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In machine learning, one of the most popular deep learning methods is the
convolutional neural network (CNN), which utilizes shared local filters and hierarchical
information processing analogous to the brain’s visual system. Despite its popularity
in recognizing two-dimensional (2D) images, the conventional CNN is not directly
applicable to semi-regular geometric mesh surfaces, on which the cerebral cortex is
often represented. In order to apply the CNN to surface-based brain research, we
propose a geometric CNN (gCNN) that deals with data representation on a mesh surface
and renders pattern recognition in a multi-shell mesh structure. To make it compatible
with the conventional CNN toolbox, the gCNN includes data sampling over the surface,
and a data reshaping method for the convolution and pooling layers. We evaluated
the performance of the gCNN in sex classification using cortical thickness maps of
both hemispheres from the Human Connectome Project (HCP). The classification
accuracy of the gCNN was significantly higher than those of a support vector machine
(SVM) and a 2D CNN for thickness maps generated by a map projection. The gCNN
also demonstrated position invariance of local features, which rendered reuse of its
pre-trained model for applications other than that for which the model was trained
without significant distortion in the final outcome. The superior performance of the
gCNN is attributable to CNN properties stemming from its brain-like architecture, and its
surface-based representation of cortical information. The gCNN provides much-needed
access to surface-based machine learning, which can be used in both scientific
investigations and clinical applications.

Keywords: cortical thickness, surface-based analysis, geometric convolutional neural network, sex differences,
machine learning, neuroimage

INTRODUCTION

In the machine learning domain, the convolutional neural network (CNN; LeCun et al., 1998;
Krizhevsky et al., 2012) has made an enormous impact on pattern recognition. This approach
utilizes replicated (shared) local filters in a convolution layer analogous to the tiled receptive
fields in the hierarchical visual system of the brain, which make it efficient in detecting common
local features regardless of their position in the image space. The CNN also takes advantage of
hierarchical architecture by utilizing a pooling layer that represents distributed local features as
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global patterns. Owing to its strength in hierarchical feature
detection, the CNN has been used in not only image-based
pattern recognition but also identifying patterns in three
dimensions: in volume (Kamnitsas et al., 2015; Maturana
and Scherer, 2015; Nie et al., 2016), in time (e.g., dynamic
images; Ji et al., 2013; Huang et al., 2015), and in different
modalities (Kamnitsas et al., 2015; Nie et al., 2016). Despite many
variations, the CNN is most commonly used for recognition
of patterns in a two-dimensional (2D) image space. However,
the conventional CNN technique cannot be directly applied to
data about the three-dimensional (3D) geometric surface space,
such as data about cortical thickness as indicated by the cortical
surface.

In brain research, brain morphometry and functionality
are often represented in cortical surface geometry (Van
Essen and Drury, 1997; Van Essen et al., 1998; Dale et al.,
1999; Fischl et al., 1999a; MacDonald et al., 2000). The
most promising aspect of the surface-based approach is the
ability to explore cortical thickness, which can typically be
represented on the surface (Fischl and Dale, 2000; Kabani
et al., 2001; Kuperberg et al., 2003; Narr et al., 2005).
For example, Park et al. (2009) showed the specificity of
the surface-based cortical thickness representation compared
with volumetric representation. Metabolic activity can also be
efficiently evaluated at the cortical surface (Park et al., 2006;
Greve et al., 2014). Despite the many advantages of cortical
surface representation of brain structure and function, no
efficient method for applying a CNN over the cortical surface has
been proposed. Recently, application of a CNN to non-Euclidean
manifolds has been introduced in the computer vision fields to
classify objects according to their geometric shapes (Boscaini
et al., 2015; Masci et al., 2015; Bronstein et al., 2016). However,
those methods require specific algorithms that cannot easily be
used by conventional CNNs.

In this article, we propose a simple geometric CNN (gCNN)
that expresses data representation on a geometric surface and
recognizes cortical distribution patterns. Although the method
can be expanded over any surface shape, we focus on the
spherical surface because of its simplicity. The cortical surface
has the same topology as a spherical surface; consequently,
the cortical surface is often treated as a spherical surface—for
example, in surface-based registration across brains (Fischl et al.,
1999b). The gCNN performs convolution and pooling over
the spherical surface to capture hierarchical features on the
surface. In order to demonstrate the performance of the proposed
method, we applied gCNN to sex classification using 733 cortical
thickness maps from the Human Connectome Project (HCP;
Van Essen et al., 2012). We compared the classification accuracy
of the gCNN with those of a conventional support vector
machine (SVM) and a conventional 2D CNN for thickness maps
after projecting cortical thickness into the 2D image space (pulse-
coupled neural network, pCNN).

Finally, we evaluated the performance of the gCNN in
detecting position-invariant local features compared with the
pCNN by testing the reusability of the low-level features
after global rotation of thickness distribution at angles of 45◦

and 90◦.

MATERIALS AND METHODS

Geometric CNN (gCNN)
The main units comprising the gCNN are surface-based
convolution layers and pooling layers. The functions of these
layers are similar to those of conventional CNNs (Krizhevsky
et al., 2012; Chatfield et al., 2014; LeCun et al., 2015), with
the exception that they deal with surface data. In order to
utilize available conventional CNN toolboxes, we added data
reshaping steps to each layer. Figure 1 illustrates the conceptual
architecture and the implemented architecture of the gCNN. The
architecture comprises an input data layer, mesh convolutional
layers with data reshaping, batch normalization layers (Ioffe and
Szegedy, 2015), rectified linear unit (ReLU) layers (Glorot et al.,
2011), mesh pooling layers, and a fully connected layer with a
softmax output function.

The Convolution Layer
The convolution filter can be defined according to the patch
geometry (i.e., the sampling methods over the mesh) of the filter.
For each node in the mesh, the proposed method provides three
types of filter according to spatial patch geometry: rectangular,
circular, and polygonal patch grids (Figure 2). Each patch has
spatially distributed sampling points (filter points) arranged at
regular intervals around the node and subject to the convolution
operation. A rectangular filter processes every patch composed
of rectangular points. A circular patch has points centered on a
mesh node and arranged radially. A polygonal filter convolutes
inputs from the neighboring nodes for the target node.

Rectangular and/or circular patches for each node in the
sphere were obtained by projection and rotation of rectangles
and circles in the 2D space; e.g., the rectangular grids in the 2D
space were first projected into the 3D spherical space, followed
by spherical rotation to locate the origin of the rectangle at each
spherical node by aligning the main axis of the rectangular grid
along the geographical latitude. Circular patches were generated
in the same way as rectangular patches. The patch size and
distance between patch grid points can be chosen empirically
by considering the coverage of the patch and computational and
memory costs owing to the number of grid points.

To reduce computational loads, the intensity value
corresponding to the filter points on the mesh surface is
obtained by interpolating the intensity value of the nearest
neighbor nodes to which the filter points belong.

In the conventional CNN, each image patch is convoluted
with a filter in a sliding window manner. In order to utilize
conventional CNN toolboxes using GPUs, we rearranged the
sampled filter points to render the convolution operation as a
simple filter weighting process (Figure 2). For each node n on the
surface with a total node number N, filter points sampled from
the rectangular, circular, or polygonal grid of the node are first
reshaped into a row vector in the full-node filter point matrix I
(dimension: number of nodes × number of filter points). The
output vector Of (dimension: number of nodes × 1) is obtained
by multiplying the filter point matrix I by the f -th mesh filter
vector Wf (dimension: number of filter points × 1), Of = I × Wf,
f = 1, . . ., Fb (total number of filters at each convolution layer).
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FIGURE 1 | Architecture of geometric convolutional neural network (gCNN). (A) Conceptual architecture of the gCNN. When data on the cortical surface enter the
convolution layer with batch normalization and rectified linear unit (ReLU) output function layers, W feature maps (corresponding to the number of filters at each
convolution layer) are generated. The dimension of the nodes decreases from N1 to NL as the data pass through the pooling layers. The gCNN ends with a multilayer
classifier. (B) Implementation level architecture of the gCNN. The input data 40,962 (nodes) × 25 (filter sample points) × 2 (hemispheres) are convolved with
36 filters, which are reduced to 42 (nodes) × 36 (filtered outputs, i.e., features) after five convolution and pooling steps. As the data pass through the layers, the
number of features increases but the dimension of the nodes decreases. Finally, the convolution-pooling data enter the fully connected multilayer perceptron
comprising a hidden layer with 50 nodes and a softmax output layer with two nodes.

Figure 2A shows an example of a rectangular patch for each
node, which samples the surface data at rectangular filter points
at regular intervals to create the I(i, j) matrix (Figure 2D).
We multiply the sampled intensity I(i, j)n (or thickness in the
current study) obtained for each node by a filter weight vector
Wf, which generates an output [Of(n)] corresponding to node n
(Figure 2G). The filter weight vector Wf (f = 1, . . ., Fb) is updated
to optimize performance while training gCNN.

A circular patch composed of multiple circles for each node
can also be constructed, as shown in Figures 2B,E. Patches at
all nodes construct a full-node filter point matrix, as shown in
Figure 2H. Figures 2C,F show a polygonal patch composed of
the first-order and the second-order neighbor nodes (as filter
points) of the corresponding node.

These different types of patch geometries can be used on
a case-by-case basis. Circular and polygonal patches may be

appropriate in some specific applications where the divergence
of a node over the surface is important. In the current study, we
used the rectangular filter point grid for pattern classification of
cortical thickness, because our preliminary test showed the best
performance with the rectangular filter in the sex classification.
However, we can also choose circular and polygonal patches
depending on the application.

The Mesh Pooling Layer
The convolution output is subsampled in the subsequent
pooling layer (Figure 3). For pooling, we utilize the regularity
characteristic of the icosahedron that can be expanded easily
by a simple rule. The icosahedron increases the number of
nodes by adding a new node to each center of three triangular
edges, which divides one parent triangle into four child triangles.
Iterating this process creates a fine spherical surface with
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FIGURE 2 | Data sampling and reshaping methods for three different types of filters according to patch geometry for mesh convolution. For all nodes in the sphere
(A) rectangular filter points in a patch for each node n (Sx × Sy points for each node) (D) compose a row vector of a full-node filter point matrix I with dimensions
[N × (Sx × Sy)] in (G). A circular filter point matrix (B) can be similarly constructed by sampling circular points over the surface (E). Polygonal filter points in (C) are
composed of up to R-th order neighbor nodes (F). A circular patch in (E) and a polygonal patch in (F) at each node compose a full-node filter point matrix I
respectively, as shown in (H). The convolution operation can be performed by multiplication of the filter point matrix I by a filter weight vector Wf, resulting in output
vector Of for the filter weight vector f. Fb is the number of filters for each convolutional layer. These filtered data are down-sampled in the next pooling layer.

node numbers 42, 162, 642, 2562, 10,242, 40,962 and so
on. Subsampling can be performed in the reverse order of
icosahedron expansion, leading to the spherical surface of the
pre-expansion stage. Figure 3C shows an example of pooling
over the icosahedron spherical system. In the current study, we
used a mean pooling over the mesh structure during the forward
propagation, which assigns the parent node with an average
of the convolution outputs at the child nodes (Figure 4A).
During the error backpropagation, errors in the parent nodes
are evenly distributed to their child nodes, as illustrated in
Figure 4B.

Implementation of gCNN
To implement the proposed method, we modified the
MatConvNet toolbox (Vedaldi and Lenc, 2015) available
from http://www.vlfeat.org/matconvnet/. We constructed the
gCNN by repeating the mesh convolution and pooling layers.

Between the convolution and pooling layers, we inserted
a batch normalization unit and a ReLU to increase the
training performance. Semi-batch training with a batch size
of 50 increases learning performance and expedites network
learning, according to Ioffe and Szegedy (2015). The ReLU
layer naturally leads to sparse nodal activity (Glorot et al.,
2011). We used average pooling, which exhibited better
performance than max pooling in preliminary evaluations
conducted in the current study. Thus, the main operational
complex comprises a convolution layer, a batch normalization
layer, a ReLU layer, and a pooling layer. The final unit is a fully
connected multilayer perceptron with a softmax output layer.
Conventional backpropagation and a gradient descent algorithm
are used to update the model weights, which are implemented
in MatConvNet. To minimize the overfitting problem, we
adjusted the learning rate from 0.02 to 0.001 during the training
process.
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FIGURE 3 | Mesh pooling after mesh convolution operation. (A) A mesh convolution layer processes inputs and generates outputs by multiplication of filter vectors
with reshaped thickness data. (B) The output value of the convolutional layer is subsampled at the pooling layer. In this study, mean pooling was used. (C) Cortical
thickness representation example of successive pooling processes. Cortical thickness data over a realistic cortical sheet (node size = 32,492) are transformed to a
spherical surface. In order to utilize the regularity characteristic of the icosahedron, we interpolated 32,492 nodes into 40,962 nodes, which were subsequently
subsampled to 10,242 (2nd), 2562 (3rd), 642 (4th), 162 (5th), and 42 (6th) spherical nodes, in the direction from local to global.

FIGURE 4 | Forward mesh pooling and error backpropagation step. (A) Currently, the gCNN uses a mean pooling method that assigns the average value of the
neighbor nodes to the target parent node. After pooling, only parent nodes remain (0, 7 and 8 in this illustration), and theses compose a less dense spherical surface.
(B) When backpropagation is performed, the error is distributed equally to all the neighboring (child) nodes.

Application to Sex Classification
In order to evaluate the performance of gCNN, we applied
gCNN to sex classification using 733 cortical thickness maps of
healthy young adults (328 males and 405 females, mean age:
28.74 ± 3.70 years), who had both resting state fMRI and cortical
thickness maps from the 900 HCP database1. Cortical thickness
maps for those subjects were extracted from 3T T1-weighted

1https://www.humanconnectome.org/

MR imaging data using FreeSurfer2 (Dale et al., 1999; Fischl
et al., 1999a), details of which were described in Glasser et al.
(2013).

The cortical surface has the same topology as a spherical
surface; consequently, the cortical surface is often treated as
a spherical surface—for example, in surface-based registration
across brains (Fischl et al., 1999b). The mapping from an

2https://surfer.nmr.mgh.harvard.edu
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individual cortical surface to a spherical surface is done by
inflating the cortical surface, while minimizing metric distortion
so that distances and areas are preserved (Fischl et al.,
1999b).

In the HCP database, the cortical thickness is evaluated
over 32,492 nodes in each hemispheric cortical surface. We
interpolated the 32,492 nodal thicknesses into 40,962 nodal
thicknesses using bilinear interpolation tomake the pooling steps
simple based on the icosahedron architecture. For each node,
we normalized each individual’s thickness data by demeaning
(i.e., subtracting the average thickness (across entire brain) of
the individual from the individual’s thickness values at the
node). The test data were also normalized by demeaning. In
the first convolutional layer, we resampled 25 rectangular grid
(i.e., a patch) points (5 × 5) from each node of the surface,
which resulted in a full-node filter point matrix comprising
40,962 nodes × 25 points thickness data for each hemisphere
(Figure 1). The patch size 5 × 5 was chosen empirically
by considering the node resolution and spatial extent of the
patch.

Both the left and right hemispheric cortical thickness maps
were combined to create an additional dimension. We used
36 convolution filter banks with size (25 × 1) in the first layer.
These filter banks were then convolved with a filter point matrix,
with a size of 40,962 (nodes) × 25 (reshaped thickness filter
points) × 2 (hemispheres), as shown in Figure 1.

SVM of the Cortical Thickness
In order to compare the proposed method with conventional
classifiers, we conducted SVM classification using LIBSVM
(Chang and Lin, 2011). In order to optimize the SVM,
we evaluated five types of SVM classifiers (C-SVC, nu-SVC,
one-class SVM, epsilon-SVR and nu-SVR) with four different
kernel types (linear, polynomial, radial basis function and
sigmoid). The best-performing classifier and kernel were the
C-SVC classifier and linear kernel with a kernel regulation
parameter C = 1, epsilon: 0.001.

Conventional CNN for Projected Cortical
Thickness Images
Surface-based representation has often been projected into a
2D image, for example, as is done for maps of the earth.
Similarly, pattern classification of cortical thickness can be
conducted in the 2D image space after projection. In order
to compare the gCNN with a conventional CNN of projected
thickness images (hereafter, called pCNN), we projected the
cortical thickness of the spherical surface onto the 2D image.
Although there are many 2D projection methods for spherical
data, we conducted projection by latitude and longitude. The
portion of the non-cortical brain was set to zero in the
training and testing processes. All cortical thickness data were
projected into 224 × 224 images. In order to utilize continuous
information (continuous over the boundary) in the spherical
data, we used the marginal five pixels from the other side of
the image for padding (the filter size of the first convolution
layer was 11 × 11; thus, at least five pixels were needed for

convolution).We adopted the CNN architecture from ImageNet-
VGG-F (Chatfield et al., 2014), which has six convolutional layers
(with a normalization layer and an activation layer (ReLU) for
each convolution layer) and a fully connected softmax classifier
layer.

Performance Evaluation
In order to evaluate the performance of the classifiers (gCNN,
SVM and pCNN), we divided 733 thickness samples into a
training-validation set (670 samples) and a test set (63 samples).
Using the training-validation set, we conducted 10-fold cross-
validation, by splitting the thickness dataset randomly into
90% for training the model and 10% for validating the model.
During the cross-validation, we optimized a model of each
fold and evaluated the performance of the trained model
using the test set. Based on the ratio of males and females
(328 males and 405 females used in this study), the average
numbers of males and females in the validation set of a fold
(67 samples in each fold) were chosen as 29.6 and 37.3,
respectively. The numbers of males and females in the test set
were 28 and 35, in a male-to-female ratio similar to the entire
data set.

We trained a model for each fold iteratively for a total epoch
(or iteration) size of 40. When model training was not saturated
(i.e., the difference in error rates between consecutive epochs is
not 0) after 40 epochs, we extended training up to 70 epochs.
All gCNN models (one model per fold) were saturated before
40 epochs in the experiment. Meanwhile, most pCNN models
were saturated after 40–70 epochs.

We optimized the gCNN and pCNN models using a
stochastic gradient method with a learning rate of 0.02.
The error rate for each training epoch decreased as training
proceeded (Figure 5). When the error rate curve was saturated,
we changed the learning rate from 0.02 to 0.001 for fine
tuning. To avoid the overfitting problem, we chose the epoch
with the lowest error rate in the validation set, even before
the error rate curve of the training set became saturated
(called ‘‘early stopping’’). We evaluated the accuracy of
the optimized model for each fold in classifying the test
data set.

For the statistical evaluation of the classification performance
of the three classifiers (gCNN, pCNN and SVM), we conducted
a one-way analysis of variance (ANOVA) of the classification
accuracies at 10 folds with Bonferroni correction as a post hoc
adjustment.

Position Invariance of Local Features
As a successor of CNN, gCNN may have the position invariance
property of detecting local features in the brain–a lower-level
feature detector can often be used regardless of global position.
To show this position invariance property, we conducted the
same classification steps described above after globally rotating
the spherical maps 45◦ and 90◦ (Figure 6). Instead of retraining
all layers in gCNN, we reused weights from the trained model
in up to 20 layers (five sets, each comprising a complex of
convolution layer, batch layer, ReLU layer, and pooling layer,
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FIGURE 5 | Error rate learning curves during the training and validation epochs. The solid line represents the average error rate of 10 models (for 10-fold validation),
and the shaded region represents standard deviation of the models at each epoch. (A,B) show the learning curves of the gCNN and pulse-coupled neural network
(pCNN). The gCNN was trained earlier and had superior performance over the pCNN.

FIGURE 6 | Example of cortical thickness representation over various geometry and thickness representation after global rotation (45◦ and 90◦). (A) Cortical
thickness defined in the cortical surface can be transformed into the spherical space and 2D image space. The thickness map in the 2D image was generated by
projecting the spherical thickness map onto the image space based on latitude and longitude. (B) Spherical rotation of cortical thickness map changes representation
on the sphere and images; the original, 45◦ rotation, and 90◦ rotated spheres and their projected images are presented. The global rotation considerably influences
the projected images, while the local pattern in the spherical map is maintained after rotation. The white areas indicate where thickness measurement is not available.

Nos. 1–20 of Table A1 in the Appendix) out of the 25 layers
from the bottom. Only the four upper layers of themodel (a batch
normalization layer, a ReLU layer, a hidden layer, and an output
layer) were retrained with two rotated datasets. In this evaluation,
we did not conduct fine-tuning of the reused layers. Similarly, we
reused model weights from up to 15 layers out of 19 layers in
the pCNN (Nos. 1–15, Table A2 in the Appendix). The levels of
gCNN and pCNN reused in this evaluation were chosen before
the fully connected softmax-classifier set. By reusing lower layers,
the training time was significantly reduced.

In 2D projections, there were severe distortions in the local
features, particularly in the area of the poles (Figure 6B). The 2D
projection also led to discontinuity in the boundaries (0◦ or 360◦

in longitude,−90◦ or 90◦ in latitude). Althoughwe tried to rectify
this weakness by padding regions across the circular boundary,
this may not have been sufficient. We surmised that the local
features might not be maintained after global rotation in the
2D projected image. We compared the performances of gCNN
and pCNN after rotation. The details of the model structures
for gCNN and pCNN are presented in Table A1, A2 in the
Appendix.

RESULTS

Figure 7 displays the group-average, group-differential
(t-statistic) surface-based cortical thickness maps and salience
maps used in the current study. In order to visualize feature
importance (i.e., data representation) in the sex classification,
a salience map for each individual was constructed from
the trained gCNN according to Simonyan et al. (2013). The
group average pattern of important feature distribution is
slightly different from the pattern of group-level sex differences
(Figure 7).

The classification performance of the gCNN, SVM and
pCNN are summarized in Figure 8. The one-way ANOVA
of the classification accuracy showed a significant main effect
(group difference); F(2,27) = 4.472 (p = 0.021). The average
classification accuracy of the gCNN was 87.14% (standard
deviation (STD) = 4.42), which is significantly higher than that of
the SVM (mean = 82.84%, STD = 2.91, corrected p = 0.044) and
the pCNN (82.54%, STD = 3.58, corrected p = 0.047). The pCNN
and SVM showed no significant difference in their classification
accuracy.
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FIGURE 7 | Mean cortical thickness maps for male (N = 328) and female (N = 405), and their statistical difference. For statistical differences, only areas with
p < 0.05 are presented. Areas that were thicker in males are represented in red, and areas that were thicker in females are represented in blue. The mean saliency
map was calculated by averaging the saliency weights of each individual in the group.

FIGURE 8 | Sex classification accuracies of the gCNN, support vector machine (SVM), and pCNN, and classification accuracy changes after global rotation.
(A) When classification accuracy was evaluated using 10-fold cross-validation, a significantly superior performance was found in the gCNN (mean = 87.14%,
standard deviation (STD) = 4.42) compared to the SVM (82.84%, STD = 2.91, p = 0.038) and the pCNN (82.54%, STD = 3.58, p = 0.041) according to one-way
analysis of variance (ANOVA) with Bonferroni correction as a post hoc adjustment. (B) Classification accuracy did not significantly decrease after rotation in the gCNN
(45◦: 81.27%, STD = 4.98, 90◦: 81.81%, STD = 3.06) but significantly decreased in the pCNN (45◦: 69.64%, STD = 12.2, 90◦: 48.73%, STD = 3.59) after rotation.
The model with the red-point fold (the 7th fold) was used as the initial (reused) model (82.85%) of the gCNN for the position invariance test, as it exhibited similar
accuracy to the pCNNs’ mean accuracy.

Classification Performance of the Rotated
Model
In order to evaluate the position invariance of the local feature
detection, we chose a 7th-fold model (red point in Figure 8B) of

the gCNN as an initial model because the accuracy of that fold
gCNN model (82.86%) was close to the mean accuracy of pCNN
(82.54%). Using outputs at the 20th layer in gCNN models (or
the 15th layer in pCNN models) for the input thickness data, we
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conducted 10-fold cross-validation of the remaining upper layers
with a softmax classifier. The average accuracies for the gCNN
after rotation were 81.3% (STD = 4.98) and 81.8% (STD = 3.06)
for 45◦ and 90◦ rotations, respectively, as shown in Figure 8B.
This accuracy after rotation is not a significant decrease from the
initial model accuracy of 82.86%. On the other hand, the pCNN
showed average accuracies of 69.6% (STD = 12.20) and 48.7%
(STD = 3.59) for the 45◦ and 90◦ rotations, respectively, which
were significantly lower than the original accuracy for the 45◦

rotation (82.89%, STD = 3.58), and within a statistically similar
level of probability for the 90◦ rotation.

DISCUSSION

In this article, we proposed a gCNN to evaluate neuroimaging
data on the cortical surface. To show its usefulness in surface-
based representation, we applied the gCNN to sex classification
based on cortical thickness. The proposed method exhibited
superior performance over the existing classification method
(SVM) and conventional 2D CNN (pCNN) for cortical thickness
mapping. It also exhibited minimal performance deterioration
after global shifts, which implies that the local features in the
gCNN are reusable.

Surface-Based Methodology
The human cortex has a surface geometry, which renders the
representation of neurometric features (e.g., cortical thickness)
that are important for various neuroimaging researches. Surface
representation is also advantageous in registering different brains
for spatial normalization (Fischl et al., 1999b), registration
between T1-weighted images and fMRIs or diffusion weighted
images (Greve and Fischl, 2009), efficient spatial smoothing, and
partial volume correction of functional or metabolic imaging
data (Park et al., 2006; Greve et al., 2014, 2016). Because these
surface-based processing steps are efficient in preprocessing,
removing statistical confounding factors and thus enhancing
statistical power, surface-based analysis has been widely applied
in diverse brain studies exploring morphometry (Landin-
Romero et al., 2017), thickness (Goldman et al., 2009; Park et al.,
2009; Rimol et al., 2012; Van Essen et al., 2017), myelination
(Glasser and Van Essen, 2011; Van Essen et al., 2017), metabolic
activity (Park et al., 2006), and tau and amyloid PET scans (Cho
et al., 2016). These advantages of surface-based representation
necessitate the development of a surface-based method for
machine learning applicable to cortical neuroimaging data.

CNN and gCNN
The gCNN inherits the benefits of the CNN (LeCun et al., 1998;
Krizhevsky et al., 2012). Local filters in the convolution layer of
the CNN are characterized by sparse connectivity and shared
weights across patches. A ‘‘replicated’’ local filter unit is effective
in detecting common local features regardless of their position in
the image space. Furthermore, sharing weights increases learning
efficiency by reducing the number of parameters that need to be
trained. CNN also takes advantage of a hierarchical architecture,
which entails multiscale information processing from local

regions to global regions. This hierarchical and multiscale
architecture for information abstraction is implemented by the
pooling layer in the CNN. As a type of CNN, gCNN is efficient in
detecting features hierarchically, which may explain the superior
performance of gCNN over SVM and pCNN.

Sex Differences of Cortical Thickness
To demonstrate the performance of gCNN in this study, we
presented an example of a sex classification problem based
on cortical thickness. In previous cortical thickness analyses of
sex, several brain regions showed cortical thickness differences
between males and females. For example, Sowell et al. (2007)
reported significant cortical thinning in males compared to
females at the right inferior parietal lobe and right posterior
temporal regions and a tendency of thinning at the left ventral
frontal and left posterior temporal regions. Other studies have
shown increased cortical thickness in females compared to males
in the frontal lobe and the parietal lobe (Nopoulos et al., 2000;
Allen et al., 2003). Studies measuring gray matter density and
cortical thickness have also shown local increases in gray matter
in women, primarily in the parietal lobes (Good et al., 2001;
Narr et al., 2005) and both the parietal and temporal lobes
(Im et al., 2006; Luders et al., 2006). All of these studies were
based on group data and showed diverse brain regions having
different cortical thicknesses according to sex. Thus, it is not
clear whether this finding can be applied to sex identification
of an individual. In the current study, using 733 sets of data,
the gCNN utilized patterns of cortical thickness distribution to
classify sex with reasonable accuracy. Furthermore, the pattern
of saliency distribution differed from the group level t-test results
for the thickness differences (Figure 7). The saliency maps were
more similar to the results of Sowell et al. (2007). The advantage
of the gCNN over the mass univariate t-test approach is its
ability to detect multivariate patterns of cortical thickness and its
robustness to noise effects. This study confirms that the gCNN
can find features that summarize differences between groups.

The sex classification using cortical thickness may not be of a
practical use that shows the clinical utility of this new machine
learning algorithm. Nevertheless, the classification of sex based
on the cortical thickness may be a good test-bed for different
classifiers with a balanced data set (male and female). Indeed,
the sex classification is not a trivial problem as reflected in the
relatively low accuracy of conventional classification methods
(e.g., less than 85% in SVM). Furthermore, the sex classification
with a large-sized (HCP) database and a balanced number of
class samples (e.g., man and woman) provides us a chance to
train a gCNN model for the purpose of potential reuse beyond
sex-classification. In most classification studies with cortical
thickness data, we may not have a sufficiently large number
of data to train deep layers in the gCNN. A gCNN model for
sex-classification, if trained well using a large dataset, may be
reused in diverse applications, which is discussed in following
section.

Position Invariance in gCNN
In the hierarchical architecture of gCNN (as well as CNN),
the lower-level filters are considered to detect features that
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are common to diverse applications, whereas global features at
higher levels are more specific to each application. Therefore,
lower-level feature detectors, which require sufficient data to
train, can be reused for applications other than that for which
the model was trained without significant distortion in the
final outcome. After reusing the lower-level feature detectors,
only the upper layer may be trained for the data with new
application. This could not only reduce the computational cost
but also mitigate the problem of insufficient data. We partially
demonstrated this problem by shifting the global positions of
cortical thickness while maintaining local properties. Compared
to a conventional CNN with a 2D projected thickness image, the
gCNN shows a consistent level of accuracy after global rotations
of thickness maps. This position invariance test suggests that we
can reuse the lower-level feature detection of the gCNN (found in
the sex classification, for example) for the new applications, thus
mitigating the need for a large number of samples for training
from the beginning.

Instead of a gCNN, one may consider a 2D projection
of cortical thickness for conventional CNN applications, as
has been done in EEG analysis (Bashivan et al., 2015). As
shown in the rotation example, a 2D projection of 3D surface
representation leads to inevitable distortion in representing
common local features according to location. In particular,
shapes near the pole are largely different from shapes at the
equator. This violates the position invariance of the CNN
in describing a common set of local features. The distortion
during 2D projection might be reduced by utilizing surface-
based flattening (Fischl et al., 1999a); however, there are still
problems associated with cutting the surface into the 2D image
space. Flattening inevitably causes splits in the continuous
representation, relocating close areas to distant areas, which
may hinder model-reuse for different applications. Instead of
requiring an additional flattening step, the gCNN can be directly
applied to the surface-based data using conventional CNN
toolkits with slight modification.

gCNN for Surface-Based Representation
The classification performance depends on how well the model is
optimized. There are many factors that can be optimized in both
a gCNN and a pCNN, such as model structure, training strategy,
and data augmentation, which should be chosen empirically
depending on the application. The current study presented a
gCNN example that exhibited superior performance compared
to an SVM and a pCNN in sex classification, possibly owing to
advantages inherent in the CNN, taking advantage of hierarchical
feature detection and utilizing geometric information in the
model without significant distortion.

Nevertheless, the purpose of the current study is not to
show the general superiority of the gCNN over the other
methods, as the performancemay vary according to the quality of
optimization. Instead, the current study is aimed at introducing
a novel and simple CNN scheme that can easily be applied to
surface-based or mesh-based neuroimaging data with reliable
accuracy.

The gCNN differs from previous variants of 3D CNN in
dealing with surface-based point data. In the classification of

geometric shapes, previous studies transformed 3D points into
voxels in the volume space, to which 3D CNN was applied.
Examples include 3D ShapeNets (Wu et al., 2015), VoxNet (using
an occupancy grid; Maturana and Scherer, 2015), PointNet
(Garcia-Garcia et al., 2016), and LightNet (Zhi et al., 2017).
In contrast to voxel-type 3D applications, the gCNN processes
values (thickness in the current study) of the 3D points in the
surface geometry while maintaining its geometry.

The gCNN shares the basic mathematical framework of
geodesic CNN formulated for geodesic shape classification on
non-Euclideanmanifolds (Boscaini et al., 2015; Masci et al., 2015;
Bronstein et al., 2016). Although the gCNN captures the pattern
of feature (thickness) distribution in the same non-Euclidean
space, if not the pattern of geometric shape features, gCNN
can be considered a specific type of non-Euclidean CNN. The
advantage of the gCNN over previous non-Euclidian CNNs
(requiring complex geometric processing steps) is its technical
simplicity achieved by a data sampling and reshaping method
over a sphere, which is easily applicable to conventional
software toolboxes implemented on GPUs without significant
modification of the source code.

In addition to application with cortical thickness data, the
gCNN can be extended to various applications with diverse
neuroimaging data such as fMRI or PET images after surface
mapping. The gCNN can also be used with multi-layered
input, concatenated with different modalities or different cortical
(three or six) layer information over the same cortical surface
architecture.

In conclusion, the gCNN takes advantage of both the CNN
properties stemming from its brain-like architecture and a
surface-based representation of cortical information. The gCNN
may expedite surface-based machine learning in both scientific
and clinical applications.
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APPENDIX

TABLE A1 | gCNN architecture and parameter size.

No. Type Input size Patch size/stride Output size Param. mem.

1 Convolution 1 40962 × 25 × 2 1 × 25/1 40962 × 1 × 36 7 KB
2 Batch normalization 1 40962 × 1 × 36 576 B
3 ReLU 1 40962 × 1 × 36
4 Mean pool 1 40962 × 1 × 36 1 × 6 or∗ 1 × 7/1 10242 × 1 × 36
5 Convolution 2 10242 × 25 × 36 1 × 25/1 10242 × 1 × 36 127 KB
6 Batch normalization 2 10242 × 1 × 36 576 B
7 ReLU 2 10242 × 1 × 36
8 Mean pool 2 10242 × 1 × 36 1 × 6 or 1 × 7/1 2562 × 1 × 36
9 Convolution 3 2562 × 25 × 36 1 × 25/1 2562 × 1 × 36 127 KB
10 Batch normalization 3 2562 × 1 × 36 576 B
11 ReLU 3 2562 × 1 × 36
12 Mean pool 3 2562 × 1 × 36 1 × 6 or 1 × 7/1 642 × 1 × 36
13 Convolution 4 642 × 25 × 36 1 × 25/1 642 × 1 × 36 127 KB
14 Batch normalization 4 642 × 1 × 36 576 B
15 ReLU 4 642 × 1 × 36
16 Mean pool 4 642 × 1 × 36 1 × 6 or 1 × 7/1 162 × 1 × 36
17 Convolution 5 162 × 25 × 36 1 × 25/1 162 × 1 × 36 127 KB
18 Batch normalization 5 162 × 1 × 36 576 B
19 ReLU 5 162 × 1 × 36
20 Mean pool 5 162 × 1 × 36 1 × 6 or 1 × 7/1 42 × 1 × 36
21 Fully connected layer 6 42 × 1 × 36 42 × 1/1 1 × 1 × 50 295 KB
22 Batch normalization 6 1 × 1 × 50 800 B
23 ReLU 6 1 × 1 × 50
24 Fully connected layer 7 1 × 1 × 50 1 × 1/1 1 × 1 × 2 408 B
25 Softmax classifier 1 × 1 × 2
Total 1.63 MB

∗The size of the mean pool at each node differs according to the number of neighborhood nodes at the node, either 6 or 7.

TABLE A2 | pCNN architecture and parameter size.

No Type Input size Patch size/stride Padding Output size Param. mem.

1 Convolution 1 224 × 224 × 2 11 × 11/4 1 54 × 54 × 64 61 KB
2 ReLU 1 54 × 54 × 64 54 × 54 × 64
3 Normalization 1 54 × 54 × 64 54 × 54 × 64
4 Mean pool 1 54 × 54 × 64 2 × 2/2 0 27 × 27 × 64
5 Convolution 2 27 × 27 × 64 5 × 5/1 2 27 × 27 × 64 400 KB
6 ReLU 2 27 × 27 × 64 27 × 27 × 64
7 Normalization 2 27 × 27 × 64 54 × 54 × 64
8 Mean pool 2 27 × 27 × 64 2 × 2/2 0 13 × 13 × 64
9 Convolution 3 13 × 13 × 64 3 × 3/1 1 13 × 13 × 64 144 KB
10 ReLU 3 13 × 13 × 64 13 × 13 × 64
11 Convolution 4 13 × 13 × 64 3 × 3/1 1 13 × 13 × 64 144 KB
12 ReLU 4 13 × 13 × 64 13 × 13 × 64
13 Convolution 5 13 × 13 × 64 3 × 3/1 1 13 × 13 × 64 144 KB
14 ReLU 5 13 × 13 × 64 162 × 1 × 36
15 Mean pool 13 × 13 × 64 2 × 2/2 6 × 6 × 64
16 Fully connected layer 6 6 × 6 × 64 6 × 6/1 0 1 × 1 × 100 900 KB
17 ReLU 6 1 × 1 × 100 1 × 1 × 100
18 Fully connected layer 7 1 × 1 × 100 1 × 1/1 1 × 1 × 2 408 B
19 Softmax classifier 1 × 1 × 2
Total 1.79 MB

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2018 | Volume 12 | Article 42

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data
	INTRODUCTION
	MATERIALS AND METHODS
	Geometric CNN (gCNN)
	The Convolution Layer
	The Mesh Pooling Layer

	Implementation of gCNN
	Application to Sex Classification
	SVM of the Cortical Thickness
	Conventional CNN for Projected Cortical Thickness Images
	Performance Evaluation
	Position Invariance of Local Features

	RESULTS
	Classification Performance of the Rotated Model

	DISCUSSION
	Surface-Based Methodology
	CNN and gCNN
	Sex Differences of Cortical Thickness
	Position Invariance in gCNN
	gCNN for Surface-Based Representation

	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES
	APPENDIX


