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In the field of neuroimaging, there is a growing interest in developing collaborative

frameworks that enable researchers to address challenging questions about the human

brain by leveraging data across multiple sites all over the world. Additionally, efforts

are also being directed at developing algorithms that enable collaborative analysis

and feature learning from multiple sites without requiring the often large data to

be centrally located. In this paper, we propose two new decentralized algorithms:

(1) A decentralized regression algorithm for performing a voxel-based morphometry

analysis on structural magnetic resonance imaging (MRI) data and, (2) A decentralized

dynamic functional network connectivity algorithm which includes decentralized group

ICA and sliding-window analysis of functional MRI data. We compare results against

those obtained from their pooled (or centralized) counterparts on the same data i.e.,

as if they are at one site. Results produced by the decentralized algorithms are

similar to the pooled-case and showcase the potential of performing multi-voxel and

multivariate analyses of data located at multiple sites. Such approaches enable many

more collaborative and comparative analysis in the context of large-scale neuroimaging

studies.

Keywords: decentralized algorithms, COINSTAC, VBM, dFNC, multi-shot

1. INTRODUCTION

In the current times, innovation and discovery are often underpinned by the size of data at one’s
disposal and this has led to a paradigm shift in scientific research increasing the emphasis on
collaborative data-sharing (Cragin et al., 2010; Tenopir et al., 2011). This growing significance of
data-sharing is more evident in the field of neuroscience where, in the past few years, there has been
a proliferation of efforts (Poldrack et al., 2013) toward enabling researchers to leverage data across
multiple sites. In part, this is due to the fact that collecting neuroimaging data is expensive as well as
time consuming (Landis et al., 2016) and aggregating or sharing data across various sites provides
researchers with an opportunity to uncover important findings that are beyond the scope of the
original study (Poldrack et al., 2013). In addition to making predictions more certain by increasing
the sample size (Button et al., 2013), sharing data ensures reliability and validity of the results, and
safeguards against data fabrication and falsification (Tenopir et al., 2011; Ming et al., 2017).
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As mentioned previously, data-specific collaborative efforts
include either aggregating the data via a centralized data sharing
repository or sharing data via agreement based collaborations,
or data usage agreement (DUA) in other words (Thompson
et al., 2014, 2017). However, each methodology has its own set
of barriers. For example, policy or proprietary restrictions or
data re-identification concerns (Sweeney, 2002; Shringarpure and
Bustamante, 2015) might hinder data sharing whereas DUAs
might take months to complete and even if one comes through,
there is no guarantee of the utility of the data until the planned
analysis is performed (Baker et al., 2015; Ming et al., 2017). Other
significant challenges include the storage and computational
resources needed which could prove costly as the volume of the
data shared goes up.

Frameworks such as ENIGMA (Thompson et al., 2014, 2017)
to some extent bypass the need for DUAs by performing a
centrally coordinated analysis at each local site. This enables
potentially large data at each local site to stay put allowing a
greater level of control as well as privacy. Another framework
called ViPAR (Carter et al., 2015) tries to go one step further
by, relying on open-source technologies, completely isolating
the data at the local site but only pooling them via transfer to
perform automated statistical analyses. This repeated pooling
of data becomes cumbersome as the number of sites or the
size of the data at each site goes up and ENIGMA (Thompson
et al., 2014, 2017; Hibar et al., 2015; van Erp et al., 2016)
addresses this issue by pooling local statistical results for
further analysis, also known as, meta-analysis (Adams et al.,
2016). However, the heterogeneity among the local analyses
caused by adopting various data collection mechanisms or
preprocessing methods can lead to inaccurate meta-analysis
findings.

Plis et al. (2016), proposed a web-based framework titled
Collaborative Informatics and Neuroimaging Suite Toolkit
for Anonymous Computation (COINSTAC) to address the
aforementioned issues. COINSTAC provides a platform to
analyze data stored locally across multiple organizations without
the need for pooling the data at any point during the analysis.
It is intended to be an ultimate one-stop shop by which
researchers can build any statistical or machine learning model
collaboratively in a decentralized fashion. This framework
implements a message passing infrastructure that will allow large
scale analysis of decentralized data with results on par with those
that would have been obtained if the data were in one place.
Since, there is no pooling of data it also preserves the privacy of
individual datasets.

Some of the decentralized computations discussed in the
literature so far include decentralized regression (Plis et al.,
2016), joint independent component analysis (Baker et al.,
2015), decentralized independent vector analysis (Wojtalewicz
et al., 2017), decentralized neural networks (Lewis et al., 2017),
decentralized stochastic neighbor embedding (Saha et al., 2017)
and many more. To our knowledge, most of these algorithms
have been tested on synthetic data. In this work we present two
new decentralized algorithms that are widely used in a centralized
manner in the imaging community and demonstrate their utility
on real world brain imaging data.

Regression, is widely used in neuroimaging studies as it
enables one to regress certain covariates, for example- age,
diagnosis, gender or treatment response, to study their effects
on the structure and function of various brain regions. Some
examples of regression related studies in this field include
(Fennema-Notestine et al., 2007) where regression was used
as a validity test in examining the aggregation of structural
imaging across different datasets. In addition, the very successful
ENIGMA studies are mostly using regression analyses for a
small number of variables. Roshchupkin et al. (2016) presented a
framework titled HASE (high-dimensional association analyses)
that is capable of analyzing high-dimensional data at full
resolution, yielding exact association statistics. While singleshot
and multishot regression have been presented previously (Plis
et al., 2016), their treatment was cursory in nature without any
actual consideration of the appropriate gradient descent scheme
or the validity of the methods on real datasets both of which have
been presented in this work.

In this paper, in addition to improving the single-shot
and multi-shot regression we also present a new variant of
decentralized regression- “decentralized regression with normal
equation” and extend this work to operate on voxels in an
MRI image, in order to implement a voxel-based morphometry
(VBM) study in a decentralized framework (Ashburner and
Friston, 2000). We implement and evaluate the proposed
decentralized VBM approach on the publicly available MIND
Clinical Imaging Consortium (MCIC) dataset (available via the
COINS data exchange at https://coins.mrn.org and contrast the
results obtained with those from pooled/centralized regression to
validate the proof-of-concept.

Another widely utilized method in neuroimaging analysis
is dynamic functional network connectivity (dFNC) (Sakoglu
et al., 2010; Allen et al., 2014). dFNC is an analysis pipeline
for functional magnetic resonance imaging (fMRI) data, which
allows for the identification and analysis of networks of co-
activating brain states. In contrast to static approaches (Smith
et al., 2009), which take the mean connectivity over time-
points, dFNC uses clustering of time varying connectivity
estimates computed from sliding-windows taken over subject
time-courses, thus becoming desirable in experiments where
network connectivity is highly dynamic in the time dimension,
for example in experiments which utilize resting-state fMRI
(Deco et al., 2013; Damaraju et al., 2014).

Importantly, dFNC is focused on time-courses of networks
extracted from a group independent component analysis (ICA),
which is a widely used approach for estimating functional brain
networks (Calhoun and Adali, 2012) and as such to implement
dFNC we needed to also implement a decentralized group ICA
approach.

For collaborative neuroimaging applications, a decentralized
version of dFNC is desirable for many of the same reasons
as regression, and currently, no such decentralized version
exists. Unlike regression, however, the dFNC pipeline consists
of multiple, distinct stages, all of which require decentralization.
In this paper, we present an initial version of decentralized
dFNC by providing decentralized approaches to both the group
spatial independent component analysis (ICA) and K-Means
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clustering steps in the pipeline, which, along with additional
preprocessing steps including sliding window correlation, can
be implemented together to perform decentralized dFNC. Our
resulting methods, dgICA, and ddFNC via dK-Means, provide
dynamic connectivity results consistent with established pooled
approaches in the literature, thus representing an important step
toward more exhaustive analysis of the decentralized approaches
to the dFNC pipeline. Our contributions in this paper can thus be
summarized as follows.

1. Development of decentralized regression with normal
equation, improvement of single-shot and multi-shot
regression and their validation on structural MRI data

2. Presentation of a decentralized dynamic functional network
connectivity analysis pipeline and its evaluation on functional
MRI data

2. METHODS

2.1. Decentralized VBM (i.e., Voxelwise
Decentralized Regression)
Statistical analysis plays a key role in the field of neuroimaging
studies. Researchers would often want to characterize the effect of
various factors such as age, gender, disease condition, etc., on the
composition of brain tissue at various regions of the brain. Voxel-
based morphometry (VBM) (Ashburner and Friston, 2000) is
one such approach that facilitates a comprehensive comparison,
via generalized linear modeling, of voxel-wise gray matter
concentration between different groups, for example. To enable
such statistical assessment on data present at various sites, it is
important to develop decentralized tools. In this section, we first
provide a brief overview of decentralized regression algorithms
(the building blocks of decentralized VBM which is essentially
voxel-wise regression) along with some notation.

The goal of decentralized regression is to fit a linear equation
(given by Equation 1) relating the covariates at S different sites to
the corresponding responses. Assume each site j has data setDj =

{(xi, yi) : i ∈ {1, 2, . . . , sj}} where xi,j ∈ Rd is a d-dimensional
vector of real-values features, and yj ∈ is a response. We consider
fitting the model in Equation 2 where w is given as [w; b] and x

as [x; 1]

y ≈ w⊤x+ b (1)

y ≈ w⊤x (2)

The vector of regression parameters/weights w is found by
minimizing the sum of the squared error given in Equation (3)

F(w) =
S

∑

j=1

sj
∑

i=1

(yi − w⊤xi,j)
2 (3)

The regression objective function is a linearly separable function,
that can be written as sum of a local objective function calculated
at each local site as follows:

F(w) =
S

∑

j=1

Fj(w) (4)

where

Fj(w) =

sj
∑

i=1

(yi − w⊤xi,j) (5)

A central aggregator (AGG) is assumed whose role is to compute
the global minimizer ŵ of F(w).

2.1.1. Single-Shot Regression
In one approach to solve the decentralized regression problem,
termed the single-shot regression (Plis et al., 2016), each site
j finds the minimizer ŵj of the local objective function Fj(w).
This is the same as solving the regression problem at each
local site. Once the regression model at each site is fit, the
weights are sent to the central aggregator (AGG) where they
are aggregated (weighted average) to find the global minimizer
or can be used separately to perform a meta-analysis similar to
those performed in ENIGMA (using a manual spreadsheet-based
approach however) (Turner et al., 2013; van Erp et al., 2016). The
pseudocode to perform single-shot decentralized regression (Plis
et al., 2016), with a slight modification, is presented here again for
completeness.

Algorithm 1 Single-shot Regression

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
1: for j = 1 to S do
2: ŵj = argminwFj(w).
3: Node j sends ŵj to AGG.
4: end for

5: AGG computes ŵ = 1
∑S

j=1 sj

∑S
j=1 sjŵj and return ŵ

2.1.2. Decentralized Regression With Normal

Equation
One limitation of single-shot regression is that the “site” level
covariates cannot be included at each local site as this leads
to collinearity issues. This issue can be offset by utilizing a
decentralized version of the analytical solution to the linear
regression problem. For a standard regression problem of the
form given in Equation (2), the analytical solution is given as

ŵ = (x⊤x)−1x⊤y (6)

Assuming that the augmented data matrix x is made up of data
from different local sites, i.e.,

x =







x1
...
xS






(7)
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it’s easy to see that ŵ can be written as

ŵ =







[

x⊤1 · · · x
⊤
S

]







x1
...
xS













−1

×

[

x⊤1 · · · x
⊤
S

]







y1
...
ys






(8)

ŵ =





S
∑

j=1

xTj xj





−1

×





S
∑

j=1

xTj yj



 (9)

The above variant of the analytical solution to a regression model
shows that even if the data resides in different locations, fitting a
global model in the presence of site covariates delivers results that
are exactly similar to the pooled case.

Algorithm 2 Decentralized Regression with Normal Equation

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
1: for j = 1 to S do
2: Compute Cov(Xj) = x⊤j xj

3: Compute x⊤j yj

4: Node j sends Cov(Xj) and x⊤j yj to AGG.
5: end for

6: AGG computes

ŵ ←
(

∑S
j=1 Cov(Xj)

)−1 (

∑S
j=1 x

⊤
j yj

)

and return

ŵ

2.1.3. Multi-Shot Regression
Decentralized regression with a normal equation is a nice
mathematical formulation which produces results that are exactly
the same as those from the pooled regression. However, one
of the biggest drawback of the analytical form of regression is
it becomes computationally expensive to evaluate the inverse
of x⊤x as the number of features in the dataset (D) increases.
While in a neuroimaging setting there might not be as many
covariates to make it computationally expensive, it is indeed a
challenge while working with datasets where the cardinality of the
feature set is usually large (especially in machine learning). One
can overcome this drawback by implementing an optimization
method in a way that entails the local sites and AGG having to
communicate iteratively. This is a type of distributed gradient
descent and such a regression is termed “multi-shot” regression
(Plis et al., 2016).

For a regression model of the form given in Equation 5, the
gradient update equation (given a learning rate η) is given as

ŵt+1 = ŵt − η · ▽Fj(ŵ) (10)

Algorithm 3Multi-shot Regression

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
Require: Step size η (Suggested default: 0.001)
Require: β1,β2 ∈ [0, 1): Exponential decay rates for themoment

estimates (Suggested defaults: 0.9 and 0.999, respectively)
Require: Small constant δ used for numerical stabilization

(Suggested default: 10−8)
Require: ŵt−1 ← 0 (Initial parameter vector), m0 ← 0

(Initialize 1st moment vector), v0 ← 0 (Initialize 2nd

moment vector), t ← 0 (Initialize timestep), tolerance Tol
⊲ at AGG

1: while True do

2: for j = 1 to S do
3: AGG sends ŵt−1 to node j
4: Node j computes ▽Fj(ŵt−1)
5: Node j sends ▽Fj(ŵt−1) to AGG.
6: end for

7: AGG computes ▽Fc ←
∑S

j=1 ▽Fj(ŵt−1) ⊲ aggregate

gradient
8: mt ← β1 ·mt−1 + (1− β1) · ▽Fc ⊲ update biased first

moment estimate
9: vt ← β2 · vt−1 + (1− β2) · ▽F2c ⊲ update biased second

moment estimate
10: m̂t ← mt/(1− β t

1) ⊲ Compute bias-corrected first
moment estimate

11: v̂t ← vt/(1− β t
2) ⊲ Compute bias-corrected second

moment estimate
12: AGG computes ŵt ← ŵt−1 − η · m̂t/(

√

v̂t + δ) ⊲

Update parameters
13: if ||ŵt − ŵt−1||2 ≤ Tol then

14: break

15: end if

16: ŵt−1 ← ŵt

17: end while

18: return ŵt as ŵ ⊲ Resulting parameters

where

▽Fj(ŵ) =

sj
∑

i=1

(yi − ŵ⊤xi,j)xi,j (11)

In multi-shot regression, at every time step the AGG sends the
value of ˆwt−1 to each of the local sites which then compute their
local gradients ▽Fj(wt) and send them back to the AGG where it
sums up all the local gradients in order to update the parameter
vector ŵt . The need to sum up all the local gradients is explained
as follows:

From Equation (4), F(ŵ) =
∑S

j=1 Fj(ŵ)

∴ ▽F(ŵ) =
∑S

j=1 ▽Fj(ŵ) (12)

To illustrate this using an example, suppose there are 3 sites
(S = 3) with s1, s2 and s3 number of samples, respectively, at
each site. The global objective function F(ŵ) can be easily written
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as the sum of objective functions from each site (this because the
objective function is linear) as follows:

F(ŵ) =
s1+s2+s3

∑

j=1

(yj − ŵ⊤xj)
2

=

s1
∑

j=1

(yj − ŵ⊤xj)
2 +

s2
∑

j=1

(yj − ŵ⊤xj)
2

+

s3
∑

j=1

(yj − ŵ⊤xj)
2

=

s1
∑

j=1

F1(ŵ)+
s2

∑

j=1

F2(ŵ)+
s3

∑

j=1

F3(ŵ)

∴ ▽F(ŵ) =
s1

∑

j=1

▽F1(ŵ)+
s2

∑

j=1

▽F2(ŵ)+
s3

∑

j=1

▽F3(ŵ) (13)

From Equation (13), it should be easy to see that the aggregated
gradient is just a sum of the gradients from each site. On the
other hand, if the mean sum of squared errors is preferred i.e.,
F(ŵ) = 1

m

∑m
j=1(yj− ŵ

⊤xj)2, which mathematically has the same

minimizer as
∑m

j=1(yj − ŵ⊤xj)2 since F(ŵ) is convex, it can be

shown that the aggregated gradient is a weighted average of the
gradients from the local sites:

F(ŵ) =
1

s1 + s2 + s3

s1+s2+s3
∑

j=1

Fj(ŵ)

=
1

s1 + s2 + s3
(
s1

s1

s1
∑

j=1

Fj(ŵ)+
s2

s2

s2
∑

j=1

Fj(ŵ)

+
s3

s3

s3
∑

j=1

Fj(ŵ))

=
1

s1 + s2 + s3
(s1F1(ŵ)+ s2F2(ŵ)+ s3F3(ŵ))

∴ ▽F(ŵ) =
1

s1 + s2 + s3
(s1▽Fj(ŵ)+ s2▽Fj(ŵ)+ s3▽Fj(ŵ))

(14)

Algorithm 3 shows the steps involved in multi-shot regression.
In order to update the parameters (here, ŵ), any off-the-shelf
optimization scheme, for example, gradient descent, adagrad
(Duchi et al., 2011), adadelta (Zeiler, 2012), momentum gradient
descent (Rumelhart et al., 1986), nesterov accelerated gradient
descent (Nesterov et al., 1983), Adam (Kingma and Ba, 2014)
could have been used. The choice of scheme adopted could
depend on the data being analyzed, Moreover, additional
considerations have to be given to the stopping criterion
tolerance, the number of iterations, the choice of learning rate
and any other additional hyper-parameters depending on the
scheme utilized. In some cases, the choice of optimization scheme
can result in an analysis which could take minutes, days or years
to arrive. In our tests, we found out that the Adam optimization

scheme performs extremely well on the real dataset and hence has
been adopted to perform the multi-shot regression.

2.1.4. Other Statistics
In addition to generating the weights of the covariates (regression
parameters), one would also be interested in determining the
overall model performance given by goodness-of-fit or the
coefficient of determination (R2) as well as the statistical
significance of each weight parameter (t-value or p-value).

As demonstrated in Algorithm 4 (Ming et al., 2017),
determining R2 entails calculating the sum-square-of-errors
(SSE) as well as total sum of squares (SST) which are evaluated at
each local site and then aggregated at the global site to evaluate R2

given by 1−SSE/SST. An intermediary step before the calculation
of SST is the calculation of the global ȳ which is determined by
taking a weighted average of the local ȳj weighted on the size of
data at each local site.

Algorithm 4 Decentralized R2 calculation

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
1: AGG sends ŵ to each local site.
2: for j = 1 to S do

3: Node j computes ȳj =
1
sj

∑sj
i=1 yi

4: Node j sends ȳj and sj to AGG.
5: end for

6: AGG computes ȳ =
∑S

j=1(sj·ȳj)
∑S

j=1 sj
⊲ global mean

7: AGG sends ȳ to local sites
8: for j = 1 to S do

9: SSTj =
∑sj

i=1(yi − ȳ)2

10: ŷj = ŵ · xj

11: SSEj =
∑sj

i=1(yi − ŷj)2

12: Node j sends SSTj and SSEj to AGG
13: end for

14: AGG computes SST ←
∑S

j=1 SSTj,

SSE←
∑S

j=1 SSEj,

R2 ← 1− SSE
SST

15: return R2

Algorithm 5 (Ming et al., 2017) details the steps involved
in calculating the t-values (and therefore p-values) of each
regression parameter. Assuming the weight vector has been
calculated using either the single-shot or multi-shot regression,
the global weight vector (ŵ) is sent to each of the local sites
where the local covariance matrix as well as the sum-square-of-
errors is calculated and sent back along with the data size to
the aggregator (AGG) which then utilizes that information to
calculate the t-values for each parameter (or coefficient). Once,
the t-values have been calculated, the corresponding two-tailed
p-values can be deduced using any publicly available distributions
library.
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Algorithm 5 Decentralized t-value calculation

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
1: AGG sends ŵ to each local site.
2: for j = 1 to S do
3: ŷj = ŵ · xj

4: SSEj =
∑sj

i=1(yi − ŷj)2

5: Cov(xj) = x⊤j xj
6: Node j sends SSEj, Cov(Xj) and sj to AGG.
7: end for

8: AGG computes Cov(x)←
∑S

j=1 Cov(xj),

MSE← 1
∑S

j=1 sj

∑S
j=1 SSEj,

SE(W)←
√

diag(MSE · Cov(x)−1),
t← ŵ/SE(W))

9: return t

2.1.5. Bandwidth and Complexity
For singleshot regression, each site communicates a local weight
vector ŵj of size (d + 1) to the aggregator in addition to the
cardinality of the dataset at each site |Dj| = sj, a scalar. Once
all the information is aggregated, a weighted average of the local
ŵjs with the weights being sj performed to get the global weight
vector ŵ. Assuming sj > d and that the normal equation is used
to get the local weight vectors ŵjs, the computational complexity
is O(d2sj) whereas the computational complexity of calculating
the weighted average at the AGG isO(d).

In the case of decentralized regression with normal equation,
the first step (at each site) includes the calculation of x⊤x (at
O(d2sj)) and x⊤y (at O(dsj)) with an overall complexity of

O(d2sj). A total information of
∑S

j=1{sj× [(d+ 1)2+ (d+ 1)]} is

communicated to the AGG where they are aggregated (as shown
in Algorithm 2) to obtain the global weight vector ŵ atO(d3).

Contrary to where the computation starts in the case of
singleshot or DRNE, the computation/communication starts
from the AGG in multishot regression. The AGG initializes the
ŵ and communicates the (d + 1)-sized vector to each of the S
sites. At every iteration, each site j then calculates the gradient
vector (O(d)) and sends it back to the AGG which again means
the communication S × (d + 1) accounting for S sites. At the
AGG, steps 7 though 12 (refer to Algorithm 3) are performed at
an order of O(d) which are again sent back to each of the local
sites, implying a communication of S × d, for the next iteration
of the gradient descent.

The above treatment of communication bandwidth and
complexity is subject to certain considerations viz., the number of
covariates, the number of samples at each site, the optimization
scheme used in the calculation of x⊤x, the stopping criterion, etc.

2.2. Decentralized dFNC
In this section, we briefly present our initial work toward
performing dynamic functional network connectivity (dFNC)
analysis in a decentralized framework. As mentioned earlier,
dFNC is a multi-step pipeline finds common states in subject
fMRI time-courses (TCs), and is often done by clustering a

sliding window over subject time-courses, as is done (e.g., Allen
et al., 2014; Damaraju et al., 2014). Thus, we present methods
for decentralized spatial ICA along with decentralized K-Means
clustering. Our presentation here is by no means a rigorous take
on dFNC which we save for future work.

2.2.1. Decentralized Group Spatial ICA
Following preprocessing, the first step in the dFNC pipeline
includes group ICA (Calhoun et al., 2001). Since we are dealing
with fMRI data, suppose that we now have dataX ∈ R

d×N , where
d is the voxel-space of the data (in brain voxels), and N is the
total number of time-points across all subjects in the network. In
linear spatial ICA, we model each individual subject as a mixture
of r many statistically independent spatial maps, A ∈ R

d×r , and
their time-courses, S ∈ R

r×Ni , where Ni is the length of the time-
course belonging to subject i. In the decentralized case, we can
model the global data set X as the column-wise concatenation of
s sites in the temporal dimension, where each site is modeled as a
set of subjects concatenated in the temporal dimension:

X = [A1S1 A2S2 · · · AsSs] ∈ R
d×N .

Our goal is to learn a global unmixing matrix, W, such
that XW ≈ Â, where Â ∈ R

d×r is a set of unmixed
spatially independent components. To this end, we perform a
decentralized group independent component analysis (dgICA).
Ourmethod consists first of the two-stageGlobalPCA procedure
utilized in Baker et al. (2015). In this procedure, each site first
performs subject-specific LocalPCA dimension-reduction and
whitening to a common k principal components in the temporal
dimension. A decentralized, second stage, then produces a global
set of r spatial eigenvectors, V ∈ R

r×d. As outlined in Baker
et al. (2015), this second stage has sites pass locally-reduced
eigenvectors to other sites in a peer-to-peer scheme, where
upon receiving a set of eigenvectors, a site then stacks them
in the column dimension, and performs a further reduction of
the stacked matrix, which is then passed to the next peer in
the network. This process iterates until the global eigenvectors
reach some aggregator (AGG), or otherwise terminal site in the
network.

Algorithm 6 Decentralized group ICA algorithm (dgICA)

Require: s sites with data {Xi ∈ R
d×Ni : i = 1, 2, . . . , s}, intended

final rank r, local site rank k2 ≥ r, local subject rank k1.
1: for all sites i = 1, 2, . . . , s do
2: Perform LocalPCA (Baker et al., 2015) on each site→

k1 eigen-vectors for each subject.
3: Perform LocalPCA (Baker et al., 2015) on concatenated

subjects→ k2 eigenvectors at each site.
4: Reduce local data set to Xi,red ∈ R

d×k2

5: end for

6: Perform GlobalPCA (Baker et al., 2015) to obtain r global
eigenvectors, V, at the aggregator.

7: On the aggregator, perform ICA to obtain global unmixing
matrix,W.
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The aggregator site then performs whitening on these
resulting eigenvectors, and runs a local ICA algorithm, such
as infomax ICA (Bell and Sejnowski, 1995), to produce the
spatial unmixing matrix, W. The global spatial eigenvectors,
V, are then unmixed to produce Â by computing Â ≈ VW,
which is shared across the decentralized network. Each site then
uses this unmixing matrix to produce individual time-courses
for each i-th subject by computing Ai ≈ XT

i S. Each site can
then perform spatio-temporal regression back reconstruction
approach (Calhoun et al., 2001; Erhardt et al., 2011) to produce
subject-specific spatial maps.

2.2.2. Decentralized Clustering
In order to perform dFNC in a decentralized paradigm, we
first require a notion of decentralized clustering. Following
the precedent of previous work in dFNC, we focus first on
decentralized K-Means optimization, for which there exist a
number of pre-established methods for decentralization. A
number of methods utilize some manner of weighted centroid
averaging, where each site in the network broadcasts updated
centroids to an aggregator node which then computes themerged
centroids, and rebroadcasts them to the local sites (Forman and
Zhang, 2000; Dhillon andModha, 2000; Jagannathan andWright,
2005), though completely peer-to-peer approaches have also been
proposed (Datta et al., 2006, 2009), as well as methods robust to
asynchronous updates (Di Fatta et al., 2013). Though we have
not found any methods which do this, methods which compute
K-Means via gradient descent (Bottou, 2010) are also amenable
to decentralization (Yuan et al., 2016). For simplicity’s sake, we
take the approach of centroid-averaging outlined in Dhillon and
Modha (2000), and leave rigorous presentation and comparison
of the remaining methods as future work.

To perform clustering for distributed dFNC, we first have
each site separate its subjects into sliding-window time-courses,
where the window length is fixed across the decentralized
network. Additionally, initial clustering was performed on a
subset of windows from each subject, corresponding to windows
of maximal variability in correlation across component pairs. To
obtain these exemplars, each site computes variance of dynamic

Algorithm 7 Decentralized dFNC algorithm (ddFNC)

Require: s sites with data {Xi ∈ R
d×Ni : i = 1, 2, . . . , s}, win-size

t, number of clusters k.
1: dgICA→W, global unmixing matrix, broadcast to sites.
2: for all sites = i = 1, 2, . . . , s do
3: Back-reconstruct subject TCs
4: Using sliding window of size t, obtain r × r covariance

matrices.
5: Obtain exemplar covariance matrices (Damaraju et al.,

2014).
6: end for

7: Run K-Means on exemplar covariance matrices to obtain k
initial centroids, C0.

8: Run K-Means with initial clusters C0 to obtain k centroids C,
and clustering assignment for each instance, L.

connectivity across all pairs of components at each window.
We then select windows corresponding to local maxima in this
variance time-course. This resulted in an average of 8 exemplar
windows per subject. We then perform decentralized K-Means
on the exemplars to obtain a set of centroids, which are shared
across the decentralized network, which we feed into a second
stage of K-Means clustering.

For the second stage of decentralized clustering, at each
iteration, each site computes updated centroids according to
Dhillon and Modha (2000), which corresponds to a local K-
Means update. These local centroids are then sent to the
aggregator node, which computes the weighted average of
these updated centroids, and re-broadcasts the updated global
centroids until convergence.

2.2.3. Bandwidth and Complexity
To compute the communication and complexity for ddFNC, we
separately analyse the novel component algorithms of dgICA and
dK-Means.

For decentralized group ICA, the communication of the
algorithm is closely related to the communication ofGlobalPCA.
In the GlobalPCA algorithm given in Baker et al. (2015),
each site communicates a d × r matrix of eigenvectors to
the subsequent site until the aggregator is reached. After the
aggregator performs ICA to obtain the global unmixing matrix,
W, this matrix is broadcast to all other sites in the network.
Thus, for a single, non-aggregator site, the total communication
for dgICA is exactly d × r + r2. At the aggregator, the total
communication is exactly d × r + r2 × s if the unmixing matrix
is broadcast directly to each node. Of course, this cost could be
mitigated by following a peer to peer communication scheme,
and having other non-aggregator sites broadcast the unmixing
matrix as well.

Next, we can compute the overall complexity of dgICA as the
total complexity of local site operations. Consider an individual
site, i, with m subjects, where the concatenated matrix is given
as Xi ∈ R

d×Ni . In general, the complexity of SVD on the
Ni×Ni covariance matrix isO(N3

i ), though this can be improved
upon by using iterative methods, such as the MATLAB svds
function. Thus, the complexity for the two-stage LocalPCA

computation on one site is O(2N3
i ). The per-site complexity for

GlobalPCAis given as the complexity of a SVD computed on a
d×d covariance matrix, which is created by concatenating the k2
eigenvectors from the previous site; i.e., the per-site complexity
forGlobalPCA isO(d3). Finally, the complexity of ICA is exactly
equal to the number of ICA iterations, J , which depends heavily
on the choice of ICA algorithm, and hyper-parameter selection
(see Bell and Sejnowski, 1995 for more details on the complexity
of Infomax, for example). Thus, the total per-site complexity for
dgICA is O(N3

i + d3i ) for non-aggregator nodes, and O(N3
i +

d3i +J ) on the aggregator node. The overall runtime of dgICA is
thus dependent on the computational resources available at each
site, as well as the computational resources and ICA parameters
chosen by the aggregator site.

Prior to performing K-Means, each site i computes Ni,j − w
windowed time-courses of length w on each subject j, computing
the rank r covariance matrix for those windows. Thus, if there are
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mi subjects at site i, the local complexity is O(mi(N − w)r3) for
this operation. No inter-site communication occurs during this
process.

For decentralized K-Means, the communication between sites
depends on the number of “K-Means Iterations,” J , i.e., the
number of iterations required for the centroids to stabilize. J
depends heavily on the initial centroids, the distance metric used,
the distribution of the global data set, and other factors which
make it difficult to compute exactly for arbitrary data. In each
iteration of decentralized K-Means, we communicate k many

centroids of size Rr2 , for an average communication of r2 · k · J
from the sites to the aggregator. The aggregator, then, performs
a total of r2 · k · J · s communication (Dhillon and Modha,
2000), which again, could be mitigated by passing centroids to
intermediate sites, provided those sites can be trusted with the
centroid information.

The time complexity of decentralized K-Means is described
in Dhillon and Modha (2000). At each site, the distance
and centroid recalculation computations come out to per-site
complexity of O((3kr2 + Mik + Mir

2 + kr2) · J ) (Dhillon and
Modha, 2000), where Mi is the number of instances at site i.
The total number of computations consists of the sum of these
site-wise complexities, and the centroid-averaging step with a
complexity ofO(kr2), for a total ofO((3kr2+Mk+Mr2+kr2)·J ),
whereM is the total number of data instances in the decentralized
network.

Since dK-Means is computed twice for full ddFNC, once on
the exemplars, and once on the global set of subject windows, the
complete complexity of the clustering stage of the algorithm is
given as the dK-Means complexity for M =

∑

Ei added to the
dK-Means complexity for M =

∑

mi, i.e., O((3kr2 + (
∑

Ei +
∑

mi)(k+ r2)+ kr2) · J + kr2).
The overall site-wise complexity and communication for

ddFNC is just the sum of the site-wise communication and
complexities for each of the stages described here. In the
paradigm described here, the communication and complexity
on the aggregator is generally more demanding than that on
the individual sites, which makes sense for cases where the
aggregator has sufficient and reliable network and hardware
resources. In cases where this is not necessarily true, some
of the aggregation tasks can be distributed to other sites in
the network, thus reducing communication and complexity on
the final aggregator. In the dgICA algorithm, performing ICA
on the aggregator may become a bottleneck if the aggregator
does not have sufficient computational resources to perform a
standard run of ICA; however, this problem could be mitigated
by performing a hardware check on sites in the consortium,
and assigning the role of aggregator dynamically based on
availability of computational resources. For more discussion of
the particularities of network communication and other issues
which may arise in decentralized frameworks like the one used
for ddFNC, see Plis et al. (2016).

3. DATA

3.1. Structural MRI for Decentralized VBM
As part of validating the proof-of-concept, we applied
decentralized VBM to brain structure data collected on

chronic schizophrenic patients and healthy controls. Specifically,
the data comes from the Mind Clinical Imaging Consortium
(MCIC) collection- a publicly accessible, on-line data repository
containing curated anatomical and functional MRI, in addition
to other data, collected from individuals with and without
a schizophrenia spectrum disorder (Gollub et al., 2013) and
available via the COINS data exchange https://coins.mrn.org
(Scott et al., 2011).

Although more information about the MCIC can be found in
Gollub et al. (2013), here we will report numbers for the final
data used in this study as some subjects were excluded during the
preprocessing phase. The final cohort for whom data are available
includes 146 patients and 160 controls with site distribution
as follows: Site B (IA) 40 patients/67 controls; Site D (MGH)
32/23; Site C (UMN) 32/26; Site A (UNM) 42/44, respectively.
All subjects provided informed consent to participate in the study
that was approved by the human research committees at each of
the sites.

Briefly, T1-weighted structural MRI (sMRI) images were
acquired with the following scan parameters: TR = 2, 530ms for
3 T, TR = 12ms for 1.5 T; TE = 3.79ms for 3 T, TE = 4.76ms for
1.5 T; FA = 7◦ for 3 T, FA = 20◦ for 1.5 T; TI = 1100ms for 3 T;
Bandwidth = 181 for 3 T, Bandwidth = 110 for 1.5 T; voxelsize =
0.625× 0.625mm; slice thickness 1.5 mm; FOV = 16− 18cm.

The T1-weighted sMRI data were preprocessed using
the Statistical Parametric Mapping software using unified
segmentation (Ashburner and Friston, 2005), in which image
registration, bias correction and tissue classification were
performed using a single integrated algorithm resulting in
individual brains segmented into gray matter, white matter and
cerebrospinal fluid and nonlinearly warped to the Montreal
Neurological Institute (MNI) standard space. The resulting gray
matter concentration (GMC) images were re-sliced to 2 × 2 ×
2mm, resulting in 91 × 109 × 91 voxels. Although one can
obtain both modulated (Jacobian corrected) and unmodulated
gray matter segmentations, in this study, we use unmodulated
GMCmaps to test our regression models.

To test the decentralized regression on the MCIC data
described in the previous paragraph, we regress the age,
diagnosis, gender and the site covariates on the voxel intensities
(∼600,000 voxels). All the decentralized computations discussed
here have been performed on a single machine.

3.2. Functional MRI for dFNC
To evaluate ddFNC , we utilize imaging data from Damaraju
et al. (2014) collected from 163 healthy controls (117 males, 46
females; mean age: 36.9 years) and 151 age- and gender matched
patients with schizophrenia (114 males, 37 females; mean age:
37.8 years), for a total of 314 subjects.

The scans were collected during an eyes closed resting fMRI
protocol at 7 different sites across United States and pass data
quality control (see Supplementary Material). Informed and
written consent was obtained from each participant prior to
scanning in accordance with the Internal Review Boards of
corresponding institutions (Keator et al., 2016). A total of 162
brain-volumes of echo planar imaging BOLD fMRI data were
collected with a temporal resolution of 2 s on 3-Tesla scanners.
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Imaging data for six of the seven sites was collected on a 3T
Siemens Tim Trio System and on a 3T General Electric Discovery
MR750 scanner at one site. Resting state fMRI scans were
acquired using a standard gradient-echo echo planar imaging
paradigm: FOV of 220 × 220 mm (64 × 64 matrix), TR = 2
s, TE = 30 ms, FA = 770, 162 volumes, 32 sequential ascending
axial slices of 4 mm thickness and 1 mm skip. Subjects had their
eyes closed during the resting state scan. Data preprocessing for
dgICA was performed according to the preprocessing steps in
Damaraju et al. (2014).

3.3. ddFNC Experimental Parameters
We verify that ddFNC can generate sensible dFNC clusters by
replicating the centroids produced in Damaraju et al. (2014). We
run both pooled and decentralized versions of our algorithm,
and compare our results directly with the results provided by
the authors of Damaraju et al. (2014). We thus closely follow the
experimental procedure in Damaraju et al. (2014), with some of
the additional post-processing omitted for simplicity. To evaluate

the success of our pipeline, we run a simple experiment where
we implement the ddFNC pipeline end-to-end on the data,
simulating 314 subjects being evenly shared over 2 decentralized
sites.

We set a window-length of 22 time-points (44 s), for a total
of 140 windows per subject. For dgICA, we first estimate 120
subject-specific principal components locally, and reduce each
subject to 120 points in the temporal dimension. Subjects are
then concatenated temporally on each site, and we use the
GlobalPCA algorithm in Baker et al. (2015) to estimate 100

TABLE 1 | Correlation between SSE from pooled, single-shot and multi-shot

regression.

Pooled Single-shot Multi-shot

Pooled 1.000000 0.992905 1.000000

Single-shot 0.992905 1.000000 0.992905

Multi-shot 1.000000 0.992905 1.000000

FIGURE 1 | Pairwise plot of Sum Square of Errors (SSE) from pooled, single-shot and multi-shot regression. Although the distribution plot looks similar across the three

regressions, the pooled regression vs. multi-shot regression scatter plot demonstrates how identical they are to each other.The scatter plot of pooled regression vs.

single-shot regression demonstrates that the SSE values obtained from singles-shot regression are on the higher side compared to the values from pooled regression.
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spatial components, and perform whitening. We then use local
infomax ICA (Bell and Sejnowski, 1995) on the aggregator to
estimate the unmixing matrix W, and estimate 100 spatially
independent components, Â. We then broadcast Â back to the
local sites, and each site computes subject-specific time-courses.

After spatial ICA, we have each site perform a set of
additional post-processing steps prior to decentralized dFNC.
First, we select 47 components from the initial 100, by
computing components which are most highly correlated with
the components from Damaraju et al. (2014). We then have each
site drop the first 2 points from each subject, regress subject
head movement parameters with 6 rigid body estimates, their
derivatives and squares (total of 24 parameters). Additionally,
any spikes identified are interpolated using 3rd order spline
fits to good neighboring data, where spikes are defined as any
points exceeding mean (FD) + 2.5 *std(FD) , where FD is
framewise displacement [interpolating 0 to 9 points (mean, sd:
3, 1.76)].

For clustering, we forgo a separate elbow-criterion estimation,
and use the optimal number of clusters from Damaraju et al.
(2014), setting k = 5. For the exemplar stage of clustering,
we evaluate 200 runs where we initialize centroids uniformly
randomly from local data, and then run dK-Means using the
cluster averaging strategy in Dhillon and Modha (2000). For
our distance measure, we use scikit-learn (Pedregosa et al.,
2011) to compute the correlation distance between covariance
matrices following the methods in Damaraju et al. (2014). To
keep our implementation simple, unlike Damaraju et al. (2014),
we do not utilize graphical LASSO to estimate the covariance
matrix, and thus do not optimize for any regularization

parameters. Additionally, we do not perform additional Fisher-
Z transformations or perform additional regularization using a
previously computed static dFNC result. Future implementations
may also utilize a decentralized static functional network
connectivity (sFNC) algorithm as preprocessing, as is done for
the pooled case in Damaraju et al. (2014). Finally, for the second
stage of dK-Means, we initialize using the centroids from the
run with the highest silhouette score, computed using the scikit-
learn python toolbox (Pedregosa et al., 2011), again running dK-
Means to convergence. After computing the centroids, we use
the correlation distance and the Hungarian matching algorithm
(Kuhn, 1955) to match both plotted spatial components from
dgICA and the resulting centroids from dK-Means.

4. RESULTS

4.1. Decentralized VBM Results
For starters, in order to compare the efficacy of each regression
(single-shot and multi-shot) against the pooled case, we present
a simple pairwise plot of the SSE of the regression performed on
every voxel, Figure 1. In mathematical terms, the SSE represents
lowest objective function value that could be attained from the
regression model. It can be seen from Figure 1 that the SSE
from multi-shot and pooled/centralized regression lie perfectly
along a diagonal indicating the parameters obtained from them
are identical. This can also be verified from Table 1 showing the
correlation between the different SSEs. Please note that results
from the decentralized regression with normal equation were not
presented as it has been mathematically shown to be equivalent
to that of a pooled regression.

FIGURE 2 | Violin plot of Sum Square of Error differences between every pair of regression. The plot of differences in SSE from pooled regression and multi-shot

regression (P-MS) centered around 0 demonstrates how identical the results from the two regressions are. On the other hand, the SSE values from single-shot

regression are higher compared to those from the pooled regression.
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It can be seen that the correlation between SSE from the
centralized regression and multi-shot is 1. On the other hand,
it can also be noticed that the SSE correlations between single-
shot and pooled or single-shot and multi-shot are slightly
lower than perfect correlation. The single-shot approach can be
considered to be similar to a meta-analysis, whereas the multi-
shot approach is basically a mega-analysis (i.e., equivalent to the
pooled analysis).

Figure 2 shows a violin (distribution) plot of the difference
in SSE from every pair of regression. Evidently, the differences
in SSE between pooled and multi-shot regression are centered
around 0. To reinforce our notion that the multi-shot is superior
to single-shot we take a look at the R2 values from the different
regressions and compare. It can be seen from Figure 3 that the
R2 values from multi-shot and pooled regression align perfectly
along a diagonal (correlation= 1, refer toTable 2) or have exactly

the same distribution, whereas those from single-shot are all over
the place.

As noted earlier, in addition to evaluating the regression
model parameters, researchers will also be interested in
understanding the statistical significance of the various
parameter estimates. Figures 4–6 show the statistical significance
of each covariate (age, diagnosis and gender), from both

TABLE 2 | Correlation between R2 from pooled, single-shot and multi-shot

regression.

Pooled Single-shot Multi-shot

Pooled 1.000000 0.906662 1.000000

Single-shot 0.906662 1.000000 0.906662

Multi-shot 1.000000 0.906662 1.000000

FIGURE 3 | Pairwise scatter plots of Coefficient of Determination R2 from the three types of regression. It can be seen again that the R2 values for the regressions

from multi-shot regression and pooled regression are exactly equal. The R2 values from single-shot regression are less than their corresponding values from pooled

regression or multi-shot regression because the model being fit in single-shot has fewer covariates (Note, one of the limitations of the single-shot is that the site

specific covariates could not be included as it introduces collinearity).
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FIGURE 4 | Rendered images of voxel-wise significance values (−log10p-value × sign(t)) for the covariate “Age” from pooled regression (Top) and single-shot

regression (Center), and multi-shot regression (Bottom) overlaid on MNI average template. One could see that the regions with expected gray matter decrease as

age increases are similar from all kinds of regression. Although the single-shot regression uses fewer covariates, the similarity of the rendered images with those of

pooled regression or multi-shot regression indicate the relative weight or orientation of the corresponding β coefficient will be similar to those from pooled/multi-shot

regression.

FIGURE 5 | Rendered images of voxel-wise significance values (−log10p-value × sign(t)) for the covariate “Diagnosis” from pooled regression (Top) and single-shot

regression (Center) and multi-shot regression (Bottom) overlaid on MNI average template. Regardless of the type of regression performed, the images indicate that

in the medial frontal and bilateral temporal lobe/insula there is a significant gray matter density reduction for schizophrenic patients compared to the same regions of

the healthy subjects.
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FIGURE 6 | Rendered images of voxel-wise significance values (−log10p-value × sign(t)) for the covariate “Gender” from pooled regression (Top) and single-shot

regression (Center) and multi-shot regression (Bottom) overlaid on MNI average template. It can be seen from all the three rendered images that there is a significant

amount of gray matter reduction in the sub-cortical regions for males. Since we are using unmodulated gray matter maps, these sex differences could be due to

changes in brain volumes.

FIGURE 7 | Flowchart of the ddFNC procedure e.g., with 2 sites. To perform dgICA, sites first locally compute subject-specific LocalPCA to reduce the temporal

dimension, and then use the GlobalPCA procedure from Baker et al. (2015) to compute global spatial eigenvectors, which are then sent to the aggregator. The

aggregator then performs ICA on the global spatial eigenvectors, using InfoMax ICA (Bell and Sejnowski, 1995) for example, and passes the resulting spatial

components back to local sites. The dK-Means procedure then iteratively computes global centroids using the procedure outlined in Dhillon and Modha (2000), first

computing centroids from subject exemplar dFNC windows, and then using these centroids to initialize clustering over all subject windows.
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centralized and decentralized regressions performed against
each voxel, plotted on an MNI brain template. Figure 4 shows
the brain images with the −(log10p-val × sign(t))-values for
the weight parameter corresponding to “Age.” It is notable
to see that the results from the multi-shot regression have a
perfect correlation to those from the pooled version. Moreover,
the observations show the expected decrease in gray matter
concentration as age increases. Figures 5, 6 show the rendered
images for −log10p-values for the “Diagnosis” and “Gender”
covariate, respectively.

4.2. ddFNC Results
A summary of the complete steps in the decentralized dFNC
pipeline is given in Figure 7. In Figure 8, we plot some examples
of the components estimated from decentralized spatial ICA
in comparison with the spatial components from Damaraju
et al. (2014), after performing Hungarian matching between
the estimated spatial maps. We also plot the correlation of the
components from our ICA implementation in comparison to the

components from Damaraju et al. (2014). Indeed, the estimated
components are highly correlated with the results fromDamaraju
et al. (2014), for all 100 estimated components, as well for the 47
selected neurological components from Damaraju et al. (2014),
indicating that dgICA is able to produce results comparable to
the pooled case. We include additional spatial maps for all 47
estimated spatial components in the Supplementary Material.

In Figure 9, we plot the centroids from Damaraju et al.
(2014) (Figure 9A), as well as the centroids estimated using
decentralized dFNC (Figure 9B). Indeed, the centroids found
using ddFNC prove similar to the centroids found in Damaraju
et al. (2014), with centroids 2 and 3 being the closest matches
under correlation distance.

5. DISCUSSION

The results described in the previous section demonstrate the
fidelity of decentralized regression and decentralized dynamic
function network connectivity in analyzing neuroimaging data.

FIGURE 8 | (A,B) Illustrate examples of matched spatial maps from dgICA and pooled ICA. (C,D) Show the correlation of the components between pooled spatial

ICA and dgICA after hungarian matching. (C) Shows correlation between all 100 components, and (D) Shows correlation between the 47 neurological components

selected in Damaraju et al. (2014).
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FIGURE 9 | The k = 5 centroids for pooled dFNC from Damaraju et al. (2014) (A), and the hungarian-matched centroids from ddFNC (B).

Although single-shot regression is simple and easy to
implement, it limits our ability to incorporate site covariates
and thus might not be extremely helpful. The decentralized
regression with normal equation and multi-shot regression are
superior to single-shot regression because not only do they
allow incorporating site related variables but also give exact
results as the pooled regression. The linearity and convexity of
the regression objective function made this possible and thus
are an excellent alternative to perform regression on multi-site
datasets.

In terms of the regression objective function, either the sum
of squared errors or mean sum of squared errors can be used in
practice. However, it’s mathematically convenient to use sum of
squared errors which subsequently entails (at the AGG) a simple
addition of the gradients (O(1)) instead of a weighted average
of the gradients (O(n)). Added to that, we also showed how the
sample size at the local sites has no bearing on the final results.

On a more practical note, the need for multi-shot regression
might not arise often in a neuroimaging setting where the
number of covariates is usally small. In such cases, the
decentralized regression with normal equation will suffice.
However, in decentralized settings where the number of
covariates is usually large (machine learning/big data) the multi-
shot regression comes to the fore. From a computational time
standpoint, and as discussed in the computational complexity
section, it should be obvious that the multi-shot regression takes
more time to complete than the decentralized regression with
normal equation as it involves iteratively passing the gradients
between the local nodes and theAGG. It is worthmentioning that
although the decentralized regression algorithms demonstrated
here pertain to a simple linear regression model, these algorithms
can easily be extended to more complex models with polynomial
terms or interaction terms as well as to ridge regression, lasso
regression, and elastic net regression.

Regarding ddFNC, we plan on performing a more robust
analysis, going into the future, as a stand-alone algorithm,

particularly with respect to different variations on the dK-Means

optimization and initialization, or with differing versions of ICA
on the aggregator (AGG) node, such as fastICA (Koldovský
et al., 2006), Entropy Bound Minimization (Li and Adali,
2010), and others. Additionally, the possibility of performing
a decentralized static FNC either as a preprocessing step to
ddFNC or a separate analysis is attractive. One other avenue
worth exploring with ddFNC is the flow of information across
the decentralized network. In particular, since the GlobalPCA

step in dgICA already makes the procedure partially peer-to-
peer, it makes sense to explore adding this functionality to
the dK-Means methods to preserve this peer-to-peer structure.
Finally, we plan to evaluate privacy-sensitive versions of ddFNC,
utilizing differential-privacy or other privacy measures as a way
to perform these analyses with some assurance of per-subject
privacy in the decentralized network.

Finally, we note that the decentralization of algorithms in
a neuroimaging setting emphasizes the importance of analysis
on data present at multiple sites, the decentralization discussed
herewith is no different from other decentralized algorithms
discussed elsewhere in literature. The AGG is not really a master
node per se but in fact one of the local sites itself. The term AGG
was introduced to separate all the other local sites from that site
where the results are accumulated.

6. CONCLUSION

In this paper, we presented a simple case study of how
voxel-based morphometry and dynamic functional network
connectivity analysis can be performed onmulti-site data without
the need for pooling data at a central site. The study shows
that both the decentralized voxel-based morphometry as well
as the decentralized dynamic functional network connectivity
yield results that are comparable to its pooled counterparts
guaranteeing a virtual pooled analysis effect by a chain of
computation and communication process. Other advantages
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of such a decentralized platform include data privacy and
support for large data. In conclusion, the results presented here
strongly encourage the use of decentralized algorithms in large
neuroimaging studies over systems that are optimized for large-
scale centralized data processing.
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