
TECHNOLOGY REPORT
published: 13 April 2018

doi: 10.3389/fninf.2018.00016

Frontiers in Neuroinformatics | www.frontiersin.org 1 April 2018 | Volume 12 | Article 16

Edited by:

Andrew P. Davison,

FRE3693 Unité de Neuroscience,

Information et Complexité (UNIC),

France

Reviewed by:

Justin Tyler Kiggins,

Allen Institute for Brain Science,

United States

Cyrille Rossant,

University College London,

United Kingdom

Konrad Hinsen,

UPR4301 Centre de Biophysique

Moléculaire (CBM), France

*Correspondence:

Svenn-Arne Dragly

s.a.dragly@fys.uio.no

†These authors have contributed

equally to this work.

Received: 29 January 2018

Accepted: 23 March 2018

Published: 13 April 2018

Citation:

Dragly S-A, Hobbi Mobarhan M,

Lepperød ME, Tennøe S, Fyhn M,

Hafting T and Malthe-Sørenssen A

(2018) Experimental Directory

Structure (Exdir): An Alternative to

HDF5 Without Introducing a New File

Format. Front. Neuroinform. 12:16.

doi: 10.3389/fninf.2018.00016

Experimental Directory Structure
(Exdir): An Alternative to HDF5
Without Introducing a New File
Format
Svenn-Arne Dragly 1,2*†, Milad Hobbi Mobarhan 1,3†, Mikkel E. Lepperød 1,4†,

Simen Tennøe 1,5, Marianne Fyhn 1,3, Torkel Hafting 1,4 and Anders Malthe-Sørenssen 1,2

1Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway, 2Department of Physics, University of Oslo, Oslo,

Norway, 3Department of Biosciences, University of Oslo, Oslo, Norway, 4 Institute of Basic Medical Sciences, University of

Oslo, Oslo, Norway, 5Department of Informatics, University of Oslo, Oslo, Norway

Natural sciences generate an increasing amount of data in a wide range of formats

developed by different research groups and commercial companies. At the same time

there is a growing desire to share data along with publications in order to enable

reproducible research. Open formats have publicly available specifications which facilitate

data sharing and reproducible research. Hierarchical Data Format 5 (HDF5) is a popular

open format widely used in neuroscience, often as a foundation for other, more

specialized formats. However, drawbacks related to HDF5’s complex specification have

initiated a discussion for an improved replacement. We propose a novel alternative,

the Experimental Directory Structure (Exdir), an open specification for data storage in

experimental pipelines which amends drawbacks associated with HDF5 while retaining

its advantages. HDF5 stores data and metadata in a hierarchy within a complex binary

file which, among other things, is not human-readable, not optimal for version control

systems, and lacks support for easy access to raw data from external applications.

Exdir, on the other hand, uses file system directories to represent the hierarchy, with

metadata stored in human-readable YAML files, datasets stored in binary NumPy files,

and raw data stored directly in subdirectories. Furthermore, storing data in multiple files

makes it easier to track for version control systems. Exdir is not a file format in itself,

but a specification for organizing files in a directory structure. Exdir uses the same

abstractions as HDF5 and is compatible with the HDF5 Abstract Data Model. Several

research groups are already using data stored in a directory hierarchy as an alternative

to HDF5, but no common standard exists. This complicates and limits the opportunity

for data sharing and development of common tools for reading, writing, and analyzing

data. Exdir facilitates improved data storage, data sharing, reproducible research, and

novel insight from interdisciplinary collaboration. With the publication of Exdir, we invite

the scientific community to join the development to create an open specification that will

serve as many needs as possible and as a foundation for open access to and exchange

of data.

Keywords: file format, data storage, data management, analysis, Python

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00016
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00016&domain=pdf&date_stamp=2018-04-13
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.a.dragly@fys.uio.no
https://doi.org/10.3389/fninf.2018.00016
https://www.frontiersin.org/articles/10.3389/fninf.2018.00016/full
http://loop.frontiersin.org/people/501615/overview
http://loop.frontiersin.org/people/502446/overview
http://loop.frontiersin.org/people/530208/overview
http://loop.frontiersin.org/people/456229/overview
http://loop.frontiersin.org/people/530201/overview
http://loop.frontiersin.org/people/113946/overview

Dragly et al. Experimental Directory Structure (Exdir)

SIGNIFICANCE STATEMENT

An alternative storage solution that improves on certain
drawbacks of Hierarchical Data Format 5 (HDF5) is to use
directories in the file system to define a hierarchy, and store data
in binary files, and metadata in text files. While this strategy can
be deployed in various ways by research groups, no common
standard for such a storage solution exists. Experimental
Directory Structure (Exdir) is a proposal to standardize this
storage solution. We envision the establishment of such a
standard and present Exdir to the community as a starting point.

1. INTRODUCTION

Technology development is continuously driving science to
new discoveries. In neuroscience, advancements in genetic
tools, recording technology, and computer power have paved
the avenue to reveal the underlyings of the healthy and
diseased brain. Modern neuroscience usually involves recordings
and perturbation at many levels, generating a range of data
including imaging, electrophysiology, behaviors, perturbations,
and molecular biology. Publication of raw data is acknowledged
as critical to enable reproducible research and global large-scale
collaborative projects and metadata analyses (Nelson, 2009).
However, data from different acquisition systems come in a
multitude of data formats that need to be readable for all relevant
analysis software and stored for long-term archival. Acquisition
systems often use proprietary and specialized formats tailored
to data produced by specific types of equipment or software.
However, these specialized formats have little applicability
outside their intended purpose, making them inaccessible for
extended use. In contrast, general-purpose formats can store data
for multiple types of equipment and software. When based on
open standards, general-purpose formats facilitate data sharing.

Hierarchical Data Format 5 (HDF5) (The HDF Group, 1997-
2018) is a popular and open general-purpose format capable
of storing many large and annotated datasets in a hierarchical
structure within a single file. HDF5 is the basis of many
formats in neuroscience, including the recent collaborative
format, Neurodata Without Borders (NWB) (Teeters et al.,
2015). However, issues with HDF5 have recently surfaced in the
neuroscience community (Rossant, 2016b). Many of these are
due to the complex specification of HDF5 and its use of a single
binary file to store all the data. The metadata is not human-
readable and the binary format is not optimal for version control
systems. Further, the use of a single file increases the severity
of data corruption, because corruption in a single dataset can
affect the entire file. Additionally, while it is possible to store
raw data as a sequence of bytes with the HDF5 opaque datatype,
it is inconvenient to open the raw data in external applications.
These issues have sparked a discussion in the wider scientific
community on whether HDF5 should be replaced by alternative
data formats or if its large feature set outweighs the disadvantages
(Hinsen, 2016).

Here, we propose a novel specification, Experimental
Directory Structure (Exdir) as an alternative that circumvents
the drawbacks of HDF5 and takes advantage of existing, open

data formats. Exdir follows the abstract data model used in
HDF51, but stores data and metadata in directories to avoid the
vulnerability and rigidity associated with storing all data in a
single file. Datasets are stored in binary NumPy (van der Walt
et al., 2011) files, while attributes and metadata are stored in
YAML (Ben-Kiki et al., 2009) text files. Raw data, such as images
and time series obtained during data acquisition, can also be
stored in Exdir alongside the binary NumPy files. This allows raw
data to be organized inside an Exdir hierarchy without any prior
conversion, even when the data is composed of multiple formats.

The full name (Experimental Directory Structure) reflects that
Exdir started out with a goal to efficiently store experimental data
alongside analyzed data (and that the specification initially was in
rapid development in our lab). However, there is no limitation to
the type of data that can be stored in Exdir. Any type of data that
can be stored in an HDF5 dataset should be possible to store in
an Exdir dataset, and other types of data can be stored as raw data
within the hierarchy.

Exdir is ready to use with a reference implementation
in Python, a command-line client, and a graphical browser.
The application programming interface (API) of the reference
implementation is compatible with h5py (Collette, 2013), a
popular HDF5 library for Python. The code is open source and
hosted on GitHub2.

The idea of an HDF5-replacement based on a hierarchy
of directories is already present in the scientific community
(Rossant, 2016a), but to the best of our knowledge no formal
specification has been introduced. The lack of such of a
specification limits collaboration through data sharing, and
inhibits development of analysis tools. Exdir represents the
introduction of a specification that enables novel insight
from interdisciplinary collaboration by facilitating reproducible
research through improved data storage and sharing. With the
publication of Exdir, we invite the scientific community to join
the development to create an open specification that will serve as
many needs as possible.

2. EXISTING ALTERNATIVES

2.1. Hierarchical Data Format (HDF5)
The HDF5 format holds many advantages over alternative data
formats (see e.g., Teeters et al., 2015). However, the HDF5 format
also has crucial disadvantages, such as described in Greenfield
et al. (2015). In the list below, we have summarized the limitations
and challenges fromGreenfield et al. (2015) that aremost relevant
for scientific use along with some additional drawbacks which are
addressed with Exdir:

1. Metadata is stored in a binary format which makes it
unreadable without tools that readHDF5 files. This alsomakes
the metadata unavailable for text-based command line tools.

2. The specification for HDF5 files is large and complex and there
is only one de-facto implementation of HDF5 in C that most
HDF5-libraries use. Because of the complex specification, this

1https://support.hdfgroup.org/HDF5/doc/
2https://github.com/CINPLA/exdir/

Frontiers in Neuroinformatics | www.frontiersin.org 2 April 2018 | Volume 12 | Article 16

https://support.hdfgroup.org/HDF5/doc/
https://github.com/CINPLA/exdir/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

implementation is hard to improve by external contributors.
Furthermore, the dependency on one large implementation
makes it hard to write software which reads and writes
HDF5 files in ways that have not been anticipated by the
implementation developers.

3. Like all data formats, HDF5 files are susceptible to data
corruption. However, because HDF5 stores all data and
metadata in a single file, data corruption in one part of an
HDF5 file has a chance of corrupting the entire file.

4. Attributes in HDF5 do not support deeply nested structures,
like JSON data, YAML data, or Python dictionaries.

5. External version control systems such as Git3 and incremental
backup systems do not work optimally with HDF5 files
because all datasets and metadata are stored in a single binary
file. This makes it appear as if the entire file has changed when
changes are made to a single dataset.

6. Comparing files in binary formats like HDF5 requires
specialized tools. However, text-based formats have a wide
range of tools that allow line-by-line comparisons, such as diff
(MacKenzie et al., 2015), and wdiff 4, or the graphical tools
meld5 and kdiff3 (Eibl, 2002–2007).

7. Deleting datasets in HDF5 files only removes a reference to
the data, while the data remains on disk (except if the dataset
is the last remaining object in a page allocated at the end of the
file)6.

8. Raw data from acquisition or analysis is hard to access from
external applications when stored inside an HDF5 file. An
alternative is to organize raw data in a separate hierarchy
outside the HDF5 file, but this makes the raw data detached
from the internal hierarchy and inconvenient to annotate.

2.2. Other Formats
Greenfield et al. (2015) propose a new format (Advanced
Scientific Data Format, ASDF) to address many of the above
mentioned problems. Similar to Exdir, ASDF also embraces
YAML for metadata, but it also stores and organizes binary data
in the same YAML file. Storing the data in one file has the same
increased risk of data corruption as HDF5 and makes it harder
for version control systems to keep track of incremental changes.
Furthermore, ASDF does not provide a convenient way to store
raw data in the internal hierarchy.

Some specifications, such as the Brain Imaging Data Structure
(BIDS) (Gorgolewski et al., 2016), also approach the above
problems by using the file systems to define the data hierarchy,
which is similar to the solution we propose with Exdir. However,
these specifications often serve only the purpose of one or few
particular scientific fields, such as neuroscience.

Exdir is not restricted to data from one scientific field and
could be used as an alternative where the flexibility of HDF5
is currently enjoyed. Because Exdir has the same abstract data
model as HDF5, it should be fairly easy to transition from HDF5
to Exdir for formats based on HDF5 also in other fields, such as

3http://git-scm.org
4https://www.gnu.org/software/wdiff/manual/wdiff.html
5http://meldmerge.org/
6https://support.hdfgroup.org/HDF5/docNewFeatures/FileSpace/RFC-Paged_

Aggregation.pdf

geosciences (NetCDF4, Rew et al., 2006; Unidata, 2018), medical
imaging (MINC, Vincent et al., 2004), and neutron, X-ray and
muon science (NeXus, Könnecke et al., 2015)7.

In Table 1, some of the commonly used open formats in
neuroscience are listed. Some of these formats are discussed
by Teeters et al. (2015) where they also introduce Neurodata
Without Borders (NWB), a format recently developed in
an attempt to unify cellular-based neurophysiology data
and break down barriers for data sharing. Many of these
formats, including NWB, are based on HDF5 and therefore
share the same advantages and disadvantages as HDF5.
Because Exdir is compatible with the abstract data model
of HDF5, these formats could be based on Exdir in the
future.

2.3. Requirements of a New Specification
We share many of the requirements reviewed in detail by
Greenfield et al. (2015) for the ASDF format. To meet the
challenges, a data format should:

1. Have an intrinsic hierarchical structure.
2. Be human-readable.
3. Be based on existing standards.
4. Be easy to extend.
5. Have efficient mechanisms to update data.
6. Have support for both text and binary data.

In addition to the above mentioned requirements, we want Exdir
to:

7. Minimize the risks and consequences of data corruption.
8. Have a simple, yet flexible specification.
9. Be flexible to data modifications.
10. Be easy to use in ways that have not been anticipated by the

authors.
11. Be based on the same abstractions as HDF5 to make it easy to

port HDF5-based solutions.
12. Provide a convenient way to store raw data in the same

hierarchy.

None of the existing formats known to the authors fulfill all of the
mentioned requirements.

3. STANDARDS USED IN EXDIR

To fulfill the requirements stated in section 2.3, we propose a new
specification, Exdir, which is based on a standardized directory
structure and established open-source file formats. The structure
follows the abstract data model used in HDF5, but Exdir uses
regular file system directories to define the object hierarchy,
and stores datasets, attributes, and corresponding metadata in
separate files.

Exdir uses YAML files to store metadata and attributes. YAML
is a human-readable and human-writable format that supports
data types such as strings, numbers, lists, and key-value pairs.
Furthermore, libraries for YAML support exist for most major

7https://support.hdfgroup.org/HDF5/users5.html

Frontiers in Neuroinformatics | www.frontiersin.org 3 April 2018 | Volume 12 | Article 16

http://git-scm.org
https://www.gnu.org/software/wdiff/manual/wdiff.html
http://meldmerge.org/
https://support.hdfgroup.org/HDF5/docNewFeatures/FileSpace/RFC-Paged_Aggregation.pdf
https://support.hdfgroup.org/HDF5/docNewFeatures/FileSpace/RFC-Paged_Aggregation.pdf
https://support.hdfgroup.org/HDF5/users5.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

TABLE 1 | Overview of commonly used open formats in neuroscience.

Name HDF5 Notes References

NWB Yes Teeters et al., 2015

Kwik Yes Kadir et al., 2014; Rossant et al., 2015

BRAINformat Yes Rübel et al., 2015

Open Ephys Yes/No
Binary format specifically designed

for electrophysiological data. HDF5 optional.
Siegle et al., 2015

NeuroShare No

API to access binary formats and a

binary format specifically designed

for electrophysiological data.

neuroshare.org

Neo N/A
In-memory data format for Python.

Uses different formats for file storage.
Garcia et al., 2014

CARMEN NDF (Yes)

Specifically designed for neuroscience.

Stores hierarchical structure and

metadata in XML files.

Data is stored in MATLAB .mat files,

which are technically HDF5 files.

carmen.org.uk

Nix Yes

Adds a layer on top of the abstract

data model that standardizes annotation

of data. Directory-based backend

in development.

Stoewer et al., 2014

odML No Only applies to metadata. Grewe et al., 2011

NSDF Yes Format for neuroscience simulation data Ray et al., 2016

programming languages, including Python, C/C++, Java, Rust,
and MATLAB8,9.

YAML files in Exdir are based on version 1.2 of the YAML
specification10, but with some additional restrictions that are
added because not all features of the full YAML specification
are necessary for storing attributes and metadata in Exdir.
The restrictions are made to make the format simpler and
easier to parse for humans, which we believe improves data
sharing. Further, the format should also be easier to parse
programmatically, which could open up for the implementation
of more efficient parsers in the future. Although some of the
restrictions may be removed in a future version of Exdir, we want
to start out with a strict subset of YAML and extend only when a
clear need is identified for more advanced features. The restricted
subset of YAML used in Exdir is compatible with the full YAML
1.2 specification.

The restrictions added to attribute and metadata
files in Exdir are listed below. References to individual
sections of the YAML 1.2 specification are shown in
parentheses:

8http://yaml.org/
9https://github.com/ewiger/yamlmatlab
10yaml.org/spec/1.2/spec.html

1. Only tags from the Failsafe, JSON, and Core schemas (sections
10.1–10.3) are allowed, which means that the supported types
in YAML files in Exdir are: map, sequence, string, null,
boolean, integer, and floating point.

2. Directives must not be used (section 6.8).
3. Node properties must not be used (section 6.9), which also

means that explicit or application-specific tags must not be
used and anchors must not be used.

4. Complex mapping keys must not be used (sections 2.2 and
8.2.2), which also means that the complex mapping key
indicator, “? ” is not allowed.

5. String values must not be used in plain style (section 7.3.3),
which alsomeans that string valuesmust be enclosed in double
or single quotes. However, keys are encouraged to be in plain
style (more on key naming convention below).

6. Flow style must not be used for maps or sequences (section
7.4), which means that curly or square braces must not appear
outside of string values.

7. Empty keys must not be used (section 7.4)
8. Block scalar styles must not be used (section 8.1), which also

means that multi-line strings should be enclosed in double or
single quotes.

Writing files with these restrictions may not always be easily
done with existing YAML libraries in all programming languages.

Frontiers in Neuroinformatics | www.frontiersin.org 4 April 2018 | Volume 12 | Article 16

http://neuroshare.org
http://www.carmen.org.uk/
http://yaml.org/
https://github.com/ewiger/yamlmatlab
http://yaml.org/spec/1.2/spec.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

We have therefore chosen to read files with the full YAML 1.2
specification in our Python reference implementation and will
only issue warnings whenever we encounter YAML files that do
not adhere to the above restrictions. We recommend developers
of Exdir libraries in other languages to do the same. The intention
of the restrictions is not to introduce yet another file format,
which could limit the adoption of Exdir, but to ease the transition
to a stricter subset of YAML that is easier to parse by both humans
and computers.

We also recommend users to adhere to a strict naming
convention for keys:

1. Keys should only contain ASCII letters (a–z and A–Z),
numbers (0–9), underscores (_) and hyphens (-).

2. Keys should not be surrounded by quotation marks.

This is not part of the Exdir specification because it would conflict
with the more relaxed naming rules for keys in HDF5, which
in turn could complicate a transition from HDF5 to Exdir in
projects where such keys are used. If the first recommendation
is broken and custom characters are introduced, we recommend
also to break the second rule and add quotes around the key name
in question.

JSON was also considered as a format for metadata and
attributes, but was rejected because it requires additional tokens
such as curly braces to delimit objects and commas to separate
key-valuemaps.While JSONfiles are human-readable andwidely
supported, we find the additional tokens to make the files harder
to write and maintain manually. The additional tokens play an
important role when JSON is used as a serialization format to
stream data over network protocols, where they are used to verify
that all objects are complete and that the transmission was not
interrupted. This is however of limited use in Exdir because
we are primarily concerned with creating, editing, storing, and
transferring data in bulk, rather than streaming serialized data.

It can be interesting to note that one of the improvements in
YAML 1.2 over YAML 1.1 was to make YAML a superset of JSON.
However, by introducing our above restrictions, we essentially
end up with a subset of YAML that is no longer compatible
with JSON. This is a consequence of our emphasis on human
readability and simplicity over compatibility with JSON. Further,
our restrictions also remove YAML features used to represent
arbitrary native data structures, such as explicit tags. This is
something we believe is necessary to improve the readability of
the attribute files in Exdir. To store complex data structures, we
encourage the use of human-readable structures in the attributes.
For instance, physical quantities can be stored as a map with
two key-value pairs: one for the unit and one for the magnitude.
Conversion to and from in-memory objects can be done using
Exdir plugins (section 5.2). For very complex data structures or
binary data, we encourage users to store this in a dataset or as raw
data.

Exdir uses the NumPy format11 to store datasets as binary
data. This is a simple, efficient, and widely used file format.
Furthermore, there exist libraries to load NumPy files in

11https://docs.scipy.org/doc/numpy/neps/npy-format.html

several languages such as Matlab12, Rust (Potocek et al., 2018),
R (Eddelbuettel and Wu, 2016), and C/C++13.

The hierarchical structure of Exdir benefits from the hierarchy
of directories in file systems. It is an existing specification which
is familiar to computer users. By using this inherent hierarchy,
Exdir makes it possible for a user to browse any Exdir object with
a native file explorer. Further, the use of regular directories allows
raw data from acquisition to be stored and accessed in the same
hierarchy and annotated together with the rest of the data.

Parallel reading and writing to separate objects (such as
two different Group objects or Dataset objects) in an Exdir
directory is not a problem since they are separate files and
directories. Parallel operations on separate files are handled by
the operating system. This is in contrast to HDF5, where parallel
read/write operations must be handled by the HDF5 library
because all objects are stored in the same file. Parallel reading
and writing to a single Exdir object is on the other hand currently
not supported in the reference implementation. Objects are also
not locked when opened for reading or writing. The user must
currently take care to assure that two processes do not modify
the same objects simultaneously. Support for locking and parallel
read/write operations to the same objects is planned for a future
version of Exdir.

As each dataset is stored in its own directory, the risk of data
corruption is reduced. If one dataset is corrupted, it is unlikely
to affect the other files in a directory. This separation also makes
Exdir avoid the problem of data remaining after deletion inHDF5
and taking up space. Deleting a dataset in Exdir immediately frees
up disk space.

When accessing large Exdir File objects, one can easily
retrieve and share subtrees of the main hierarchy by copying
the corresponding directories. This reduces memory, CPU, and
server-communication costs by keeping the size of data handled
to a minimum. When sharing Exdir data with others, one can
use readily available compression file formats such as .zip or
.tar.gz. Alternatively, the Exdir file can be converted into a
HDF5 file, which can be used to exchange data with others (see
section 6.3).

In the future, it could be possible to extend the Exdir
specification to support additional standard data formats in
addition to the NumPy format. It will for instance be of interest
to add support for tabular data with named columns, such as
CSV. This has however been postponed to a future version
because such a format needs to be carefully evaluated based on
interoperability, numerical precision, and more. We would also
like to receive feedback from the wider scientific community
about their needs for storing tabular data before reaching a
conclusion.

In order to maintain the simplicity of Exdir and the reference
implementation, data consistency verification is not built into
Exdir. We envision the use of dedicated software for versioning
and consistency, such as git14 and git-annex15. For instance,

12https://github.com/kwikteam/npy-matlab
13https://github.com/rogersce/cnpy
14https://git-scm.com
15https://git-annex.branchable.com/

Frontiers in Neuroinformatics | www.frontiersin.org 5 April 2018 | Volume 12 | Article 16

https://docs.scipy.org/doc/numpy/neps/npy-format.html
https://github.com/kwikteam/npy-matlab
https://github.com/rogersce/cnpy
https://git-scm.com
https://git-annex.branchable.com/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

plugins (see section 5.2) can be developed to use version control
systems like git to track each object and their checksums in
an Exdir directory. This will make it possible to detect when
files have changed independently. This also allows Exdir to be
combined with git-based systems like GIN, which are tailored
toward cloud-based handling of large datasets (Garbers et al.,
2017).

4. BASIC STRUCTURE OF EXDIR
DIRECTORIES

Exdir has four types of objects, File, Group, Dataset, and
Raw, where each is represented as a directory in the file system.
Raw is a type of object that is not present in the original HDF5
abstract data model. Metadata for each of these objects is stored
in a file named exdir.yaml. All objects can have attributes
stored in an optional file named attributes.yaml. Figure 1
shows an example structure of an Exdir File, and a summary of
specifications of the data format is shown in Table 2.

4.1. Metadata, Attributes, and Data Files
Metadata for each object is stored in the exdir.yaml file in the
object’s directory. This file defines that the current directory is an
Exdir object, and contains information about the Exdir version
and object type. For example, this is the exdir.yaml file of a
dataset:

exdir:

version: 1

type: "dataset"

The object type can either be file, group, dataset, or raw.
The exdir.yaml file is optional for Raw objects.

User-defined attributes of an Exdir object are stored in that
object’s directory in the attributes.yaml file. Attributes are
stored as key–value pairs, which can be nested:

location:

room: 123

building: "A"

creator: "James"

equipment: ...

Binary data of a Dataset is stored in the NumPy format in a file
named data.npy in the Dataset object’s directory.

4.2. File, Group, and Dataset Names
Because Exdir stores File, Group, and Dataset objects as
directories in the file system, special care has to be taken to
adhere to the different filename rules onmajor operating systems.
While file and directory names are case-insensitive in Microsoft
Windows, they are case-sensitive on most Linux file systems. If
two datasets exist in the same directory with the same name, but
different case, e.g., Name and name, then transferring the Exdir
directory from a Linux system to a Windows system will result in
a conflict.

Datasets and groups at the top level of any Group or File
must have unique, case-insenitve names. However, Exdir is case-
aware and case-preserving when quering and storing objects,

which means that objects must be referenced with the exact case
when queried by name.

4.3. File
The File object is the root (top level) object of an Exdir
hierarchy. Every directory below a File in the directory
hierarchy is part of that File. A File cannot contain
other File objects. The metadata of the File is stored in
exdir.yaml, and optional attributes in attributes.yaml.

4.4. Group
Inside the File, multiple objects may be stored, among them
Group objects. Group objects may also contain any number
of other Group objects, Raw objects, and Dataset objects.
Group objects are stored as directories in the file system with
metadata stored in exdir.yaml, and optional attributes in
attributes.yaml. File objects are a specialization of a
Group object.

4.5. Dataset
Dataset objects are for storing data. Dataset objects are
stored as directories with metadata in the exdir.yaml file,
and user-defined attributes in an optional attributes.yaml
file. The data within a Dataset is stored in a binary NumPy
file named data.npy, and thereby follows the specifications of
the NumPy format.

4.6. Raw
Raw objects are used to store data in other formats than the
NumPy format. While the user may store any type of data
in the a Raw directory it is encouraged to use Dataset

objects if possible. For Raw directories the exdir.yaml

file is optional. Further, attributes are stored in the optional
attributes.yaml file. There is no similar concept to Raw
objects in HDF5.

5. REFERENCE IMPLEMENTATION IN
PYTHON

We have created a reference implementation of the Exdir
specification in Python. This implementation is hosted onGithub
and is publicly available with an open-source license. It can easily
be installed with Anaconda16.

The reference implementation of Exdir owes its relative
simplicity to being based on existing formats, and to having
a hierarchy based on regular file system directories. It is
implemented using the open-source NumPy and PyYAML17

libraries, and is designed to be compatible with the popular HDF5
library, h5py. The compatibility should ease the transition from
h5py to Exdir.

The class hierarchy of the reference implementation is shown
in Figure 2. The Raw, Group, and Dataset classes inherit
from Object, which contains their common methods. The
File class is a subclass of Group and they share many of

16https://anaconda.org/cinpla/exdir
17http://pyyaml.org

Frontiers in Neuroinformatics | www.frontiersin.org 6 April 2018 | Volume 12 | Article 16

https://anaconda.org/cinpla/exdir
http://pyyaml.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

FIGURE 1 | Overview of an example Exdir directory. File, Group, and Dataset refer to objects in Exdir, and are stored as directories in the file system. These

objects are equivalent to the same objects in the HDF5 abstract data model. Raw is specific to Exdir and is a regular directory containing arbitrary data files. Inside

each directory, there is a file named exdir.yaml with information about the object type and Exdir version. Each object may contain an attributes.yaml file

containing user-defined attributes. Inside the Dataset directory is a file named data.npy that contains the data of the dataset stored in the NumPy binary format.

the same methods. Attribute is a separate class that handles
attributes for all Exdir objects. Furthermore, the reference
implementation has an extensive test suite that can be run with
pytest18.

18https://docs.pytest.org

5.1. Overview of the Exdir API in Python

In this section we give a quick overview of the Exdir Python API.
An Exdir File is created as follows:

>>> import exdir

>>> f = exdir.File("mytestfile.exdir")

Frontiers in Neuroinformatics | www.frontiersin.org 7 April 2018 | Volume 12 | Article 16

https://docs.pytest.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

TABLE 2 | Exdir format structure.

Type Description Contains Required Optional

File

Group

Root

object

Raw exdir.yaml attributes.yaml

Dataset

Group

Group

Intermediate

directory

Raw exdir.yaml attributes.yaml

Dataset

Dataset

exdir.yaml
Data attributes.yaml

data.npy

Raw

exdir.yaml
Arbitrary

data files
attributes.yaml

FIGURE 2 | Exdir reference implementation class hierarchy.

The File object points to the root directory
in the Exdir directory structure. To create a
Dataset inside the root directory (or other Group

objects) the create_dataset() method can be
used:

>>> dset = f.create_dataset("my_data",

(100,), dtype="i")

Exdir Dataset objects are not NumPy arrays, but behave
similarly. They have both a shape and a data type:

>>> dset.shape

(100,)

>>> dset.dtype

dtype('int32')

Dataset objects support array-style slicing, which can be used
to read and write data to the Dataset:

>>> import numpy as np

>>> dset[...] = np.arange(100)

>>> dset[0]

0

>>> dset[10]

10

>>> dset[0:100:10]

memmap([0, 10, 20, 30, 40, 50, 60, 70,

80, 90])

In addition, Dataset objects can also be created from the data
directly:

>>> dset2 = f.create_dataset("my_data2",

data=np.arange(100))

>>> dset2[0:100:10]

memmap([0, 10, 20, 30, 40, 50, 60, 70, 80,

90])

Exdir uses NumPy’s memory mapping feature (memmap) to
access segments of larger datasets on disk, without reading the
entire file into memory. Furthermore, Exdir supports all the
operations supported by memmap, including fancy indexing:

>>> dset[dset[:] > 90]

array([91, 92, 93, 94, 95, 96, 97, 98, 99],

dtype=int32)

An Exdir Group can be created using create_group():

>>> grp = f.create_group("subgroup")

As with File objects, a Dataset is created inside a Group by
using the create_dataset()method:

>>> dset3 = grp.create_dataset("another

_dataset", (50,), dtype="f")

Group objects support most of the Python dictionary-style
interface. You retrieve objects in the file using the item-retrieval
syntax:

>>> dset3 = f["subgroup/another_dataset"]

As shown above the name of objects follows the hierarchy of the
POSIX standard with /-separators. To retrieve the name of any
object in an Exdir directory one can use:

>>> dset3.name

'/subgroup/another_dataset'

Iterating over a File or a Group provides the names of their
members:

>>> for name in f:

... print(name)

my_data

my_data2

subgroup

Containership testing also uses names:

>>> "my_data" in f

True

>>> "other_data" in f

False

Group objects have the methods: keys(), values(),
items(), iter(), and get().

All File objects, Group objects, and Dataset objects
can have attributes. Attributes are accessed through the attrs
property, which implements a dictionary interface:

>>> dset.attrs["temperature"] = 99.5

>>> dset.attrs["temperature"]

99.5

Frontiers in Neuroinformatics | www.frontiersin.org 8 April 2018 | Volume 12 | Article 16

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

>>> 'temperature' in dset.attrs

True

Unlike HDF5 and h5py, Exdir supports dictionaries as attributes:

>>> dset.attrs["my_attribute"] = {"key1":

"value1", "key2": "value2"}

>>> dset.attrs.items()

dict_items([('my_attribute', {'key1':

'value1', 'key2': 'value2'})])

After the above commands, the Exdir directory structure
becomes:

mytestfile.exdir

|-- exdir.yaml

|-- my_data

| |-- attributes.yaml

| |-- data.npy

| `-- exdir.yaml

|-- my_data2

| |-- data.npy

| `-- exdir.yaml

`-- subgroup

|-- another_dataset

| |-- data.npy

| `-- exdir.yaml

`-- exdir.yaml

5.2. Exdir Plugins
The functionality of Exdir can be extended with plugins. These
allow modifying the behavior of Exdir when enabled. For
instance, dataset and attribute plugins can perform pre- and post-
processing of data during reading and writing operations. Note
that plugins do not change the underlying specifications of Exdir.
Plugins are intended to perform verification of data consistency,
and to provide convenient mapping from general in-memory
objects to objects that can be stored in the Exdir format and
back again. Some plugins are provided in the exdir.plugins
module, while new plugins can be defined by Exdir users or
package developers.

One of the built-in plugins provides experimental support for
units using the quantities package (Dale, 2017):

>>> import exdir

>>> import exdir.plugins.quantities

>>> import quantities as pq

>>> f = exdir.File("test.exdir", plugins

=[exdir.plugins.quantities])

>>> q = np.array([1,2,3])*pq.mV

>>> dset_q = f.create_dataset("quantities

_array", data=q)

>>> dset_q[:]

array([1., 2., 3.]) * mV

As shown in the above example, a plugin is enabled when creating
a File object by passing the plugin to the plugin argument.

To create a custom plugin, one of the handler classes in
exdir.plugin_interfacemust be inherited. The abstract
handler classes are named after the object type you want to create

a handler for. In this example we have a simplified Quantity
class, which only contains amagnitude and a corresponding unit:

>>> class Quantity:

>>> def __init__(self, magnitude, unit):

>>> self.magnitude = magnitude

>>> self.unit = unit

Below, we create a plugin that enables us to directly use
a Quantity object as a Dataset in Exdir. We do this
by inheriting from exdir.plugin_interface.Dataset

and overloading prepare_write and prepare_read:

>>> import exdir

>>> class DatasetQuantity(exdir.plugin

_interface.Dataset):

>>> def prepare_write(self, dataset

_data):

>>> magnitude = dataset_data.data.

magnitude

>>> unit = dataset_data.data.unit

>>>

>>> dataset_data.data = magnitude

>>> dataset_data.attrs = {"unit":

unit}

>>>

>>> return dataset_data

>>>

>>> def prepare_read(self, dataset

_data):

>>> unit = dataset_data.attrs

["unit"]

>>> magnitude = dataset_data.data

>>>

>>> dataset_data.data = Quantity

(magnitude, unit)

>>>

>>> return dataset_data

The overloaded functions take dataset_data as an argument.
This has the data, attrs, and meta properties. The
property attrs is a dictionary with optional attributes, while
meta is a dictionary with information about the plugin. In
prepare_write, the magnitude and unit of the data is
translated to a value (numeric or numpy.ndarray) and an
attribute (dictionary-like) that then can be written to file.
prepare_read receives the data from the NumPy file and the
attributes from the YAML file, and uses these to reconstruct a
Quantity object.

We create a plugin that uses this handler as follows:

>>> my_plugin = exdir.plugin_interface.

Plugin(

>>> name="dataset_quantity",

>>> dataset_plugins=[DatasetQuantity()]

>>>)

The plugin is enabled when opening a File by passing it to the
plugins parameter:

>>> f = exdir.File("test.exdir", plugins

Frontiers in Neuroinformatics | www.frontiersin.org 9 April 2018 | Volume 12 | Article 16

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

=[my_plugin])

>>> dset = f.create_dataset("test", data=

Quantity(1.5, "meter"))

5.3. Converting From Using HDF5 to Exdir
As can be seen from Table 1, many common formats in
neuroscience are based onHDF5. Since Exdir follows the abstract
data model of HDF5, it is easy to switch fromHDF5 to Exdir, and
these formats should be able to support both HDF5 and exdir as
backends. Often, the only change needed to transition from h5py
to Exdir will be to switch from:

import h5py

f = h5py.File("filename.hdf5", "w")

To the following:

import exdir

f = exdir.File("filename.exdir", "w")

In most cases, the rest of the code can be left unchanged.
A few operators in h5py are missing in the reference

implementation and will eventually be added. Furthermore,
HDF5 has support for linking of objects, which is currently
not part of the Exdir specification and will be added in
the future. Finally, the reference implementation currently
does not support parallel read/write operations on single
stobjects. A future plugin is planned to provide such
support.

5.4. Reading and Writing to Exdir in Other
Languages
It is simple to load and edit Exdir objects in languages with
existing NumPy and YAML libraries, such as in MATLAB. Here
we show how to read Exdir objects with MATLAB after writing
them with Python.

Assume that we have written an Exdir file with the following
Python script:

import exdir

f = exdir.File('matlab-test.exdir')

g = f.require_group('group_1')

d = g.require_dataset('dataset_1', data=

np.arange(3))

d.attrs['unit'] = 'ms'

d.attrs['trials'] = 1234

d.attrs['frequency'] = 1.23

Then, in order to load the dataset as a vector with its
corresponding attributes as a struct, one first has to add the path
to npy-matlab19 and yamlmatlab20 with

addpath(genpath('/path/to/npy-matlab'))

addpath(genpath('/path/to/yamlmatlab'))

The data can be loaded into memory with the following code:

19https://github.com/kwikteam/npy-matlab
20https://github.com/ewiger/yamlmatlab

data_path = 'matlab-test.exdir/group_1/

dataset_1/data.npy';

attrs_path = 'matlab-test.exdir/group_1/

dataset_1/attributes.yaml';

dataset = readNPY(data_path)

attributes = yaml.ReadYaml(attrs_path)

This results in the following output:

dataset =

0

1

2

attributes =

trials: 1234

frequency: 1.2300

unit: 'ms'

Editing the dataset and attributes is similarly easy:

attributes.name = 'Martin';

yaml.WriteYaml(attrs_path, attributes);

dataset(1:end) = 0;

writeNPY(dataset, data_path);

6. TOOLS FOR EXDIR

The Exdir command line interface and the Exdir browser are
tools created to make it easier to work with Exdir data.

6.1. Exdir Command Line Interface
Exdir-cli is a simple command line interface for browsing Exdir
directories and to create Exdir File objects and Group objects.
Listing the content of an Exdir File is done in the command
line by the following:

$ exdir list mytestfile.exdir

group1

group2

dataset

Listing the contents of a Dataset is done by the following:

$ exdir show dataset

nums

Type: Dataset

Name: /dataset

Shape: (23632,)

Data:

[0 0 0 ..., 6 6 6]

6.2. Exdir browser
Exdir browser is a graphical user interface for viewing and
editing Exdir directories written in C++ using the open-source
Qt application framework21 (see Figure 3). The browser can be

21https://www.qt.io/

Frontiers in Neuroinformatics | www.frontiersin.org 10 April 2018 | Volume 12 | Article 16

https://github.com/kwikteam/npy-matlab
https://github.com/ewiger/yamlmatlab
https://www.qt.io/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

FIGURE 3 | Screenshot of the Exdir browser.

installed on Linux, macOS, and Windows through Anaconda22

or from source23.
After opening an Exdir directory, the Exdir browser shows a

hierarchical tree of all the objects in that directory. Information
about each object is shown when selected and attributes of all
objects may be edited. Group objects can be expanded to show
their child objects, similar to directories on the file system. When
selecting a dataset, the contents is shown in a 2D table. If the
dataset is three dimensional, you can select the slice.

6.3. HDF5/Exdir Converter
In order to allow users to convert existing HDF5 files to Exdir,
or the other way around, we have created a simple conversion
tool24 which can be used from the command line. Converting
from HDF5 to Exdir is done using hdf2exdir:

$ hdf2exdir "filename.hdf5" # creates

"filename.exdir"

And converting from Exdir to HDF5 is done using exdir2hdf:

$ exdir2hdf "filename.exdir" # creates

"filename.hdf5"

This converter is currently in development, but the main
functionality is already implemented, including converting
Group, Dataset, and Attribute objects.

22https://anaconda.org/cinpla/exdir-browser
23https://github.com/CINPLA/exdir-browser
24https://github.com/CINPLA/hdf5-exdir-converter

7. PERFORMANCE

As with other formats, the performance of Exdir is limited
by the file system and underlying hardware. In general,
data readability has been prioritized over performance
in Exdir, but we are improving the performance where
possible.

We have performed benchmarks for some common
operations and compared the Exdir reference implementation
to the h5py Python library. The benchmarks can be explored
as a Jupyter notebook in the source code repository (see
README.md for details) or online using Binder25. This
notebook also contains examples that illustrate how the
individual benchmarks can be profiled to identify performance
bottlenecks.

The results are listed in Table 3. These results were
found by performing the benchmarks on a desktop
computer running Linux and a laptop computer
running Microsoft Windows (see the table caption for
details).

As can be seen from “Add 200 attributes (one by one)”
in Table 3, adding 200 attributes one by one is slow in Exdir
compared to h5py. This is because each written attribute
results in a complete rewrite of the “attributes.yaml” file. The
performance might be improved by caching the changes and
flushing them to the file at regular intervals, but we have chosen

25https://mybinder.org/v2/gh/CINPLA/exdir/dev?filepath=tests/benchmarks/

benchmarks.ipynb

Frontiers in Neuroinformatics | www.frontiersin.org 11 April 2018 | Volume 12 | Article 16

https://anaconda.org/cinpla/exdir-browser
https://github.com/CINPLA/exdir-browser
https://github.com/CINPLA/hdf5-exdir-converter
https://mybinder.org/v2/gh/CINPLA/exdir/dev?filepath=tests/benchmarks/benchmarks.ipynb
https://mybinder.org/v2/gh/CINPLA/exdir/dev?filepath=tests/benchmarks/benchmarks.ipynb
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

TABLE 3 | Results from benchmarks comparing performance in Exdir with h5py.

Library h5py Exdir h5py Exdir

OS Linux Linux Windows Windows

Add 5 attributes 0.002 s 0.010 s 0.002 s 0.030 s

Add 200 attributes (one by one) 0.066 s 3.6 s 0.068 s 5.5 s

Add 200 attributes (single operation) N/A 0.030 s N/A 0.049 s

Add dataset with 106 64-bit floats 0.009 s 0.013 s 0.019 s 0.040 s

Add dataset with 108 64-bit floats 0.38 s 0.54 s 4.4 s 0.83 s

Create 5,000 groups (thorough validation) 0.26 s 8.1 s 0.36 s 8.9 s

Create 5,000 groups (minimal validation) 0.26 s 1.1 s 0.36 s 8.4 s

Create tree (3 groups × 5 levels) 0.14 s 0.34 s 0.14 s 2.1 s

Write 3D slice (100 × 300 × 100) 0.0033 s 0.0048 s 0.031 s 0.029 s

A 2GB RAM disk was used as virtual hard drive for the tests. Filename validation was

disabled for Exdir in all tests. Software used: Python 3.6, NumPy 1.13.1, Ubuntu 16.04,

Windows 7. Hardware used: Linux: Intel Core i7-5820K 3.30 GHz, 32 GB RAM, Intel 535

512 GB SSD. Windows: HP EliteBook 8570p, Intel Core i7-3520M, 2.90 GHz, 8 GB RAM.

Samsung 128 GB SSD.

to postpone the addition of such features to keep the current
implementation simple. However, as is shown in “Add 200
attributes (single operation)” in Table 3, it is possible to emulate
this behavior by first adding the same attributes to a Python
dictionary and then assign them to the attrs property of an
object. Adding many attributes in a single operation with Exdir
is faster than adding them one by one with h5py. It should
be noted that is only possible in Exdir, and not supported by
h5py.

Further, manipulation of metadata in Exdir has an added
benefit over HDF5 on networked file systems if the file
system downloads and uploads entire files when they are
modified. Metadata in Exdir is stored in separate files,
and only these files need to be downloaded, while the
rest of the dataset can remain on the server. This is in
contrast to HDF5 where the entire file may have to be
downloaded.

Reading and writing large continuous data in Exdir is
about as fast as with h5py on Linux, and faster on Windows.
This is also the case for reading and writing to parts of a
dataset. However, HDF5 supports storing chunked data, which
is a feature missing in Exdir, and in these cases, HDF5 is
likely to outperform Exdir when reading and writing binary
data.

Creating many empty objects is slower with Exdir than
with h5py, as shown in the “Create 5000 groups (thorough
validation)” benchmark in Table 3. Profiling this example
on Linux shows that most of the time in Exdir is spent
on filename validation. In the reference implementation,
“thorough” validation is enabled by default and will enforce
the Exdir naming rules discussed in section 4.2 by checking
if an existing object exists in the same folder with the same
name but different case. This is to avoid name conflicts when
directories created on case-sensitive operating systems are
transferred to case-insensitive operating systems. This check
is very time-consuming when many objects are present, and
can be disabled by choosing a different validation function.
For instance, “minimal” validation can be enabled by passing

name_validation=exdir.validation.minimal to
the File constructor. Minimal validation only checks if a file
or folder with the exact, case-sensitive name already exists.
This is much faster on Linux and brings the performance of
Exdir closer to that of h5py, as shown in the “Create 5000
groups (minimal validation)” benchmark in Table 3. With
minimal validation, Exdir spends most time on creating
directories and the exdir.yaml files. On Windows, thorough
name validation does not explicitly compare the names by
iterating over all existing files and directories because this
is already done by default by the operating system’s check
for file existence. However, the performance on Windows is
almost as bad as with thorough validation enabled on Linux.
Profiling this benchmark on Windows shows that much of
the time is spent on on low-level file system operations, such
as nt.open, nt.mkdir, and nt.stat. It therefore seems
unlikely that performance can be improved much in this
case.

In summary, the performance of Exdir is mostly limited
by the performance of the file system and the performance
of the YAML and NumPy libraries. Exdir performs worse
than h5py with many individual operations on attributes, but
performs better if the individual operations are accumulated
into a single operation. Exdir performs worse than h5py
with many small objects, which means that HDF5 is a
better alternative for use cases where many small objects
need to be written with high performance. However, when
writing large datasets, Exdir performs similarly or better than
h5py.

8. DISCUSSION

We have proposed a new specification, Exdir, that puts the
abstractions of HDF5 on top of a hierarchical directory
structure. Exdir gives the same flexibility as HDF5, but with
the advantages of a simpler specification, human-readable
metadata, and applicability of established tools. Further, the
hierarchy and metadata can be modified manually without
tools specific to Exdir, while the data is accessible by existing
libraries for common languages. This makes Exdir a possible
replacement for HDF5 in computational and experimental data
pipelines.

We have presented a reference implementation in Python,
a command-line client, and a graphical browser that are all
open source and available on GitHub. Together, these tools
will hopefully make it easy for other researchers to explore the
specification and provide valuable feedback. Because Exdir is
based on the established NumPy and YAML formats, we expect
APIs for other languages to be fairly easy to implement.

The reference implementation has an extensive test suite
and has been thoroughly tested, although the format is still
under development. The flexibility of the format gives many
possibilities for future development. Exdir includes the concept
of plugins, which makes it easy to extend implementations
with new functionality without adding more complexity to the
specification.

Frontiers in Neuroinformatics | www.frontiersin.org 12 April 2018 | Volume 12 | Article 16

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dragly et al. Experimental Directory Structure (Exdir)

Because similar strategies for data storage are already
in use, but no formal standard exists, we believe
Exdir provides an opportunity for increased data
sharing and development of tools that can be shared
across multiple disciplines. We hope Exdir can lay the
foundation for a standardization of such strategies, and
contribute to the general discussion on data storage in
science.

AUTHOR CONTRIBUTIONS

S-AD, MH, andML conceived of and designed the project; S-AD,
MH, ML, and ST wrote software, documentation, and the paper.
All authors contributed to revising the paper and approved of the
final version.

FUNDING

This work was funded by the Norwegian Research Council
(Grant No. 248828, 250259 to MF and Grant No. 231248 to TH)
and by the University of Oslo.

ACKNOWLEDGMENTS

The development of Exdir owes a great deal to other
standardization efforts in science in general and neuroscience
in particular, among them the contributors to HDF5,
NumPy, YAML, PyYAML, ruamel-yaml, SciPy, Klusta Kwik,
NeuralEnsemble, and Neuroscience Without Borders. We would
also like to thank Thomas Wachtler and Daniel K. Wójcik for
valuable feedback.

REFERENCES

Ben-Kiki, O., Evans, C., and döt Net, I. (2009). Yaml Ain’t Markup Language

(YAMLTM) Version 1.2 Available online at: http://yaml.org/spec/1.2/spec.html

Collette, A. (2013). Python and HDF5: Unlocking Scientific Data. Available online

at: http://www.h5py.org/

Dale, D. S. (2017). Quantities: Support for Physical Quantities With Units Based on

NumPy. Available online at: https://pypi.python.org/pypi/quantities

Eddelbuettel, D., and Wu, W. (2016). RcppCNPy: Read-Write Support

for NumPy Files in R. J. Open Source Softw. 1:55. doi: 10.21105/

joss.00055

Eibl, J. (2002–2007). The kdiff3 Handbook. Available online at: http://kdiff3.

sourceforge.net/doc/index.html

Garbers, C., Kellner, C., Koutsou, A., Sonntag, M., and Wachtler, T. (2017).

The G-node infrastructure services: safe and efficient data management for

neuroscience. Neuroinformatics. doi: 10.12751/incf.ni2017.0040

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P. L., et al.

(2014). Neo: an object model for handling electrophysiology data in multiple

formats. Front. Neuroinform. 8:10. doi: 10.3389/fninf.2014.00010

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff,

E. P., et al. (2016). The brain imaging data structure, a format for organizing

and describing outputs of neuroimaging experiments. Sci. Data 3:160044.

doi: 10.1038/sdata.2016.44

Greenfield, P., Droettboom, M., and Bray, E. (2015). ASDF: A new

data format for astronomy. Astron. Comput. 12(Suppl. C), 240–251.

doi: 10.1016/j.ascom.2015.06.004

Grewe, J., Wachtler, T., and Benda, J. (2011). A bottom-up approach

to data annotation in neurophysiology. Front. Neuroinform. 5:16.

doi: 10.3389/fninf.2011.00016

Hinsen, K. (2016). On HDF5 and the Future of Data Management. Available

online at: http://blog.khinsen.net/posts/2016/01/07/on-hdf5-and-the-future-

of-data-management

Kadir, S. N., Goodman, D. F., and Harris, K. D. (2014). High-dimensional cluster

analysis with the masked EM algorithm. Neural Comput. 26, 2379–2394.

doi: 10.1162/NECO_a_00661

Könnecke, M., Akeroyd, F. A., Bernstein, H. J., Brewster, A. S., Campbell, S. I.,

Clausen, B., et al. (2015). The NeXus data format. J. Appl. Crystallogr. 48,

301–305. doi: 10.1107/S1600576714027575

MacKenzie, D., Eggert, P., and Stallman, R. (2015). GNU Diffutils Reference

Manual. Available online at: https://www.gnu.org/software/diffutils/manual/

diffutils.html

Nelson, B. (2009). Empty archives: most researchers agree that open access to

data is the scientific ideal, so what is stopping it happening? Bryn Nelson

investigates why many researchers choose not to share. Nature 461, 160–164.

doi: 10.1038/461160a

Potocek, P., Bopp, E., and Lockyer, D. (2018). npy-rs. Available online at: https://

github.com/potocpav/npy-rs

Ray, S., Chintaluri, C., Bhalla, U. S., and Wójcik, D. K. (2016). NSDF:

neuroscience simulation data format. Neuroinformatics 14, 147–167.

doi: 10.1007/s12021-015-9282-5

Rew, R., Hartnett, E., and Caron, J.. (2006). “NetCDF-4: software implementing an

enhanced data model for the geosciences,” in 22nd International Conference on

Interactive Information Processing Systems for Meteorology, Oceanograph, and

Hydrology (Atlanta, GA).

Rossant, C. (2016a). Moving Away From HDF5. Available online at: http://cyrille.

rossant.net/moving-away-hdf5

Rossant, C. (2016b). Should You Use HDF5? Available online at: http://cyrille.

rossant.net/should-you-use-hdf5

Rossant, C., Kadir, S. N., Goodman, D. F. M., Schulman, J., Belluscio, M., Buzsaki,

G., et al. (2015). Spike sorting for large, dense electrode arrays. Nat. Neurosci.

19, 634–641. doi: 10.1038/nn.4268

Rübel, O., Prabhat, M., Denes, P., Conant, D., Chang, E., and Bouchard, K. (2015).

Brainformat: a data standardization framework for neuroscience data. bioRxiv.

doi: 10.1101/024521. [Preprint].

Siegle, J. H., Hale, G. J., Newman, J. P., and Voigts, J. (2015). Neural

ensemble communities: open-source approaches to hardware for large-

scale electrophysiology. Curr. Opin. Neurobiol. 32(Suppl. C), 53–59.

doi: 10.1016/j.conb.2014.11.004

Stoewer, A., Kellner, C. J., Benda, J., Wachtler, T., and Grewe, J. (2014). File format

and library for neuroscience data and metadata. Front. Neuroinform. 5:16.

doi: 10.3389/conf.fninf.2014.18.00027

Teeters, J. L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., et al.

(2015). Neurodata without borders: creating a common data format for

neurophysiology. Neuron 88, 629–634. doi: 10.1016/j.neuron.2015.10.025

The HDF Group (1997-2018). Hierarchical Data Format, Version 5. Available

online at: http://www.hdfgroup.org/HDF5/

Unidata (2018). NetCDF-4. Boulder, CO.

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array:

a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30.

doi: 10.1109/MCSE.2011.37

Vincent, R. D., Janke, A., Sled, J. G., Baghdadi, L., Neelin, P., and Evans, A. C.

(2004). “MINC 2.0: A modality independent format for multidimensional

medical images,” in 10th Annual Meeting of the Organization for Human Brain

Mapping (Budapest).

Conflict of Interest Statement: S-AD is employed part-time by The Qt Company.

The Qt Company develops the Qt application framework, which the authors used

to create the Exdir Browser.

The other authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2018 Dragly, Hobbi Mobarhan, Lepperød, Tennøe, Fyhn, Hafting

and Malthe-Sørenssen. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner are credited and that the original publication in this journal is cited,

in accordance with accepted academic practice. No use, distribution or reproduction

is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 13 April 2018 | Volume 12 | Article 16

http://yaml.org/spec/1.2/spec.html
http://www.h5py.org/
https://pypi.python.org/pypi/quantities
https://doi.org/10.21105/joss.00055
http://kdiff3.sourceforge.net/doc/index.html
http://kdiff3.sourceforge.net/doc/index.html
https://doi.org/10.12751/incf.ni2017.0040
https://doi.org/10.3389/fninf.2014.00010
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.ascom.2015.06.004
https://doi.org/10.3389/fninf.2011.00016
http://blog.khinsen.net/posts/2016/01/07/on-hdf5-and-the-future-of-data-management
http://blog.khinsen.net/posts/2016/01/07/on-hdf5-and-the-future-of-data-management
https://doi.org/10.1162/NECO_a_00661
https://doi.org/10.1107/S1600576714027575
https://www.gnu.org/software/diffutils/manual/diffutils.html
https://www.gnu.org/software/diffutils/manual/diffutils.html
https://doi.org/10.1038/461160a
https://github.com/potocpav/npy-rs
https://github.com/potocpav/npy-rs
https://doi.org/10.1007/s12021-015-9282-5
http://cyrille.rossant.net/moving-away-hdf5
http://cyrille.rossant.net/moving-away-hdf5
http://cyrille.rossant.net/should-you-use-hdf5
http://cyrille.rossant.net/should-you-use-hdf5
https://doi.org/10.1038/nn.4268
https://doi.org/10.1101/024521
https://doi.org/10.1016/j.conb.2014.11.004
https://doi.org/10.3389/conf.fninf.2014.18.00027
https://doi.org/10.1016/j.neuron.2015.10.025
http://www.hdfgroup.org/HDF5/
https://doi.org/10.1109/MCSE.2011.37
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Experimental Directory Structure (Exdir): An Alternative to HDF5 Without Introducing a New File Format
	Significance Statement
	1. Introduction
	2. Existing Alternatives
	2.1. Hierarchical Data Format (HDF5)
	2.2. Other Formats
	2.3. Requirements of a New Specification

	3. Standards Used in Exdir
	4. Basic Structure of Exdir Directories
	4.1. Metadata, Attributes, and Data Files
	4.2. |File|, |Group|, and |Dataset| Names
	4.3. |File|
	4.4. |Group|
	4.5. |Dataset|
	4.6. |Raw|

	5. Reference Implementation in Python
	5.1. Overview of the Exdir API in Python
	5.2. Exdir Plugins
	5.3. Converting From Using HDF5 to Exdir
	5.4. Reading and Writing to Exdir in Other Languages

	6. Tools for Exdir
	6.1. Exdir Command Line Interface
	6.2. Exdir browser
	6.3. HDF5/Exdir Converter

	7. Performance
	8. Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

