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Development of credible clinically-relevant brain simulations has been slowed due to

a focus on electrophysiology in computational neuroscience, neglecting the multiscale

whole-tissue modeling approach used for simulation in most other organ systems.

We have now begun to extend the NEURON simulation platform in this direction

by adding extracellular modeling. The extracellular medium of neural tissue is an

active medium of neuromodulators, ions, inflammatory cells, oxygen, NO and other

gases, with additional physiological, pharmacological and pathological agents. These

extracellular agents influence, and are influenced by, cellular electrophysiology, and

cellular chemophysiology—the complex internal cellular milieu of second-messenger

signaling and cascades. NEURON’s extracellular reaction-diffusion is supported by an

intuitive Python-based where/who/what command sequence, derived from that used

for intracellular reaction diffusion, to support coarse-grained macroscopic extracellular

models. This simulation specification separates the expression of the conceptual model

and parameters from the underlying numerical methods. In the volume-averaging

approach used, the macroscopic model of tissue is characterized by free volume

fraction—the proportion of space in which species are able to diffuse, and tortuosity—the

average increase in path length due to obstacles. These tissue characteristics can be

defined within particular spatial regions, enabling the modeler to account for regional

differences, due either to intrinsic organization, particularly gray vs. white matter, or

to pathology such as edema. We illustrate simulation development using spreading

depression, a pathological phenomenon thought to play roles in migraine, epilepsy

and stroke. Simulation results were verified against analytic results and against the

extracellular portion of the simulation run under FiPy. The creation of this NEURON

interface provides a pathway for interoperability that can be used to automatically

export this class of models into complex intracellular/extracellular simulations and future

cross-simulator standardization.
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1. INTRODUCTION

Computational neuroscience has had an historical focus on
electrophysiology, with consequent neglect not only of the
accompanying chemophysiology that directly underlies neural
function, but also of the brain as a complex organ within
which neuronal networks are embedded (De Schutter, 2008).
This neglect is of particular importance as we try to adapt
our models for understanding of brain disease, many of which
are associated with changes in extracellular concentrations of
ions, metabolites, transmitters, or toxins in various parts of the
brain (Mulugeta et al., 2018). These extracellular concentration
changes then cause alterations in reactions and reaction rates
involving cellular elements including specific and nonspecific
receptors, ion channels, and intracellular signaling pathways.
In order to begin to fill out modeling of the brain as a
whole organ, we have developed an extracellular modeling
extension for the NEURON modeling platform (Carnevale and
Hines, 2006), a widely used simulation tool that has been
used in over 1900 neuroscience publications, with around
600 models freely available on ModelDB (McDougal et al.,
2017).

NEURON has always allowed modelers to describe arbitrarily
complex phenomena with their own “mod” files, optionally
including verbatim C-code, thereby permitting arbitrary
programming to be done to augment the package. This
left the user with complex code which intermingled model
specifics with the numerics, making reuse difficult. One of
the guiding principles of simulator development, both for
NEURON and for other simulators, has been to promote
reproducibility, reusability, and credibility by providing a
consistent numerics-independent way to specify models. In
the reaction-diffusion domain, the NEURON rxd module
simplified and standardized the description of accumulation,
reaction and diffusion (McDougal et al., 2013). This module
has been used to study calcium dynamics in both physiological
and pathological conditions (Neymotin et al., 2014, 2016). We
have now expanded the rxd module to include macroscopic
volume averaged description of extracellular space (ECS).
This is appropriate for spatial discretization on the order of
10 µm to produce simulations up to centimeters (Nicholson
and Phillips, 1981; Nicholson, 1995). The rxd macroscopic
model of tissue is parameterized by free volume fraction—the
proportion of space unoccupied by cells, blood vessels, etc.; and
tortuosity—the increase in a diffusing particle’s path-length due
to obstacles.

In the following sections we give details of the development
of the extracellular rxd module, with examples to demonstrate
the utility of the Python interface. We then show some
details of the numerical methods underling the module’s
interface and techniques used to improve performance for large
simulations, providing several tests to verify rxd simulation
results. We give a basic example of clinically-relevant simulation
by demonstrating the phenomenon of spreading depression, a
pathological condition thought to play a role in a variety of
conditions including mirgraine, epilepsy, and stroke (Wei et al.,
2014).

2. OBJECTIVES

As with cells of other solid organs, neurons exist in a highly active
medium, influenced by bioactive chemicals whose concentrations
change rapidly through: (1) passive diffusion, (2) active deposit
and clearance from other cells, and (3) binding or other
reactions with extracellular species (Syková and Nicholson,
2008). These important tissue-level chemophysiological influences
have been neglected by computational neuroscience for a
variety of reasons, including the aforementioned focus on
electrophysiology. Primarily, however, simulators have been
unable to support this level of interaction due to the difficulty of
reconciling the small spatial scale of single cell and local network
simulation with the large millimeter (mouse) or centimeter
(primate) scale of the brain as an organ. This type of broad
multiscale modeling naturally requires compromises at both
ends, and across the temporal scales as well. We set out to
extend NEURON to handle this domain by providing a coarsely-
discretized extracellular domain within which cells and networks
can be embedded, creating mosaic models where different parts
are provided at different levels of detail. The coarse scale permits
relatively rapid simulation runs, but is sufficiently detailed
to set parameters based on currently available experimental
measures. Other spatial scales will be added to this mosaic in the
future.

A major focus for both the original rxd module and
this extension is ease-of-use. This goal is partly achieved
by separating the user from the details of the numerics
enhancing reproducibility by making it easy to identify the
conceptual model. Additionally, the rxd Python interface
subserves this goal by providing relatively simple, biologically-
intuitive representations that allow the user to focus on the
translation of the conceptual model by specifying (1) regions:
where? — in this case the ECS; (2) species in each region:
who? — an ionic species, a peptide, a transmitter, etc.; and (3)
transformations what? — reactions between species, signaling
across a membrane, or transits involving the same species across
a membrane.

Providing consistent modeling of both intracellular and
extracellular space also ensures conservation of mass. The
total amount of a substance of interest will be conserved
within the simulation, despite moving in and out of subcellular
compartments, or in and out of cells, via currents, active
transport, or vesicular release.

3. EXAMPLES

We present two related examples to demonstrate the use
of the rxd module to model extracellular concentrations: (1)
simple potassium diffusion, and (2) spreading depression.
In each case we begin by specifying the region for the
dynamics, here the ECS. We then identify the species involved.
Finally, their interactions with each other or with fixed agents
are identified. The code for these examples are available at
ModelDB (http://modeldb.yale.edu/238892) (McDougal et al.,
2017).
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3.1. Potassium Diffusion in ECS
This example shows potassium diffusion through a box of
ECS, with spatial uptake represented phenomenologically as
a reaction. We demonstrate each of the stages required to
specifying a model. First, to use extracellular rxd, we import it
from NEURON and enable it:

from neuron import crxd as rxd

rxd.options.enable.extracellular = True

3.1.1. Region
We then specify the specific extracellular region;

ecs = rxd.Extracellular(xlo=-500, ylo=-500,

zlo=-500, xhi=500, yhi=500,

zhi=500, dx=10,

volume_fraction=0.2,

tortuosity=1.6)

(xlo,ylo,zlo) and (xhi,yhi,zhi) define the lower left
back and upper right front corners of a 3D box in micrometers.
dx is the size of a side of a cubic voxel; alternatively dx

can be a 3-element tuple to specify voxel length, height and
depth. The optional argument volume_fraction is the free
volume fraction or porosity, the accessible portion of extracellular
volume. The tortuosity is the average multiplicative increase
in path length a particle must travel due to obstacles. The effective
diffusion coefficient is the free diffusion coefficient divided by
the square of the tortuosity. Here, the free volume fraction
(0.2) and tortuosity (1.6) were set to typical values for brain
(Syková and Nicholson, 2008). Both the volume fraction and
the tortuosity can be scalar values as shown here. Alternatively,
arrays the size of the extracellular space, or functions that take
the x, y, z coordinates as arguments can be used (section 3.2.1).
Extracellular concentrations are given relative to free volume, i.e.,
the total amount in a voxel divided by free volume of the voxel.

3.1.2. Species
To create extracellular potassium, we use the same
rxd.Species call as would be used for intracellular diffusion;
the difference is in the first argument that gives the extracellular
region.

k = rxd.Species(ecs, name=’k’,

d=2.62, charge=1,

initial=lambda nd: 40

if nd.x3d**2 + nd.y3d**2 + nd.z3d**2

< 100**2 else 3.5,

ecs_boundary_conditions=3.5)

Where d (the free diffusion coefficient) is set to 2.62µm2/ms
for K+(Samson et al., 2003), where d has been increased to
reflect a higher temperature of 37◦C by using the Stokes-Einstein
equation, assuming viscosity of the extracellular fluid to be the
same as water. Anisotropic diffusion is supported by passing a 3-
tuple for diffusion coefficients in 3 dimensions. Initial conditions
can be a scalar value for the whole region, an array matching the

region

(

i.e.,

⌈

xhi− xlo

dx

⌉

,

⌈

yhi− ylo

dy

⌉

,

⌈

zhi− zlo

dz

⌉)

or an anonymous (lambda) function, as shown here. The lambda
function is given a NodeExtracellular as argument,
allowing the model to specify initial concentration depending
on the location (x3d, y3d, z3d). If the species exists in both
intracellular rxd.Region and the ECS then the initial function
will receive both NodeExtracellular and either Node1D or
Node3D from the class rxd.node. This multiplicity of regions,
where the same location is represented in both the intracellular
space and the ECS is due to using an interposition of intracellular
and extracellular space handled by ECS free volume fraction,
instead of by using excluded volume. The initial function can
assign values by first checking region is equal to the defined ecs.
The default boundary conditions for the ECS are Neumann (zero
flux). Dirichlet boundary conditions can be specified with the
keyword argument ecs_boundary_conditions set to the
desired concentration. Concentrations are in mM.

3.1.3. Reactions
Extracellular reactions are specified using rxd.Rate,
rxd.Reaction and rxd.MultiCompartmentReaction
as described in the rxd tutorial (McDougal, 2018). We consider
the case of excess potassium in the ECS, which is primarily taken
up by astrocytes (MacAulay and Zeuthen, 2012). A wide variety
of modeling options are available for explicitly modeling these
cells at various levels of complexity (Wei et al., 2014; Conte et al.,
2018). Here we demonstrate the phenomenological model of
astrocytic buffering from (Bazhenov et al., 2004; Krishnan and
Bazhenov, 2011). This model treats astrocytes as a chemical
buffer that could take up excess K+ but would then release K+

when ECS levels dropped.

[K][A]
kf
⇋

kb
[AK] (1)

where A is the concentration of free astrocyte “buffering”
capacity and AK is the concentration of bound potassium. By
default mass-action kinetics are assumed, so the stoichiometry
is implicit. The rate of change in unbound astrocyte
capacity A used in the following example is then given by;
kf*[K]*[A] - kb[AK]mM/ms. Alternative kinetics can be
specified with the keyword argument mass_action=False.
The rates would then be assumed to be the full forward and
reverse rates, and change in unbound buffer would be kf-kb
mM/ms. The initial condition Amax represents the total capacity
of glial to buffer K+ (in mM), in this phenological model it
represents the density of astrocyte uptake/binding sites. These
sites are immobile: d=0.

The specification of kf uses the exponential of an
rxd.Species. This is achieved in Python by importing
the rxd.rxdmath module, which provides the same library of
functions as the Python math module. However while Python
math functions require numeric arguments the rxd.rxdmath
allows rxd.Species to be used, as in the following example;

from neuron.rxd import rxdmath

kb = 0.0008 #backward rate mM/ms

kth = 15.0 #k threshold

kf = kb/(1.0 + rxdmath.exp(-(k - kth)/1.15))
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Amax = 10 #uptake/release site density

A = rxd.Species(ecs,name=’astrocyte’,

d=0, initial=Amax)

AK = rxd.Species(ecs,name=’bound’,

d=0, initial=0)

astrocytes = rxd.Reaction(k + A, AK, kf,

kb)

3.2. Cortical Spreading Depression
The preceding simulation framework can be used to develop
a model of spreading depression (SD). SD is a wave of near
complete depolarizations of neurons that propagates in gray
matter at 2–7 mm/min and lasts for ∼1 min. This phenomena
is highly reproducible and is associated with several pathological
conditions, including; migraines, ischemic stroke, traumatic
brain injury and epilepsy (Somjen, 2004). An early mechanistic
model attributed the depolarization to an increase in extracellular
K+ (Grafstein, 1956). A positive feedback loop underlies SD: high
extracellular K+ activates cells whose depolarization opens K+

channels which release more K+ into extracellular space.
To produce this positive feedback between ECS and cellular

physiology, we simulate a realistic density of 90,000 cells/mm3

embedded in 1mm3 of ECS with diffusion of both K+ and
Na+. Each neuron has a soma and dendrite with the Hodgkin-
Huxley complement of channels (naf, kdr, gleak) as well as kleak
and nap (persistent Na+ channel) with parameters based on
Conte et al. (2018). This initial simplified model omits several
mechanisms likely to contribute to spreading depolarization,
including slow Ca2+-dependent K+ currents. More importantly,
we omit neurons Na-K-ATPase, a major mechanism for restoring
ion gradients. As noted above, glial Na-K-ATPase is partially
modeled by the field of K+ sink.

An initial spherical bolus of 40 mM K+ of radius 100 µm
was placed in the center of the ECS to trigger SD. In the
absence of astrocytic uptake, the SDwave front propagated at 1.69
mm/min. High astrocyte capacity of 500 mM (Bazhenov et al.,
2004) immediately removed the free K+, preventing SD. At a far
lower astrocyte density of 10 mM, SD did occur (Figure 1). SD
speed was reduced by 70% compared to the no-astrocyte case
(Figure 2).

3.2.1. Cerebral Edema
The volume-averaged macroscopic description of tissue can be
characterized by free volume fraction and tortuosity. Both vary
across brain regions (Nicholson and Syková, 1998), as well
as during the sleep-wake cycle (Xie et al., 2013) and under
pathological conditions (Hrabětová and Nicholson, 2000). A
major pathological condition that decreases free volume fraction
and increases tortuosity is cytotoxic edema, which is caused by
cell swelling resulting in reduced ECS. In the case of ischemia
(stroke), edema will be greatest at the ischemia core, the central
location where metabolites have been cut-off through lack of
blood flow. At the core we reduced free volume fraction to
0.07 and increased tortuosity to 1.8 (Zoremba et al., 2008).
Outside of the core, there is a penumbra where cell function and
ECS characteristic are less abnormal. The penumbra in turn is

surrounded by normal tissue. The notion of 3 concentric volumes
is a gross approximation since there is fall-off of damage as
one passes from central core to normal tissue at the outside.
We therefore simulated SD with cerebral edema using a linear
change in the free volume fraction and tortuosity parameters
from central core outward.

The characteristics of the ECS were specified with functions:

Lx, Ly, Lz = 1000, 1000, 1000

alpha0, alpha1 = 0.07, 0.2

tort0, tort1 = 1.8, 1.6

r0 = 100

def alpha(x, y, z) :

return (alpha0 if x**2 + y**2 + z**2

< r0**2

else min(alpha1, alpha0 +(alpha1

-alpha0) *((x**2+y**2+z**2)**0.5-r0)/

(Lx/2)))

def tort(x, y, z) :

return (tort0 if x**2 + y**2 + z**2

< r0**2

else max(tort1, tort0 - (tort0

-tort1) *((x**2+y**2+z**2)**0.5-r0)/

(Lx/2)))

ecs = rxd.Extracellular(-Lx/2.0, -Ly/2.0,

-Lz/2.0, Lx/2.0, Ly/2.0, Lz/2.0, dx=10,

volume_fraction=alpha, tortuosity=tort)

We repeated the SD simulation in the ischemic context. Although
diffusion was slowed by the increased tortuosity, the effect was
less than the speed-up obtained due to reduced volume fraction.
With the reduced volume fraction, less K+ was required to
propagate the wave (Figure 2).

This simple model demonstrates the utility and simplicity of
the expanded rxd module. However, it only included diffusion
of K+ and Na+. Other relevant species could be added to make
the simulation more closely comparable to the clinical situation.
Adding glutamate would produce further depolarization through
synaptic receptors and could contribute to both excitotoxicity
(cell damage due to excessive depolarization and calcium) and
to the propagation of SD (Kager et al., 2000; Hübel et al.,
2017). Demonstrating excitotoxicity would also suggest adding
diffusion of calcium, which is also involved in the induction and
propagation of SD. Chloride contributes to K+ homoeostasis via
Cl-K cotransport and also regulates cell osmolarity (Hübel and
Ullah, 2016).

In order to explicitly simulate uptake by astrocytes
rxd.MultiCompartmentReaction would be used to
define stoichiometrically-defined flux between intracellular
and extracellular regions. A more sophisticated model of
astrocytes would include gap junctions, allowing astrocytes to
maintain a lower membrane potential facilitating K+ uptake.
Such a model could also include spatial buffering, where K+

is transported via astrocytes rather than diffusion in the ECS
(Gardner-Medwin, 1983). While the buffering in this simple
model is neuroprotective, astrocytes also play an adverse role in
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FIGURE 1 | SD wave Time points at 10, 20, 30 s, with concentrations averaged over the depth of 1 mm3 of ECS. (A) Extracellular K+ with glial uptake and Dirichlet

boundary conditions. (B) Glial uptake occupancy. (C) Membrane potential for 1,000 of the 90,000 cells [their locations are shown in (A,B) by white points]. Video

available in Supplementary Data.

SD, as gap-junction mediated calcium waves may be related to
the initiation and amplification of SD, facilitating propagation
over longer distances (Nedergaard et al., 1995).

These simulations focused on the wave of cell depolarization
and omitted the silencing of electrical activity that follows—
looking at the spreading depolarization rather than at the
specifics of the spreading depression itself (Dreier, 2011).
This second phase of neuronal inactivity may be related to
depolarization blockade, as well as to synaptic plasticity and the
accumulation of extracellular adenosine (Frenguelli and Wall,
2016; Cozzolino et al., 2018).

4. IMPLEMENTATION DETAILS

We provide a Python interface for specifying the model for
ease of use and reproducibility; for performance reasons the
numerical details are implemented in C and connected to Python
using ctypes. This separation between interface and numerics

allows the user to see a standard approach to modeling the
ECS, where species and reactions are immediately apparent when
examining a model. Parameters can be read directly from the
Python code or obtained by querying the model through the
Python console. In the future, parameters will also be accessible
via a graphical user interface (GUI).

4.1. Model Specification Aids
Reproducibility
The concise, declaratory syntax for model specification has
been slightly augmented since introduction of the original rxd
module introduced with NEURON 7.3. However, all models
implemented using a previous version of the rxd module will
continue to work with the expanded version. Because of the
vast difference in spatial scale between the intracellular and
extracellular volumes, distinct modeling techniques are used to
support diffusion in region rxd.Extracellular.
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FIGURE 2 | Spreading depression spread faster with edema. (A) Maximum distance from the center where extracellular K+ exceeds 15 mM. The extent was limited

by the loss of K+ at the Dirichlet boundary. (B) Wave speed from the first 10 s of SD.

4.2. Finite-Volume Alternating Direction
Implicit Method
We used the Douglas-Gunn Alternating Direction Implicit
method (DG-ADI) for diffusion in the ECS (Douglas and Gunn,
1964). DG-ADI divides each time step into three sub-steps
(Equations A1–A3). The first deals with the diffusion operator
in the x-direction, the second in the y-direction and the third
in the z-direction. DG-ADI is computationally efficient with
worst case runtimeO(N) for N voxels. DG-ADI also provides an
embarrassingly parallel workload. If the size of the extracellular
space is Nx × Ny × Nz , then there are Ny × Nz independent
operations for (EquationA1),Nx×Nz for (EquationA2) andNx×
Ny for (Equation A3). The finite volume method discretization
(Equation A15) can be modified to account for heterogeneous
diffusion coefficients and free volume fractions (Equation A16),
while ensuring conservation of mass (Figure 5A). The details of
the numerical scheme are given in Appendix A.

4.3. Just-in-Time Compiled Reactions
Reaction-diffusion performance is further improved by using
compiled reactions. Reactions are now parsed into C code which
is compiled Just-In-Time (JIT). For example, the reaction given
in section 3.1.3 produces the following C code;

#include <math.h>

#include <rxdmath.h>

void reaction(double* species_ecs,

double* rhs)

{

double rate;

rate = -((species_ecs[2])*(0.0008))

+(((0.0008)/(1.0+exp((

-(species_ecs[0]-(15.0)))/(1.15))))

*(species_ecs[1]))*(species_ecs[0]);

rhs[1] = (-1)*rate;

rhs[0] = (-1)*rate;

rhs[2] = (1)*rate;

}

The 0 index of the species_ecs and rhs arrays corresponds
to k, 1 to A and 2 to AK. The C code for the reactions are
compiled into a dynamic library using the C compiler distributed
with the operating system or distributed with NEURON. The
compiled library is loaded and provides a function pointer that
is used to numerically approximate the Jacobian. This allows
function overloading, so the same method is used to process all
extracellular reactions. The Jacobian for the reaction is solved
using the Meschach library (Stewart and Leyk, 1994) included
with the NEURON distribution. rxd.rxdmath supports all the
mathematical functions in the math module. Most of these are
defined in the GNU C Library math.h. Additional functions
have been added in rxdmath.h.

4.4. Parallel Implementation
Extracellular reaction-diffusion benefits from two forms of
parallelization; multithreading and multiprocessor (Figure 3).
Multithreading, implemented with POSIX threads, uses shared
memory. The number of rxd threads n can be set by calling
rxd.nthread(n).

A thread pool is created at the start of the simulation;
the calculations required for both diffusion (DG-ADI) and
reactions are distributed across the available threads in
the pool. The rxd threads are independent of NEURON
threads used for electrophysiology, which are accessed via
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A B

FIGURE 3 | Reduction in runtime with parallelization. (A) 5x speedup with 8 threads with 2503 (15,625,000) extracellular voxels for example in section 3.1. (B) A

spreading depression example with 1mm3 tissue, with 250,000 two compartment neurons and 1503 (3,375,000) voxels. Electrophysiology accounts for 62% of the

runtime with one process (with 38% due to extracellular rxd), this is reduced to 22% when four processes are used, increasing the relative burden of extracellular rxd

to 78%. Walltime minimum and standard error are shown for 5 runs of each simulation performed on a 24 core system (4 Intel Xeon L5640 processors).

ParallelContext.nthreads. Independent pools are used
because these are independent problems: (1) electrophysiology:
ParallelContext threads split computations either by cell, or
by cell section (multi-split method; Hines et al., 2008) (2)
diffusion and reaction: DG-ADI. Although DG-ADI is trivially
parallelizable, we do not achieve optimal scaling (Figure 3A).
Performance is limited by the overhead of the relatively large
non-contiguous memory access required, and the need to
coordinate with the NEURON time step.

The multiprocessor approach, implemented with the Message
Passing Interface (MPI) is primarily intended for large neuronal
network models. The network that is embedded within the
ECS may in this case be purely electrophysiological or may
also include intracellular rxd. In either case, the speed-up from
using MPI is entirely due to network speed-up; each processor
solves the entire ECS reaction-diffusion space independently. All
cellular influx and efflux are made available to all processors.
This simple approach was adopted after demonstrating that
communication overhead dominated over calculation when
the ECS was split across processors. Multiprocessor and
multithreading can be used together, with MPI reducing the
runtime for the intracellular rxd for electrophysiology and for
networks, multiple threads reducing runtime for ECS reaction-
diffusion (Figure 3B).

5. VERIFICATION AND VALIDATION

We verified the numerical implementation by (1) comparing
a simple model with its analytic solution; and (2) confirming
conservation of mass, (3) comparing results with FiPy, a finite
volume PDE solver (Guyer et al., 2009).

5.1. Comparison With Analytic Results
A simple model with an analytic solution is an initial cube of
elevated concentration diffusing in a closed boxed. It is solved by
integrating the Green’s function over the initial conditions and
matching the Neumann boundary conditions with the method
of images (Appendix B). A direct comparison to the numerical
method is obtained by integrating over the central voxel and
dividing by volume to obtain the average concentration at the
center (Equation A20). There is close agreement between the
numerical solution provided by the rxdmodule and this analytic
solution (Figure 4).

5.2. Conservation of Mass
When using Neumann (zero flux) boundary conditions the
finite volume method will conserve mass. This provides a
basic numerical and algorithmic verification that can be applied
even to complex models. The example of section 3.2.1 can be
modified so rxd manages both intracellular and extracellular
concentrations. Multiplying the extracellular concentration by
the volume fraction and the voxel volume and the intracellular
concentration by the segment volume gives the total amount of
K+. The change in total amount of K+ (Figure 5A) was on the
order of floating point accuracy (∼ 10−12).

5.3. FiPy Comparison
We modeled a morphologically detailed reconstruction of
a rat hippocampal CA1 pyramidal neuron obtained from
NeuroMorpho.Org NMO_00227 (Ishizuka et al., 1995; Ascoli
et al., 2007), with constant outgoing ion flux corresponding to
a current density of 1mA/cm2 of K+ (Figure 5B).
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FIGURE 4 | Verification against analytic solution. (A) Cross-section of initial conditions (top) and after 100ms (bottom). 9 µm3 cube diffuses in a 21 µm3 cube. (B)

Concentration of center voxel compared to analytic solution (Equation A20), with insets at two 2.5 ms periods (1x = 1 µm, 1t = 0.1 ms). (C) Relative error tends

toward zero with finer spatial discretization.

In rxd objects provide point sources, and occupied space
is represented by the free volume fraction and tortuosity. We
exported the point sources from the NEURON simulation and
used them with the FiPy solver (Figure 5C). Differences were≤5
nM, with largest differences at the sites of efflux (Figure 5D). The
sum of absolute differences was 0.03% of the total concentration
at t = 1s.

6. DISCUSSION

The original rxd package expanded multiscale modeling in
NEURON from the electrophysiological scales of neurites,
cells and networks into chemophysiological scales of spines,
subcellular organelles, interactomics, metabolomics, proteomics.
This further development of the module into the domain
of extracellular space considerably extends the scope of
chemophysiology into the vast distances of interneuronal space.
Computational performance for this large-scale problem is
improved by the use of multi-threading parallelization of DG-
ADI algorithm for diffusion, multiprocessor parallelization for
electrophysiology, and JIT compilation of reactions. The ECS
module implementation was verified against an analytic solution,
a test of conservation, and by comparison to an established
simulator.

The extension to whole-organ simulation in the brain
is particularly important for the development of multiscale
modeling for clinical applications (Hunt et al., 2018; Mulugeta
et al., 2018). In the past, large neural simulations have
typically been neuronal networks which focus exclusively on
the electrical activity of neurons and their mutual influence
via chemical and electrical synapses. Such neuronal network
simulations have effectively operated in a vacuum, omitting

the effects of nonsynaptic neuromodulators, neuromodulatory
gases, ions, glia, metabolites, etc. These physiological agents
also play pathophysiological roles, for example the excessive ion
concentrations seen in spreading depression, and the lack of
metabolites that causes tissue damage from ischemia and stroke.
Pharmacological agents used in treatments are also broadcast
diffusively, as are agents and effects associated with microglia.
Mechanical factors from brain trauma and current in electrical
stimulation follow their respective tissue impedance boundaries.
Many pathological disorders, particularly stroke and traumatic
brain injury, involve large volumes of tissue. For this reason, the
initial development of our new extension has focused on coarse
spatial discretization in order to accommodate large distances,
permitting representative neuronal networks to be seeded in a
mosaic of locations within the volume.

6.1. Large Volume Averaged Approach
Electrophysiological models in NEURON can specify currents
either in absolute terms or as current densities. In the latter case,
membrane surface area must be used to calculate the current.
The ECS rxd module identifies ion flux from currents, which are
then placed in the corresponding voxel of the ECS simulation.
Macroscopic measure of ion diffusion in bulk tissue observed
experimentally with ion selective sensors, biosensors, and fast-
scan cyclic voltammetry can be used to constrain parameters
(Budygin et al., 2000; Dale et al., 2005; Nicholson and Hrabětová,
2017).

Currently, we support two boundary conditions: Neumann
boundary conditions (constant boundary flux) and Dirichlet
conditions (constant boundary concentration). Neumann
boundary conditions are appropriate for in-vivo models
where we are simulating a piece of brain in continuity with
other similar pieces of brain. In this case, any substance that
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FIGURE 5 | Verification and validation. (A) Conservation of mass for verification: < 10−12 change with currents from 1, 000 neurons in tissue with heterogeneous

diffusion. (B) rxd simulation of 1mA/cm2 constant K+ flux from a traced rat hippocampal CA1 pyramidal neuron and Dirichlet boundary conditions, concentrations at

1 s (averaged over depth). (C) Comparable solution using FiPy with identical current fluxes. (D) Difference between rxd and FiPy concentrations results (note scale in

nM).

leaves the simulated space would be replaced by substance
from neighboring regions. Conversely Dirichlet conditions
(constant boundary) are appropriate if the region modeled is
not representative, as occurs under pathological conditions
such as the core area of a stroke. In this case perturbations
in extracellular concentrations are expected to be restored
sufficiently far from their source. In both cases, clearance can still
be modeled using NEURON models or extracellular reactions
to represent transport through the blood-brain-barrier. If the
ECS is made large enough relative to simulation duration, the
choice of boundary conditions will not have a significant effect
on results.

6.2. Multiple Uses of Extracellular
Reaction-Diffusion Simulation
There are many forms of extracellular extra-synaptic signaling
between cells. Here we have illustrated the utility of the module
with a simple model for spreading depression, where the “signal”
is a change in ion concentration. The extracellular rxd module
has a wide range of potential applications tracking the variety
of substances of both physiological and pathological relevance.
For example, neurotoxic substances such as free radicals diffuse
away from areas of damaged tissue; amyloid-β oligomers
may diffuse away from specific cells creating misfolding of
protein in remote cells (Waters, 2010). Both synaptic spillover
and nonsynaptic release provide diffusing of neurotransmitters
(e.g., glutamate and excitotoxicity), and of neuromodulators:
dopamine, acetylcholine, norepinephrine, adenosine, etc. For

example, dopamine (DA) in striatum is released by axonal
projections from midbrain, and diffuses in a local region before
reuptake by DA transporter (Sulzer et al., 2016). Models of
striatal activity in physiological (Humphries et al., 2010) or
pathological conditions (Migliore et al., 2008; Blackwell et al.,
2018) would benefit by including this extracellular dopamine
spread. Simulating extracellular dopamine would follow the same
procedure described in section 3.1; specifying the region with
tortuosity and porosity, the species with its diffusion coefficient
and boundary conditions and the reactions that remove it from
the ECS including the kinetics of DA transporters.

6.3. Future Development
The ECS simulation developed here will provide the broadest
spatial scale for future multiscale models that will add
additional methods at smaller scales. These multiple methods
will interconnect so as to be used together in single multiscale
simulations that coordinate a broad range of spatial and
temporal scales, that could not be assessed using a uniform fine
discretization, or uniform algorithms throughout. At the finest
scales, stochastic methods will be used to better understand the
variability seen at small scale, for example in synaptic clefts.
Additional simulation method currently being addressed include
techniques for understanding bulk tissue current flow to simulate
deep and transcranial current stimulation. Whether induced
externally or produced by local field potentials (Lindén et al.,
2014), bulk electric field effects will not only depolarize or
hyperpolarize cells, but will also affect diffusion of ions and
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other charged species i.e., the phenomenon of electrodiffusion.
Not only are ions affected by the field, ions also produce a field
that will affect other ions, potentially producing fields of order
hundreds of microvolts over 1mm of tissue (Halnes et al., 2016;
Solbrå et al., 2018). Such gradients are likely to have an even
greater influence in SD, where there is a large redistribution of
ions.

There are a number of other important organ-level processes
that are particularly important for brain pathology. These include
blood flow which is of importance for understanding stroke,
and mechanical properties of importance for understanding
traumatic brain injury. Additional processes that are unique to
the brain would include CSF production, flow and reuptake; and
status of the blood-brain barrier. More controversial is the role
of advection—fluid flow. The brain lacks a lymphatic system for
waste clearance, and the small spaces between cells, ∼40 nm, are
too small to support advection (Jin et al., 2016; Holter et al., 2017).
It has been hypothesized to instead use a glymphatic system that
establishes fluid flow via glial astrocytic aquaporin-4 channels,
driven by pulsations from respiration and heartbeat. Fluid would
flow via astrocytes oriented to provide the pathways that cannot
be supported by the interstitium (Iliff et al., 2012).

All of these processes are currently the subject of multiscale
modeling at varying degrees of sophistication (Anderson and
Vadigepalli, 2016; Linninger et al., 2016; Calvetti et al., 2018;
Durka et al., 2018; Zhao et al., 2018). Although it would not
be practical to incorporate these many types of simulation
within NEURON, there will be possibilities for cross-simulator
communication providing complex multiphysics simulations in
the future (Djurfeldt et al., 2010). In the meantime, some
aspects of this complexity can be readily incorporated without
considering the details: for example, brain vascularization can be
modeled as a “metabolite field” that would take account of the
greater availability of oxygen and glucose at locations within, and
reduced availability in the watershed areas that lie between, the
major artery distribution trees.

The term mosaic modeling may be used to describe
these complex multiscale, multiphysics, multialgorithmic,
multidimensional simulations—the mosaic involves pieces of
a cell or of a brain simulated with different dimensionality,
different algorithms, and different discretizations. An example at

the cellular level are spines, which are best handled stochastically
and in three dimensions, while the rest of the cell is handled
deterministically and as a one dimensional branched tree
structure (Lin et al., 2017a,b). Similarly, in the ECS, small spaces
such as synapses require a microscopic approach that is not
practical for bulk tissue modeling. In the future, these pieces
of the mosaic will be adapted from approaches currently used
by other simulators. For example, one approach at small scales
is to track individual particles, done by Smoldyn (Andrews,
2012) and MCell (Stiles and Bartol, 2001; Franks et al., 2002).
Another small-volume technique uses averaged volumetrics
as done by the ENOS platform, which has also been used
for high resolution models of glutamatergic synapses and their
interaction with glia (Bouteiller et al., 2008). Other platforms that
support intracellular diffusion will also be mined for additional
techniques, including STEPS (Wils and De Schutter, 2009),
NeuroRD (Brandi et al., 2011), MOOSE (Ray and Bhalla, 2008).
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A. HETEROGENEOUS TORTUOSITIES AND
VOLUME FRACTIONS

Solving the diffusion equation in 3D with DG-ADI method,
involves splitting the problem into 3 linear equations for each
time-step;

1−
rx

2
∇2
xφ

(

j+ 1
3

)

=
( rx

2
∇2
x + ry∇2

y + rz∇2
z
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Where rx =
D1t

12
x

, ry =
D1t

12
y

and rz =
D1t

12
z

. 1x, 1y, 1z and

1t are the spatial and temporal discretization step sizes and D

is the diffusion coefficient. The variables φ(j) and φ(j+1) are the

concentrations at the j and j+ 1 time-step and φ
(

j+ 1
3

)

φ
(

j+ 2
3

)

are
intermediate solutions that do not correspond to a concentration
at a given time. Each equation involves the Laplacian (∇2) for
a different dimension (∇2

x , ∇2
y , or ∇2

z ). So to adapt DG-ADI
method for inhomogeneous tortuosities or volume fractions, it
is sufficient to consider how to modify the 1D diffusion operator.

A.1. Tortuosity
The diffusion equation (in one dimension) with an
inhomogeneous tortuosity (λ) is;

∂φ(t, x)

∂t
= ∇ ·

D

λ(x)2
∇φ(t, x) (A4)

Here we use the finite-volume method with N voxels with the
tortuosities defined at the boundaries λi = λ

(

xi− 1
2

)

and average

concentrations at the centers φi(t) = φ (t, xi) for i = 0, . . .N− 1.
The flux at the left and right of the ith voxel are;

Fi− 1
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D
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(A5)
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This gives the semi-discretized form of the diffusion equation;
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Neumann boundary conditions with zero flux are obtained by
setting F− 1

2
= FN− 1

2
= 0. This discretization of the diffusion

operator can then be applied to the 3D diffusion problem using
DG-ADI method.

A.2. Volume Fraction
A similar approach is used for inhomogeneous volume fractions,
but it is important to distinguish between the total concentration
(CT) and the relative concentration (CR). CT is the amount
divided by the volume of the voxel, CR is the amount divided
by the free volume of the voxel. These quantities are related
by α, the volume fraction CT = αCR. The concentration used
in extracellular rxd are relative concentrations, as this is more
biological relevant. Subsequently currents between cells and the
ECS are scaled by the volume fraction.

Let both the volume fractions and the concentrations be
defined at the center of the voxels αi = α (xi). Then the relative
concentration at the boundary, by linear interpolation is;

φ

(

t, xi+ 1
2

)

=
αi+1φ (t, xi+1) + αiφ (t, xi)

αi+1 + αi
(A9)

Then the flux of the total concentration is given by;
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(A10)
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The fluxes are then divided by the relevant volume fraction for
the semi-discretized form of the diffusion equation, i.e., for voxel
i;
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2
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1
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(
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2
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(A12)

Note that if the volume fractions are uniform then (Equation A9,
A11, A12) are;
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Which is the standard finite-volume approximation.

A.3. Tortuosity and Volume Fraction
It is straightforward to adapt the above formula for when both
tortuosity and volume fraction vary, the flux term (Equation A11)
is;
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2
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D
1
2λ

2
i 1x
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αi + αi+1
(φ (t, xi+1) − φ (t, xi)) (A16)
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B. ANALYTIC SOLUTION FOR VALIDATION

The Green’s function for a source at location x′ = (x′, y′, z′) and
time t′ is;

g(x, t, x′, t′) =
1

(

4πD(t − t′)
)
3
2

exp
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−
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)2
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) (A17)

Given an initial unit concentration in a cube of size l3 at the
origin, the concentrations for an unbounded space are found by
integrating the Green’s function.
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For diffusion within a finite cube of volume L3 with zero flux
boundary conditions, the solution is obtain by the method of
images;
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∞
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∞
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(A19)

So the average concentration for a voxel of size 13
x at the center

is;
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The terms of the sum decay with order e−m2
so few are needed.
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