
METHODS
published: 05 March 2018

doi: 10.3389/fninf.2018.00006

Frontiers in Neuroinformatics | www.frontiersin.org 1 March 2018 | Volume 12 | Article 6

Edited by:

Pedro Antonio Valdes-Sosa,

Clinical Hospital of Chengdu Brain

Science Institute, China

Reviewed by:

Jan Grewe,

Universität Tübingen, Germany

Leslie Samuel Smith,

University of Stirling, United Kingdom

*Correspondence:

Ján Antolík

antolikjan@gmail.com

Received: 24 October 2017

Accepted: 14 February 2018

Published: 05 March 2018

Citation:

Antolík J and Davison AP (2018)

Arkheia: Data Management and

Communication for Open

Computational Neuroscience.

Front. Neuroinform. 12:6.

doi: 10.3389/fninf.2018.00006

Arkheia: Data Management and
Communication for Open
Computational Neuroscience
Ján Antolík 1,2* and Andrew P. Davison 2

1 Institut National de la Santé et de la Recherche Médicale UMRI S 968; Sorbonne Universits, UPMC Univ Paris 06, UMR S

968; Centre National de la Recherche Scientifique, UMR 7210, Institut de la Vision, Paris, France, 2Unité de Neurosciences,

Information et Complexité, Centre National de la Recherche Scientifique UPR 3293, Gif-sur-Yvette, France

Two trends have been unfolding in computational neuroscience during the last decade.

First, a shift of focus to increasingly complex and heterogeneous neural network models,

with a concomitant increase in the level of collaboration within the field (whether direct

or in the form of building on top of existing tools and results). Second, a general trend in

science toward more open communication, both internally, with other potential scientific

collaborators, and externally, with the wider public. This multi-faceted development

towardmore integrative approaches andmore intense communication within and outside

of the field poses major new challenges for modelers, as currently there is a severe

lack of tools to help with automatic communication and sharing of all aspects of a

simulation workflow to the rest of the community. To address this important gap in

the current computational modeling software infrastructure, here we introduce Arkheia.

Arkheia is a web-based open science platform for computational models in systems

neuroscience. It provides an automatic, interactive, graphical presentation of simulation

results, experimental protocols, and interactive exploration of parameter searches, in a

web browser-based application. Arkheia is focused on automatic presentation of these

resources with minimal manual input from users. Arkheia is written in a modular fashion

with a focus on future development of the platform. The platform is designed in an

open manner, with a clearly defined and separated API for database access, so that any

project can write its own backend translating its data into the Arkheia database format.

Arkheia is not a centralized platform, but allows any user (or group of users) to set up

their own repository, either for public access by the general population, or locally for

internal use. Overall, Arkheia provides users with an automatic means to communicate

information about not only their models but also individual simulation results and the

entire experimental context in an approachable graphical manner, thus facilitating the

user’s ability to collaborate in the field and outreach to a wider audience.

Keywords: computational modeling, workflow, publish, neuroscience, tool

1. INTRODUCTION

Formost of its history, computational neuroscience has focused on relatively homogeneousmodels,
targeting one or at most a handful of features of neural processing at a time. Such a classical
reductionist approach is starting to be supplemented by more integrative strategies that utilize
increasingly complex and heterogeneous neural network models, in order to explain within a single

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00006
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00006&domain=pdf&date_stamp=2018-03-05
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:antolikjan@gmail.com
https://doi.org/10.3389/fninf.2018.00006
https://www.frontiersin.org/articles/10.3389/fninf.2018.00006/full
http://loop.frontiersin.org/people/25229/overview
http://loop.frontiersin.org/people/937/overview

Antolík and Davison Arkheia

model instance an increasingly broad range of neural phenomena
(Markram, 2006; Rangan et al., 2009; Markram et al., 2011; Koch
and Reid, 2012; Bouchard et al., 2016; Hawrylycz et al., 2016).
Even though the classical reductionist approach will remain
important, an integrative research program seems unavoidable if
we are to understand a complex dynamical system such as cortex
(or the entire brain), whose computational power is underlined
by the dynamical interplay of all its anatomical and functional
constituents, rather than just their simple aggregation. Given its
sheer scope and complexity, such an integrative research program
is unlikely to succeed if implemented by individual scientists or
even individual teams. Rather, a systematic incremental strategy
relying on cooperation within the entire field will be required,
whereupon new models build directly on previous work and
all models are extensively validated against biological data and
compared against previous models based on an increasingly
exhaustive set of measures. These trends herald the shift of
focus from model creation and simulation to model analysis and
testing.

At the same time, this increasing need for collaboration
within computational neuroscience is accompanied by a more
general trend in science toward more open communication,
both internally, with other potential scientific collaborators, and
externally, with the wider public. Many examples have by now
shown the value of such open science approaches (Anderson
et al., 2002; Szigeti et al., 2014) to promote one’s research and find
new collaborations. Engagement of a non-academic enthusiast
audience via open-science platforms can not only improve the
public outreach of one’s research program, but also contribute
to the core scientific development. However, the effectiveness of
such an opening up of one’s research is critically dependent on the
ease with which outsiders can engage with the exposed resources,
which in turn critically depends on the quality of the (software)
infrastructure used to serve said resources.

This multi-faceted development toward more integrative
approaches and intensifying communication within and
outside the field poses major new challenges for the software
infrastructure available to computational neuroscientists. The
set of tools involved in a typical modeler’s workflow is expanding
concurrently with growing complexity in the metadata flowing
between them. Meanwhile the requirements for their efficient
interfacing with the outside world (whether in the form of
human users or other software tools) is growing. This growing
complexity of the tasks involved in the typical modeler’s
workflow is putting strain on researchers, who are required to
manage increasingly more complex software infrastructure while
spending a substantial portion of their work-time either writing
ad-hoc software solutions to cover poorly supported aspects
of the workflow or handling them manually. This situation is
clearly less than ideal, slowing down the pace of research while
introducing errors and hindering its reproducibility.

The last four decades have seen numerous additions to
the ecosystem of computational neuroscience tools, including
efficient, well tested, and highly usable simulators such as
Neuron, NEST, Brian, NENGO and others (Carnevale and
Hines, 2006; Gewaltig and Diesmann, 2007; Bekolay et al.,
2014; Stimberg et al., 2014), data management and parameter

exploration tools such as Neo, Sumatra, Lancet, and Pypet
and others (Davison et al., 2008; Stevens et al., 2013; Friedrich
et al., 2014; Garcia et al., 2014; Sobolev et al., 2014; Meyer and
Obermayer, 2016), neural data analysis toolkits SpikeViewer
(Pröpper and Obermayer, 2013) HRLAnalysis (Thibeault et al.,
2014), NeuroTools (http://neuralensemble.org/NeuroTools),
Elephant (http://neuralensemble.org/elephant), and integrated
workflow and simulation environments such as VirtualBrain,
psychopy_ext, or Mozaik (Antolík and Davison, 2013; Kubilius,
2014; Woodman et al., 2014). Despite this rapid progress, the
interfacing between the tools and communication with third
parties (whether users or tools) remains limited, hindering the
future development of integrative collaborative approaches in
computational systems neuroscience. We identify the following
aspects of the modeling workflow, all with implications for
communication and interfacing, that are currently poorly
supported and are key to resolving the outlined limitations of the
present infrastructure:

1. Higher-level, flexible, modular model specification standards
allowing for transparent and efficient communication and
reuse of model components.

2. Exhaustive, explicitly formalized annotation of data generated
during model simulation allowing for deep automatic
introspection of the raw neural data in subsequent processing
steps (i.e., 3 and 4).

3. Explicit formalization of experimental protocols and
neural data analysis allowing for (a) automatic testing and
comparison of the models, (b) their efficient communication
and reuse, and (c) deep introspection of the results

4. Tools that can utilize 1, 2, and 3 to automatically communicate
and serve all aspect of the modeler’s workflow to the rest
of the community and public to facilitate collaboration and
outreach.

Recently we have made advances in addressing some aspect
of points 1, 2, and 3 by the release of the Mozaik toolkit
(Antolík and Davison, 2013), which allows us here to start
approaching the limitation 4, by introducing Arkheia1. Arkheia is
a web-based platform for data management and communication
of computational modeling outcomes in systems neuroscience.
It provides an automatic, interactive, graphical presentation
of simulation results, the experimental protocols used, and
interactive exploration of parameter searches, via a web browser-
based application. Arkheia is focused on automatic serving of
these resources with minimal (virtually no) manual input from
users. Arkheia is written in modular fashion with a focus on
future development of the platform. It follows the standard
database-server-client design and is based aroundmodern widely
adopted web-based technologies (MongoDB for the database,
Node.js and Express.js for the server, and AngularJS for the
client). Currently, Arkheia is shipped only with a Mozaik
backend, as at present this is the only published framework
providing sufficient introspection of simulated neural data that
can be automatically harvested for the presentation in Arkheia.

1Arkheia can be downloaded at https://github.com/antolikjan/Arkheia. A demo

installation can be found at http://arkheia.org.

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2018 | Volume 12 | Article 6

http://neuralensemble.org/NeuroTools
http://neuralensemble.org/elephant
https://github.com/antolikjan/Arkheia
http://arkheia.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

The platform is, however, designed in an open manner, with a
clearly defined and separated API for database access, so that any
project can write its own backend translating its data into the
Arkheia database format. This both allows any current private
ad-hoc project to use Arkheia as its graphical book-keeping and
publishing frontend, as well as ensuring Arkheia can be used with
any future workflow tools that may be developed. Arkheia does
not currently offer an internally implemented fine-grain access
control and is not meant to be used as a centralized platform. It
rather allows any user (or group of users) to set up a separate
repository, either publicly for access by the general population, as
well as locally for internal use.

Overall, Arkheia provides users with an automatic means
to communicate not only their models but also individual
simulation results and the entire experimental context in
an approachable graphical manner to a wider audience.
Arkheia thus addresses some of the limitations of the present
computational neuroscience infrastructure in managing and
communicating results, thus facilitating the user’s ability to
collaborate in the field and outreach to a wider audience.

2. COMPARISON TO OTHER TOOLS

Several recent software projects have overlapping goals with
Arkheia. Lancet (Stevens et al., 2013) and Pypet (Meyer and
Obermayer, 2016) are Python simulation workflow libraries
that provide users with a means to organize and automate
their numerical simulation workflow, automate exploration
of model parameter space and manage the resulting data.
Similarly to Arkheia, they provide users with structured access
to the data produced in the simulations, enriched with a
limited set of metadata tracked during the simulation workflow,
mostly comprising the parametric configuration of the simulated
models. Arkheia does not provide direct handling of the
simulation workflow or the exploration parameter space, these
are instead expected to be performed by the source of the
data handled by Arkheia, and the Mozaik toolkit for which
the data-import backend is currently provided offers both these
services. Crucially, the Lancet and Pypet toolkits do not provide a
graphical interactive representation of the data to the user, which
is the primary goal of Arkheia. Furthermore, Lancet and Pypet
are agnostic as to the nature of the simulations they handle, which
makes them more general, but at the cost of explicitly exposing
only a very limited set of information about the simulations to
the user. In contrast, Arkheia is focused exclusively on neural
simulations allowing it to provide the user with much richer
and deeper introspection of information about the simulations
held in the repository and to do it via a clear and convenient
web-based graphical user interface.

Probably the most similar tool currently available to the
computational neuroscience community is the Open Source
Brain (OSB) (www.opensourcebrain.org) project, a web-based
open science collaborative platform aspiring to become the go-
to repository for neural modeling projects that wish to open
themselves up for collaboration with the rest of the academic
community. OSB technology is built around the NeuroML

v2 data format for neural model specification. OSB is not
structured around single simulation runs but around projects
(which loosely correspond to single models), for which it
provides a web front-page listing some essential information
(e.g., project description, members, references, etc.) and link
to the project’s code repository (e.g., Github). For a project that
is not converted to the NeuroML format this is all information
that is directly introspectable from OSB. For such projects, OSB
essentially provides a centralized space where model authors
can build a web-page about their project. Additionally, for
parts of the project that are converted to NeuroML one can
invoke the Geppetto (www.geppetto.org) Java interface within
the web-browser allowing the user to inspect the model in
detail via a GUI. One limitation of this approach is that
NeuroML has been designed for detailed morphological neural
models, and large-scale point neuron simulations, common in
systems neuroscience, are not as well supported. Unlike Arkheia,
OSB does not offer an explicit formalized presentation of the
stimulation, results, experimental protocols, and their parametric
context, which we argue are key for further development of
collaborative tools in computational neuroscience.

3. ARCHITECTURE

Arkheia follows the standard database-server-client architecture.
To facilitate efficient, but at the same time flexible, storage
of complex highly structured data that describe the makeup
and results of neural simulations we have selected a modern
document based database MongoDB (www.mongodb.com). The
nature of the data describing a simulation run and its results
are straightforwardly described by a hierarchical document that
can be efficiently represented and retrieved in a document-
based database. Presently MongoDB is an industrial standard for
document based databases and is particularly frequently used in
web based software solutions. It is well-supported and accessible
to new users, overall making it a suitable choice for this project.

The data stored in the database is served to the client
via a thin server layer developed in the the asynchronous
event driven JavaScript runtime Node.js (nodejs.org) using the
Express.js (expressjs.com)web-server package. The client is a web
application written in the AngularJS (angularjs.org) framework
(see Figure 1). The server uses the Mongoose library to access
and standardize the data stored in the MongoDB instance. The
architecture of the client follows the Model-View-Controller
(MVC) design facilitated by the AngularJS framework. Here
the different Angular models map onto different parts of the
simulation run description (i.e., the root list of simulation runs,
stimuli, results, experiment protocols etc.), and each Angular
model is associated with an HTML template and a controller
handling the dynamic aspects of the views. The client is a multi-
page web application offering multiple views of the simulation
run data, mostly following a tabular presentation pattern.
In addition a more complex web application for interaction
exploration of parameter search results is offered.

The insertion of data into Arkheia is expected to be done
by an arbitrary set of backends, which should automatically

Frontiers in Neuroinformatics | www.frontiersin.org 3 March 2018 | Volume 12 | Article 6

www.opensourcebrain.org
www.geppetto.org
www.mongodb.com
https://nodejs.org
https://expressjs.com
https://angularjs.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

FIGURE 1 | The architecture of Arkheia. The MongoDB database stores the

information about individual simulation runs as documents. These are served

via the thin server layer built on top of the Node.js platform using the

Express.js web-server to the client, which is a multi-page AngularJS-based

web-application. The backends directly connect to the database and insert

documents that contain the description of a given simulation run. The

backends are expected to automatically export this data from a given

simulation framework.

export data from a given simulation framework and insert it
into the MongoDB database in the format expected by Arkheia,
which is described in the following section. The backends
connect directly to the database, and thus no assumptions
about their behavior beyond the insertion of the data in the
correct format are made. The interaction of Arkheia with
external tools is thus fully specified by the format of data stored
in the database. While the backends are primarily meant as
automatic exporters from simulation environments, in principle
one could create an interactive GUI based application (which
from the point of view of Arkheia would behave as any
other backend) that would allow manual insertion of data into
Arkheia.

4. API

The Arkheia API is essentially a description of how the shared
data about individual simulation runs should be stored in the
MongoDB database used by Arkheia (see Figure 2). The data is
stored in three MongoDB collections, one storing the individual
simulation runs, one storing the parameter searches and one
storing any binary files (e.g., images and movies) that are
referenced from the documents in the other two collections (see
Figure 2). Thus, with the exception of themechanisms for storing
of image and movie data, this storage description reduces to
the description of the format of the hierarchical document that
will be stored for each simulation run. This specification covers
the storage of model specification, sensory stimuli, experimental
protocols, resulting data analysis, and visualization outputs. We
expect rapid development in the specifications of data Arkheia
handles, both as the scope of Arkheia expands, but more
importantly as we hope standardized specifications of some
aspects of the data will develop in the field in the near future
(Eglen et al., 2017).

4.1. Simulation Run Representation
Arkheia data specification follows a document based design,
which conveniently maps onto the document based MongoDB
database used by Arkheia. Each simulation run is represented
by a single JSON hierarchical data-structure which corresponds
to the document inserted into the database. Thus the Arkheia
input data specification reduces to the expected format of this
JSON data-structure. At the root level the SimulationRun data-
structure contains the following entries with the indicated value
types:

{

’submission_date’ : string,

’run_date’ : string,

’simulation_run_name’ : string,

’model_name’ : string,

’results’ : list of Result,

’stimuli’ : list of Stimulus,

’recorders’ : list of Recorder,

’experimental_protocols’: list of Protocol,

’parameters’ : ParameterSet

}

The submission_data and run_date entries are expected to be
strings representing time in “YYYY/MM/DDHH:MM:SS” format.
The simulation_run_name is an arbitrary name given to this
specific simulation run (not the model). The model_name is
the name of the model that was simulated. The results, stimuli,
recorders, and experimental_protocols are each a list of JSON data
structures, the format of which will be described below. Finally
the parameters variable should describe the full parametrization
of the model used in this run, and as all parametrization
throughout Arkheia API, it should follow the ParameterSet
format.

ParameterSet is a nested dictionary (see schema below) where
each value associated with a key (that corresponds to the name
of the parameter) is a tuple (a, b, c), where a corresponds to the
value of the parameter and can either be a scalar or ParameterSet
itself, b is the type of the parameter, and c is a short description of
the parameter’s meaning.

ParameterSet = {

’key’ : (scalar value,scalar type,

description string),

or

’key’ : (ParameterSet,dict,

. description string)

.

.

.

}

The results entry should contain a list of Result JSON data-
structures, each describing one result produced during the
simulation (presumably after analysis and visualization of the
raw data recorded during the simulation). Each result is meant
to be represented as a figure with an accompanying explanatory
caption, and is represented as the following JSON data-structure:

{

’code’ : string,

’name’ : string,

’caption’ : string,

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

FIGURE 2 | The architecture of the Arkheia MongoDB database. All data are stored in three MongoDB collections, one for the individual simulation runs, one for the

parameter searches, and one optimized for storage of binary data using the GridFS service, which will store the images and movies that are referenced from the

documents stored in the other two collections. Any html-permissible image or movie format is supported by Arkheia.

’parameters’ : ParameterSet,

’figure’ : MongoDB GridFS ID

}

The code entry should contain a reference, for example a fully
qualified class or function name, to the source code that generates
the given figure. The name should contain the name of the figure
and the caption should contain a caption that describes what
is displayed in the figure. The parameters entry should contain
the parameters with which the generator of the figure identified
by code entry was invoked to generated the given figure, and
should follow the ParameterSet format described above. Finally,
the figure entry contains a reference to the image of the figure (in
any format that is widely supported in browser) that was stored
in the MongoDB GridFS file store.

The stimuli root level entry should contain a list of Stimulus
JSON data-structures, each describing one of the stimuli
presented during the simulation. It assumes that the model
was presented with a list of stimuli, generated by some source
code entity (class or function) and parameters, and its “raw”
instantiation can be represented as a vector stream, which in turn
can be translated into a movie for visual inspection by the user.
The format of each Stimulus data-structure is as follows:

{

’code’ : string,

’short_description’ : string,

’long_description’ : string,

’parameters’ : ParameterSet,

’movie’ : MongoDB GridFS ID,

}

The code and parameters entries are analogous to those
in the Result data structure. Entries short_description and
long_description, respectively, should contain a brief (one

sentence) and a more detailed description of the stimulus. The
movie entry should contain a reference to the movie (animated
gif) of the stimulus (stored in the MongoDB GridFS).

The recorders root level entry should contain information
on the recording configuration present during the stimulation.
It assumes that this can be described as a list of parametrized
entities that each records some set of variables from some set
of neurons. The recorders entry should thus contain a list of
Recorder JSON data structures, each corresponding to one such
recording configuration entity. The format of the Recorder data
structure is as follows:

{

’code’ : string,

’short_description’ : string,

’long_description’ : string,

’parameters’ : ParameterSet,

’variables’ : list of strings,

’source’ : string

}

The code, parameters, short_description, and long_description
entries are analogous to those in the Stimulus data structure. The
variables entry should contain a list of strings, each identifying
the variable that the given recording configuration recorded in
the selected neurons, and the source should contain the name of
the population of neurons to which this recording configuration
was applied.

Finally the experimental_protocols root entry is expected to
contain a list of Protocol JSON data structures characterizing
the experimental protocols that were performed during the
simulation of the model. The format of each of the Protocol data
structures is as follows and the semantics of all the parameters
are analogous to the corresponding entries in the Stimulus data
structure:

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

{

’class’ : string,

’short_description’ : string,

’long_description’ : string,

’parameters’ : ParameterSet

}

4.2. Parameter Search Representation
Parameter search is essentially a collection of simulation runs
with a systematically varying subset of parameters. In principle,
it would be possible to add the simulation runs originating from
parameter searches into the same database as the individual
simulation runs, and keep a separate record of their membership
to the parameter search group. We have decided against such an
organization, as parameter searches can consist of hundreds or
more runs and would thus clog the presentation of the individual
runs, as well as potentially make access to the individual run
database slow. The parameter searches are thus stored in a
separate database (within the same instance of the MongoDB
server). Each parameter search is a JSON document of the
following format:

{

’submission_date’ : string,

’name’ : string,

’simulation_runs’ : list of SimulationRun,

’parameter_combinations’ : list of tuples

}

Where submission_date is expected to be a string containing the
data of the submission to the repository, the name entry is the
name given to the simulation run. The simulation_runs entry
should contain a list of SimulationRun JSON data-structures,
each corresponding to one simulation run with the same
format as the JSON data-structure describing an individual
simulation run described in the previous section. Finally the
parameter_combinations entry should contain a list of tuples,
with each tuple holding the name of the parameter that was
varied, and a list of parameter values that were explored
(note that currently Arkheia supports only grid parameter
searches, although irregular grids, and missing elements are both
supported).

4.3. API Design Discussion
First we want to emphasize that the goal of Arkheia is not
to provide storage for the full raw data associated with a
given simulation, but rather a structured description of the
simulation context and results, sufficient for replication or reuse
of the various aspect of the given simulation, and to facilitate a
convenient human readable comparison and browsing of models
and their results.

The data format specification described above broadly follows
the organization of data in the Mozaik framework, facilitating
seamless integration with the workflow toolkit, but is designed
with sufficient flexibility to allow integration with other modeling
frameworks. The specification makes a number of assumptions
about the nature of data describing the simulation run and
its results, which, however, we believe are mappable onto the
majority of use cases in systems neuroscience.

For example we assume that the full parameterization of the
model can be expressed as a tree structure, or more precisely
a forest, as we allow multiple root entries. Note that the most
common format for simulation configuration, a plain list of
parameter names and their values, is trivially mapped onto
the forest structure as a forest of depth 1, while we are not
aware of anymajor simulation configuration schemes that cannot
be mapped straightforwardly onto such a tree structure. If
the configuration involves binary data (e.g., a specific image
used for stimulation, or some data derived from biological
experiments that set specific neuron-to-neuron connectivity),
these can be simply referenced by the name of the file containing
the binary data, which can be later—if necessary —looked-up
in an external repository holding the full raw data of the given
simulation run.

Another general approach within the specification securing
flexibility and generality is the assumption that the various
entities to be shared are generated by well-defined blocks of code
that can be easily referenced (i.e., classes or functions) and thus
by sharing the reference to this code and the parametrization
used in the given specific simulation run, one can fully recreate
the entity providing one has access to the full source code of
the given simulation framework (and any potential additions
to it by the author of the simulation). Note that the latter is a
reasonable assumption under the condition that the author is
willing to publish the model in Arkheia and should in any case
become a standard practice in the age of open science. These
code entities should furthermore be accompanied by a detailed
description of the given entity (e.g., experimental protocol) with
an explanation of how the associated parameters configure the
entity. An elegant solution to this is to keep this description as
a code “docstring” of the given code block, where it fulfils the
good practice of well documented code, and can be automatically
harvested into the documentation of the given simulation
framework while at the same time exported for publication in
Arkheia.

The final source of flexibility is that most of the entries of
the specification do not actually have to hold data (e.g., all
the string values can be set to empty strings, or list values
to empty lists). Arkheia can thus be used in projects which
either do not use, or do not yet expose all the data so
far covered in our specification. It is the intention that this
specification will be developed further with the main goal of
increasing the coverage of the information that can be exposed
about simulation runs. We particularly hope that some of the
ongoing efforts in the wider community will generate well-
designed and popular specification standards for some of the
aspects of neural simulations covered by Arkheia, such as
standardization of experimental protocols, higher level model
specifications or stimulus definitions, which we would eagerly
seek to incorporate into Arkheia (Hucka et al., 2003). To this
end Arkheia represents both a sketch of how such specifications
could look and an example of how they could be used to facilitate
communication and comparison across different models, thus
motivating the development of these technologies, which we
believe are key to the future computational neuroscience software
infrastructure.

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

4.4. The Back End Implementation
The API presented above fully specifies the requirements
Arkheia imposes upon its back-ends and thus all remaining
implementation choices are left to the author of the given back-
end. However, to provide reader a basic understanding of what
it takes to implement such a back-end, we will in this section
present a brief account of the Mozaik back-end that currently
ships with Arkheia.

As a part of a simulation run, Mozaik creates a new directory,
inMozaik referred to as data-store, in which it stores the recorded
neural signals coupled to a detailed specification of the simulation
context. The role of the Mozaik Arkheia back-end is to simply
transform this data-store (ignoring some aspects of it not covered
in Arkheia such as raw neural signal recordings) into the Arkheia
document format specified in this section above, and submit it
into user specified Arkheia repository.

The Mozaik Arkheia back-end is written in python and
uses the pymongo package to access and transmit the Arkheia
document into the requested Arkheia repository, taking care
of all the low level MongoDB related processing. Thus, the
MongoDB specific code within the back-end amounts to only
six lines of code (at the time of writing). We expect a similar
level of complexity for other programming languages subject to
availability of similarly functional MongoDB library.

The remaining work of the back-end is relegated to creating
a nested python dictionary, restricted to elementary scalar types
(i.e., float, int, string) or arrays of them as leafs, that follows
the Arkheia document specification and reflects the information
contained in the Mozaik data-store. Given the explicit exposure
of all the required information in Mozaik, this amounts to
simple systematic browsing through the data-store, using the
access routines provided by Mozaik, and subject to few simple
formatting translations re-inserting the information into the API
pre-specified format. The one extra processing step the Mozaik
back-end undertakes is that using the code-references (in the
form of full path to generating class) of the various elements of
the simulation context, it automatically harvests the values for the
short and long description fields (see the API description above)
from the “docstrings” of the referenced code. This is possible
because of the docstring formatting convention [required by
the Sphynx (www.sphinx-doc.org) documentation package] that
Mozaik adheres to. This Mozaik specific design choice saves
time by reusing the information entered by the user during
documentation of the code also for the purpose of serving via
Arkheia. All-in-all, the entire back-end is thus only very modest
300 lines of code including all the auxiliary routines.

In terms of usage, the Mozaik back-end is invoked via
command-line, with two parameters: the path to the data-store
previously created by Mozaik simulation run, and the address of
the Akrheia repository to which the users wishes to submit the
results. It should be noted that we have chosen this command-
line centric usage for its flexibility, but in principle the invocation
of the back-end could for example be directly integrated into
Mozaik platform so that it automatically happens at the and of
each simulation run, or integrated into any GUI, if available for
the simulation platform. Ultimately this design choice is left to be
made by authors of any specific back-end.

The amount of work required to implement a back-end will
naturally vary between simulation platforms, depending mainly
on how explicitly represented and easy to retrieve the various
information that Arkheia serves are in the given simulation
platform. However, here we demonstrate, that for those platforms
built with the explicit coupling of in-silico recordings with the
information about simulation context in mind, this can be a very
straight-forward process.

5. WEB BASED GRAPHICAL FRONTEND

Alongside the server specification, we have built a web-based
application that serves as the visual front-end of the platform.
The web application allows users to visually inspect the content of
the data-store including the model specifications, visual stimuli,
experimental protocols, and the outputs of model analysis and
visualization. It also provides a means for interactive inspection
of parameter search data, which tends to be an integral part of
systems neuroscience modeling, but has so far lacked a dedicated
interactive GUI based tool.

The Arkheia web-app is composed of multiple views with
repeating design patterns, and so for the sake of conciseness
and scientific relevance, we will describe only some of the key
views, which will, however, offer a representative image of the
application. For a complete run-through of the GUI the user
can refer to the documentation provided with the Arkheia demo
repository at http://arkheia.org. Upon landing on the Arkheia
home page, the user is presented with basic, user-specified
information about the given repository (note that it is expected
that multiple Arkheia repositories will be deployed by different
users on the web). Apart from navigating back to the landing
page, and exploring the documentation, the top navigation bar
offers links to the two main parts of the web application:
simulation runs and parameter searches.

5.1. Individual Run Inspection
Most views of the Arkheia web app follow a tabular design,
and the main simulation run view is a typical example. Each
line of the table corresponds to one simulation that has been
added to the Arkheia database. The first four columns offer basic
information about the given simulation run, specifically the time
of its submission to the repository (Figure 3.1), the approximate
time when the simulation was executed (Figure 3.2), the label
the user gave to the specific simulation run (Figure 3.3), and
finally the name of the model that was simulated (Figure 3.4).
The last five columns then contain links to other views that
show more detailed information about the given simulations,
specifically a pop-up that contains brief description of the model
(Figure 3.5), a view showing the full parametrization of the given
simulation (Figure 3.6), a view showing the stimuli presented to
the model during the simulation (Figure 3.7), a view showing the
experimental context of the simulation (Figure 3.8), and a view
showing the results generated during the simulation (Figure 3.9).
The last column allows users to download the entire Arkheia
document together with the associated figure images as a zip
file (Figure 3.10). Finally, the “search” icon in the top header
allows users to filter the displayed simulation runs based on

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2018 | Volume 12 | Article 6

http://www.sphinx-doc.org
http://arkheia.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

FIGURE 3 | The Simulation runs view. Each row of the table corresponds to one simulation run which was added to the Arkheia repository. Each column corresponds

to a different property of the simulation run. From left to right, the submission date (1) the approximate time when the simulation was executed (2), the label the user

gave to the specific simulation run (3), the name of the model that was simulated (4), a link that will bring up a pop with a brief description of the model (5), a link to

the view showing the full parameterization of the run (6), a link to the view showing the stimuli presented (7), a link to the view showing the experimental context (8), a

link to the view showing the results generated during the simulation run (9), a link for downloading the corresponding Arkheia document (10). User can also filter

results based on any attribute within the hierarchical Arkheia document via the “search” icon in the header (11).

any attribute of the associated hierarchical Arkheia document
(Figure 3.11). Refer to Arkheia documentation for more details
on all the discussed functionality.

The parameter view allows the user to explore the entire tree
structure of parameters that fully specify the given simulation.
A user can navigate through the tree using a classic tree-
view interface, expanding and contracting nodes of the tree as
desired (Figures 4.1,4.2). The leaves of the tree correspond to
individual parameters, and contain their value or any other extra
information that can be encoded into a human-readable string,
such as the expected type of the parameter value (Figure 4.3).

The stimuli, experimental context and results views all follow
the same tabular design as the simulation runs. We will thus skip
the description of the first two and only describe the latter. The
results view contains the different results, in the form of figures,
that were generated during the simulation, one per row. The first
column contains identification of the code that was responsible
for generating the given figure (Figure 5.1; typically a full path to
a class or function is expected). The second column contains the
name of the figure (Figure 5.2). The third column contains the
thumbnails of the corresponding figures (Figure 5.3). These can
be expanded to a full-sized view upon clicking the corresponding
thumbnail. The full-size view panel also contains additional
navigation elements with which the user can browse through the
full size figures directly.

5.2. Parameter Search Inspection
The augmenting complexity of models explored in neuroscience
implies an increasing number of parameters, not all of which
can be fully constrained a-priori by experimental data. This is
particularly problematic in network models that typically have

too many parameters and have too complex dynamics to be
effectively fitted directly to data via optimization techniques such
as gradient descent. This poses challenges for modelers, both
in terms of finding values for the free parameters that induce
the desired model behavior, and for generally understanding
how the model behaves within its high-dimensional parameter
space. The standard method for dealing with this situation is to
identify some very small number of key parameters (ideally two),
condense the model properties of interest into a scalar variable
(e.g., mean rate across neurons in the network, or error function
expressing proximity of the model properties to experimental
data), perform a grid search within the selected parameter space
and subsequently plot the resulting mapping from n-dimensional
(usually n = 2) space to 1D space. However, in complex models
with highly non-linear behavior it can be difficult to find such
scalar measures of model performance, and a more general
exploration of the model behavior as a function of its parameters
is thus increasingly necessary. However, currently there is a lack
of software tools to facilitate such an exploratory process. To this
endwe have extendedArkheia with a graphical tool for parameter
dependent exploration of arbitrary model properties, as long as
they can be expressed as a figure.

As the entry parameter searches page has a similar tabular
organization to the individual simulation run view, we will skip
its description here. For each parameter search entered into the
repository, the user has two options. If user wants to inspect a
single specific run in a given parameter search, user can select
the provided link in the Arkheia column and corresponding
row, which will transfer him/her to a page containing a list
of all the individual runs in the parameter search. This page
and all subsequent navigation is identical to the Simulation

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

run page except that the list of simulation runs displayed here
corresponds to the individual simulation runs in the selected
parameter search. This design facilitates efficient development of
the application as any changes to the individual simulation run
presentation are automatically transferred also to inspection of
individual simulation runs from parameter searches.

The second, more interesting option, is to explore the entire
parameter search via a grid based GUI. Upon selecting a
parameter search to inspect, the user lands on a page depicted
in Figure 6, which allows him/her to see a specific output of
the parameter search (in the form of the selected type of figure)
as a function of the parameter values that were varied in the
parameter search via a grid-like interface (Figure 6.5). The grid
provides two axes along which the parameter values can vary.
The vertical axis always represents only one of the parameters
(Figure 6.6), while the horizontal axis can correspond to
combinations of parameters (Figure 6.7; or specifically their
values), if more than two parameters were varied in the given
parameter search. The parameter values are sorted along both
grid axes so the user can discern how the properties of the
model depicted in the selected figure change as a function of the
different parameters and their values. The grid itself (Figure 6.5)
then displays for each model parametrization a single figure
(the identity of which is selected in Figure 6.1) at the associated
grid position that was generated by the simulation. This makes
the parameter search inspection interface general as it allows
arbitrary model properties to be investigated as a function of
the parameter changes, as long as they can be represented as
an image (figure). Arkheia supports irregular spaced grids and
missing entries, which are simply replaced with blank space in
the grid view.

Above the figure grid, there is a panel listing all parameters
that were varied in the parameter search (parameters of the
models that were not varied will not be shown) and next to them
all the values that the given parameter assumed in the search
are displayed (Figure 6.3). By selecting a parameter, the user
can choose which of the parameters should be displayed along
the vertical axis of the grid (the remaining parameters will vary
along the horizontal axis). Furthermore, the user can select any
parameter value to exclude it from the display. This way the user
can restrict the display of the parameter search to slices of the n-
dimensional space of the varied parameters. This is a powerful
method for gaining insight into how models behave with respect
to their high-dimensional parameter space. Finally, at the top,
the user can select which of the figure types generated during the
simulation runs to view (Figure 6.1), as well as change their size
(Figure 6.2).

6. DEPLOYMENT

We envision two main types of deployment for Arkheia. First
local, where a user utilizes Arkheia on a daily basis as a local
store for his/her simulation results with the advantage of GUI
access to them, and as a tool for interactive exploration of
parameter search results. Second, public online deployment,
where the Arkheia instance is used as a publishing platform
for a user’s models and results, for example accompanying
publication with a much more detailed view of the data as

FIGURE 4 | The Parameter view. This view contains a tree-view GUI element

that displays and allows interactive exploration of the full parametrization of the

simulation. The+ icons (1) indicate a folded node of the tree that can be

further expanded upon selection, while the − icons (2) indicate an expanded

node that can be contracted back upon selection of the icon. The leaves of

the tree (3) then contain the values of the given parameter (that is specified by

the full path from root to leaf). Arkheia is agnostic as to what the value is, it only

expects a string, and so additional information, such as the parameter type,

can be provided.

well as a more thorough and usable specification of the model
and entire experimental context. To provide an easy solution
for both scenarios we offer several options for deployment of
Arkheia.

In the simplest case, a user can install the two dependencies:
Node.js and MongoDB. Clone the Git repository (https://github.
com/antolikjan/Arkheia) of the project, run theMongoDB client,
install the remaining dependencies by issuing npm install and
bower install commands. Upon completing this user can issue the
gulp serve command in the root directory, at which point user has
running a local Arkheia instance at localhost:3000. New results
can be added by pointing the given backend to the database. This
setup is suitable for development, whereupon any changes to the
Arkheia code will be automatically reflected in the web-browser.
This is a very straightforward installation procedure, with narrow
margin for error.

To facilitate even simpler deployment, especially in the cloud,
we also provide a Docker (www.docker.com) image of the
latest stable version of the system, with accompanying docker-
compose specification which is configured for deploying the
system on a server for public access. For example, on the
DigitalOcean cloud service, the deployment via Docker reduces

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2018 | Volume 12 | Article 6

https://github.com/antolikjan/Arkheia
https://github.com/antolikjan/Arkheia
www.docker.com
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

FIGURE 5 | The Results view. Each row of the view corresponds to a figure that was generated during the simulation. The first row (1) shows a reference to the code

responsible for the given figure. The second row (2) shows the name of the figure. The third (3) row shows thumbnails of the figures. Upon clicking a thumbnail the full

sized figure is displayed.

FIGURE 6 | Interactive parameter search inspection in Arkheia. This page allows users to browse results of a parameter search of a given model. In the top left (1) the

user can pick which of the figure types, generated in each of the simulation runs (i.e., a simulation run for a specific combination of parameters), to explore as a

function of parameter values. In the top middle (2) the user can adjust the size at which the figures will be displayed. Below in the middle panel (3) is a list of

parameters and their values that were explored. Here the user can activate/disable certain parameter values to explore only partial views of the data. The panel 3 can

be hidden to gain more screen space for the figure grid by clicking button (4). The bottom, largest panel of the page contains the grid of figures (5; filtered based on

the selection made in the middle panel) with guides on the left (6) and top (7) showing the corresponding parameter combinations. User can scroll through this grid to

interactively explore the data. Upon selecting any figure a full-screen version of it will be displayed for rapid detailed inspection.

to selecting the “Docker” server type (i.e., “droplet”) in the
DigitalOcean interface, copying the docker-compose (which is
a tiny text file) specification, and issuing the docker-compose up
command. With this extremely simple set of commands one

now has an online Arkheia service accessible to the public. A
similar simple deployment process, subject to any specifics of
the other platforms, can be expected from any cloud service
providers supporting Docker. Finally, the same process can be

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

used on a private server, subject to the installation of the Docker
service.

7. FUTURE WORK

While the Arkheia repository as presented here already
represents a fully functional neural simulation data management
and publishing tool, we foresee a number of future improvements
to the system. Among the different possibilities is the expansion
of the platform to provide more fine-grained access to the
analysis results and their visualization.

To further facilitate the outreach and collaboration goals
of Arkheia, extension of the platform for multi-user use, and
addition of multiple communication features, including forums,
interactive chat, public outreach web page, would be beneficial.
Alternatively, embedding Arkheia into a more general open
science framework, such as Open Science Framework (osf.io)
or HBP Collaboratory (Senk et al., 2017) would secure such
communication features as well as many others.

AUTHOR CONTRIBUTIONS

JA: Designed and implemented the presented software and wrote
the manuscript; AD: Contributed to the design of the software
and writing of the manuscript.

FUNDING

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 604102 (Human
Brain Project).

ACKNOWLEDGMENTS

We would like to thank Domenico Guarino for reviewing the
original draft and providing valuable advice on the design of
the presented tools, as well as assistance with the design and
implementation of the artwork.

REFERENCES

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., and Werthimer, D. (2002).

SETI@home: an experiment in public-resource computing. Commun. ACM 45,

56–61. doi: 10.1145/581571.581573

Antolík, J., and Davison, A. P. (2013). Integrated workflows for spiking neuronal

network simulations. Front. Neuroinform. 7:34. doi: 10.3389/fninf.2013.

00034

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C.,

Rasmussen, D., et al. (2014). Nengo: a Python tool for building large-scale

functional brain models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.

00048

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker,

M., Diesmann, M., et al. (2016). High-performance computing

in neuroscience for data-driven discovery, integration, and

dissemination. Neuron 92, 628–631. doi: 10.1016/j.neuron.2016.

10.035

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:

Cambridge University Press.

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E.,

Pecevski, D., et al. (2008). PyNN: a common interface for neuronal

network simulators. Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.

011.2008

Eglen, S. J., Marwick, B., Halchenko, Y. O., Hanke, M., Sufi, S., Gleeson,

P., et al. (2017). Toward standard practices for sharing computer code

and programs in neuroscience. Nat. Neurosci. 20, 770–773. doi: 10.1038/

nn.4550

Friedrich, P., Vella, M., Gulyás, A. I., Freund, T. F., and Káli, S. (2014).

A flexible, interactive software tool for fitting the parameters of

neuronal models. Front. Neuroinform. 8:63. doi: 10.3389/fninf.2014.

00063

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg,

P. L., et al. (2014). Neo: an object model for handling electrophysiology

data in multiple formats. Front. Neuroinform. 8:10. doi: 10.3389/fninf.2014.

00010

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Hawrylycz, M., Anastassiou, C., Arkhipov, A., Berg, J., Buice, M., Cain, N., et al.

(2016). Inferring cortical function in the mouse visual system through large-

scale systems neuroscience. Proc. Natl. Acad. Sci. U.S.A. 113, 7337–7344.

doi: 10.1073/pnas.1512901113

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,

et al. (2003). The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics

19, 524–531. doi: 10.1093/bioinformatics/btg015

Koch, C., and Reid, R. C. (2012). Neuroscience: observatories of the mind. Nature

483, 397–398. doi: 10.1038/483397a

Kubilius, J. (2014). A framework for streamlining research workflow

in neuroscience and psychology. Front. Neuroinform. 7:52.

doi: 10.3389/fninf.2013.00052

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160.

doi: 10.1038/nrn1848

Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S.,

et al. (2011). Introducing the human brain project. Proc. Comput. Sci. 7, 39–42.

doi: 10.1016/j.procs.2011.12.015

Meyer, R., and Obermayer, K. (2016). pypet: A python toolkit for data

management of parameter explorations. Front. Neuroinform. 10:38.

doi: 10.3389/fninf.2016.00038

Pröpper, R., and Obermayer, K. (2013). Spyke viewer: a flexible and extensible

platform for electrophysiological data analysis. Front. Neuroinform. 7:26.

doi: 10.3389/fninf.2013.00026

Rangan, A. V., Tao, L., Kovacic, G., and Cai, D. (2009). Multiscale

modeling of the primary visual cortex. IEEE Eng. Med. Biol. 28, 19–24.

doi: 10.1109/MEMB.2009.932803

Senk, J., Yegenoglu, A., Amblet, O., Brukau, Y., Davison, A., Lester, D. R.,

et al. (2017). “A collaborative simulation-analysis workflow for computational

neuroscience using HPC,” in High-Performance Scientific Computing. JHPCS

2016. Lecture Notes in Computer Science, Vol. 10164, eds E. Di Napoli, M. A.

Hermanns, H. Iliev, A. Lintermann, and A. Peyser (Cham: Springer), 243–256.

Sobolev, A., Stoewer, A., Pereira, M., Kellner, C. J., Garbers, C., Rautenberg,

P. L., et al. (2014). Data management routines for reproducible research

using the G-Node Python Client library. Front. Neuroinform. 8:15.

doi: 10.3389/fninf.2014.00015

Stevens, J.-L. R., Elver, M., and Bednar, J. A. (2013). An automated and

reproducible workflow for running and analyzing neural simulations

using Lancet and IPython Notebook. Front. Neuroinform. 7:44.

doi: 10.3389/fninf.2013.00044

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-

oriented specification of neural models for simulations. Front. Neuroinform.

8:6. doi: 10.3389/fninf.2014.00006

Szigeti, B., Gleeson, P., Vella, M., Khayrulin, S., Palyanov, A., Hokanson, J., et al.

(2014). OpenWorm: an open-science approach to modeling Caenorhabditis

Frontiers in Neuroinformatics | www.frontiersin.org 11 March 2018 | Volume 12 | Article 6

http://osf.io
https://doi.org/10.1145/581571.581573
https://doi.org/10.3389/fninf.2013.00034
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1016/j.neuron.2016.10.035
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1038/nn.4550
https://doi.org/10.3389/fninf.2014.00063
https://doi.org/10.3389/fninf.2014.00010
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1073/pnas.1512901113
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1038/483397a
https://doi.org/10.3389/fninf.2013.00052
https://doi.org/10.1038/nrn1848
https://doi.org/10.1016/j.procs.2011.12.015
https://doi.org/10.3389/fninf.2016.00038
https://doi.org/10.3389/fninf.2013.00026
https://doi.org/10.1109/MEMB.2009.932803
https://doi.org/10.3389/fninf.2014.00015
https://doi.org/10.3389/fninf.2013.00044
https://doi.org/10.3389/fninf.2014.00006
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Antolík and Davison Arkheia

elegans. Front. Comput. Neurosci. 8:137. doi: 10.3389/fncom.2014.

00137

Thibeault, C. M., O’Brien, M. J., and Srinivasa, N. (2014).

Analyzing large-scale spiking neural data with HRLAnalysis
TM. Front. Neuroinform. 8:17. doi: 10.3389/fninf.2014.

00017

Woodman, M. M., Pezard, L., Domide, L., Knock, S. A., Sanz-Leon,

P., Mersmann, J., et al. (2014). Integrating neuroinformatics tools in

TheVirtualBrain. Front. Neuroinform. 8:36. doi: 10.3389/fninf.2014.

00036

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Antolík and Davison. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 March 2018 | Volume 12 | Article 6

https://doi.org/10.3389/fncom.2014.00137
https://doi.org/10.3389/fninf.2014.00017
https://doi.org/10.3389/fninf.2014.00036
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Arkheia: Data Management and Communication for Open Computational Neuroscience
	1. Introduction
	2. Comparison to Other Tools
	3. Architecture
	4. API
	4.1. Simulation Run Representation
	4.2. Parameter Search Representation
	4.3. API Design Discussion
	4.4. The Back End Implementation

	5. Web Based Graphical Frontend
	5.1. Individual Run Inspection
	5.2. Parameter Search Inspection

	6. Deployment
	7. Future Work
	Author Contributions
	Funding
	Acknowledgments
	References

