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Data processing toolboxes for resting-state functional MRI (rs-fMRI) have provided us

with a variety of functions and user friendly graphic user interfaces (GUIs). However, many

toolboxes only cover a certain range of functions, and use exclusively designed GUIs. To

facilitate data processing and alleviate the burden of manually drawing GUIs, we have

developed a versatile and extendable MATLAB-based toolbox, BRANT (BRAinNetome

fmri Toolkit), with a wide range of rs-fMRI data processing functions and code-generated

GUIs. During the implementation, we have also empowered the toolbox with parallel

computing techniques, efficient file handling methods for compressed file format, and

one-line scripting. In BRANT, users can find rs-fMRI batch processing functions for

preprocessing, brain spontaneous activity analysis, functional connectivity analysis,

complex network analysis, statistical analysis, and results visualization, while developers

can quickly publish scripts with code-generated GUIs.

Keywords: BRANT, resting-state fMRI, code-generated GUI, preprocessing, visualization

INTRODUCTION

Resting-state fMRI (rs-fMRI) has been studied intensively not only as a reference for task fMRI
but also as a technique to detect intrinsically synchronized signals among brain areas (Fox et al.,
2005). Rs-fMRI signals are reconstructed from blood oxygen level-dependent (BOLD) signals,
which fluctuate with the ratio of oxygenated to deoxygenated hemoglobin in the vicinity (Ogawa
et al., 1990). To study rs-fMRI signals, a great number of methods and software such as Statistical
Parametric Mapping (SPM) (Ashburner, 2012), FMRIB Software Library (FSL) (Smith et al., 2004),
Analysis of Functional NeuroImages (AFNI) (Cox, 1996, 2012) have been developed to provide
users executable software, scripts and graphic user interfaces (GUIs) for data preprocessing, metrics
calculation, statistical analysis, and results visualization. And to facilitate data preprocessing,
software packages such as the 1000 Functional Connectomes Project scripts (http://fcon_1000.
projects.nitrc.org/), the minimal preprocessing pipelines (Glasser et al., 2013), the toolbox for Data
Processing & Analysis for Brain Imaging (DPABI) (Yan et al., 2016), CONN (Whitfield-Gabrieli
and Nieto-Castanon, 2012) and the GRaph thEoreTical Network Analysis (GRETNA) toolbox
(Wang et al., 2015), have integrated functions of SPM, FSL and AFNI into their pipelines for

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00052
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00052&domain=pdf&date_stamp=2018-09-03
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yliu@nlpr.ia.ac.cn
https://doi.org/10.3389/fninf.2018.00052
https://www.frontiersin.org/articles/10.3389/fninf.2018.00052/full
http://loop.frontiersin.org/people/403978/overview
http://loop.frontiersin.org/people/176171/overview
http://loop.frontiersin.org/people/595528/overview
http://loop.frontiersin.org/people/539826/overview
http://loop.frontiersin.org/people/74670/overview
http://fcon_1000.projects.nitrc.org/
http://fcon_1000.projects.nitrc.org/


Xu et al. Brainnetome fMRI Toolkit

batch preprocessing. After preprocessing steps such as temporal
corrections, spatial alignment, space registrations, and noise
removal, rs-fMRI signals can be further processed by measuring
temporal, frequential, and spatial properties. Frequently used
methods can be coarsely categorized as, but not restricted to,
functional connectivity-based methods, complex network-based
methods, and voxel-wise spontaneous activity-based methods.
Functional connectivity-based methods are used to calculate
pair-wise properties such as temporal dependency (Biswal
et al., 1995), coherence (Sun et al., 2004), and maximum
information coefficient (Reshef et al., 2011), between regions
of interest (ROIs) or between seed ROI and whole-brain
voxels. Given a connectivity matrix, complex network-based
methods can be used to capture the topological properties
of the entire network, as well as its components (subgraphs,
nodes, and edges). With increased computing capability, voxel-
wise methods have been implemented to describe temporal,
frequently and spatial profiles of each voxel’s time series
(Zang et al., 2004, 2007; Tomasi and Volkow, 2010). To
test hypothesis, statistical analysis methods are used, and
to present results, visualization methods are implemented
as displaying slices, projecting volumes, rendering surfaces,
plotting topological connectivity, and etc. Most of the above
mentioned methods are implemented in SPM (Ashburner,
2012), FSL (Smith et al., 2004), AFNI (Cox, 1996, 2012),
Network Based Statistic (NBS) (Zalesky et al., 2010), Brain
Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010),
CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012), REST
(Song et al., 2011), DPABI (Yan et al., 2016), GRETNA (Wang
et al., 2015), xjView (http://www.alivelearn.net/xjview), Caret
(Van Essen et al., 2001), Connectome Workbench (Marcus et al.,
2013), BrainNet Viewer (Xia et al., 2013), and MRIcron/Mricro
(Rorden and Brett, 2000).

Different software packages have provided us with efficient
batch processing pipelines which can be run by clicking
on GUIs instead of writing scripts. However, in most of
the above-mentioned software, the number of functions
is fixed and GUIs are exclusively designed. During data
processing, users would need to turn to multiple software
packages and sometimes write scripts for batch processing.
To facilitate data processing, we have written a versatile and
extendable MATLAB-based toolbox, BRANT (BRAinNetome
fmri Toolkit, https://brant.brainnetome.org), which integrates
batch processing pipelines for rs-fMRI data preprocessing,
voxel-wise spontaneous activity analysis, functional connectivity
analysis, complex network analysis, as well as statistical
analysis and results visualization. In BRANT, we designed
the GUIs to be code-generated, which requires only a
few lines of MATLAB code to add new functions. We
have also optimized computing-related scripts by matrix
operations, parallel computing techniques and multithreading,
and optimized file-handling-related scripts by MATLAB-C++

compiled ∗.mex executives that load and save gzipped files
directly.

In the following paragraphs, we at first describe the functions
of BRANT in theory and formula, then we demonstrate
the examples of code-generated GUI design in the cases

of Regional Homogeneity (ReHo) and two third-party
software. In the end, we compare BRANT with three other
frequently used MATLAB-based rs-fMRI data processing
software and discuss the advantages and limitations of our
toolbox.

MATERIALS AND METHODS

Overview
The main part of BRANT is composed of MATLAB scripts
and code-generated GUIs. To simplify the input process, most
functions are initialized with default settings, and users will only
need to specify several necessary parameters, with free access to
all. Functions of BRANT are arranged into 7 modules, which are
preprocessing, functional connectivity (FC), spontaneous activity
(SPON), complex network analysis (NET), statistics (STAT),
visualization (View), and utilities (Figure 1).

Preprocessing
Raw data collected from MR scanners are formatted as
DICOM (Digital Imaging and Communications in Medicine)
files, and each file stores the intensity of one volume or
one slice. To process data more efficiently, DICOM files
are firstly converted to a single 4D NIfTI (Neuroimaging
Informatics Technology Initiative) image by dcm2nii in MRIcron
(Rorden and Brett, 2000), which has been well-tested and
is known within the community as being stable and fast
(Jenkinson et al., 2012). For converted data, visual inspection
is recommended to censor data with low quality (artifacts
and distortions). Qualified data can be further processed
in the preprocessing pipeline. Since SPM (Ashburner, 2012)
has implemented preprocessing functions that are widely
used by most MATLAB-based toolboxes, we follow the
convention and use SPM’s built-in scripts for slice timing
correction, realignment, co-registration, spatial normalization
and smoothing, along with our Denoise scripts for covariates
regression and band-pass filtering in the batch preprocessing
pipeline.

In Denoise, time series of one subject’s 4D volume is extracted
and reshaped to a temporal-spatial 2D matrix as the input of
a multiple regression model and a square-wave filter. In the
regression model, physiological noises and head motion effects
addressed by Friston et al. (1996) and Power et al. (2014) are used
as noise regressors, which include linear trend, mean time series
extracted from tissue masks (white matter WM, cerebrospinal
fluid CSF, and global signal GS, denoted as T) and estimated
head-motion parameters (R, 3 translational and 3 rotational
estimates output by Realign), variant forms of T and R, as well as
all the squared forms of the above regressors. The variant forms
include the first derivatives with zero padding and 1-frame lagged
time series with zero padding. Each noise regressor is optional,
and can be packed into the different regression models suggested
in (Ciric et al., 2017). Since whether to regress out global signal
is controversial (Fox et al., 2009; Murphy et al., 2009; Hahamy
et al., 2014), an option is offered to perform either or both
operations. Before the regression model, an optional strategy
called scrubbing is implemented to censor large motion frames
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FIGURE 1 | Main interface and workflow of BRANT.

with a threshold of the FD (framewise displacement) (Power
et al., 2012, 2014).

T = [WM, CSF, GS]

R = [x, y, z, pitch, yaw, roll]

X =

[

ones, trends,T,T2,T
′

,T′2,Tt−1,T
2
t−1,R,R

2,R
′

,R′
2
,Rt−1,R

2
t−1

]

y = βX + ǫ

T: mean tissue time series. R: estimated head motion of each
temporal frame. ones: a column of 1 representing the regressor
of intercept. X: matrix of regressors with intercept. trends: Linear
and quadratic trends. Prime (′): first derivatives against time
with zero padding. t-1: 1-frame lagged signal with zero padding.
y: time series of each voxel. β : estimatedweights of each regressor.
ǫ: residual and output of the regression model

In Filter, each voxel’s time series is transformed into frequency
domain using fast Fourier transform (FFT). The frequency-
domain signals are then filtered by an ideal band-pass filter and
transformed back to time domain using inverse FFT.

Functional Connectivity (FC)
Functional connectivity is calculated as the temporal correlation
between pairs of time series extracted from ROIs or voxels.
In BRANT, three methods of preparing ROIs are provided,
including drawing spheres/cubes from coordinates, extracting
ROIs from an atlas and merging separate ROI files into one
number-tagged template.

Draw Regions of Interest (Draw ROIs)
Draw ROIs is implemented as automatically drawing spheres or
cubes with ROI coordinates and a header reference 3D image.
The ROI coordinates and labels are sorted in a ∗.csv table for
output indexing purpose, while the header reference image is
used to define the output image properties such as the bounding
box, originator, orientation, inclusive mask, and voxel size.

Merge/Extract ROIs
Given a number-tagged atlas such as the Brainnetome Atlas (Fan
et al., 2016), a subset of ROIs indexed by integers can be extracted
and exported to one 3D image. Conversely, given separated ROI
files, the current function can alsomerge them into one combined
atlas-like ROI file, with ROI labels stored in a ∗.csv table. More
atlases will be added in the future.

ROI Signal Calculation
With a predefined atlas-like ROI file and a descriptive number-
label table, the current function can extract mean time series from
ROIs and voxels, and calculate Pearson’s correlation as well as its
Fisher-z transform.

rho(x, y) =
cov(x, y)

std (x) ∗ std(y)

rho(x, y)z = 0.5 ∗ log(
1+ rho(x, y)

1− rho(x, y)
)

rho(x, y): Pearson’s correlation of two time series, x and y.
cov(x, y): covariance of x and y. std (x): standard deviation of x.
rho(x, y)z : Fisher-z transform of the Pearson’s correlation.

An option is provided to calculate partial correlation between
each pair of ROIs, with mean signals of other ROIs as covariates.

Spontaneous Activity (SPON)
Voxel-wise metrics of time series implemented in the current
module include amplitude of time series (AM), (fractional)
amplitude of low frequency fluctuation (ALFF/fALFF), regional
homogeneity (ReHo), functional connectivity density (FCD),
and functional connectivity strength (FCS). Two intensity
normalization methods are implemented as described in Wu
et al. (2009), Hoptman et al. (2010), and Xu et al. (2015) for the
above metrics.

vmi =
vi

mean(Vbrain mask)

vzi =
vi −mean(Vbrain mask)

std(Vbrain mask)
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vmi: mean normalized intensity of voxel i. vzi: z-score intensity
of voxel i. Vbrain mask: set of intensities of voxels within the brain
mask.

Amplitude of Time Series (AM)
AM is calculated as the average amplitude and the standard
deviation of the mean-subtracted time series (Liu et al., 2014).
The AM represents the strength of time series’ temporal
fluctuation, which is similar to the ALFF/fALFF.

AMmean =
1

N

N
∑

j=1

∣

∣x
(

j
)

− x
∣

∣

AMstd =
1

N − 1

N
∑

j=1

(

x
(

j
)

− x
)2

N: length of time series. x: mean of time series. std: corrected
sample standard deviation.

(Fractional) Amplitude of Low Frequency Fluctuation

(ALFF/fALFF)
ALFF is calculated as the amplitude of the time series in a
certain frequency band (Zang et al., 2007), which is the averaged
square root of the power spectral density of the filtered time
series. To increase the stability of ALFF across subjects, fALFF
was proposed as calculating the fraction of a certain frequency
band against the whole available frequency band (Zou et al.,
2008).

ALFF =
1

N

N
∑

i=1

(

√

1

L
∗F ∗ conj(F))

F: FFT of the filtered time series.N: number of frequency samples
within the frequency band. L: length of time series. conj(F): the
complex conjugate of the elements of F.

Regional Homogeneity (ReHo)
ReHo is calculated as the Kendall’s coefficient of concordance
(KCC) among a seed voxel and its neighbor voxels, which
indicates the degree of spontaneous activity in the seed voxel’s
vicinity (Zang et al., 2004). Voxels of higher intensity in ReHo
maps indicate greater similarity among neighboring voxels’ time
series.

W =

∑

(Ri)
2
− n(R)

2

1
12K

2(n3 − n)

W: Kendall’s W. K: number of neighbor voxels (7, 19 or 27). Ri:
sum of all K voxels’ rank at frame i. n: length of time series, or the

number of frames. R: average Ri across frames.

Functional Connectivity Density and Functional

Connectivity Strength (FCD/FCS)
A region growing algorithm was carried out by Tomasi and
Volkow (2010) to measure the local degree of each voxel under
a certain threshold of Pearson’s correlation. FCD in BRANT has

been implemented to calculate the local FCD (lFCD), the global
FCD (gFCD), and the long-range FCD (lrFCD) at one time. The
lFCD of each voxel represents the number of spatially connected
voxels defined by the region growing algorithm (Tomasi and
Volkow, 2010), while the gFCD, which is also referred to as
the voxel-wise degree centrality (Craddock and Clark, 2016),
represents the number of voxels that have higher-than-threshold
correlation with the seed voxel. The lrFCD is calculated as the
gFCD subtracted by the lFCD (Qin et al., 2014).

The original description of the gFCD includes whole-brain
voxel-wise correlation, which is time consuming for traditional
CPU implementation. In BRANT, we first calculate the gFCD
in parallel with OPENCL (https://www.khronos.org/opencl/),
and meanwhile keep in memory the thresholded voxel-wise
FC matrix in bits, and then carry on the region grow method
for each voxel on multiple CPU threads for lFCD. Since the
binarized correlation matrices are stored in bits, the required
memory is 1 / (4bytes ∗ 8bits/byte) of the float data type, which
makes the program run smoothly on a 4GB-memory laptop
with a 1GB-memory discrete GPU for preprocessed rs-fMRI 4D
images with ∼50,000 voxels, ∼230 timepoints. The computing
time can vary with the distribution of connectivity strength,
that when the mean connectivity strength rises, there are more
binarized connections as well as more time spent on the region
grow method. In our experience, for rs-fMRI image with ∼230
timepoints, ∼50,000 voxels (3∗3∗3 mm3 spatial resolution), and
the program can finish within 2–5min. By default, the definition
of neighbor type is set as vertex-connected.

Functional connectivity strength (FCS) measures the amount
of information a node receives across whole graph or within a
distance (Jiang et al., 2004; He et al., 2009; Wang et al., 2014).
Similar to FCD, the voxel-wise Pearson’s correlation coefficients
are firstly calculated in parallel and then Fisher-z transformed to
improve normality. For each voxel, the FCS is calculated as the
sum of connectivity that exceeds a given threshold divided by the
number of voxels.

Complex Network Analysis (NET)
Network metrics depict the properties of information flow
among predefined nodes. Regarding brain networks, ROIs are
defined as nodes and the connections between pairs of ROIs are
defined as edges. In the current module, connectivity matrices are
firstly thresholded by intensity or sparsity to weighted or binary
networks. Then, available complex network metrics including
shortest path length, clustering coefficient, small-worldness,
global and local efficiency, betweenness centrality, weighted and
binary degree centrality, neighbor degree centrality, assortative
mixing, resilience, transitivity, fault tolerance, vulnerability are
calculated. Detailed network properties have been described by
Rubinov and Sporns (2010). For group comparisons under a
vector of thresholds, Student’s t-tests are provided.

Statistics (STAT)
The current module provides Student’s t-tests for sample mean
comparisons and several methods for image-based meta-analysis
(IBMA) (Salimi-Khorshidi et al., 2009). For multi-comparison
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correction, we use the Benjamini-Hochberg and the Benjamini-
Yekutieli procedures to control the false discovery rate (FDR)
of dependent and independent cases (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001), and the Bonferroni
procedure to control the familywise error rate (FWER).

Image-Based Meta-Analysis (IBMA)
With statistical maps of different datasets tested using same
analysis pipeline, and the demography of each sample, users
can perform meta-analysis to merge the multisite statistics using
image-based or matrix-based meta-analysis (Salimi-Khorshidi
et al., 2009). We have implemented Stouffer’s z-score method
(Stouffer et al., 1949), Fisher’s method (Fisher, 1925), fixed/mixed
effects model (Konstantopoulos, 2006; Hedges, 2016), Worsley
and Friston’s method (Worsley and Friston, 2000), and
Nichols’ method (Nichols et al., 2005). Usage descriptions and
comparisons have been reviewed in Lazar et al. (2002) and
Salimi-Khorshidi et al. (2009).

Visualization (View)
To visualize voxel intensities, we have implemented the ROI
Mapping to extract and render the surface of 3D clusters
(Figure 2A), the Surface Mapping to project voxel intensity
to vertices on a surface (Figure 2B). To visualize ROI-ROI
connectivity, Network Visualization is implemented to draw
spheres and rods within a rendered brain surface, to present
nodes and edges of the input network (Figure 2C).

ROI Mapping
When visualizing ROIs from an atlas or clusters from a user-
defined 3D volume (e.g., clusters with significant difference
between sample means), we can use the current function to
extract and shade the surface of each number-tagged ROI/cluster
in random or user defined colors (Figure 2A). The ROIs/clusters
of the input 3D image should be tagged with positive-integers.
With an additional input of a reference ∗.csv table containing
number-label pairs (as described in Utilities-DICOM Convert),
we can further parse the labels of each shaded ROI/cluster and
present them in a legend.

Surface Mapping
Besides shading each ROI/cluster, we can also project the voxel
intensities to the surface. By default, we use a rendered human
brain surface constructed from vertices and triangular faces
loaded from a pregenerated file (Figure 2B). To draw another
surface, users can input a binarized 3Dmask, with which BRANT
can extract vertices and faces and render a new surface. When
projecting a 3D volume to surface, the vertices on the surface are
shaded as the intensity of the nearest voxel, while the material of
the surface, the colormaps of positive and negative intensities, the
lighting and shading algorithms can be adjusted.

Network Visualization
Using a ∗.txt file storing symmetric connectivity matrix and a
∗.csv table with nodal information (such as coordinate, label,
module, and color) as input, we can draw spheres and rods to
visualize nodes and edges (Figure 2C). An online description

of the table and drawing options are provided at https://brant.
brainnetome.org.

Utilities
We have added several frequently used functions in this module
to facilitate DICOM image conversion, the process of quality
control, ROI coordinates extraction and 2D/3D signal extraction.

DICOM Convert
Since in practice raw MRI data exported from an MR scanner
consists of a large number of DICOM images storing slices
and volumes of different sequences, by convention we convert
the DICOM images to packed 3D or 4D NIFTI images before
all processing steps. In BRANT, we use the dcm2nii from
MRIcron/MRIcro (Rorden and Brett, 2000) to convert DICOM
files into 4D NIfTI images by default and use wildcard characters
to locate rs-fMRI image files. For the matched images, the First N
timepoints removal is used to remove the first N frames that could
be influenced by large motion or the instability of magnetic field.

Head Motion Estimation
Head motion has been found having an impact on rs-fMRI
signals (Van Dijk et al., 2012). In preprocessing, six head motion
parameters of (x-, y-, z-) translations and (pitch-, yaw-, roll-)
rotations estimated during realignment are used as the inputs of
the current function. By default, the current function outputs the
maximum absolute translation and rotation between frames as
the exclusion criterion of large-motion subject. Additionally, the
mean head displacement (the root-mean-square of translation
parameters), the maximum head displacement, the number of
micro displacement (>0.1mm), the mean absolute Euler angle of
rotation (Van Dijk et al., 2012), the framewise displacement (FD)
(Power et al., 2012) and the number of frames with FD> 0.5mm,
are also exported to provide more subject exclusion criteria.

Visual Check
The current function provides batch operations to visually
inspect artifacts and normalization quality, by calling Display
from SPM. We’ve added keyboard operations to the Display
figure that users can press up/down to switch fMRI volumes of
one subject and press left/right to switch subjects. Before running
the frame-by-frame inspection, the current function exports
screenshots of selected slices overlaid by a semi-transparent brain
mask for a glimpse of the overall image quality.

Temporal Signal to Noise Ratio (TSNR)
Influenced by the magnetic field inhomogeneity at air-tissue
interfaces, rs-fMRI signals at orbitofrontal and temporal medial
and polar areas suffer from a certain degree of distortions and
signal loss. To exclude spurious voxels, we use the thresholded
voxel-wise TSNR, which is calculated as the average intensity
of time series divided by the standard deviation (Tomasi and
Volkow, 2010; Yeo et al., 2011; Welvaert and Rosseel, 2013), to
generate subject-level or group-level whole-brain mask.

ROI Coordinates
To visualize the topological structure of network connections,
ROI coordinates are expected as the centers of spheres. In
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FIGURE 2 | (A) Rendered clusters of the Brainnetome Atlas in ROI Mapping. (B) Projection of the Brainnetome Atlas on a brain surface in Surface Mapping.

(C) Network Visualization for a random network.

the current function, coordinate of each number-tagged ROI is
calculated as the center of mass with equal weights and then
exported to a ∗.csv table.

Extract Signals From 3D Volume and 2D Matrix
Given a 2D binary mask or a 3D number-tagged ROI volume,
elements of matrix or mean intensity within each ROI can be
extracted and exported to a table with cell value arranged as
subjects (rows) x extracted signals (columns).

Code-Generated GUIs and Embedded
Third-Party Software
GUI panels of BRANT are designed as combinations of code-
generated GUI elements that receive and check user inputs. For
example, in ReHo, the following inputs are expected to locate
preprocessed rs-fMRI images in each input directory:

• The directory of each subject’s preprocessed data;
• Wildcard characters to locate filename in each directory, such

as ‘f∗.nii’;
• A numeric index to extract one unique string from each

subject’s directory. For example, the index should be 2 for
‘d:\data\subj001\fmri’, and 1 for ‘d:\data\fmri\subj001’ to parse
the “subj001” for output purpose;

• A checkbox indicating whether the input NIFTI files in each
directory are multiple 3D files or one 4D file.

• The full path of a 3Dmask to restrict the calculation within the
brain.

Since most post-processing functions in BRANT require the
above inputs, the code-generating process has been simplified
as adding one line to a cell array (the variable ‘ui_structs’) in
‘brant_postprocess_defaults.m’.

{’sub_gui’, ’disp_dirs_nii_mask’}, ’input_nifti’, {{’filetype’,
’f∗.nii’}, {’nm_pos’, 1}},”;

Items in the first cell indicate there is a combination of
GUIs named ’disp_dirs_nii_mask’ to be parsed in the ‘sub_gui’
dictionary. Then, two fields of “input_nifti” will be initialized
with the third cell “{{’filetype’, ’f∗.nii’}, {’nm_pos’, 1}}” to
change the default wildcard characters of filetype to “f∗.nii”
and the default numeric index of output string to 1. For the
rest of the example ReHo GUI generation, such as neighbor
type, normalize options, smooth options and output directory,
BRANT uses a similar procedure as above. In the end, we add

the ‘process_fun = @brant_reho;’ to specify ‘brant_reho.m’ as
the data processing script for the GUI parameters collected
by the button labeled with ‘run’. See case ‘reho’ in the
script ‘brant_postprocess_defaults.m’ for more details. When
generating the ReHo panel, BRANT at first collects all above GUI
parts and default settings, and then breaks each input into basic
MATLAB GUI elements (e.g., pushbutton, text, checkbox, pop-
up menu) and draws them on the ‘ReHo’ panel along with preset
callback functions.

In the following two sections, we introduce two instances of
packing batch processing terminal scripts into GUI panels.

Circos
Circos (http://circos.ca/) is a Perl-based software designed to
visualize pair-wise connections on a ring map (Krzywinski
et al., 2009; Irimia et al., 2012; Fan et al., 2016). However,
each time users would need to prepare files for band and
link, tune parameters and open a terminal to run commands.
In the current function, we use the code-generated GUI
to collect input parameters and pass them to a prepared
Circos script. Expected input parameters (Figure 3B) include
the directory of Circos binaries (circos dir), the directory
of Circos configuration file (conf dir), a descriptive table
for ROI information (roi info), a file stores the ROI-ROI
connectivity matrix (edges), colors for positive and negative
connectivity (positive and negative edges), the choice whether
to use transparent background (transparent background), and
output directory (out dir). To construct the Circos input panel,
steps in Figure 3A are used.

DiffusionKit
DiffusionKit is a diffusion-weighted imaging data processing
and fiber-visualizing software compiled with C++ (Xie et al.,
2016) (http://diffusion.brainnetome.org). The current version
of DiffusionKit is designed to process data one by one with
manual input from an input interface, while across-subject
batch processing requires terminal scripts. Using similar
procedures in Figure 3A, we generated a batch-processing
GUI that internally integrates DiffusionKit executives into a
pipeline for eddy correction, diffusion tensor imaging (DTI)
reconstruction, DTI tracking, high angular resolution diffusion-
weighted imaging (HARDI) reconstruction and HARDI
tracking.
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FIGURE 3 | (A) An example of adding new functions in BRANT. (B) Code-generated input panel of Circos. (C) Circos map with randomly generated links for

illustration purpose.

Input/Output (I/O) Optimization
Though metrics in BRANT have been optimized with matrix
operations, parallel computing and multithreading, the total
computing time is still limited to the speed of file I/O,
especially when temporal or spatial resolution of a rs-fMRI
image is high. To speed up file I/O, we have written and
compiled a MATLAB-C++ mixed ∗.mex binary with zlib
(http://www.zlib.net/) to directly load and save gzipped files
without decompression/compression. For illustration purposes,
we tested the loading time of a minimally preprocessed
(Glasser et al., 2013) subset of Human Connectome Project’s
working memory data (100 subjects, 405 timepoints, TR
720ms, https://www.humanconnectome.org/study/hcp-young-
adult/data-releases/) on a 7200-rpm Seagate hard drive. As a
result, the average loading time of one gzipped file is two times
shorter than the uncompressed one (mean± standard deviation,
gzipped: 9.7± 1.69 s, uncompressed: 30.18± 2.23 s).

Scripting
When running batch processing on a remote cluster, where
GUI operations are not available, we can first save and modify
the batch parameters on local machine, then upload the saved
parameters to the remote cluster, and run with one command
‘brant_run_script(‘/path/saved_file.mat’)’. The saving operation
is tied to the button labeled with “S” (short for “save”) on most
GUI panels. Besides, the ∗.mat files can also be loaded by the
button “L” (short for “load”), to initialize panel parameters.

COMPARE WITH MATLAB-BASED
TOOLBOXES

The functions of BRANT cover a wide range of data processing,
from DICOM conversion to results visualization. Since there
exist a number of MATLAB-based toolboxes, we compare
BRANT with three other frequently used full-featured toolboxes,
DPABI v2.3 (Yan et al., 2016), GRETNA v2.0.0 (Wang et al.,

2015), and CONN v17.f (Whitfield-Gabrieli and Nieto-Castanon,
2012) (Figure 4). All the four toolboxes integrated SPM’s
preprocessing scripts and implemented their own denoising
scripts for batch preprocessing. During data preprocessing, a
necessary procedure of visually checking raw data quality and
normalization quality is implemented in DPABI as Quality
Control, in CONN as Quality Assurance and in BRANT as
Visual Check. At post-processing, both GRETNA and CONN
focus on graph-based analysis and provide a variety of functional
connectivity analysis methods and complex network analysis
methods. DPABI provides functions of voxel-based methods (e.g.
ALFF, ReHo, voxel-mirrored homotopic connectivity Zuo et al.,
2010) and functional connectivity analysis. In BRANT, functional
connectivity analysis, complex network analysis and several
voxel-based metrics of spontaneous activity are implemented.
To test statistical hypotheses, BRANT implemented the Student’s
t-test for second-level analysis and the IBMA for element-
wise meta-analysis, but neither the analysis of covariance in
DPABI and GRETNA, nor the subject-level and group-level
analysis in CONN. For results visualization, CONN provides
a wide range of methods to plot voxel-wise connectivity in
histogram, to overlay voxel intensity on slices and surfaces,
to render ROIs in 3D clusters, and to plot connectivity in
2D circular and 3D node-edge view. In DPABI, slice viewer
is provided with thresholding and atlas labeling options, and
in GRETNA, bar plot, dot plot, violin plot, and shade plot
are implemented. In BRANT, results visualization functions
include surface mapping for voxel intensity, ROI rendering,
3D node-edge view (Figure 2), and Circos 2D circular view
(Figure 3). Besides data processing, statistical analysis, quality
control and visualization methods, CONN and DPABI have
compiled standalone versions, which can run without MATLAB.
Moreover, DPABI provides pipelines tuned for monkey and rat
data processing. In GRETNA, Sun Grid Engine (SGE) support
is available for submitting data processing jobs to a remote
computer cluster. In BRANT, we have added direct ∗.gz support
for most post-processing functions, OPENCL-based parallel
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FIGURE 4 | Horizontal comparison of MATLAB-based full-functioning software. CompCor, Component based noise correction method (Behzadi et al., 2007). FCD,

Functional connectivity density; FCS, Functional connectivity strength; (f)ALFF, (fractional) Amplitude of low frequency fluctuation; VMHC, Voxel-mirrored homotopic

connectivity (Zuo et al., 2010); CWAS, Connectome-wide association studies (Shehzad et al., 2011); ICA, Independent component analysis; PCA, Principle

component analysis; MVPA, Multi-voxel pattern analysis; IBMA, Image-based meta-analysis; ROI, Region of interest; SGE, Sun Grid Engine.

computing for time consuming FCD/FCS calculation and online
GUI generation for almost all functions.

In the comparison, functions of GRETNA and CONN focus
on a variety of metrics for functional connectivity analysis
and complex network analysis, while DPABI and BRANT
provide a wider range of data analysis that cover not only
connectivity-based and graph-based analyses, but also voxel-
based spontaneous activity analysis. As for GUI design, both
DPABI andGRETNAusemanually drawn figures as input panels,
while BRANT automatically generates GUIs by extendable
scripts.

EXAMPLES OF RS-FMRI DATA ANALYSIS

To validate the efficacy of our toolkit, we used the same
preprocessing pipelines provided by BRANT and DPABI v2.3, to
compare ReHo, fALFF and FCs using a rs-fMRI dataset consists
of 18 patients with mild cognitive impairment (MCI), 17 patients
with mild Alzheimer’s disease (mAD), 18 patients with severe
Alzheimer’s disease (sAD) and 21 normal controls (NC). This
dataset was used in our previous study (Liu et al., 2014) andmade
available online at https://github.com/yongliulab.

Subjects, Data Acquisition, and Processing
The details of the dataset can be found in our previous
studies (He et al., 2014; Liu et al., 2014, 2016). Therefore, in
the current paper we provide a brief introduction about the

subjects’ inclusion and exclusion criteria, data acquisition and
processing to maintain the scientific integrity of the present
study. All the participants were recruited by advertisement and
supported throughout the testing procedures in a specialist
neuropsychological research facility at Xuanwu Hospital, Beijing,
China. Patients and informants (usually a family member)
were clinically interviewed by a senior neurologist. Written
consent forms were obtained from all subjects or their legal
guardians (usually a family member). The study was approved
by the ethics committee of Xuanwu Hospital. AD subjects were
diagnosed using standard operationalized criteria (Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV); American Psychiatric Association 1994 and National
Institute of Neurological and Communicative Disorders and
Stroke - Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA); McKhann et al., 1984). The severity of
dementia was assessed using the Clinical Dementia Rating
(CDR) scale (Morris, 1993). Patients with a diagnosis of AD
and CDR score of 1 were classified as mild AD and those
with a CDR score of 2 or 3 were diagnosed as severe AD.
MCI was diagnosed according to standard criteria (Petersen
et al., 1999, 2001; Choo et al., 2007), which included subjective
memory loss with objective evidence of memory impairment
in the context of normal or near-normal performance on
other domains of cognitive functioning; minimal impairment
of activities of daily living; and a CDR score of 0.5. Normal
volunteers have a CDR score of 0. All participants satisfied
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FIGURE 5 | T-statistic maps of ReHo and fALFF. The most severely decreased fALFF and ReHo in patient groups were found at posterior cingulate cortex, precuneus,

supramarginal gyrus, angular gyrus, inferior parietal lobule. Increased ReHo and fALFF in patient groups were mainly found at gyrus at medial and inferior occipital

lobule.

the following inclusion criteria: (1) no history of an affective
disorder within 1 month prior to assessment; (2) normal vision
and audition; (3) able to cooperate with cognitive testing;
(4) aged between 50 and 90 years; (5) no clinical history
of stroke or other severe cerebrovascular disease; and (6) no
more than one lacunar infarction, without patchy or diffuse
leukoaraiosis, on neuroradiological assessment of conventional
MR images. The exclusion criteria included: (1) severe general
medical disorders of cardiovascular, endocrine, renal, or
hepatic systems; neurological disorders associated with potential
cognitive dysfunction, including local brain lesions, traumatic
brain injury with loss of consciousness or confusion, and
dementia associated with neurosyphilis, Parkinsonism, or Lewy
body disease; psychiatric disorders including depression, alcohol,
or drug abuse; (2) concomitant use of psychotropic medication
in large quantity; and (3) insufficient cognitive capacity to
understand and cooperate with study procedures. All patients
underwent a complete physical and neurological examination,
an extensive battery of neuropsychological assessments, and
standard laboratory tests. Healthy volunteers underwent a brief
clinical interview and MMSE to confirm that they satisfied
exclusion criteria for cognitive deficits, psychoactive drug use,
and clinical disorders.

The MR images were acquired on a 3.0-T MR scanner
(Magnetom Trio, Siemens, Germany). Functional MRI data were
acquired using an echo planar imaging (EPI) sequence sensitive
to BOLD contrast: Repetition time (TR) = 2,000ms, echo time
(TE) = 30ms, flip angle (FA) = 90◦, matrix = 64 × 64, field

of view (FOV) = 220mm × 220mm, slice thickness = 3mm
with inter-slice gap = 1mm. Each brain volume comprised 32
axial slices, and each scanning session lasted for 360 s. Sagittal T1-
weighted MR images were acquired by a magnetization-prepared
rapid gradient-echo sequence (TR/TE = 2000/2.6ms, FA = 9◦,
matrix= 256× 224, FOV= 256mm× 224mm, 176 continuous
sagittal slices with 1mm thickness).

To compare the results between different toolkits, we
performed the same processing pipeline in the present study.
After DICOM to NIFTI conversion, the first 10 timepoints of
EPI images were discarded. The following consecutive rs-fMRI
timepoints were processed with the BRANT pipeline, which
includes slice timing correction, within subject registration, rigid-
body registration of T1 image to EPI mean image, normalization
of EPI images to MNI standard space using T1 image. After
normalization, EPI images were resampled to 3 × 3 × 3
mm3. The co-registration and spatial normalization functions
integrated in BRANT, DPABI and GRETNA are slightly different.
For example, prior to T1 to rs-fMRI co-registration, BRANT
firstly segments the T1 image (with SPM-Segment) to tissue
probability maps in individual space, and then extract the brain
with gray matter probability+ white matter (WM) probability+
cerebrospinal fluid (CSF) probability> 0.5 as mask, while DPABI
uses bet with tuned parameters from FSL to extract brain,
and in GRETNA, no brain extraction method was found. To
compare all software with same preprocessing procedures, we
used the spatially normalized results processed with BRANT
and ran same denoising processes in BRANT, DPABI and
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FIGURE 6 | The altered functional connectivity drawn within brain surfaces (P < 0.001, uncorrected). As shown in the figure, more abnormal FCs were found with the

development of Alzheimer’s disease. In the contrast of sAD and NC groups, decreased FCs (in cyan) were mainly found between medial frontal areas and bilateral

middle temporal gyrus, between medial frontal areas and posterior cingulate gyrus, between bilateral caudate and occipital areas, between superior occipital cortex

and bilateral pre-/postcentral gyrus, while increased FCs (in red) were mainly found between the left inferior frontal and the medial and dorsolateral frontal areas.

GRETNA for the following calculations and comparisons.
The denoising process consists of linear and quadratic trends
removal, covariates regression and band-pass filtering within
0.01-0.08Hz. Covariates include mean and squared signals
of WM and CSF (extracted by same masks across different
software), and the Friston’s 24-parameter head motion model
(Friston et al., 1996). To mask out spurious voxels in the gray
matter, we used the intersection between groupmean TSNRmask
(intensity > 30) and a gray matter mask (probability >30%),
to mask the following fALFF and ReHo calculation, as well as
the AAL atlas used for ROI-wise FC calculation. We calculated
fALFF within frequency band 0.01∼0.08Hz with the unfiltered
images, while we calculated ReHo (with 27 neighboring voxels)
and FCs with the preprocessed images. The ReHo and fALFF
maps were normalized by z-score transform and then smoothed
with a 6 × 6 × 6 mm3 Gaussian kernel, while the FCs

were Fisher-z transformed. We performed the t-tests, with age,
education and gender regressed out as covariates, to compare
the group mean differences of FCs (among BRANT, GRETNA,
and DPABI), fALFF (between BRANT, and DPABI) and ReHo
(between BRANT, and DPABI).

RESULTS

No significant differences (P > 0.05) of age (two-tailed two
sample t-test), gender (chi-squared test) and education (two-
tailed two sample t-test) were found between each patient group
and NC group. T-statistic maps of fALFF, ReHo (Figure 5)
and results of FCs (P < 0.001, uncorrected) (Figure 6)
based on different toolkits have quite similar patterns, which
suggest BRANT is another optimal toolkit for rs-fMRI research
community. In the results, the minor differences can be induced
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by different implementations of trends removal, covariance
regression and band-pass filter. For example, in trends removal
and covariates regression steps, BRANT and DPABI put the
temporal trends within the regression model, while in GRETNA
trends removal and covariates regression are two separate
processes. In band-pass filtering, BRANT periodically extends
time series with mirrored ones, while DPABI and GRETNA
pad time series with zeroes. For the results, we didn’t draw
a strong conclusion, since the interpretation requires multiple
comparison corrections and is not the main point of the current
study. Moreover, there exist other algorithms which can better
remove the motion related signals as discussed in one recent
study (Ciric et al., 2017), such as timepoints scrubbing (Power
et al., 2012, 2014), and component based noise correction
methods (Behzadi et al., 2007; Pruim et al., 2015a,b).

SUMMARY OF THE BRANT

We presented the construction and the key features of BRANT
in the manuscript and put online the updated instructions
and implementation details (http://brant.brainnetome.org for
instructions and stable BRANT versions), to keep the toolbox
updated and compatible to newer SPM and MATLAB versions.

Among the above rs-fMRI data processing toolboxes, our
package has two distinguishing advantages. One is, other
than focusing on several specific types of rs-fMRI data
processing, functions of BRANT cover a wide range of rs-fMRI
data processing methods. The other advantage lies in the
implementation process that GUIs are created automatically
with a few lines of MATLAB code instead of drawn manually.
On the other side, BRANT also has some limitations in
several modules. For example, in denoising pipeline, we have
added regression models composed of tissue mean signals, and
head motion estimates in the regression model, but not the
independent component analysis (ICA) based methods such as
the ICA-AROMA method (Pruim et al., 2015a,b), which was
found better at removing distance-dependent motion artifacts
(Ciric et al., 2017). In statistical analysis, we have implemented
Student’s t-tests for group mean comparisons, but the first-level
analysis for activation detection, and the analysis of variance
for multi-group variances inference are yet not implemented
and will be added in the future. In network analysis, a number
of thresholds and random networks are induced and the

computation is very intense even running with parallel workers
on single machine. To reduce the computing time, the pipeline
system for Octave andMatlab (PSOM) (Bellec et al., 2012) can be
used to submit the jobs in parallel to a computer cluster.

In summary, we have developed a GUI-based MATLAB
toolbox, which consists of modules for preprocessing, voxel-
based spontaneous activity analysis, functional connectivity
analysis, complex network analysis, statistical analysis, and
results visualization. In the toolbox, scripts are optimized by
efficient file handling methods and parallel computing, while
functions are made easily extendable by code-generated GUIs.
Along with the contributions from open source community,
we seek to provide more robust and versatile versions in the
future.

DEPENDENCIES

Part of BRANT’s functions depends on existing packages or
executives. All preprocessing steps (except for Denoise), file and
folder I/O dialogue boxes and VISUAL CHECK, use functions
of SPM (Ashburner, 2012). The conversion of DICOM to NIfTI
uses dcm2nii from MRIcron, an updated version of Mricro
(Rorden and Brett, 2000). Most NIfTI file loading and saving
scripts use scripts of Tools for NIfTI and ANALYZE image (http://
cn.mathworks.com/matlabcentral/fileexchange/8797-tools-for-
nifti-and-analyze-image). The scroll bars (e.g., in the parameter
panel of Preprocessing) are provided by FINDJOBJ (http://cn.
mathworks.com/matlabcentral/fileexchange/14317-findjobj-
find-java-handles-of-matlab-graphic-objects).
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