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Brain disorders, such as Autism Spectrum Disorder (ASD), alter brain functional (from

fMRI) and structural (from diffusion MRI) connectivities at multiple levels and in varying

degrees. While unraveling such alterations have been the focus of a large number

of studies, morphological brain connectivity has been out of the research scope. In

particular, shape-to-shape relationships across brain regions of interest (ROIs) were

rarely investigated. As such, the use of networks based on morphological brain data in

neurological disorder diagnosis, while leveraging the advent of machine learning, could

complement our knowledge on brain wiring alterations in unprecedented ways. In this

paper, we use conventional T1-weighted MRI to define morphological brain networks

(MBNs), each quantifying shape relationship between different cortical regions for a

specific cortical attribute at both low-order and high-order levels. While typical brain

connectomes investigate the relationship between two ROIs, we propose high-order

MBN which better captures brain complex interactions by modeling the morphological

relationship between pairs of ROIs. For ASD identification, we present a connectomic

manifold learning framework, which learns multiple kernels to estimate a similarity

measure between ASD and normal controls (NC) connectional features, to perform

dimensionality reduction for clustering ASD and NC subjects. We benchmark our

ASD identification method against both supervised and unsupervised state-of-the-art

methods, while depicting the most discriminative high- and low-order relationships

between morphological regions in the left and right hemispheres.

Keywords: morphological brain network, high-order brain connectivity, multi-kernel learning, classification,

diagnosis, Autism Spectrum Disorder, hierarchical ensemble classifier, morphological connectional biomarkers

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by varied
impairments in cognitive function, including difficulties with social communication and
interaction, language, and restricted, repetitive behaviors (Lord et al., 2000; Landa, 2008).
Recent technological and methodological advances in neuroimaging tools have largely aided
in understanding how ASD alters the brain, in particular on a connectional level where
the connectivity between brain regions of interest (ROIs) is estimated. However, due to its
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heterogeneity (Lenroot and Yeung, 2013; Masi et al., 2017),
depicting the core connectional patterns of ASD disorder is a
challenging task. The two most commonly used representations
of brain connectivity in the neuroscience literature are functional
and structural networks, estimated from functional and
diffusion-weighted Magnetic Resonance Imaging (MRI),
respectively.

On a functional connectivity level, a lot of effort has been put
to discover the connectional fingerprint of ASD disorder across
its wide spectrum. Using the technique of graph theory (Bullmore
and Bassett, 2011; Rudie et al., 2013) showed that differences
in functional connectivity (FC) of ASD subjects are associated
with reductions in modularity and shorter characteristic path
lengths while the structural networks displayed lower levels
of white matter. Additionally, Sato et al. (2016) identified a
set of spatially distributed regions that were disrupted in their
modularity compared to controls based on a clustering entropy
with graph modularity analysis on a resting state fMRI data.
Tsiaras et al. (2011) used a well-established graphmeasures which
served as features in classifying controls and young adults with
ASD. Pillai et al. (2018) used the electroencephalography (EEG)
and a movement-based paradigm to examine the FC changes
in ASD children while performing specific tasks. Anderson
et al. (2011) characterized a whole-brain functional connectivity
abnormalities in a data-driven fashion to identify the regions
showing greatest differences between individual subjects with
autism and developing controls. A similar work (Nielsen et al.,
2013) used also the whole-brain FC across sites to determine the
most informative patterns for predicting autism but compared to
a single site results, it exhibited poorer accuracy. Furthermore,
by generating the connectivity maps based on Granger causality,
Pollonini et al. (2010) indicated that functional patterns can
represent a valuable tool to separate between autistic and normal
groups. In addition to this, multiple studies have attempted to
explore the merits of dynamic connectivity features derived from
resting state fMRI in discriminating childhood autism (Price
et al., 2014; Zhu et al., 2016).

On a structural connectivity level (Sparks et al., 2002),
examined morphometric features of a large samples of
children with ASD and control groups to explore the specific
neuroanatomic substrates associated with this disorder. (Ecker
et al., 2010) approached a multiparameter classification based on
volumetric and geometric features to characterize the structural
patterns implicated in autistic adults. In another study (Ecker
et al., 2009), the predictive values of gray and white matter was
investigated using two different classifiers to compare the results.
Moreover, Ingalhalikar et al. (2010) learned an abnormality
classifier on structural features derived from Diffusion Tensor
Imaging (DTI) to quantify the degree of pathology among a
population of patients and normal controls. Additionally, a lot
of studies combined the functional and structural connectivity
networks for the aim of providing more biomarkers for ASD
identification (Sahyoun et al., 2010; Stigler et al., 2011; Rudie
et al., 2013).

Despite the wealth of research relying on the functional and
structural connectivity networks for brain disease diagnosis,
these brain connectional representations have a few limitations.

For instance, pairwise FC strength among brain regions can be
spurious and noisy due to the low signal-to-noise ratio induced
by non-neural noise. Moreover, fMRI measures during the scans
can be sensitive to a group of factors such as head motion and
physiological artifacts related to respiration and cardiac rhythm
(Buckner et al., 2013). On the other hand, fiber tractography
methods can produce largely variable and somewhat biased
structural brain networks (Jbabdi and Johansen-Berg, 2011).
Indeed, a recent study (Petrov et al., 2017) evaluated 35 methods
to generate structural connectomes and showed that how
variations in diffusion MRI pre-processing steps affect network
reliability and its ability to classify subjects remains opaque. With
the exception of the high-resolution diffusion imaging (HARDI)
and diffusion orientation distribution functions (ODFs) fiber
representation, which are memory and time consuming to
process, commonly used diffusion tensor imaging (DTI) can lead
to a loss of information in fiber pathways as it assumes a single
predominant orientation of fibers in the brain (Lanyon, 2012).
To circumvent the limitations of these modalities, we propose an
alternative brain network representation: a morphological brain
network (MBN) solely constructed from structural T1-w MRI.
The main idea is to build a network based on the morphology
of the cortical surface, where each network is associated with
a unique cortical attribute such as sulcal depth or cortical
thickness. Our conventional MBN is defined at a low-order level,
where the dissimilarity in shape between two brain regions is
quantified. However, recent functional MRI-based studies have
shown that ASD not only affects the relationship between two
ROIs, but also pairs of ROIs captured by high-order functional
brain connectivity (Zhao et al., 2018; Zhou et al., 2018). Other
works investigated the relationship between brain network views
using the multiplex architecture for dementia state identification
(Lisowska et al., 2017; Lisowska and Rekik, 2018; Mahjoub
et al., 2018). Inspired by these works which represent the brain
as a complex multi-order connectional system, we introduce
high-order morphological brain networks, which capture the
relationship between cortical attributes across pairs of ROIs, for
autism identification.

We also note that all aforementioned studies adopted
supervised techniques on human connectome for ASD/NC
classification (Ecker et al., 2009, 2010; Ingalhalikar et al.,
2010; Zhao et al., 2018; Zhou et al., 2018). However, while
the majority of supervised machine-learning techniques are
somewhat limited in terms of scalability as they require reliable
and accurate labeling of medical data, unsupervised learning
techniques can provide decision support for early intervention,
help develop data-driven guidelines for care plan management,
and help group patients by similar non-semantic features (i.e.,
latent representation of brain disorder group or subgroup), to
enable comparative effectiveness research (e.g., of medications)
(Wang et al., 2014). From a connectomic perspective, very few
studies applied unsupervised learning methods for brain disease
applications (Brown and Hamarneh, 2016). For instance, (Gao
et al., 2015) computed spectral graph clustering to identify
significant connectome modules for different brain disorder
groups [Alzheimer’s disease (AD) and Significant Memory
Concern (SMC)]. Another work (Chen et al., 2015) used a
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multi-view spectral clustering to group functional and structural
brain networks of traumatic brain injury (TBI) patients. On the
other hand, in distinguishing between autistic and healthy brains,
we identified only one paper (Sato et al., 2016) that adopted an
unsupervised learning where the author used a fuzzy spectral
clustering combined with entropy and graphmodularity analysis.
However, spectral clustering might fail to successfully group
datasets that contain different scales of size and density in their
structures (Nadler and Galun, 2006).

To overcome the previous limitations, we propose a high-
order morphological connectomic manifold learning framework
for ASD identification inspired by a novel unsupervised
data clustering method called single-cell interpretation via
multikernel learning (SIMLR) (Wang et al., 2017). Our choice
for leveraging this algorithm is motivated by: (1) SIMLR can
learn a similarity matrix from high-order networks by combining
multiple kernels which provides a better fit to the inherent
statistical distribution of the high-order data, (2) it is scalable
and separates subpopulations more accurately than conventional
methods (e.g., PCA Abdi and Williams, 2010 or t-SNE Maaten
and Hinton, 2008), and (3) it improves weak similarities between
samples through graph diffusion (Yang and Leskovec, 2010).

This paper further extends our seminal work (Soussia and
Rekik, 2017) by: (1) evaluating the proposed approach on a
larger dataset, (2) comparing against more advanced supervised
ensemble learning approaches to show the outperformance of
our unsupervised learning framework using multi-order brain
networks. More importantly, we identify the key low-order and
high-order morphological connectional features that distinguish
between ASD and NC subjects for each cortical hemisphere.

2. METHODS

In this section, we present the high-order connectomic manifold
learning for ASD identification using multiple kernels based on
SIMLR technique introduced in Wang et al. (2017). We denote
tensors by boldface Euler script letters, e.g., X . Matrices are
denoted by boldface capital letters, e.g.,X, and scalars are denoted
by lowercase letters, e.g., x. For easy reference and enhancing
the readability, we have summarized the major mathematical
notations in Table 1. Figure 1 displays the key steps for
constructing low-order and high-order morphological network
from a set of nv brain network views. Figures 1, 2 illustrate
the proposed pipeline for ASD/NC identification which consists
of three major steps: (1) connectional morphological feature
extraction, (2) subject-to-subject similarity matrix learning using
SIMLR, and (3) dimensionality reduction and clustering of our
features.

2.1. Low-Order Morphological Network
Construction (LON)
In line with the works of Lisowska et al. (2017), Lisowska
and Rekik (2018), and Mahjoub et al. (2018) which laid the
foundation for defining multi-view brain networks from cortical
morphology, we use T1-wMRI to define our low-order networks
as follows. For each subject s, we construct a brain tensor T

s

TABLE 1 | Major mathematical notations used in this paper.

Mathematical

notation

Definition

T
s brain tensor of subject s in R

nr×nr×nv

Xk brain network in R
nr×nr denoting the k-th frontal-view of tensor

T

ys
ij

vector of subject s including connectivity weights between the

i-th and j-th ROIs across all views

Hs high-order morphological brain network for subject s

hs high-order feature vector extracted from the upper triangular

part of Hs

Kl l-th learning kernel in R
n×n

n number of subjects

S similarity matrix in R
n×n for connectomic manifold learning

L latent matrix in R
n×c

c number of clusters

m number of kernels

w weighting vector of the kernels in R
m

In identity matrix in R
n×n

of size R
nr×nr×nv for each cortical hemisphere, where nr is the

number of cortical regions of interest (ROIs) and nv is the
number of the tensor frontal views. Basically, for each cortical
attribute (e.g., thickness), we construct a morphological brain
network that constitutes a frontal view in T

s. Let xki and xkj
denote the mean of a cortical attribute of the i-th ROI and the
j-th ROI in the k-th frontal view respectively. We then compute
the absolute difference between xki and xkj which depicts the
connectivity weight between ROIs i and j. An element in the i-th
row and j-th column of the k-th frontal view Xk is defined as:
Xk
ij = |xki − xkj |.

2.2. High-Order Morphological Network
Construction (HON)
As the low-order network is unable to reveal the intrinsic
similarities between more than a pair of ROIs, we propose to
construct a high-order morphological network based on Pearson
correlation to detect more complex interaction patterns between
multiple brain regions. In addition to maintaining the pairwise
relationship between ROIs in the same morphological view,
the morphological HON underlines the relationship between
ROIs across different views. Let ysij denote the vector of subject
s including connectivity weights between the i-th and j-th
ROIs across all views. Each row in the high-order network Hs

represents a pair of ROIs (i, j) and each column denotes a pair of
ROIs (p, q). For a subject s, an element in Hs is defined using the
Pearson’s correlation coefficient asHs

ij,pq = corr(ysij, y
s
pq).We note

that the entriesHs
ij,pq of theHONmatrix indicate the connectivity

strength between ROIS (i, j) and (p, q). Thus, it underlines the
higher order relationship between multiple ROIs (Figure 1).

2.3. Feature Extraction
For each subject, features are extracted in a naive way.
Due to their symmetry, we concatenate the upper triangle
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FIGURE 1 | High-order morphological network construction for subject s. High-order morphological network construction using multiple brain networks, each

measuring a unique cortical attribute (e.g., thickness) on the cortical surface. These are stacked together to form a morphological brain tensor T s for subject s.

FIGURE 2 | Illustration of the proposed high-order connectomic manifold learning for autistic brain state identification. Given the high-order feature matrix of all

subjects, we used SIMLR (Wang et al., 2017) to learn proper weights for multiple kernels, which measure different distances between subjects. Next, we use the

learned kernels to construct a symmetric similarity matrix S between subjects. SIMLR imposes a low-rank constraint on S such that different populations of the input

data will be embedded into independent block-diagonal structure that clusters similar samples. This outputs a latent data representation in a low-dimensional space,

which is inputted to a clustering algorithm. Each point in the 2D scatter plot represents an ASD or NC subject, and the corresponding colors represent the true labels

in each cluster.

elements of the HON matrix for subject s into a long
feature vector hs. As for the LON, we simply concatenate
the extracted feature vector from each network view. The
weights on the diagonal are set to zero to avoid self-
connectedness.

2.4. Unsupervised Manifold Learning Using
High-Order Morphological Brain Networks
In this section, we briefly present the framework introduced in
Wang et al. (2017) and how we extended it to our aim. The
main idea of SIMLR is to learn a pairwise similarity matrix of
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size n × n from an input matrix of size n × d where n is the
number of subjects and d is the dimension of their associated
feature vectors. This allows to learn the connectomic manifold
where all HON features {h1, . . . , hn} are nested. Instead of using
one predefined distance metric which may fail to capture the
nonlinear relationship in the data, we use multiple Gaussian
kernels with learned weights to better explore in depth the
similarity patterns among ASD and NC HONs. In other words,
adopting multiple kernels allows to better fit the true underlying
statistical distribution of the input matrix of high-order features.
Additionally, constraints are imposed on kernel weights to avoid
a single kernel selection (Wang et al., 2017). The Gaussian

kernel is expressed as follows: K(hi, hj) = 1
ǫij
√
2π

e
(− |hi−hj |2

2ǫ2ij
)
,

where hi and hj denote the feature vectors of the i-th and j-th
subjects respectively and ǫij is defined as: ǫij = σ (µi + µj)/2,

where σ is a tuning parameter and µi =
∑

l∈KNN(hi) |h
i−hj|

k
,

where KNN(hi) represents the top k neighboring subjects of
subject i. The computed kernels are then averaged to further
learn the similarity matrix S through an optimization framework
formulated as follows:

min
S,L,w

∑

i,j

− wlKl(h
i, hj)Sij + β||S||2F + γ tr(LT(In − S)L)

+ρ
∑

l

wllogwl (1)

Subject to:
∑

l wl = 1, wl ≥ 0, LTL = Ic,
∑

j Sij = 1, and Sij ≥ 0
for all (i, j), where:

1.
∑

i,j −wlKl(h
i, hj)Sij refers to the relation between the

similarity and the kernel distance with weightswl between two
subjects. The learned similarity should be small if the distance
between a pair of subjects is large.

2. β||S||2F denotes a regularization term that avoids over-fitting
the model to the data.

3. γ tr(LT(In − S)L): L is the latent matrix of size n × c where n
is the number of subjects and c is the number of clusters. The
matrix (In − S) denotes the graph Laplacian.

4. ρ
∑

l wllogwl imposes constraints on the kernel weights to
avoid selection of a single kernel.

An alternating convex optimization is adopted where each
variable is optimized while fixing the other variables until
convergence (Wang et al., 2017). Once, the similarity matrix
S is obtained, a dimensionality reduction is performed on S

using t-SNE (Maaten and Hinton, 2008). In other words, the
data is projected onto a lower dimension that preserves the
similarity depicted in S resulting in an n × c latent matrix L. For
visualization, the same algorithm is used to create an embedding
of S in a 2D space. A K-means clustering is then applied to
the latent matrix L to cluster similar subjects and assess the
concordance with the true labels (Figure 1). It should be noted
that the true labels were only used in the form of distinct colors
to intuitively visualize the groups in (Figure 2).

2.5. Proposed Supervised Ensemble
Classification Methods
Previous research showed that supervised ensemble classifier
tend to be more accurate than the individual classifiers that make
them up (Džeroski and Ženko, 2004; Quan et al., 2016). There
are many advantages of the ensemble learning. First, when only a
small dataset is available for training, many different hypotheses
can give the same accuracy on training data. Ensemble might
alleviate this problem by taking an average of these hypotheses
(Dietterich, 2000). Second, ensemble classifier can provide a good
approximation of target function when the true target function
cannot be represented by any of the hypotheses (i.e., by taking
a weighted sum of these hypotheses) (Dietterich, 2000; Quan
et al., 2016). Third, by combining multiple classifiers, ensemble
learning reduces the sensitivity to the shape of the training data
due to its limited size, leading to a better generalization of the
trained model (Quan et al., 2016). Fourth, ensemble classifier
helps alleviate problems connected to the imperfectness of the
learning algorithm used –i.e., it allows for the combination of
multiple linear classifiers for classification of linearly inseparable
data, while keeping the simplicity of the model instead of using
highly nonlinear classifier (Quan et al., 2016). Leveraging the
strengths of ensemble learning, we propose supervised ensemble
classifier learning using multiple sets of paired clusters obtained
in an unsupervised way and on each pair a Support Vector
Machine (SVM) classifier is trained. Specifically, we propose
novel boosted supervised learning techniques: (1) SIMLR-
based pairing + SVM, and (2) Hierarchical Ward’s linkage
Clustering based pairing strategy + SVM (HWC-based pairing
+ SVM). Basically, we apply SIMLR (respectively HWC) on ASD
samples then NC subjects separately. Our aim is to disentangle
heterogeneous samples within the same group. For a given
number c of clusters, each group of ASD and NC subjects is
split into c subgroups. Afterwards, each ASD subgroup is paired
with an NC subgroup, thereby generating c2 possible pairings of
subgroups, which will be merged to create a new training subset.
Next, we train an SVM classifier on each merged subgroup of
ASD/NC subjects while adopting a leave-one-out (LOO) scheme.
Finally, a new testing subject will be evaluated by each SVM,
trained using a specific pair, thereby predicting its label (i.e., ASD
or NC). We then use majority voting across all SVMs to predict
the final label.

3. RESULTS

3.1. Evaluation Dataset and Parameters
We evaluated the proposed clustering framework on 341 subjects
(155 ASD and 186 NC) from Autism Brain Imaging Data
Exchange (ABIDE I)1 public dataset, each with structural T1-
w MR image (Mueller et al., 2005). Table 2 displays the data
distribution. We used FreeSurfer (Fischl, 2012) to reconstruct
both right and left cortical hemispheres for each subject from
T1-w MRI. Then we parcellated each cortical hemisphere into 35
cortical regions using Desikan-Killiany Atlas. For each subject,
we generated nv = 4 cortical morphological networks: X1

1http://fcon_1000.projects.nitrc.org/indi/abide/
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TABLE 2 | Table of data distribution.

ASD NC

M 140 155

F 15 31

Total 155 186

Mean age 16.9 16.6

Std age 6.3 6.0

M, male; F, female; Total, total number of subjects in each group; Std, standard deviation.

denotes themaximum principal curvature brain view,X2 denotes
the mean cortical thickness brain view, X3 denotes the mean
sulcal depth brain view, and X4 denotes the mean of average
curvature. For SIMLR parameters, using a nested grid search, we
set the number of clusters to c = 4. We used m = 21 kernels
where each kernel is determined by a set of hyperparameters
(σ = 1 : 0.25 : 2.5, number of top KNN neighbors in {10, 12, 14}),
where σ is the variance parameter of the Gaussian function.

3.2. Evaluation, Reproducibility, and
Comparison Methods
To evaluate the performance and reproducibility of our proposed
clustering framework, we adopted two different k-fold cross-
validation schemes (k = 5 and k = 10), where data samples were
randomly partitioned into a training set and a testing set. Next,
the training samples were clustered into four groups and the
performance rate was calculated based on the misclassified points
in each cluster. The process was repeated 20 times and the average
classification rate was reported as final result for all comparison
methods. To further assess the efficiency of our method, we
benchmarked it to a variety of baseline methods: supervised,
unsupervised, and a combination of both (e.g., HWC-based
pairing + SVM, SIMLR-based pairing + SVM). First, we
compared our ASD/NC clustering with the popular supervised
SVM, which learns a single hyperplane to discriminate between
two groups using training connectomic features. Second, we
benchmarked our method against Ward’s linkage clustering
(Joe and Ward, 1963), a widely used hierarchical clustering
algorithm which optimizes a Euclidean objective function as
a criterion for merging a pair of clusters at each step. This
method was previously used for clustering high-order functional
networks for Alzheimer’s disease diagnosis (Chen et al., 2016).
We further compared the ASD/NC classification accuracy of our
method with two novel classification frameworks that combine
both supervised and unsupervised techniques: (1) SIMLR-based
pairing + SVM, and (2) HWC-based pairing + SVM. Each of
these methods was evaluated on (i) the concatenated low-order
morphological brain networks (i.e., four views) (CON), and (ii)
the high-order morphological brain network (HON) for both left
and right hemispheres.

3.3. The Most Discriminative Features for
ASD Diagnosis
Based on the results of our proposed clustering framework,
we identified the most discriminative low-order and high-
order morphological connectional biomarkers that discriminate

between ASD and NC subjects. Specifically, to rank each
morphological connectional feature f, we adopt the Laplacian
score:

LS(f ) =
f′Sf

f′f
(2)

LS quantifies the concordance between the features and the
similarity (He et al., 2005).

For the right hemisphere (RH), our method (unsupervised
SIMLR HON) had the best performance in distinguishing
between ASD/NC subjects among all methods using both 5-
fold and 10-fold cross validation schemes with an average
performance of 61.7% (Figure 3), which might indicate that the
RH features have more discriminative power at a higher order
level. We report that an increase in accuracy was also observed
with the (HWC-based pairing + SVM) using HON features.
However, for all other methods, a higher accuracy was obtained
using morphological CON features. This might reflect the large
heterogeneity of ASD disorder in the way it affectsmorphological
brain networks and its unpredictable behavior across different
classifiers. Previous studies pointed to the large heterogeneity
present in autistic subjects (Lenroot and Yeung, 2013; Masi et al.,
2017) and how can this lead sometimes to conflicting results in
terms of identified biomarkers (Orekhova and Stroganova, 2014).

As for the left hemisphere (LH), unsupervised SIMLR CON
achieved the best mean average accuracy across all methods
(Figure 3), which might indicate that morphological connections
between LH regions altered by ASD occur at a low-order level.
In other words, the LH pairwise connectivity weight between
regions in the same morphological view depicts better the
changes associated with autism than the high-order relationship
between pairs of regions across different views. Although our
proposed framework scored better with the low-order network,
we notice that all comparison methods produced slightly better
results when using high-order networks.

Since our aim is to find themost discriminativemorphological
connections, we identified the top three features by our
method achieving the best classification accuracies for both
hemispheres across all 10 and 5-fold cross-validation runs
that showed consistency in results. Using the Laplacian score,
the most discriminative high-order morphological connectional
features for the right hemisphere connecting two pairs of
ROIs are: (1) (transverse temporal cortex, paracentral lobule)
with insula cortex (2) (inferior temporal gyrus, Pars triangular)
and (transverse temporal cortex, inferior temporal gyrus), (3)
(transverse temporal cortex, lateral occipital cortex) with (insula
cortex, inferior parietal cortex). For the left hemisphere, the
top low-order connectional features connecting two ROIs are:
(1) lateral occipital cortex and fusiform gyrus, (2) insula
cortex and unmeasured corpus collosum, (3) inferior temporal
gyrus and medial orbital frontal cortex (Figure 4). We also
notice that the identified regions at a high-order level are
different from those at a lower-order, which can provide
complementary discriminative information for more accurate
diagnosis.

Frontiers in Neuroinformatics | www.frontiersin.org 6 October 2018 | Volume 12 | Article 70

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Soussia and Rekik High-Order Morphological Brain Networks

FIGURE 3 | ASD identification accuracy using our method and comparison supervised and unsupervised methods. We evaluated each of these methods on (i) the

concatenated low-order morphological networks (i.e., 4 views) that we term with CON, and (ii) the high-order morphological networks (HON).

4. DISCUSSION

In this paper, we introduced a different type of high-order brain
network, that explores brain regional relationships beyond the
physical brain connectivity derived from structural networks
and statistical dependencies obtained from functional networks
(Bullmore and Sporns, 2009). In particular, our high-order
brain network investigates shape-to-shape ‘connections’ among
pairs of brain regions. We aimed to identify morphological
connectional biomarkers for distinguishing between autistic
and healthy subjects. Specifically, we proposed two types of
morphological brain network representations: the low-order
morphological brain network, which captures the relationship
in cortical morphology between only two brain regions, and (2)
the high-order morphological brain network which explores the
relationship between multiple brain regions.

Our proposed frameworks using SIMLR on both CON and
HON achieved better performance than baseline methods for

LH and RH. This shows the ability of unsupervised SIMLR to
disentangle heterogeneous patterns related to autism disorder
compared to other methods. This might be explained by the
use of multiple kernels for connectomic manifold learning,
which enables to capture a wide spectrum of inherent statistical
distributions (from flat to compact) of ASD/NC subjects. We
should note also that despite the accurate results reported
in previous studies about ensemble classifiers (Lima et al.,
2003; Džeroski and Ženko, 2004; Quan et al., 2016), our
proposed unsupervised framework scored better when using
average cross-validation than ensemble SVMs (HWC-based
pairing + SVM and SIMLR-based pairing + SVM). Their low
performance can be explained by the fact that SIMLR and HWC
tend to produce more homogeneous clusters, hence creating
a non-balanced data samples in the pairing stage for SVM
training. This points to the imbalanced data issue for training
supervised methods that is difficult to alleviate using ensemble
classifiers.
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FIGURE 4 | Top three discriminative high-order and low-order features in right and left hemispheres, respectively. CT, Cortical thickness view.

Through using the low-order and high-order networks and
identifying the most discriminative features, we found that
cortical thickness has the highest discriminative power among
the four used cortical attributes (Figure 4). Several studies
have reported cortical thickness as an important morphological
biomarker for ASD (M.K.Chung et al., 2005; Hardan et al.,
2006; Zielinski et al., 2014; Smith et al., 2016; Khundrakpam
et al., 2017) where they showed that abnormalities caused by
autism is coupled with an increase of cortical thickness in
ASD subjects compared to healthy controls. Similar findings
were reported in Courchesne et al. (2001) and Hazlett et al.
(2005) where they used a volume-based imaging to report
an abnormal enlargement in total brain volume among very
young children (age between 18 month and 4 years). The
most discriminative morphological brain connections with the
highest Laplacian score were found at both low- and high-order
connectional levels. These mainly included the insula cortex (IC)
and lateral occipital cortex (LOC), which were most frequently
selected. It is known that IC is related to cognitive, affective
and sensorimotor processing. Yamada et al. (2016) showed that
IC displayed structural and functional abnormalities in ASD.
Many other studies have reported the correlation between IC
dysfunctionality and autism when it comes to tasks related to
emotional and social processing (Uddin and Menon, 2009; Caria
and de Falco, 2015). In addition, LOC plays an important role
in human object recognition (Grill-Spector et al., 2001). Dawson
et al. (2002) conducted a study on autistic subjects vs. typically
developing children and found that children with ASD failed
to show differences in their high-density brain event-related
potentials (ERP) to a familiar vs. an unfamiliar face but they
were able to show differences when it comes to processing a
familiar vs. an unfamiliar object. Another study (Kuusikko-
Gauffin et al., 2011) confirmed these findings where it showed
that autism is related to impairments in face memory and
face recognition but intact object recognition. On the other
hand, the fusiform gyrus is involved in the processing of face

and body recognition (Furl et al., 2011) which explains its
connection to LOC. We also found that other identified regions
in our work such as unmeasured corpus collosum (UCC) and
medial orbital frontal cortex (MOFC), involved in emotional and
cognitive processing, learning and social behavior, were largely
investigated and had abnormal patterns in ASD (Hardan et al.,
2006; Girgis et al., 2007; He et al., 2010; Prigge et al., 2013;
Wolff et al., 2015). We can conclude from all these findings that
our identified ‘morphological’ regions are in agreement with the
behavioral phenotype of ASD derived from other data types (e.g.,
functional MRI).

Our study has few limitations. First, on a low-order level,
despite using different types of morphological attributes, we
used a simple concatenation of all views to extract the features.
Second, on a high-order level, we used Pearson correlation
to explore the connections between multiple regions which
may overlook the non-linear relationship between them. Third,
although we identified morphological connectional biomarkers
for ASD identification, we did not investigate the connection
between the discovered cortical regions to non-cortical regions.
Fourth, in addition to investigating how ASD alters the
relationship between brain morphologies using multi-view
brain networks, we expect that by integrating structural and
functional networks into our framework, we could provide
a more holistic connectomic understanding of how ASD
affects the different connectional facets of the brain construct,
which might result in further improving the classification
performance. Last, we did not use any feature selection
methods to further enhance the performance of our framework.
These unexplored directions can be investigated in our future
work.

5. CONCLUSION

In this paper, we presented the first work on a high-
order connectomic manifold learning using morphological
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brain networks for autism identification. Our framework
outperformed both supervised and unsupervised baseline
methods as well as a set of ensemble learning frameworks
and was able to further identify the most discriminative
relationships between pairs of morphological brain connections.
Noting that ASD classification is a challenging problem,
achieving 61.69% is quite promising based on solely T1-w
MR images. To improve the connectomic manifold learning
for a more accurate ASD/NC segregation, we will leverage
multi-view feature selection methods such as Liu et al. (2015).
Since our unsupervised learning method is generic, we can
also use it to investigate other neurological disorders such as
dementia.
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