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Neuroscientists are actively pursuing high-precision maps, or graphs consisting of

networks of neurons and connecting synapses in mammalian and non-mammalian

brains. Such graphs, when coupled with physiological and behavioral data, are likely to

facilitate greater understanding of how circuits in these networks give rise to complex

information processing capabilities. Given that the automated or semi-automated

methods required to achieve the acquisition of these graphs are still evolving, we

developed a metric for measuring the performance of such methods by comparing their

output with those generated by human annotators (“ground truth” data). Whereas classic

metrics for comparing annotated neural tissue reconstructions generally do so at the

voxel level, the metric proposed here measures the “integrity” of neurons based on the

degree to which a collection of synaptic terminals belonging to a single neuron of the

reconstruction can be matched to those of a single neuron in the ground truth data. The

metric is largely insensitive to small errors in segmentation and more directly measures

accuracy of the generated brain graph. It is our hope that use of the metric will facilitate

the broader community’s efforts to improve upon existing methods for acquiring brain

graphs. Herein we describe the metric in detail, provide demonstrative examples of the

intuitive scores it generates, and apply it to a synthesized neural network with simulated

reconstruction errors. Demonstration code is available.

Keywords: connectome, computer vision, segmentation, brain graph, evaluation, Electron Microscopy, Neural

Reconstruction Integrity

1. INTRODUCTION

Traditionally, reconstructions of neural tissue at the voxel level are obtained by imaging tissue
slices, mosaicing and aligning these 2D digital slices to form a 3D volume of voxels, and labeling
voxels with unique neuron and synapse identifiers (Saalfeld et al., 2012; Takemura et al., 2013;
Lee et al., 2016). If neuron and synapse relationships are annotated as well (e.g., the post-synaptic
portion of synapse i is found on neuron j) then a brain graph reconstruction can be derived from
the annotated tissue reconstruction. Herein we use the term annotate to encompass both labeling
of voxels and identifying neuron-synapse relationships.

Although trained individuals can generate annotated reconstructions with high accuracy, the
labor involved cannot feasibly scale to the larger tissue volumes needed to provide informative
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graphs. Based on the labor estimate from a recent reconstruction
effort (Kasthuri et al., 2015), it would take roughly 30,000 people-
years to manually annotate a 1 mm3 volume. To annotate
tissue reconstruction at such scales, researchers are developing
automated or semi-automated methods (Helmstaedter et al.,
2011; Funke et al., 2012, 2018; Nunez-Iglesias et al., 2013;
Knowles-Barley et al., 2016; Lee et al., 2017; Januszewski
et al., 2018) with varying degrees of success. To aid in the
continuing development of these methods, a variety of metrics
have been developed to measure the accuracy of semi-automated
reconstructions as compared to “ground truth”1 reconstructions
that are manually generated. Classic reconstruction metrics such
as the Rand Index (Rand, 1971), and variations thereof operate at
the voxel level—penalizing reconstructions for which all voxels of
a given object do not have a corresponding object in the ground
truth data with a one-to-one voxel match.

While neuronal morphology almost certainly plays a role in
neural processing (e.g., dendritic integration and compartmental
processing) it is likely that a graph representation composed
solely of vertices (representing whole neurons or reconstructed
portions) and directed edges (representing directed synapses) is
nonetheless sufficient to allow for a substantial increase in our
understanding of brain networks and the manner in which they
process information. Richer insight can be obtained by layering
attributes as reconstructions improve in fidelity. As such, there
are disadvantages to limiting oneself to voxel-level reconstruction
metrics given that many voxel-level errors (e.g., minor neuron
segmentation errors) do not result in erroneous brain graph
connections. Additionally, there are reconstruction techniques
that do not operate on images (Marblestone et al., 2014) and thus
cannot be fairly compared with image based techniques using
voxel-level measures. We present the Neural Reconstruction
Integrity (NRI) metric, which is designed to be sensitive to
aspects of a reconstruction that relate to the underlying brain
graph, while being insensitive to those that do not. This method
allows for a direct assessment of graph connections, which may
be performed even when annotations are not available or not
created, as with emerging sequencing methods (Marblestone
et al., 2014).

1.1. Terminology
A brain graph refers to an attributed graph, G = (V ,E,A)
where V is a set of vertices representing neurons, E is a set of
edges representing (directed) synapses, and A is a set of edge
attributes. A directed synapse from neuron u ∈ V to neuron
v ∈ V is denoted (u, v). One common edge attribute is location
in Euclidean space, for instance the centroid of the synapse. It
is also possible for the graph to have vertex attributes, however
this is not necessary or relevant to the proceeding discussion. In
the following, we assume direction of synapses is known, which
results in a directed graph.

A (ground truth) brain graph may be generated, for example,
through a combination of automated reconstruction algorithms

1Given that even expert human annotators do not always agree as to the proper

labeling of a voxel or object, gold standard may serve as better terminology than

ground truth. However, we use ground truth since that is the term commonly used

in machine learning literature. Errors in manual annotations are commented upon

further in the Discussion section.

and annotator proofreading over a ground truth image volume
(Plaza, 2014). As such, we sometimes refer to a brain graph
neuron as a ground truth neuron2 and a brain graph synapse
as a ground truth synapse. Throughout this paper, we call a
single ground truth neuron Gi and it is an element of V . When
calculating the Neural Reconstruction Integrity metric (to be
discussed at length later), we will consider the pre-synaptic and
post-synaptic terminals separately. In particular, this means that
the set of all edges with post-synaptic terminals associated with
Gi is the set {(u, v) ∈ E : v = Gi} whereas the set of all edges
with pre-synaptic terminals associated with Gi is the set {(u, v) ∈
E : u = Gi}.

A graph reconstruction of a brain graph is, likewise, a graph
consisting of vertices and edges, denoted S = (V ′,E′). The
vertices represent reconstructed neuron fragments and may be
denoted individually by Si for i = 1, . . . , |V ′|. Note that, as
an example, a ground truth neuron in the original brain graph
may correspond to two vertices in the reconstructed graph if
the employed neuron segmentation algorithm split the ground
truth neuron in two. In other words, for an imperfect graph
reconstruction, the original brain graph and the reconstructed
graph are not aligned, or there is not an identity mapping
between the vertex sets of the graphs. The edges of the
graph reconstruction correspond to detected synapses where the
corresponding attribute indicates the estimated centroid of the
synapse.

Graph connectivity, or simply connectivity, refers to the
neuron-synapse-neuron relationships within the graph. In other
words, when we try to evaluate connectivity accuracy, we
are interested in evaluating how well the neuron to neuron
relationships are identified, which is related to how well paths
through the graph are reconstructed.

A neural reconstruction can refer to several things including
an image reconstruction (labeled images) or as a brain graph
reconstruction as described above. Throughout this paper, we
use neural reconstruction, or simply reconstruction, to refer to
a brain graph reconstruction, as we are focused on evaluating the
connectivity of neurons via synapses.

Unless otherwise indicated, the term local is used to refer to
a single-neuron focused analysis or to a small subset of neurons
within a larger volume. The term global refers to a network level
or full volume analysis. In other words, a global metric is one
calculated over several (possibly connected) neurons found in the
same volume.

2. MATERIALS AND METHODS

2.1. Evaluation Criteria
The primary function of the NRI metric is to evaluate the degree
to which an annotated reconstruction contains a brain graph that
is an accurate reflection of the true brain graph. In large part this
implies an insensitivity to neuron segmentation errors that do not

2Throughout this article we use the term neuron generically, with recognition that

elements in the ground truth are likely to be fragments of neurons rather than

whole neurons, and elements in the reconstruction may be neuron fragments,

merged neurons, merged neuron fragments, or even something non-neuronal

altogether. Use of terms such as neuron fragment or neuron element are sometimes

used to draw attention to this fact.
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impact the brain graph. However, additional metric qualities are
desirable.

• Can operate on relatively small volumes of ground truth data:
One of the largest challenges of evaluating the accuracy of a
reconstruction is that little ground truth data is available due
to the extensive manual labor needed to generate it. Typical
graph similarity metrics are removed from consideration since
the volume of ground truth data will be much smaller than
that generated by semi-automated methods. As a result, the
evaluation metric should not strictly be a graph connectivity
metric, but rather a proxy metric that measures reconstruction
aspects critical for representing an accurate graph.

• Applicable at various levels of granularity: The metric should
be flexible enough to evaluate reconstructions at various levels
of granularity including single neurons, a small number of
neurons or neuron fragments, or large, densely-annotated
volumes. This allows one to compute the metric on a variety of
types of ground truth data (e.g., sparsely annotated or densely
annotated). In addition it allows one to evaluate the fidelity
of spatially restricted regions throughout a reconstruction
volume as well as identify whether inaccuracies are uniformly
scattered across the volume or if they are concentrated at a
few poorly reconstructed neurons. Global evaluation (a single
metric score computed from the annotation intersection of the
reconstruction volume and the ground truth volume) would
allow one to measure overall improvement of a reconstruction
method across reconstruction iterations or compare between
reconstruction methodologies.

• Provides locally independent scores: An intuitive requirement
is that if an entire neuron is “ground truthed” (manually
annotated) and scored by the metric, this score should not
change if additional neurons are subsequently ground truthed
and the metric is then reapplied to the original neuron.
Similarly, if the metric is applied to a geometrically local
region, the score should not change if a spatially disjoint region
of the volume is subsequently ground truthed and the original
region is re-scored. We highlight this requirement because we
found that alternative metrics based on information theory
failed to fulfill this criterion.

• Scales well to larger reconstruction and ground truth volumes:
Computation of the metric should be feasible even as the size
of reconstruction and ground truth volume grow over time.
Both are expected to grow substantially in coming years thanks
to improvements in data acquisition technologies and targeted
efforts such as the Intelligence Advanced Research Projects
Activity (IARPA) MICrONS program3. Based on expected
output under that program, an evaluation metric should
be capable of being computed on reconstruction volumes
containing billions of synapses and hundreds of thousands of
neurons, at a minimum.

• Provide intuitive scores: Ideally scores should fall in a limited
range such as [0, 1] and be intuitively commensurate with
reconstruction errors.

3https://www.iarpa.gov/index.php/research-programs/microns

2.2. Previous Work
As our goal here is to assess the accuracy of a reconstruction as
it pertains to the brain graph, metrics that only assess neuron
segmentation are not sufficiently informative. For example, the
error-free path length (Helmstaedter et al., 2011) measures the
frequency of errors made during manual skeleton tracing. It is
defined as the total length of neuron skeleton divided by the
number of errors made during tracing. The connectivity of a
neuron is not considered in this measure, simply how well the
skeleton of a neuron is reconstructed.

Several existing methods of evaluation assess the voxel-level
similarity of a reconstruction volume and a ground truth volume.
For example, the Rand Index (Rand, 1971), Adjusted Rand Index
(Hubert and Arabie, 1985), and Warping Index (Jain et al.,
2010) are often utilized as image segmentation error measures.
The Rand Index applied to annotated images is defined as the
proportion of pairs of voxels that are paired in the same segment
in both ground truth and the reconstruction. If both neurons and
synapses are annotated, the Rand Index can correlate with brain
graph accuracy in some cases. However, this scoring method
can frequently give results that are poor characterizations of the
accuracy of the reconstructed brain graph. For example, large
groups of voxels may be mislabeled yet connectivity is unaffected
(e.g., mislabeling many voxels at the edge of a large diameter
synapse-free process). Conversely, only small groups of voxels
may be mislabeled yet connectivity is substantially disrupted
(e.g., voxels across dendritic spines are mislabeled, resulting in
orphaned synapses on spine heads). It is possible to adapt the
Rand index to handle point synapses rather than voxels. Even
so, the Rand index includes true negatives which can result in
an optimistic evaluation when true negatives dominate. Jain et al.
(2011) makes note of this relationship, as they dismantled the
Rand index and used precision and recall to measure voxel-based
reconstructions, ignoring true negatives.

A more recently adopted voxel-level metric is the variation of
information (Nunez-Iglesias et al., 2013; Plaza, 2014). Variation
of information (VI) is an information theoretic measure
defined as

VI(S,G) = H(G|S)+H(S|G) (1)

where S is a reconstruction, G is ground truth, and H is the
entropy function. It is possible to apply variation of information
to abstracted neuron-synapse relationship information (the same
information utilized by the NRI) rather than directly to voxel
information, as suggested in Plaza (2014). In that case, the
variation of information when applied to a fully annotated (both
reconstruction and ground truth) neural network has a number
of desirable properties. However, there is not a simple, well-
behaved way to define VI for a single neuron. The key dilemma
is that the H(G|S) term cannot naturally be broken down into
elements that are relevant to a single ground truth neuron while
still providing locally independent scores (see section 2.1). In
other words, if ground truth data is provided for additional
portions of the volume, then VI calculated for one of the original
ground truth neurons will likely change, even if the ground truth
neuron were wholly contained in the smaller, original volume.
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Arganda-Carreras et al. (2015) define the Rand F-score, which
is based on probability distributions. It is closely related to the
Rand Index and normalized between 0 and 1. They also introduce
an information theoretic F-score, which is based on mutual
information, is closely related to Variation of Information,
and is normalized between 0 and 1. The authors explore the
relationship of these two F-score variations of Rand and VI as
applied to boundary maps (transformed to voxel-level image
segmentations) and show that they are highly correlated on real
data.

Another approach that is similar in spirit to NRI is a line
graph-based Graph f1 score (Gray Roncal et al., 2015). This
metric also evaluates connectivity by focusing on true positive,
false positive, and false negative pathways connecting synapses.
However, this metric was applied only to dense full volumes and
undirected graphs and performance on error sub-types was not
systematically evaluated.

More recently, the tolerant edit distance (TED) was proposed
as a segmentation evaluation metric aimed at assessing
topological correctness (Funke et al., 2017). The TED was used
in the 2016 Medical Image Computing and Computer Assisted
Intervention (MICCAI) challenge on Circuit Reconstruction
from Electron Microscopy (CREMI)4. The TED is calculated at
the image level, yet aims to capture topological errors, specifically
splits and merges. Calculation of the TED requires solving an
integer linear program (ILP), which selects the relabeling of
one segmentation to minimize the number of splits and merges
with respect to another segmentation. By selecting a reasonable
tolerance threshold, the TED can ensure that “tolerable” errors, or
those which don’t affect the topology of the circuit, are ignored in
the error calculation. One potential issue with the TED is that the
proposed ILP may not be computationally tractable, though this
often is not the case in practice. And while the TED’s tolerance of
segmentation errors is a desirable quality with regard to a metric
that characterizes brain graph accuracy, the TED metric does
not measure connectivity and thus cannot serve in this capacity
independent of additional metrics.

2.3. Neural Reconstruction Integrity
2.3.1. Definition
We propose a new reconstruction metric called the Neural
Reconstruction Integrity (NRI) metric. The NRI is a single
neuron metric, which can be extended to a local network
(a subset of neurons from the network, or a geometrically
restricted region) or a global network metric. For a given ground
truth neuron, we consider all synaptic terminals associated with
the neuron. Presynaptic and postsynaptic terminals are treated
independently—that is, only the presynaptic or postsynaptic
“half ” of a synapse is associated with a given neuron (except
in the case of an autapse, in which both halves of the synapse
would be associated with the same neuron). The NRI description
below assumes that terminals in the reconstruction volume and
the ground truth have already beenmatched. A proposedmethod
for performing thismatching is discussed in a subsequent section.

4https://cremi.org/

The NRI measures the extent to which intracellular paths
between all possible pairings of ground truth synaptic terminals
are preserved in the reconstruction. For a pair of terminals
on a ground truth neuron, a true positive indicates those two
synaptic terminals are both associated with a single neuron
in the reconstructed volume—that is, an intracellular path is
found between the terminals in the reconstruction. For instance,
in Figure 1, post-synaptic terminals A′′ and C′′ are correctly
associated with the same neuron of the reconstruction, which
yields a true positive. However, B′′ and C′′ are not associated with
the same neuron, yielding a false negative.

In graph theoretic terms, we find the set of edges (synapses)
incident on a ground truth vertex (neuron), taking into
consideration the directionality. For every pair of edges in this
set, we check whether those edges are incident on the same vertex
(neuron fragment) in the reconstruction, forming a true positive,
or whether they are on different vertices, forming a false negative.
We find false positives in pairs of edges that are incident on
the same vertex but should not be. Note again that we do not
require alignment of vertices between the ground truth graph
and reconstructed graph since this may not even be possible
due to splits and merges. Rather, we are interested in occasions
that synapses are correctly associated on the same neuron. We
consider this to be a key strength of the NRI metric, in that it
can be interpreted as a measure of graph similarity based on
edge clusterings, with no requirement for matching graphs via
subjective pairing of ground truth neurons with reconstructed
neurons.

The NRI is an f1 score, which is the harmonic mean of
precision and recall calculated on the true positive, false positive,
and false negative paths as described above. For a given ground
truth neuron, Gi,

NRI(Gi) = 2 ·
precision · recall

precision+ recall
(2)

where precision and recall have the usual definitions involving
true positive (TP) counts, false positive (FP) counts, and false
negative (FN) counts, precision = TP

TP+FP and recall = TP
TP+FN .

Notice that, using the definitions of precision and recall, the NRI
can be rewritten as

NRI(Gi) =
2 · TP

2 · TP + FP + FN
(3)

To obtain a local network or global NRI value, one calculates the
total number of TPs, FPs, and FNs over the set of ground truth
neurons under consideration and uses these values to calculate
the f1 score as usual.

Note that the global NRI value is strongly related to the
line graph f1 metric used in Gray Roncal et al. (2015). In
some sense, the NRI can be viewed as an extension of the line
graph f1, which also counts TPs, FPs, and FNs of intracellular
paths in a reconstruction. There are two key differences between
the NRI and the line graph f1 as defined and calculated in
Gray Roncal et al. (2015). First, the NRI allows for evaluation
at a variety of scales including single neurons, local networks,
or global networks, allowing users to identify localized sources
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FIGURE 1 | Ground truth neurons and a reconstruction containing split and merge errors. Focusing on the green neural fragment, A′′– C′′ is a true positive path, B′′–

A′′ and B′′– C′′ are false negative paths, and D′′– A′′ and D′′– C′′ are false positive paths. The NRI score of the green ground truth neuron is 0.333 (based on the

neural fragments and synaptic terminals shown in the panels). See text for additional details.

of error within the overall reconstruction and achieve a
snapshot performance of the entire network. The second key
difference is that the NRI operates on directed graphs, or
a reconstruction where synapses have direction. Accordingly,
a neuron is penalized when one of its synapses is correctly
identified in the reconstruction, but the direction is reversed—
a penalty that would not arise in the line graph f1. Despite these
key differences we expect that, in many scenarios, the global NRI
and the line graph f1 would be highly correlated.

2.3.2. Examples
Consider Figure 1 where a sample ground truth “neuron” (the
green neuron) is reconstructed with a split error and a merge
error. In particular, a spine head (neuron 4 in the reconstruction)
is split from the dendritic shaft of the neuron so the post-synaptic
terminal B′′ no longer has an intracellular path to A′′ or C′′.
This mistake yields two false negatives—one for the lost A′′ to
B′′ path and one for the lost C′′ to B′′ path. Additionally, the
orange neuron has been merged with the main body of the green
neuron, resulting in new intracellular paths between D′′ and the
post-synaptic terminals A′′ and C′′. The merged neuron element
is labeled as 1 in the reconstruction. This merge yields two false
positives—one for the D′′ to A′′ path and one for the D′′ to
C′′ path. The intracellular path between A′′ and C′′ is retained,
resulting in one true positive. Using equation 2, we obtain an NRI
score of 0.333.

The NRI is degraded when neuron split, neuron merge,
synapse insertion, and synapse deletion errors occur. Synapse
insertions increase the number of false positives while synapse
deletions increase the number of false negatives. Additionally,
if the synapse direction is reversed, the NRI decreases due
to additional false positives and additional false negatives.
For example, in Figure 1, if the presynaptic and postsynaptic
terminals of synapse A were reversed so A′ was associated with
neuron 1 and A′′ was associated with neuron 2, then the NRI

values of both the green and blue ground truth neurons decrease.
With respect to the green neuron, not only is the intracellular
path between C′′ and A′′ absent (false negative), but a new path
between C′′ and A′ is introduced (false positive).

2.3.3. Intuitive Scores
Here we highlight the intuitive relationship between
reconstruction errors and the scores generated by the NRI
metric. In each example scenario in Table 1 it is assumed that all
neurons have an equal number of synaptic terminals associated
with them and that splits occur proportionately with regard to
these terminals. We give global NRI scores (which are equal to
single neuron scores in scenarios involving only one neuron)
as well as precision (P) and recall (R). Note that because NRI
is a scalar metric, its value does not indicate which types of
reconstruction errors may have dominated in the event of a poor
score. However, low precision scores are solely due to neuron
merges and synapse insertions, whereas low recall scores are
solely due to neuron splits and synapse deletions.

2.4. Implementation of NRI
Computation of the NRI requires three steps: (1) pairing synapses
in the ground truth with those in the reconstruction based
on proximity, (2) summing the total number of matching
synapses for every possible pair of ground truth neuron
and reconstruction neuron, and assembling these sums into
a count table, and (3) using entries in the count table to
determine the total number of true positive, false positive,
and false negative pairs. Demonstration code is available at
https://github.com/aplbrain/connectome_nri.

2.4.1. Synapse Alignment Using Centroids
The first step is to determine which synapse(s) in the
reconstruction correspond to synapses in the ground truth by
synapse assignment, for which we propose using the Hungarian-
Munkres algorithm (Kuhn, 1955, 1956; Munkres, 1957). In
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TABLE 1 | NRI scores and the precision and recall components for various scenarios.

Scenario P R Global NRI

A neuron is split into two pieces with equal number of synapses 1.00 0.50 0.67

A neuron is split into three pieces with equal number of synapses 1.00 0.33 0.50

Two whole neurons are merged 0.50 1.00 0.67

Three whole neurons are merged 0.33 1.00 0.50

One neuron in a network of 10 neurons is split into 9 pieces and each piece is merged with one of the other 9 neurons 0.82 0.91 0.86

In a network of neurons, 20% of synapses on each neuron are deleted 1.00 0.64 0.78

Scores are intuitively commensurate with the magnitudes and types of reconstruction errors.

general, assignment can be handled in a variety of ways
depending on the format of existing data such as synapse
centroids or labeled voxels.

In the following we assume that the information necessary for
computing NRI has been extracted and stored in two data files—
one for the ground truth data and one for the reconstruction.
Each file contains a list of synapses with associated neurons
and locations. For a particular synapse the file contains an
ID for the presynaptic neuron, an ID for the postsynaptic
neuron, and an (x, y, z) coordinate representing the centroid of
the synapse. There is no guarantee, and in fact it is unlikely,
that the IDs or (x, y, z) coordinates will correspond perfectly
between the two lists due to reconstruction errors. By applying
the Hungarian-Munkres algorithm to synapse centroids, we
reconcile the difference in synapse identifiers. Note that it is
not necessary to perform any neuron alignment, or any explicit
pairing of ground truth neurons and reconstructed neurons.

Assigning synapses in the reconstruction to those in the
ground truth can be nuanced, particularly if we consider
volumetric synapse representations (labeled voxels). For
example, if the voxels of a reconstructed synapse overlap with
half of those of a ground truth synapse, and also overlap with an
equal number of voxels outside of the ground truth synapse, it
is somewhat subjective as to whether or not the reconstructed
synapse should be assigned to the ground truth synapse.
However, the aim of the NRI metric is to measure characteristics
important for representing brain graph connectivity rather
than specific voxels or detailed synapse morphology. Thus,
we propose the use of synapse centroids, which eliminates
judgment calls based on the amount of voxel overlap. To allow
for unassigned synapses (accommodating erroneous synapse
deletions or insertions in the reconstruction), the Hungarian-
Munkres algorithm can be modified to prevent assignment
when distance between centroids is unrealistically high (e.g.,
> 300 nm).

2.4.2. Count Table Calculation
Once synapse assignment is complete, it is possible to generate
the count table (a matrix). In the count table, each row
corresponds to a ground truth neuron and each column
corresponds to a reconstructed neuron. An entry in the table,
cij, corresponds to the number of matched synaptic terminals
between ground truth neuron Gi and reconstructed neuron
segment Sj. Matching synapse terminals are those for which both

TABLE 2 | The count table for the ground truth and reconstruction depicted in

Figure 1.

del 1 2 3 4

ins 0 0 0 0 0

Green 0 2 0 0 1

Red 0 0 0 1 0

Blue 0 0 3 0 0

Orange 0 1 0 0 0

The del column and ins row are for counts of deleted and inserted synaptic terminals,

respectively.

(1) the reconstruction synapse of neuron Sj has been assigned
to the ground truth synapse of neuron Gi, and (2) the polarity
of the terminals are the same (presynaptic or postsynaptic).
Thus, if a terminal is presynaptic on Gi in the ground truth and
postsynaptic on Sj in the reconstruction, then Gi and Sj do not
share that terminal even though the synapses are assigned to
each other. Note that ifN reconstruction synapses are assigned to
ground truth synapses, then there will be a total of 2N matching
synaptic terminals in the count table (excluding those of the
insertion row and deletion column—see below). This applies
for synaptic junctions with one pre-synaptic and one post-
synaptic process, which is the case for the vast majority of known
connections in mammalian cortex, but not for organisms such as
drosophila. Polysynaptic junctions will generate additional count
table entries.

The count table corresponding to Figure 1 is shown in
Table 2. Examination of the count table immediately reveals
useful information. For instance, the “green neuron” was split
into two elements in the reconstruction while “neuron 1” of the
reconstruction is a merge of two ground truth neurons.

Additionally, the count table has a row corresponding to
inserted synapses (ins), or those found in the reconstruction
and not the ground truth. It also contains a column for deleted
synapses (del), or those found in the ground truth and not the
reconstruction.

2.4.3. Calculating NRI From the Count Table
Once the count table is established, it is possible to calculate the
NRI.

LetC be the count table for a local network of the ground truth
brain graph and the associated portions of the reconstruction.
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The 0th row refers to synapse/terminal insertions and 0th column
refers to synapse/terminal deletions while all other rows and
columns indicate ground truth and reconstruction neurons,
respectively. There are I total ground truth neurons and J total
corresponding reconstructed neurons (those that share at least
one synapse with at least one ground truth neuron). Neurons (or
other objects such as glia) that share no synapse correspondences
are ignored when computing NRI, as they do not impact our
graph. If cij denotes the i,j-entry of the count table, then the total
number of true positives, false negatives, and false positives across
the volume can be computed using the equations below.
True positives:

TP =

I
∑

i=1

J
∑

j=1

(

cij

2

)

(4)

Note that the outer summation is over the ground truth neuron
index, i, thus the number of true positives for a single ground
truth neuron is simply the inner summation over j for a given i.
False negatives:

FN =

I
∑

i=1

[

(

ci0

2

)

+

J−1
∑

j=0

J
∑

j′=j+1

cijcij′

]

(5)

Notice that the false negative total includes contributions from
the synapses in the deletions column (column 0) in two forms—
once with all synapses matched to those in the ground truth
neuron and again by pairing all possible combinations in the
deleted column. This ensures that the sum of the true positives
and false negatives is equal to the total number of synapse pairs
on the ground truth neuron. As for true positives, the number
of false positives for a single ground truth neuron is simply
the value of the term inside the outer summation, for a given
neuron i.
False positives:

FP =

J
∑

j=1

[

(

c0j

2

)

+

I−1
∑

i=0

I
∑

i′=i+1

cijci′j

]

(6)

Computation of the total number of false positives is essentially
identical to that for the false negative total, except computed in
the other direction across the count table (effectively, computed
on the transpose of the count table). Contributions from the
insertions row (row 0) play a similar role to those from the
deletions column under the false negatives computation—being
counted for incorrect pairing once with all synapses matches in
the reconstructed neuron and counted again for incorrect pairing
in all possible combinations with each other.

Determining the number of false positives for a single ground
truth neuron is open to interpretation, as there is ambiguity
with regard to false positives that arise due to synapses being
inserted on merged neurons. In addition, if two neurons are
merged, the false positives created by the pairing of their synapses
should be distributed between the neurons. In the latter case,
we chose to attribute half the false positives to one neuron,

and half to the other. Regarding insertions, false positives due
to pairs of inserted synapses are not attributed to a ground
truth neuron (although false positives between an insertion and
synapses found on a ground truth neuron are attributed to that
neuron) but they are added to the total count of network false
positives. Thus,

FP =

I
∑

i=0

FP(i) (7)

where FP is the total count of network false positives, FP(i) is
the number of false positives attributed to individual ground
truth neurons and (for i = 0) those due to pairs of inserted
synapses, and

FP(i) =







































J
∑

j=1

(

c0j

2

)

, if i = 0

J
∑

j=1

cijc0j +
1

2

J
∑

j=1

I
∑

i′=1
i′ 6=i

cijci′j, otherwise

(8)

Once the total number of true positives, false positives, and false
negatives have been tallied (for individual neurons or for the
entire network), the final step is to use the calculated values in
equation 3 for a local network NRI value.

As a concrete example, consider Figure 1 and the
corresponding count table in Table 2. The number of true
positives for the green ground truth neuron is

(2
2

)

+
(1
2

)

= 1,
or the number of pairs of green neuron terminals that are also
found in the reconstruction5. This is calculated by examining
the row in Table 2 corresponding to the green neuron. The
number of false negatives for the green neuron is 2 · 1 = 2,
or the number of pairs of terminals incorrectly split across
neuron fragments in the reconstruction, also calculated by
examining the green neuron row. Finally, a false positive
count may be obtained by looking at any given column.
For instance, the number of false positives associated with
the green ground truth neuron is (2 · 3) + (2 · 1) = 8,
which is then divided by two to prevent false positives from
being double counted when they are summed over the entire
network.

2.5. Adapted Alternative Metrics
Although the NRImetric operates onmatched synaptic terminals
rather than voxels, it is otherwise closely related to the Rand
Index in that it utilizes TP, FP, and FN values to compute a
final score. (The number of True Negatives (TN) is used in
computing the Rand Index, but not the NRI—a distinction we
discuss further in the Results section.) Similarly, one can conceive
of an adapted version of VI that is computed from the same
count table as that utilized by the NRI. We define terminal-based

5Where
(n
2

)

indicates n-choose-2, or the number of all possible pairs of elements

from a set of n elements.
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adaptations of these alternative metrics for comparison with
the NRI.

TP =

I
∑

i=0

J
∑

j=0

(

cij

2

)

(9)

FN =

I
∑

i=0

J−1
∑

j=0

J
∑

j′=j+1

cijcij′ (10)

FP =

J
∑

j=0

I−1
∑

i=0

I
∑

i′=i+1

cijci′j (11)

TN =

I−1
∑

i=0

J−1
∑

j=0

I
∑

i′=i+1

J
∑

j′=j+1

cijci′j′ (12)

RI =
TP + TN

TP + TN + FP + FN
(13)

2.5.1. Normalized Variation of Information
As described above for the adapted Rand index, when computing
the adapted VI, the insertion row and deletion column of the
count table are simply treated as if they are additional neurons
in the ground truth and reconstruction networks, respectively.
In addition, the VI score is normalized by H(G, S) to provide a
normalized VI (NVI) score that ranges from 0 to 1. From the
count table, the NVI is computed as follows.

p
(g,s)
ij = cij/

I
∑

i′=0

J
∑

j′=0

ci′j′ for all i, j (14)

p
(g)
i =

J
∑

j=0

p
(g,s)
ij (15)

p
(s)
j =

I
∑

i=0

p
(g,s)
ij (16)

H(G|S) = −

I
∑

i=0

J
∑

j=0

p
(g,s)
ij log

p
(g,s)
ij

p
(s)
j

(17)

H(S|G) = −

I
∑

i=0

J
∑

j=0

p
(g,s)
ij log

p
(g,s)
ij

p
(g)
i

(18)

H(G, S) = −

I
∑

i=0

J
∑

j=0

p
(g,s)
ij log(p

(g,s)
ij ) (19)

NVI =
H(G|S)+H(S|G)

H(G, S)
(20)

where p
(g,s)
ij is the joint probability of a matched terminal

being found on the ith ground truth neuron and the jth

reconstruction neuron, and p
(g)
i and p

(s)
j are marginal matched

terminal distributions for the ground truth and reconstruction
neurons, respectively.

2.6. Simulated Data
To test the NRI metric behavior we would ideally apply it to a
large 3D volume for which ground truth data existed, as well
as semi-automated reconstructions generated over a range of
methods and parameters. When compared to the volume of
raw data currently being collected, most available ground truth
datasets tend to be small (hundreds of neurons) and sparse
(few connections between neurons), and composed primarily
of small fragments of neurons rather than large fragments or
whole neurons (Takemura et al., 2013; Lee et al., 2016). We
therefore chose to synthesize a neural network with modestly
realistic anatomical properties, and introduce errors into the
network (“perturb” the network) to simulate reconstruction
errors (resulting in imperfect reconstructions). This approach
also allowed us to independently examine the effect of individual
types of errors on the NRI scores, at graded perturbation
levels.

To generate cortical networks with large numbers of neurons,
we turned to NeuGen 2.0, a product developed at the
University of Heidelberg, for generation of neurons and neural
networks (Eberhard et al., 2006). NeuGen is an open source
Java program that synthesizes neurons by using a probabilistic
model of the growth of neuronal processes—e.g., turning
and branching. Processes are composed of numerous short,
cylindrical segments. Synapse generation is based on Peter’s
Rule (distance between processes), modified to prevent synapse
clustering (excessively dense synapse formation in localized
process regions). Neurons were modeled after those in the rodent
somatosensory barrel cortex as specified by the default NeuGen
parameters. Our synthesized networks consisted of 872 complete
neurons (312 L2/3 pyramidal neurons, 62 L4 stellate neurons,
62 L4 star pyramidal neurons, 218 L5A pyramidal neurons, and
218 L5B pyramidal neurons) and over one million synapses—
approximately 2,320 synaptic terminals per neuron, with somata
confined in a volume of x = y = 79µm and z = 1, 300µm.
Computational memory and processing limitations prevented us
from generating a denser network. Although neuron density of
the synthesized network is only about 1/10th that of real cortical
tissue, we consider the networks to be sufficiently large and
complex to serve as a proxy for real data in testing of the NRI
metric. We generated five such networks, using different seed
values for the underlying random number generators.

Current reconstruction methods generally introduce four
types of reconstruction errors, with the error rates for each
type often traded-off based on choice of algorithm parameters.
For example, synapse detection algorithms often have a
tradeoff between synapse precision and recall, leading to added
and/or deleted synapses in the final reconstruction. Neuron
segmentation algorithms may fail to differentiate membrane
boundaries in poor quality images, resulting in merged neurons.
Yet if parameters are tuned to minimize false merges, the
algorithm may identify nonexistent boundaries at thin portions
of a neuron resulting in a neuron split (e.g., splitting of dendritic
spines from the shaft). To simulate the introduction of these
errors into a reconstruction we built basic perturbation models
for the generation of each type of error. Models are summarized
in Table 3.
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TABLE 3 | Descriptions of perturbation models used to produce imperfect graph

reconstructions from a synthesized ground truth network.

Error type Perturbation model description

Synapse deletion A specified percentage of synapses is randomly selected

from the set of all existing synapses and deleted.

Synapse insertion For each possible pair of cylindrical process segments

(from different neurons), insert a synapse with probability

p where p is pmax for inter-process distance less than

d1, p is 0 for distance greater than d2, and p follows a

linear decreasing curve in (d1,d2).

Neuron split For each cylindrical process segment, split the neuron at

the segment with probability p where p is pmax for

process diameter less than d1, p is 0 for diameter

greater than d2, and p follows a linear decreasing curve

in (d1,d2).

Neuron merge For each possible pair of cylindrical process segments

(from different neurons), merge the neurons at the

segments with probability p where p is pmax for

inter-process distance less than d1, p is 0 for distance

greater than d2, and p follows a linear decreasing curve

in (d1,d2).

It is possible to run each perturbation model sequentially to
generate all types of errors in a single reconstruction. However,
in the following analysis, we generated reconstructions with only
one type of error in each reconstruction, as this allowed direct
observation of how the type of error affects neuron and network
NRI scores.

2.7. Real Data
Due to the limited size of most real network reconstructions with
high-quality annotations, we were motivated to use synthetically
created networks for metric testing. Nevertheless, application
of the NRI metric to a small, real data set might provide
confirmation of testing results on synthetic data, and/or expose
conditions and outcomes not revealed by the synthetic data set.
Therefore, we additionally assessed the metric by applying the
perturbation model to a real network of 201 neurons in mouse
visual cortex, taken from manually annotated EM data (Lee
et al., 2016). This “core” network has no leaf nodes—that is, each
neuron is connected to two or more other neurons.

3. RESULTS

3.1. Applying Metrics to Simulated Data
In this section, we empirically demonstrate relationships between
error types and local (single neuron) NRI scores and provide
explanations of why these relationships exist. The results in this
section indicate that the NRI metric is well-behaved, scalable,
and amenable to interpretation. For each error type—synapse
deletion, synapse insertion, neuron split, and neuron merge—
the perturbation model is applied to the ground truth networks
described in Section 2.6 with several different perturbation
parameter sets, intended to create imperfect reconstructed
graphs of decreasing accuracy (at the network level). For
example, in the case of synapse deletion, the percentage of

synapses that are randomly deleted from the ground truth
network is increased across individual simulations, resulting
in reconstructed networks with different levels of synapse
degradation. Given a ground truth network and an imperfectly
reconstructed network, the global NRI is calculated for the entire
reconstructed network and the local NRI is calculated for each
ground truth neuron. Across the error types, we expect greater
perturbation to lead to smaller NRI values. This is the case for
both local NRI (although scores vary from neuron to neuron) and
global NRI.

We additionally use the adapted versions of VI and Rand
Index to compute global scores for the reconstructed networks.
These alternativemetrics do not have defined local scores, and are
thus not compared with NRI at the scale of individual neurons.

3.1.1. NRI Scores for Synapse Deletions and

Insertions
First, we consider synapse deletions. As described in Table 3, a
fixed percentage of synapses are randomly chosen from across
the entire volume and deleted. Thus, most ground truth neurons
will be impacted roughly to the same degree (with some variance
about a mean). When a single synapse is deleted, the number of
true positives decreases and an equal number of false negatives is
introduced. The result is a lower recall score and a lower local
NRI score. The effect of decreased TPs and increased FNs is
readily seen by studying Equation (3). A synapse deletion only
impacts the local NRI scores of the ground truth neurons with
which the synapse is associated (presynaptic and postsynaptic).
The NRI decreases more for ground truth neurons that lose more
synapses (as a fraction of total number of synapses associated
with those neurons). This is evident in Figure 2A where the
local NRI score is smaller for ground truth neurons that lose a
greater fraction of their overall synapses. Additionally, Figure 2A
shows that the network level or global NRI score also suffers
when deletion rate is high. For example, the dark blue markers
represent individual neurons from a single reconstruction in
which the deletion rate was high. Both the network and neuron
NRI scores are low in this case.

Next, we consider synapse insertions. Under the perturbation
model, synapses are inserted probabilistically based on the
distance between neuron membranes (more precisely, the
distance between the cylindrical segments of which the neuronal
processes are composed). Naturally, some neurons will be
significantly more impacted by this error model than others.
When a single synapse is inserted, several false positives are
introduced where the number of false positives depends on
how many synapses are associated with the original ground
truth neuron. False positives decrease the precision term and
thus the total (local or global) NRI value. Again, a synapse
insertion effects the local NRI values of only the two neurons
on which the synapse is incident (presynaptic and postsynaptic).
One measure of the extent to which a ground truth neuron has
been impacted by insertions is the fraction of the reconstructed
neuron’s synapses that are not associated with those of the ground
truth neuron. This is the perturbation metric used in Figure 2D.
Neurons that experience a larger number of synapse insertions
have lower NRI values, as seen in the figure. Notice that, because
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FIGURE 2 | Reconstruction errors were simulated by applying one of four perturbation models to a synthetically generated ground truth (GT) network. Perturbation

models (see Table 3) introduced errors by (A) deleting a percentage of synapses from the overall network, (B) probabilistically inserting synapses where two neuron

membranes are closely apposed, (C) probabilistically splitting neurons where process diameter is small, or (D) probabilistically merging neurons where two neuron

membranes are closely apposed. These plots show how local NRI scores of individual neurons vary as a result of the introduction of these errors. Several perturbation

metrics were used to compare perturbation magnitude to NRI scores. For synapse deletions, neuron NRI scores are compared to the fraction of synapses that were

deleted from a given GT neuron. For synapse insertions and neuron merges, NRI is compared to the fraction of synapses not found on the GT neuron. In the case of

neuron merges, this means that if neuron A is merged with neurons B and C in the reconstruction, then the perturbation score for neuron A is
nB+nC

nA+nB+nC
where nA,

nB, and nC are the number of synapses associated with neurons A, B, and C, respectively. For neuron splits, neuron NRI is compared to the entropy of the synapse

distribution across the split pieces of the GT neuron (normalized by the total number of synapses). The color of each neuron’s data point indicates the global network

in which the neuron resided, and the NRI score for that global network is indicated in the plot’s legend. For example, for synapse deletions in plot A, the data points

colored dark blue at the bottom right of the plot are neurons from a single perturbed network whose network NRI score is 0.077. Individual neuron NRI scores are

close to the network NRI score in this particular case. To enhance visibility, results from only 10% of the neurons (uniformly chosen across neuron size) are plotted.

Overlap of markers of different colors is indicative of a broad range of neuron NRI scores for a single reconstructed network.

this perturbation model will greatly impact a handful of neurons
and leave others virtually untouched (due to the fact that the
probability of insertion depends on the density of processes
in the synthetic network, which is higher at the center of the
volume and lower at the edges), Figure 2B does not show the
same separation between reconstructed networks as Figure 2A
does. Global NRI values are not as heavily impacted and every
reconstructed network has some neurons with low deletion and
high NRI.

3.1.2. NRI Scores for Neuron Splits and Merges
Segmentation errors made during reconstruction can result in
neuron splits and neuron merges. First, we consider neuron
splits, which aremade probabilistically based on process diameter
(see Table 3). As with synapse insertions, the probabilistic model
used will result in some neurons that are greatly affected by
multiple splits and other neurons that are rarely or never split. A
single neuron split, say into pieces A and B, will introduce several

false negatives between all pairs of synapses where one synapse is
associated with piece A and the other synapse is associated with
piece B. Such an error only effects the NRI of the split neuron and
the effect is immediately seen through inspection of Equation (3).
Figure 2C shows that greater splitting results in lower local NRI
value. Because neurons in a network are not uniformly impacted,
there is no clear local NRI separation between neurons from
low perturbation networks and those from high perturbation
networks.

Finally, we consider neuron merges, which are made
probabilistically when two neurons (processes) fall within a
certain distance of each other. Notice that, when this model is
applied, whole neurons are merged together whenever a merge
is indicated. Thus, each ground truth neuron is a subset of a
reconstructed neuron. As for synapse insertions, we measure the
extent to which a ground truth neuron has been impacted by
merges as the fraction of the reconstructed neuron’s synapses
that are not associated with those of the ground truth neuron.

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2018 | Volume 12 | Article 74

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Reilly et al. Neural Reconstruction Integrity

This is the perturbation metric used in Figure 2D. Once again,
the nature of the neuron merge model is that some neurons may
be involved in several merges and others may be involved in a
small number, possibly none. Thus there is no clear separation
in the NRI scores of high perturbation network neurons and
low perturbation network neurons. Merging two ground truth
neurons, say A and B, into one reconstructed neuron introduces
a false positive for each synapse-synapse pair where one synapse
is associated with neuron A and the other is associated with
neuron B in the ground truth data. The effect of additional false
positives can readily be seen upon examination of Equation (3).
Figure 2D verifies that ground truth neurons subject to a great
deal of merging also tend to have small local NRI scores.

3.1.3. NRI Neuron Score Distributions
The underlying construction of the NRI metric indicates that
errors impacting larger neurons could have an outsized impact
on the global NRI score, since the number of synapse pairs
associated with a neuron is approximately proportional to the
square of the number of synapses. However, although anecdotal
and specific to our simulations, we did not observe a dominating
impact of large neurons on the global NRI scores (Figure S1).
For modestly perturbed networks (global NRI near 0.9), the
average of a network’s local NRI scores was found to be within
about 3% of global NRI scores, suggesting a relatively balanced
contribution from individual neurons.

3.1.4. Alternative Network Scores
Network scores based on the NRI, NVI, and Rand Index metrics
are shown in Figure 3. While each metric provides scores that
trend lower with an increasing number of reconstruction errors,
there are distinct differences between the metrics. Most notably,
the Rand Index gives higher scores than the other two metrics,
exhibiting less sensitivity to errors. This is particularly evident
for splitting errors, for which the Rand Index gives scores nearly
equal to 1.0, even when splitting errors are extensive. This is
due to the inclusion of TNs in the computation of the Rand
Index, and the effect has been noted by others. Researchers
have noted (Jain et al., 2011) that the Rand Index applied to
voxels creates a "classification task [that] is highly imbalanced,
because the vastmajority of voxel pairs belong to different ground
truth clusters. Hence even a completely trivial segmentation in
which every voxel is its own cluster can achieve fairly low Rand
error.” Similarly for the terminal-based Rand Index, even if
each terminal was assigned to a unique neuron (maximum split
errors), the number of FNs will be dwarfed by the number of TNs
and thus the Rand Index score will remain relatively high. The
NVI provides network scores closer to those of the NRI. Like the
Rand Index, the NVI shows lower sensitivity to errors (except for
synaptic insertion errors, to which it is more sensitive), however
this lack of sensitivity is not as drastic as for the Rand Index. Thus,
depending on the desired metric sensitivity, the NVI may be a
suitable metric for measuring network reconstruction accuracy.

3.2. Applying the NRI Metric to Real Data
For limited testing on real data, the perturbation models were
applied to a manually-annotated network of 201 neurons from

themouse visual cortex (Lee et al., 2016) and subsequently scored
by the NRI metric. Because our ground truth data does not
include information on diameters of neuronal processes, the
splitting perturbation model was not applied, as it requires this
information to determine split probability.

Results shown in Figure 4 are in accord with those of the
synthetic data in that single neuron NRI scores largely lie
along a dominant trend curve that is monotonic. Unlike the
synthetic data, however, some scores clearly deviate from the
dominant trend. This occurs when there are very few synapses
on the neuron or pair of neurons at which a reconstruction
error is made. For example, under the synaptic deletion model
(Figure 4A), there are numerous neurons for which the fraction
of synapses deleted from the ground truth neuron is 0.5. While
most have an NRI score at or slightly below 0.4, there are some
that are notably lower, including the extreme case of an NRI score
of 0. In this extreme case, the neuron had only two synapses, one
of which was deleted. Thus the neuron has zero true positives
and one false positive, resulting in an NRI score of 0 based on
Equation (3). In general, the real neurons may have an NRI
score that is the ratio of two very small numbers and thus may
deviate from the dominant trend. In contrast, neurons in the
synthetically generated networks have many more synapses per
neuron, so even when there are many reconstruction errors, a
neuron NRI score is never a ratio of two small numbers. It should
be noted that the “real” neurons do not really have such a small
number of synapses—rather, only a small number of synapses
were annotated.

4. DISCUSSION

4.1. Results
Results from simulations utilizing both synthetic and real data
indicate that the NRI has several of the desired qualities of a
metric for assessing reconstructions with regard to the brain
graph accuracy. For individual types of reconstruction errors,
scores are intuitively commensurate with the magnitude of
errors, with scores ranging from 0 to 1. Although not shown
directly in the simulations (but see Table 1), when applied to
reconstructions that contain multiple types of errors, observation
of the precision and recall components of the NRI score lend
additional insight into the types of errors contained in the
reconstruction. Finally, NRI computation was performed on a
modern personal computer with run times on the order of
seconds. Although the synthetic data sets were of modest size
compared to that expected of real data sets in coming years, NRI
computation on larger data sets will be feasible by utilizing the
methods outlined in section 2.4 for synapse matching, and by
leveraging more powerful computing hardware.

We briefly address two concerns with the NRI metric. First,
when synaptic insertion errors are present in the reconstruction,
the global FP count cannot be broken down into a set of factors
comprised solely of individual neuron FP counts, due to the FP(0)
term in Equation (8). Nonetheless, the vast majority of FPs can
be assigned to individual neurons, and the FP(i) terms will sum
to the global FP asymptotically as the number of insertion errors
goes to zero.
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FIGURE 3 | The four perturbation models (see Table 3 and Figure 2) were applied to five different ground truth networks, using a range of model parameters to

adjust the number of reconstruction errors introduced. Each set of three bars in the above panels represents a single perturbation model and set of model

parameters, applied to the five ground truth networks with results scored by three metrics. Bar height is the mean score of the five reconstructions for the specified

metric and model parameter, with error bars extending from the lowest score to the highest score. In many cases the error range is very tight, owing to the similarity of

the five ground truth networks and the uniform and consistent manner in which perturbation models introduce simulated reconstruction errors.

Second, because the metric considers all possible pairs of
synaptic terminals except true negatives, one might approximate
the effective weighting of single neurons in the global score
as proportional to the square of the number of synapses on
the neurons (a proxy for neuron size). Subjectively, we did
not see evidence of this in results from the synthetic data
(Figure S1). Regardless, whether or not such weighting would
be problematic depends partially on the goal of scoring with
the NRI metric. From the standpoint of a researcher analyzing
neural connectivity patterns or inferring brain function based
on the graph, it may be justified to give substantially greater
weighting to larger neurons when assessing reconstruction
accuracy. Additionally, the issue may be moot for some real
reconstructions, as most if not all of the neurons have a relatively
equal number of synapses (e.g., 5,000–10,000 in cortex) and thus
weighting will not vary substantively across neurons.

4.2. Ground Truth Data
We discuss here some aspects of real ground truth data that
should be considered when applying the NRI metric. Obtaining
ground truth data through the manual sampling (annotating)
of an image volume typically takes one of two forms—densely
annotating a geometrically confined region (e.g., a small cube
within the larger volume) or sparsely annotating large portions

of a few neurons and their processes, perhaps along with a subset
of their synaptic partners. In either case, we must remain aware
that there is vastly more information in a large semi-automated
reconstruction than in the ground truth data, and some aspects
of the reconstruction may in fact be a more accurate depiction of
the real brain graph than that depicted by the ground truth data.

As a specific example, consider a branching process for which
ground truth data exists for a pair of branches but not for
the branching point (i.e., the branching point is outside of
the manually annotated region). In this case, the ground truth
data would label these processes as unique neuron fragments.
However, if the larger reconstruction data captures the branching
point, the two branches as well as the branching point would
be correctly labeled as a unique neural fragment. If the NRI
were computed on these data naively, the reconstruction would
be unjustly penalized with many false positives since from the
perspective of the ground truth data, the two branches were
erroneously merged. Thus, a preprocessing step is needed in
which the reconstruction is cropped to match the confined
region of the ground truth data, and neuron fragments are

relabeled based on connected components (i.e., generating two
new identifiers for branches that do not have adjacent voxels in

the cropped volume) such that cropped reconstruction labeling is
equivalent to that which would have been obtained had the entire
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FIGURE 4 | Simulated reconstruction errors were introduced into a real network of 201 neurons in mouse visual cortex, taken from manually annotated EM data (Lee

et al., 2016). This “core” network has no leaf nodes—that is, each neuron is connected to two or more other neurons. Perturbation models and plotting style are

identical to that of Figure 2 except that the splitting model was not applied because neuron process diameter (which is needed by the splitting model to determine

split probability) is not present in the ground truth annotations. Neuron scores that deviate from the predominantly monotonic trend are those of neurons with few

synapses, as described in the text in section 3.2.

reconstruction been composed only of the confined ground truth
region.

An additional problem arises when sparsely annotated ground
truth data is used. In that case it is more likely that manual
annotation errors will arise in the form of dendritic spine splits
and associated orphaned synapses on spine heads, because all
pixels are not assigned and so small details aremore easilymissed.
As mentioned in the introduction, ground truth should actually
be treated as “gold standard” data, that, despite being used for
assessing reconstruction quality, may itself have some errors. One
mitigating approach to the aforementioned problem is to revise
the manner in which ground truth data is collected. For example,
all synapses in the volume could first be annotated, and then
traced back to a dendritic shaft, thereby reducing the likelihood
of missing synapses. Or as a compromise, the same approach
could be taken but synapses would be annotated only within a
fixed diameter range about a ground truth dendritic process, with
the assumption that synapses outside this range could not belong
to the dendrite. Finally, a modification to the NRI metric would
make it insensitive to such errors, as described below.

4.3. Future Extensions
In this manuscript, we defined an NRI operating point as the
harmonic mean of precision and recall (e.g., f1). For graph
inference tasks, it might be more favorable to choose a different

β value in fbeta, which has the effect of weighting the contribution
of false positive and false negative paths asymmetrically. Another
extension would be to consider different methods of computing a
global NRI score, such as weighting each neuron’s contributions
equally rather than weighted by the number of paths. Many
(brain)-graphs are produced without polarity information; NRI
can be easily extended to undirected paths if desired.

4.4. A Modified, Segmentation-Only NRI
Rigorous procedures are necessary to ensure that synapses
are not missed when manually generating sparse ground truth
annotations (e.g., missed detection of dendritic spine shafts
results in a missed synapse). One approach to relaxing manual
annotation accuracy requirements in this regard is to use a
segmentation-only version of the NRI in conjunction with other
metrics. If the NRI is computed using only matched synapses
(that is, unpaired synapses representing synapse deletions and
synapse insertions are not included in the count table) then
missed synapse errors in the “ground truth” annotation will not
result in unjust penalization of reconstructions that do not make
these errors.

While this might appear to result in a metric that is insensitive
to some errors in the reconstruction, this is only true if the
associated synapses are deleted from the reconstruction as well.
In reality, if the modified NRI is coupled with a synapse detection
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metric [as with the TED metric (Funke et al., 2017) in the
2016 MICCAI CREMI challenge6] and the score of the synapse
detection metric is high, then segmentation quality will still be an
important component of the NRI score.

5. CONCLUSION

We present an NRI metric for assessment of a reconstructed
volume of neural tissue that emphasizes network connectivity.
Our results indicate that the metric serves this purpose well
based on several desirable qualities including applicability to
both dense and sparsely annotated ground truth volumes,
and applicability to single neurons, local regions, and global
networks. Additionally the metric produces an interpretable
score that falls within [0, 1] and is computationally feasible even
at scales much larger than that of currently available data sets. We
highlight NRI in the context of high-resolution brain graphs, but
this metric applies broadly to graphs estimated using a variety
of methods and at a variety of scales. Indeed, it is potentially
relevant for other problem domains where path finding is a
critical objective (e.g., road detection, autonomy).

The metric has yet to be tested on a large volume of real
ground truth data with a real reconstruction pipeline. In addition
to confirming the utility of the metric, such an effort is likely to
help refine strategies for manually annotating ground truth data
and may ultimately facilitate researchers’ efforts toward creating
automated or semi-automated reconstructionmethods leading to
high quality, large scale brain graphs.
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