation with fMRI time series obtained from DMN/VN. This
suggests that the chosen EEG pIC time series are more likely to be
associated with corresponding fMRI networks (DMN and VN).

DISCUSSION

The parallel ICA method for combining fMRI and EEG enabled
us to evaluate relationships between resting state network maps
obtained from the former and electrical time courses obtained
from the latter. These results demonstrate that: (i) electrical
substrates of RSNs (DMN and VN) consist of both low and

TABLE 1 | The correlation between the mixing matrices for all the 20 iterations for

DMN/VN obtained from EPI data.

Iteration

number

DMN VN

Correlation

coefficient

P-value Correlation

coefficient

P-value

pICA1 −0.54 0.0135 −0.52 0.0178

pICA2 pICA did not converge 0.64 0.0024

pICA3 0.53 0.0152 0.67 0.0012

pICA4 0.55 0.0111 0.69 0.0008

pICA5 0.90 7.6 × 10−8 0.67 0.0011

pICA6 pICA did not converge 0.10 0.6624

pICA7 0.65 0.0018 0.57 0.0081

pICA8 0.04 0.8720 0.67 0.0012

pICA9 0.53 0.0161 0.65 0.0019

pICA10 pICA did not converge 0.50 0.0257

pICA11 −0.41 0.0713 −0.31 0.1777

pICA12 0.57 0.0088 0.66 0.0015

pICA13 0.66 0.0016 0.68 0.0011

pICA14 0.01 0.9784 0.62 0.0033

pICA15 0.18 0.4460 0.67 0.0014

pICA16 0.68 0.0069 −0.44 0.0538

pICA17 0.44 0.0498 −0.04 0.8802

pICA18 0.02 0.9260 0.17 0.4828

pICA19 −0.01 0.9544 0.64 0.0024

pICA20 0.41 0.0755 0.45 0.0479

The 20 iterations refer to the pairing of the fMRI DMN/VN pIC with all available EEG pICs

in order to determine the EEG pIC which corresponds to the fMRI DMN/VN pIC. The EEG

pIC component for EPI data which was significantly correlated (p < 0.05 corrected) with

the fMRI DMN and VN components is shown in bold red font.

high frequency fluctuations, (ii) faster fMRI sampling is required
to reveal RSNs’ high frequency electrical substrates, (iii) the
association of RSNs with fast electrical dynamics proves that
its neural origin is relevant to typically occurring fast mental
processes, and (iv) high frequency electrical substrates of RSNs
may support the notion that resting state fluctuations reveal
scale-free fractal properties. Below, we expand on these themes.

Over past several years, researchers have tried to show the link
between the EEG frequency bands and BOLD-fMRI based RSNs
and some have claimed that the EEG power envelope at specific
frequency bands correlates with RSNs (Goldman et al., 2002;
Laufs et al., 2003; Moosmann et al., 2003). Others have argued
and showed that EEG is made up of a wide frequency spectrum
(Varela et al., 2001; Buzsaki and Draguhn, 2004), and thus the
correlation between neuronal electrical activity only at specific
frequencies to the BOLD RSNs cannot be true. This notion
was supported by Mantini et al. who demonstrated electrical
correlates of different EEG spectral band envelopes with the
fMRI RSNs (Mantini et al., 2007) thus proving that fMRI RSNs
have unique correlation patterns across frequency bands. Since
these studies have convolved power time courses and/or their
envelopes of the bands of interest with a hemodynamic response
function and subsequently downsampled it, they have ignored
truly high frequency dynamics of the electrical signal. Therefore,
they cannot really investigate whether high frequency electrical
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TABLE 2 | The correlation between the mixing matrices for all the 20 iterations for

DMN/VN obtained from MB8 data.

Iteration

number

DMN VN

Correlation

coefficient

P-value Correlation

coefficient

P-value

pICA1 0.72 0.0003 0.81 1.52 × 10−5

pICA2 pICA did not converge 0.34 0.1408

pICA3 0.65 0.0018 −0.41 0.0723

pICA4 pICA did not converge 0.65 0.0018

pICA5 0.66 0.0012 0.66 0.0014

pICA6 0.62 0.0034 pICA did not converge

pICA7 0.13 0.5641 0.65 0.0016

pICA8 0.27 0.2407 −0.26 0.2633

pICA9 0.10 0.6628 pICA did not converge

pICA10 pICA did not converge 0.55 0.0108

pICA11 0.65 0.0018 0.67 0.0012

pICA12 −0.17 0.4753 0.66 0.0013

pICA13 0.59 0.0055 0.64 0.0021

pICA14 0.64 0.0023 0.61 0.0038

pICA15 0.66 0.0015 0.68 0.0009

pICA16 pICA did not converge 0.03 0.894

pICA17 0.54 0.0130 0.48 0.0293

pICA18 0.66 0.0014 0.63 0.0025

pICA19 0.65 0.0016 0.63 0.0025

pICA20 −0.61 0.0040 −0.35 0.1241

The 20 iterations refer to the pairing of the fMRI DMN/VN pIC with all available EEG pICs

in order to determine the EEG pIC which corresponds to the fMRI DMN/VN pIC. The EEG

pIC component for EPI data which was significantly correlated (p < 0.05 corrected) with

the fMRI DMN and VN components is shown in bold red font.

substrates of RSNs exist or not. Consequently, it is unclear
whether RSNs can be associated with typical neuronal processes
with periods <100ms. On the other hand, a recent study
used empirical mode decomposition to show that resting state
fMRI fluctuations are in fact broad band processes though their
energy is concentrated in low frequencies (Niazy et al., 2011).
Another recent study on fMRI RSNs investigated relatively higher
frequency signal fluctuations (>0.25Hz) using data acquired
with a low TR of 354ms and showed using temporal ICA that
RSNs including the DMN exist at relatively higher frequencies
than previously thought (Boubela et al., 2013). Unlike our study,
these two recent studies did not look at electrical substrates of
DMN or VN, but they do suggest that even by just looking at
fMRI data alone, one can come to the conclusion that fluctuations
with a frequency higher than 0.1Hz are not to be ignored. In
fact, previous studies have shown that the 0.1–0.25Hz range is
clinically significant (Garrity et al., 2007; Calhoun et al., 2008;
Allen et al., 2011). In our study, since we did not downsample
the EEG or consider its power envelope, our results with fMRI
data acquired with faster sampling indicate that both low and
high frequency electrical substrates exist for the DMN. These
results demonstrate that faster sampling is required to find high
frequency electrical substrates of RSNs. It is thus important for
resting state fMRI studies to use as small a TR as possible.

TABLE 3 | Correlation and its corresponding p-value between mixing matrices of

EEG and fMRI pICs for EPI and MB8 data using both Regular ICA and Parallel ICA.

Regular ICA Parallel ICA

Condition Maximum

correlation

p-value Maximum

correlation

p-value

A. DMN

EPI 0.43 0.057 0.90 7.6 × 10−8

MB8 0.40 0.08 0.81 1.5 × 10−5

B. VN

EPI 0.36 0.15 0.69 8.0 × 10−4

MB8 0.39 0.06 0.72 3.0 × 10−4

The results are shown for both the DMN (A) and VN (B).

FIGURE 4 | Percentage cumulative power in different frequency bands of the

EEG pIC corresponding to the DMN (A) and VN (B) for EPI (blue) and MB8

(red) for eyes open conditions. The power of the EEG pIC was greater in lower

frequency bands for regular EPI data whereas for MB8 data, the power was

distributed across frequency bands and had greater power at higher frequency

when compared to EPI data.

Previous studies indicate that many sensory neuronal
processes occur during 50–200ms post stimulus (Di Russo et al.,
2002; Sadeh et al., 2008), while neuronal processes involving
cognition happen during the 100–600ms interval (Kutas et al.,
1977; Gouvea et al., 2010). It is thus well-known that neuronal
dynamics occurs at a sub-second time scale. On the other hand,
typical studies involving BOLD RSNs perform band pass filtering
of fMRI time series in the frequency range of 0.01–0.1Hz. This is
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TABLE 4 | The percentage of cumulative EEG power obtained from

corresponding pICs in all relevant EEG frequency bands for EPI and MB8 data.

MRI

Sequence

Delta (%) Theta (%) Alpha (%) Beta (%) Gamma (%)

A. DMN

EPI 70.2 21.9 4.3 3.2 0.5

MB8 36.3 6.3 28.2 22.0 7.2

B. VN

EPI 68.1 6.2 5.5 8.3 11.9

MB8 28.9 4.1 23.7 24.2 21.2

The results are shown for both the DMN (A) and VN (B).

FIGURE 5 | Cross power spectral density between mean fMRI time series and

a HRF-convolved and down-sampled version of the EEG pIC time series from

two networks [DMN (A) and VN (B)].

done because fMRI has a dominant low frequency spectrum due
to hemodynamic smoothing and filtering out frequencies higher
than 0.1Hz can get rid of some sources of noise. This indicates
that the period of the fastest variation in the signal is 10 s. This is
at odds with the typical fast neuronal dynamics; however, given
the sensitivity of BOLD RSNs, especially the DMN and VN, to
brain pathology (Buckner et al., 2008; Mevel et al., 2010; Bonnelle
et al., 2011; Shin et al., 2011; Mingoia et al., 2012; Zhou et al.,
2012), there is reason to believe that the RSNs have a neural
basis. This apparent contradiction can be reconciled by our
findings that with faster sampling and pICA, truly high frequency

TABLE 5 | The correlation coefficient (and corresponding p-values) between the

mean fMRI time series and the corresponding HRF-convolved, downsampled

EEG pIC time series for DMN (A) and VN (B).

Condition Correlation p-value

A. DMN

EPI 0.23 2.40 × 10−11

MB8 0.20 2.26 × 10−19

B. VN

EPI 0.11 3.10 × 10−3

MB8 0.16 3.75 × 10−18

electrical substrates of RSNs can be revealed in the beta (13–
30Hz, periods: 34–77ms) and gamma bands (30–60Hz, periods
17–34ms). Note that unlike previous studies (Mantini et al.,
2007; Britz et al., 2010; Musso et al., 2010) which showed that
the downsampled versions of the power envelopes of these high
frequency bands, which are in effect lower frequency fluctuations,
correlated with fMRI time series fluctuations in the RSNs, we
have demonstrated, without any downsampling or using power
envelopes, that the electrical substrates of the RSNs exist in high
frequencies.. In our study, the link between electrical activity in
EEG and fMRI spatial patterns is made based on similar inter-
subject variability in these modalities captured by pICA. Our
findingsmay support the notion that fluctuations of brain activity
at rest are scale-free, as discussed below.

Studies have shown that EEG microstates are potential
electrophysiological substrates of fMRI RSNs (Britz et al.,
2010; Musso et al., 2010). Microstates are scalp topological
configurations which remain quasi-stable for 80–100ms.
Previous studies (Britz et al., 2010; Musso et al., 2010) showed
that microstate time series (a quantized signal obtained by the
dynamic state transitions between microstates) when convolved
with a hemodynamic response function and downsampled to
the fMRI resolution, correlated with BOLD time series derived
from RSNs. While Britz et al. (Musso et al., 2010) did not find a
microstate time series corresponding to the DMN, Musso et al.
(Britz et al., 2010) and Yuan et al. (2012) did. Even though these
studies used convolved and downsampled versions of microstate
time series, they speculated that since microstates themselves
represent fast neuronal dynamics, the RSNs such as the DMN
may have electrical substrates in high frequencies. Consequently,
they postulated that brain dynamics at rest may be scale-free
such that their correlational structure will be visible at any time
scale. Subsequently, it was shown that EEG microstates were
indeed scale-free (Van de Ville et al., 2010). The above evidence,
taken together with our results on both low and high frequency
electrical substrates of RSNs, support the notion that resting state
BOLD fluctuations may have scale-free fractal properties.

One limitation of this study is that we had to use different
TEs, flip angles and slightly different voxel sizes for regular
EPI and MB8 acquisitions because we wanted to optimize the
sequence for minimum TR and whole brain coverage. However,
given that ICA is pretty robust to differences in SNR, we
believe that our results would be replicated even if data from
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different sequences were acquired using identical parameters.
Further, we have shown that pICA confers benefits in extracting
temporal information regarding spatial RSNs from EEG/fMRI
data; however, others have shown that pICA also improves
spatial specificity. For example, Hunyadi et al demonstrated
a circumstance in which pICA of EEG/fMRI data pinpointed
an epileptic foci whereas the conventional GLM-based EEG-
correlated fMRI analysis only identified a broad epileptogenic
network (Hunyadi et al., 2015). We have not investigated the
potential benefits that pICA might offer in terms of improved
spatial specificity.

In summary, we used an integrated framework involving
simultaneous EEG/fMRI acquisition, fast fMRI sampling (TR
= 200ms) using multiband EPI, and EEG/fMRI fusion using
pICA, to test the hypothesis that resting state fluctuations in
fMRI may be associated with not only low frequency, but also
high frequency electrical dynamics. The salient feature of our
approach is that we did not convolve EEG features with a

hemodynamic response function or down sample EEG to fMRI
temporal resolution. This allowed us to make inferences about
truly fast electrical dynamics with periods <100ms related to
resting state fMRI fluctuations in RSNs such as DMN and VN.
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