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Making clinical decisions based on medical images is fundamentally an exercise in
statistical decision-making. This is because in this case, the decision-maker must
distinguish between image features that are clinically diagnostic (i.e., signal) from a
large amount of non-diagnostic features. (i.e., noise). To perform this task, the decision-
maker must have learned the underlying statistical distributions of the signal and noise
to begin with. The same is true for machine learning algorithms that perform a given
diagnostic task. In order to train and test human experts or expert machine systems in
any diagnostic or analytical task, it is advisable to use large sets of images, so as to
capture the underlying statistical distributions adequately. Large numbers of images are
also useful in clinical and scientific research about the underlying diagnostic process,
which remains poorly understood. Unfortunately, it is often difficult to obtain medical
images of given specific descriptions in sufficiently large numbers. This represents a
significant barrier to progress in the arenas of clinical care, education, and research.
Here we describe a novel methodology that helps overcome this barrier. This method
leverages the burgeoning technologies of deep learning (DL) and deep synthesis (DS)
to synthesize medical images de novo. We provide a proof-of-principle of this approach
using mammograms as an illustrative case. During the initial, prerequisite DL phase of
the study, we trained a publicly available deep learning neural network (DNN), using
open-sourced, radiologically vetted mammograms as labeled examples. During the
subsequent DS phase of the study, the fully trained DNN was made to synthesize,
de novo, images that capture the image statistics of a given input image. The resulting
images indicated that our DNN was able to faithfully capture the image statistics of
visually diverse sets of mammograms. We also briefly outline rigorous psychophysical
testing methods to measure the extent to which synthesized mammography were
sufficiently alike their original counterparts to human experts. These tests reveal that
mammography experts fail to distinguish synthesized mammograms from their original
counterparts at a statistically significant level, suggesting that the synthesized images
were sufficiently realistic. Taken together, these results demonstrate that deep synthesis
has the potential to be impactful in all fields in which medical images play a key role,
most notably in radiology and pathology.

Keywords: deep learning, deep neural network, perceptual metamerism, representational similarity analysis,
signal detection, psychophysical
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INTRODUCTION

Medical images play an important role in many fields of
modern medicine, and are outright central to some medical
specialties, such as radiology and pathology. For instance, in
screening mammography (Ritenour and Hendee, 1989; Sickles
et al., 2002; Welch et al., 2016), the clinical decisions are
primarily based on mammograms, and non-image information,
such as the patient’s clinical charts, plays a supporting role: The
radiologist must examine a given set of mammograms from a
given patient along with other pertinent clinical information,
and decide whether the patient must be recalled for additional
tests. Given the enormous statistical variation among the
images – after all, no two mammograms are exactly alike,
even within a given patient – the mammographic examination
amounts to a fundamentally image-based statistical decision-
making task. That is, in order to make the correct decision, the
radiologist must recognize very subtle, abstract image features
that are diagnostic of an anomaly, and distinguish them from
comparable features of a healthy breast. To recognize and
utilize the diagnostic image features, the radiologist must be
trained to do so in the first place. A large set of training
images that reliably represent the diagnostic information, and
the variability thereof, of real-world images would be needed to
help provide the radiologist an adequate internal representation
of the statistical distribution of the underlying diagnostic
features.

The same is also true for training, testing and benchmarking
machine learning applications designed to perform various
analyses of medical images. Similar considerations also apply to
clinical and scientific research involving analysis and perception
of medical images (Samei and Elizabeth, 2010; Bhattacharyya
et al., 2017; Marques et al., 2017). Altogether, for human experts
and expert machines alike, the larger the training/testing medical
image set, the better.

However, it can be quite difficult to get a sufficient number of
images of a specific description. For instance, imagine training
a radiology resident specializing in mammography. This is the
field of medicine in which medical images are easiest to come by,
in no small part because a relatively large proportion of eligible
women typically undergo mammographic screening for breast
cancer annually (Heath et al., 2001; Samei and Elizabeth, 2010).
However, because the incidence of breast cancer is quite low
(0.3–0.5% (Coldman and Phillips, 2013; Njor et al., 2013; Welch
et al., 2016)), the proportion of images with cancer accounts
for a tiny fraction of the available mammograms. Obviously,
the incidence of each of the subtypes of breast cancer (e.g.,
ductal carcinoma in situ) will be even lower. Needless to say,
in other fields of medicine where regular image-based health
screening is less prevalent, available image sets tend to be even
smaller.

Thus, it would be desirable to develop techniques for
generating, de novo, a large number of medical images of a desired
subtype. Here we demonstrate, using mammograms as a proof-
of-principle example, that the machine learning method of deep
learning (DL) followed by deep synthesis (DS) can be leveraged
to help address this problem.

MATERIALS AND METHODS

DL and DS: A Brief Background
In machine learning, DL generally refers to the use of deep
(artificial) neural networks [DNNs; for reviews, see (Bianchini
and Scarselli, 2014; LeCun et al., 2015; Kim et al., 2016; Aghdam
and Elnaz, 2017; Hegdé, 2017)]. The underlying learning is
referred to as “deep,” because DNNs typically consist of a
hierarchy of many layers (dozens or even hundreds), all of which
play a role in learning. This functional organization allows the
network to learn a hierarchy of features of increasing complexity.
The DNN must be adequately trained before DS can begin, so that
the DL phase is a prerequisite for the DS phase.

During the ensuing DS phase, the fully trained DNN is made
to synthesize one or more new images that capture the statistics
of the training images. The specific method we used (Gatys et al.,
2015, 2017; Wallis et al., 2017) further receives one additional
“sample” image and synthesizes counterpart images, i.e., images
that capture the statistics of the sample image specifically, rather
than the general statistics of all images in the training set.

Organization of the DNN
In this study, we used a modified version of
the publicly available DNN called VGGNet
(Simonyan and Zisserman, 2015) (downloadable from
http://www.robots.ox.ac.uk/∼vgg/research/very_deep/). Briefly,
the network consisted of 19 connected layers (Figure 1A).
Neurons are heavily interconnected within layers, and less
heavily across layers. The technical details of the construction,
as well as the pre-training of this DNN using natural images,
have been previously described in detail by Simonyan and
Zisserman in (Simonyan and Zisserman, 2015)[also accessible at
https://arxiv.org/abs/1409.1556].

Although the technical operational details of the DNN are
rather involved, it is easy enough to develop an intuitive
understanding of how it works. Briefly, as their name indicates,
DNNs are organized as a network of neurons [for reviews,
see (Cadieu et al., 2014; Cichy and Teng, 2017)]. The
artificial neurons in question are idealized versions of biological
neurons. Specifically, artificial neurons simulate the high-level
computational properties of biological neurons, such as summing
of the activations of input neurons (with appropriate synaptic
weights) and firing (i.e., producing an output signal) when
the sum exceeds a threshold. However, DNN neurons do
not simulate the more detailed biological processes by which
biological neurons perform the computations (such as membrane
potentials, neurotransmitter release and re-uptake, etc.).

In the case of image processing DNNs, the neurons simulate
the essential properties of the various levels of the primate visual
system (Cichy et al., 2016, 2017). Thus, neurons in the input
layers of the DNN simulate the retina, in that each one of them
processes a small, localized region of the image that corresponds
to the neuron’s receptive field. Neurons in each subsequent
layer receive inputs from neurons in the previous layer, in a
fashion broadly analogous to the actual brain. This allows the
artificial network to construct a hierarchy of features of increasing
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FIGURE 1 | Configuration of the DNN used in this study. (A) A schematic representation of the DNN used for DL and DS of mammograms (Krizhevsky et al., 2012;
Bart and Hegdé, 2018). Briefly, the network consists of 19 interconnected layers of various sizes (denoted by stacked squares) and a total of 650,000 neurons (not
shown). (B) During the initial DL phase of the project, the DNN was trained with 1.2 million natural images. Subsequently, this quasi-trained network DNN was
fine-tuned using about 9,000 partial view mammograms (PVMs) as training images generated from radiologically vetted actual mammograms as shown in Figure 2.
This resulted in the fully trained network. This two-phase training process was necessary due to the relatively small number of mammograms available for training.
(C) Receptive fields of selected neurons in layers 2, 4, and 6 in the fully trained network. (D) Deep synthesis of mammograms. For each input original mammogram i,
the fully trained network can generate a virtually unlimited supply of synthesized mammograms.

complexity. Again, in analogy to biological visual systems, the
receptive fields of neurons in the higher levels generally increase
in size, so that neurons in the highest few layers can detect a

feature anywhere in the visual field. The VGGNet is convolutional
(Simonyan and Zisserman, 2015; Venkatesan and Baoxin, 2017;
Chougrad et al., 2018), in that it replicates, with the same
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weights, each feature at every position in the input image. While
generally not considered biologically plausible, this is a useful
computational shortcut that allows significant reduction of both
the computational requirements and the amount of necessary
training data.

The deep learning neural network learns by adjusting the
weights of the interconnections among the neurons based on the
training images and the task. In general, the DNN does not retain
every bit of information that is fed into it. Over the long run, it
tends to learn only the statistical properties of the training images
(e.g., in our case, what cancerous and healthy mammograms ‘look
like’).

DL Phase: Training and Fine-Tuning of
the DNN Using Partial View
Mammograms
The brand new, uninitialized DNN must be trained using a
very large number (on the order of millions) of visual images.
Since it was not possible to obtain this many mammograms,
we used a DNN pre-trained using 1.2 million natural images as
described in (Simonyan and Zisserman, 2015) (Figure 1B). This
represents a workaround for the potential bootstrap problem,
namely that synthesizing a large number of new medical images
would require a large number of similar medical images to begin
with. Obviously, this bootstrap problem applies to other types of
medical images as well, and the above workaround is also likely
to useful in such cases.

After this initial training, the DNN was fine-tuned using
about 9,000 mammogram images that we will refer to as “partial
view mammograms” (PVMs). As their name indicates, PVMs are
mammograms that focus on a small localized region of interest
(ROI) of the breast, rather than the whole breast (Figure 2; see
legend for details) (Kim et al., 2010). The rationale for using
PVMs rather than whole-breast mammograms is threefold. First,
radiologically vetted ROIs tend to account for a tiny fraction of
the overall image area of a whole-breast mammogram (see, e.g.,
Figure 2). Thus, it is useful to ‘enrich’ the information content of
training images by excluding the large remainder of the image
that does not carry information of diagnostic interest. Second,
the breast is a highly structured organ, and this structure is
reflected in the image grammar of mammograms. The global
structure of the breast (including the overall size, shape and
outline) is far more variable than the local image features within
the radiologically vetted ROIs, which would necessitate a far
larger set of training images than are available publicly. Moreover,
while capturing the image grammar is a higher-order problem of
considerable future interest (see section “Discussion”), solving it
is not necessary for demonstrating the applicability of the DL-
DS methodology to medical images. Thus, using PVMs enabled
us to focus on the first-order problem of adequately training the
DNN by using the currently available image sets. Third, since
mammogram fragments have far fewer pixels than whole breast
mammograms, they can be handled by a relatively compact DNN,
such as the one we used.

Partial view mammograms can be generated in one of two
ways: They can be generated during diagnostic mammography

FIGURE 2 | Whole-breast mammograms (A,C) and the corresponding partial
view mammograms (PVMs) mammograms (B,D, respectively). The dotted
circle in panel A denotes an ROI containing a cancer. Note that the cancerous
region accounts for a relatively small portion (<1.4% of the area) of this
mammogram, so that the rest of the image contains either healthy breast
tissue, or a blank field that contains no breast tissue at all. Thus, diagnostic
information in whole-breast mammogram is substantially “diluted.” Panel B
shows a magnification-view mammogram of the same ROI that shows
multiple microcalcifications (arrows). Note that this image is much enriched in
diagnostic information compared to the whole-breast mammogram. It also
has a much simpler global structure (or “image grammar,” in machine learning
terms), in that it does not have the global information such as the breast
outline, chest wall, musculature, etc. The same considerations apply to
images in panels C,D. The irregular outline in panel C denotes the
radiologically vetted ROI, and the square denotes the image region cropped
from C to generate the mammogram fragment shown in D. See text for
details.

(i.e., during mammographic imaging) intended to “zoom in”
on an ROI, typically identified during the earlier screening
mammography of the patient. A second way of generating PVMs
is to generate mammogram fragments by digitally cropping
a radiologically vetted, high-resolution ROI. In this study, we
generated PVMs using the latter approach as described in greater
detail below. It is important to note that both types of PVMs are
used in various clinical contexts (Kim et al., 2010).

For this project, PVMs were generated from the whole-
breast mammograms available in the Digital Database for
Screening Mammography (DDSM) database (Heath et al., 2001;
Venkatesan and Baoxin, 2017). Each mammogram belonged to
one of the following four radiologically determined categories:
“normal,” “benign without callback” (which were so obviously
benign that the patient did not have to be re-examined), “benign”
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(ambiguous enough to necessitate patient callback, but eventually
determined to be benign), and “cancer.”

For mammograms classified as “benign without callback,”
“benign,” or “cancer,” the DDSM database also specifies
radiologically determined outlines of the ROI (see, e.g., the
irregular white circle in Figure 2C). To create the PVMs from
such mammograms, we centered a 600 × 600 pixel square
on the ROI (white square in Figure 2C). We skipped those
mammograms for which any portion of the ROI lay outside
of this square or the ones with more than one contiguous
ROI. For the mammograms which had a single ROI that was
fully contained in the aforementioned square, we generated the
corresponding PVM by digitally cropping the square, so that
one PVM was generated for each mammogram that met the
aforementioned criterion.

For obvious reasons, the DDSM database defines no ROIs
for normal mammograms. To generate “normal” PVMs, we
identified the most visually salient region in each mammogram
as described by Walther and Koch (Walther and Koch, 2006). We
then centered the aforementioned 600 × 600 pixel square on the
most salient pixel within the most salient region, and cropped the
mammogram digitally to generate the corresponding PVM. This
process generated roughly equal proportions of PVMs from each
of the four classes of the mammograms.

Figure 1C illustrates some exemplar receptive fields of the
fully trained DNN.

DS Phase: De novo Synthesis of PVMs
The DS method we used is based on previous work by others
(Gatys et al., 2015, 2017; Wallis et al., 2017). In this method,
the fully trained DNN was presented with a series of additional,
actual PVMs (“original mammograms”). For each original
mammogram presented, the DNN was required to synthesize one
or more images of the same size (“synthesized mammograms”)
that captured the statistics of the original (see Figure 1D).

Briefly, DS is performed as follows. First, a feed-forward pass
of the original mammogram through the DNN is performed.
During this process, activations of all features in each layer
are computed. Next, for each pair of features in a given layer,
the correlations between their activations are computed and
organized into a Gram matrix for that layer. Effectively, the set of
Gram matrices for all layers of the DNN represents the structure
of the input mammogram by capturing the high-level statistics
of its overall appearance, but abstracting away details such as the
position of each feature or the intensity of each pixel. Images with
similar sets of Gram matrices will therefore contain broadly the
same features (such as breast tissue structure or possible lesions),
but will vary in their precise location, number, arrangement, and
details of appearance.

Next, one or more synthesized mammograms are generated
that have Gram matrices similar to the original input
mammogram. This is performed by first feeding a random
white noise image through the DNN and computing the
activations of all features. The Gram matrices for this synthetic
image can then be computed. An objective function is then
formulated as a simple L2 norm between the corresponding
elements of the original and the synthesized Gram matrices.

This objective function is optimized when the Gram matrices
of the synthesized image are the same as the Gram matrices of
the original image, i.e., when the synthesized image has similar
features to the original. To synthesize a new mammogram,
the objective function is optimized by gradient descent on the
pixels of the image being synthesized. This process results in the
generation of an image that has high-level features, properties
and statistics similar to the original, but is different in the exact
details (see Figure 3 for examples). Additional details can be
found in (Gatys et al., 2015, 2017; Wallis et al., 2017). The
relevant code is publicly available in (Gatys, 2015) (see also
various code repositories referenced in (Gatys et al., 2015, 2017;
Wallis et al., 2017)).

Hardware Requirements
Training (and, to a lesser degree, using) DL methods is generally
computationally expensive. For example, DL methods as yet
cannot be used on mobile devices and require specialized
hardware, most commonly GPUs. However, both training and
using DL methods can be readily and efficiently carried out
on hardware that is commercially and widely available, and is
within reach for most research laboratories. The experiments
described here were performed on a server with the following
configuration:

– Two Intel Xeon E5-2650 V4 12 Core/24 thread CPUs @
2.2 GHz Base/2.9 GHz Turbo.

– 512 GB RAM.
– Ten NVIDIA 1080 TI CPUs with 11 GB memory each.

While this configuration is decidedly more powerful and
expensive than a typical workstation, the price tag of less than
$30,000 makes it more affordable than most other pieces of
equipment in a typical medical research laboratory. In addition,
note that less expensive configurations would have worked as
well. For example, the DS method we used ran on a single GPU
using less than 1 GB of GPU memory and less than 1 GB of RAM.
In this latter case, only one CPU thread was used, and only for
control at that, rather than for actual computation.

Human Psychophysical Testing
Subjects
All study subjects were practicing radiologists specializing in
mammography who volunteered to participate in this study. All
subjects gave written informed consent prior to participating
in the study. All procedures related to study subjects were
approved in advance by the Institutional Review Board (IRB) of
Augusta University. This study was carried out in accordance
with the enterprise human research protection policies and
practices of the Augusta University Institutional Review Board.
The underlying protocol was approved by the Augusta University
Institutional Review Board. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

All subjects were tested at the Perception Lab psychophysical
testing facility organized by the National Cancer Institute at
the 2017 annual meeting of the Radiological Society of North
America (RSNA 2017) in Chicago, Ill. Each subject participated
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FIGURE 3 | Exemplar images of the DS phase. During each round of synthesis, the fully trained network was provided n original mammograms as input, and was
made to synthesize one or more output images. In this figure, selected input images from various diagnostic categories (A–D), along with an exemplar synthesized
counterparts, are shown. See text for details.

in one or both of the following two experiments, depending on
his/her interest and availability. Only the data from those subjects
who had at least ten trials for each image and tested in at least
one experiment were further analyzed. Data from 17 subjects,
corresponding to four original images and their four synthesized
counterparts, met these criteria.

Stimuli
Subjects were tested using four pairs of original and synthesized
images (two each from healthy and cancerous breasts; see
Figure 4A). Note that we synthesized hundreds of images during

the DS phase, 24 of which are shown in Figure 3. The rationale
for testing a much smaller number of images during human
testing is twofold: First, it is advisable to test each possible pair of
images multiple times, so as to minimize the probability of Type
II errors (i.e., of falsely concluding that the synthesized images
are indistinguishable from original mammograms) due to low
statistical power. On the other hand, using a larger number of
images would result in a combinatorial explosion of the required
number of trials, correspondingly reducing subject comfort.
Second, as noted above, our primary goal was to establish that
the DS/DL methodology is potentially feasible at least in some
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FIGURE 4 | Can practicing radiologists tell the synthesized mammograms from their original counterparts? Results of Experiment 1. (A) Mammograms tested in
Experiment 1. Four different original mammograms (O1 through O4 ) and their synthesized counterparts (S1 through S4 ) were chosen as test stimuli. Fourteen
radiologists, each a practicing mammography specialist, viewed each image ad libitum, and reported whether it was a synthesized image or an original one. See text
for details. The first two columns from left represent healthy breasts, and the last two columns represent cancerous ones. (B) The subjects’ responses were analyzed
using d’ analysis. The resulting d’ values are shown as four box plots corresponding to the four pairs of stimuli in panel A. For each box plot, the top and bottom
“whiskers” represent the maximum and minimum observed d’ values, respectively. The rectangle denotes the interquartile range between the first and third quartile
of observed values. The red horizontal line denotes the median value. None of the d’ values were statistically significant (p > 0.05 for all values).

cases, and not that it is broadly applicable to all or most cases.
Therefore, our approach represented practical balancing of all
these considerations.

Experiment 1: Perceptual
Distinguishability of the Original vs.
Synthesized Mammograms
All stimuli were presented against a neutral gray background.
Each trial started with the presentation of a small (0.3◦) central
fixation spot on a neutral gray background. Subjects were
told to fixate on the spot and indicate their readiness for the
trial by pressing a key, upon which a single mammogram
(16◦

× 16◦) was presented. Subjects were informed that
there was 50–50 chance that a given mammogram was
original or synthesized. Subjects were told to scrutinize the
mammogram ad libitum and report, using an appropriate key
press, whether the mammogram was synthesized or not. The
given trial ended with the subject’s response. Each mammogram
was presented at least 10 times during randomly interleaved
trials.

Experiment 2: Representation Similarity
Analysis (RSA) of the Mammograms
Experiment 2 was identical to Experiment 1 above, except as
follows: During each trial, a pair of mammograms was presented
side by side. Depending on the trial, either, both, or neither
mammogram was an original mammogram. Subjects were told
to scrutinize the mammograms ad libitum and report, using a
mouse-driven on-screen slider, how diagnostically similar they
were on a scale of 0 (identical) to 100 (nothing comparable).
Each pair of mammograms was presented at least 10 times during
randomly interleaved trials.

Data Analysis
Data were analyzed using software custom-written in R (R
Core Team, 2015) or Matlab (Natick, MA, United States).
Representational Similarity Analyses [RSAs; (Shepard and Susan,
1970; Shepard et al., 1975; Kriegeskorte et al., 2008)] were carried
out using Matlab scripts that utilized the RDM Toolbox (Nili
et al., 2014) or custom-written software.

RESULTS

Figure 3 shows some examples of original mammograms used
as input images during the DS phase, and the corresponding
synthesized mammograms in each of the aforementioned four
diagnostic categories. A few properties of the synthesized
mammograms are particularly worth noting. First, by visual
inspection, the synthesized mammograms appear quite similar in
character to their original counterparts. Second, the synthesized
mammograms are nonetheless pixel-wise quite different from
their original counterparts. For instance, in the far left column
of Figure 3, the bright spots indicating microcalcification
are distributed differently in the synthesized mammograms
compared to their original counterparts. This is also true of
other input mammograms that are mutually quite different
in physical appearance. Thus, the DNN appears to have
learned some of the key statistical properties of the input
mammograms.

These observations straightforwardly raise the question of
whether the synthesized mammograms also appear perceptually
indistinguishable, or “metameric” (Wyszecki and Stiles, 2000;
Victor et al., 2015; Sweeny and Whitney, 2017), to trained experts.
After all, it is a well-known property of visual pattern recognition
expertise that experts can reliably distinguish abstract differences
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between visual objects that are too subtle for non-experts to
recognize.

We tested this scenario using Experiment 1 (see section
“Materials and Methods” for details). Figure 4A shows the
four pairs of original and synthesized images used in this
experiment. Fourteen practicing radiologists, each a practicing
mammography specialist, viewed each image ad libitum, and
reported whether it was original or synthesized. Each subject
viewed each image ≥ 10 times in randomly interleaved trials (see
section “Materials and Methods” for details).

We compared the nominal hit rate (i.e., proportion of trials
in which the subject correctly identified a given image as
synthesized) with the false alarm rate (i.e., proportion of trials
in which the subject incorrectly identified a given image as
synthesized) using the d’ analysis. The resulting d’ values showed
that for each of the four pairs of images, no subject performed
at a d’ of > 0.4 (Figure 4B). That is, for each image pair,
subjects failed to distinguish the synthesized image from its
original counterpart significantly above chance levels (p > 0.05).
Similar results were obtained (not shown) when we carried out a
complementary d’ analysis, in which we recalculated the d’ values
by comparing the nominal true negative rate (i.e., proportion
of trials in which the subject correctly identified a given image
as the original) with the misses (i.e., proportion of trials in
which the subject incorrectly identified a given image as the
original). Other response measures, such as the reaction time,
also failed to show significant differences between synthesized
and original images for any image pair (data not shown).
Together, these results indicate that the synthesized images were
perceptually metameric with their original counterparts, and vice
versa.

The above results raise two interrelated questions. First, did
the radiologists perceive the same diagnostic information in
the synthesized image that they perceived in its in original

counterpart? Second, was the perceived diagnostic information
similar from one radiologist to the next?

Measuring internal perceptual representations of subjects
is evidently extremely difficult. Fortunately, representational
similarity analysis (RSA) provides a well-established, theoretically
sound, quantitative approach to addressing these questions
(Shepard and Susan, 1970; Edelman, 1998; Kriegeskorte et al.,
2008; Cichy et al., 2014; Haxby et al., 2014; Guntupalli et al.,
2016). We therefore carried out an RSA of diagnostic information
in the aforementioned four image pairs (Experiment 2, see
section “Materials and Methods” for details). In this experiment,
twelve practicing mammography specialists, including nine
subjects from Experiment 1, rated randomly drawn pairs of
images from Figure 4A on a 0 – 100 scale as to how
similar they were in terms of the diagnostic information they
contained.

The mean reported similarities are shown as a conventional
representational dissimilarity matrix (RDM) in Figure 5A in
color-coded format. It is evident from the RDMs that the
subjects tended to rate corresponding pairs of synthesized
and original images as highly similar in terms of the
diagnostic information they contained (cells with blue hues
in Figure 5A). Conversely, subjects tended to rate unpaired
images as containing highly dissimilar diagnostic information,
regardless of whether the images were synthesized or original.
Altogether, there were no significant differences between
the similarity ratings elicited by original images vs. their
synthesized counterparts (paired t-test, p > 0.05), thereby
providing additional evidence that the two sets of images
were perceptually indistinguishable. Moreover, the RDMs were
statistically indistinguishable across subjects (RDM congruity
analysis, p > 0.05; data not shown), suggesting that different
subjects perceived the same underlying perceived diagnostic
information.

FIGURE 5 | Do different radiologists perceive the same diagnostic features in synthesized mammograms? Results of Experiment 2. The four pairs of images shown
in Figure 4A were used in this experiment to carry out a representational similarity analysis (RSA). Subjects rated the perceived similarity of diagnostic information
between randomly selected pairs of mammograms on a 0–100 scale. See text for details. (A) Perceived pairwise similarities reported by fourteen practicing
radiologists. Note that the corresponding pairs of original and synthesized counterparts were rated as highly similar (blue hues). (B) Hierarchical cluster analysis of
the results in panel A. The vertical distance between any two mammograms is a quantitative measure of the distance between them in the perceptual space.
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The RDM data are shown as a hierarchical clustering analysis
(HCA) plot in Figure 5B, where the vertical distance between any
two images is a quantitative measure of the perceived similarity of
the diagnostic information between them.

Together, these results indicate that practicing radiologists
perceive similar diagnostic information in original images as they
do in their synthesized counterparts.

DISCUSSION

Taken together, our results provide a proof of the principle
that inter-related technologies of DL and DS can be utilized to
synthesize medical images that are perceptually indistinguishable
from their original counterparts even for expert observers.
For reasons outlined in the Introduction, this is an important
technical capability in the diverse fields of medical image
evaluation, training, and research.

As detailed above, our DNN was implemented on common,
commercially available GPU hardware, using publicly available
software (Krizhevsky et al., 2012). Together, these considerations
show that DS is a potentially powerful, versatile approach for
overcoming one of the most important barriers to progress in
clinical care and research in image-intensive fields of medicine.

Some Important Caveats
We hasten to note some important caveats about the implications
of our results. First, our results demonstrate only that our DNN
can generate at least some realistic mammograms by objective
criteria, and not that all mammograms generated by our DNN
meet these criteria. This is important, because for practical
reasons outlined in Materials and Methods, we were able to test
only four, arbitrarily selected pairs of images. This constitutes
only a small proportion of the images we generated using DS,
which in turn represented but one category of medical images.
This is why we emphasize that our study merely represents
a proof of principle, and not the state-of-the-art. A second,
related caveat is that the present study focused on synthesizing
PVMs, and does not specifically address the applicability of
this methodology to images with more complex grammars.
On the other hand, there is no a priori reason to doubt that
these methodologies would be applicable to all medical images,
including those with complex grammars (see next paragraph).
That is, the main goal of this report is to illustrate the potential
of DL and DS to medical images. Therefore, it goes without
saying that the approach outlined in this report has room for
many tweaks and improvements, which we will briefly outline
below.

Future Directions
In contemplating the future applications of the DL/DS
methodology to medical images, it is important to bear in
mind that the entire field of DL, and especially DS, are both in
their infancy. A number of remarkable, real-world applications of
this technology serve to highlight the enormous future potential
of this technology (LeCun et al., 2015; Hegdé, 2017). Therefore,
any of the future directions noted below may fall squarely within

the realm of feasibility within the next few years, if it is not there
already.

Extending to Whole-Breast Mammograms
As noted above, whole-breast image statistics are far more
variable that the statistics of the mammogram fragments used in
this report. Given the relative scarcity of available training images
(thousands rather than millions of mammograms are readily
available), extending our results to whole-breast mammograms
will require some novel approaches to learning the appropriate
image grammar.

Extending to Other Types of Medical Images and
Videos
Many other types of medical images of highly structured
body parts, such as the lungs, the brain, the liver, and the
prostate, would similarly require learning complex image
grammars. In each of those cases, it may be possible to
replicate our approach, whereby initial studies use image
fragments to synthesize diagnostically informative image
fragments before attempting to synthesize the whole-organ
images.

It should be noted that some types of medical images,
especially in pathology, have much simpler image grammars.
For instance, pap smears contain an array of individual cells
that tend to be arranged randomly with respect to each other
(Cervical cancer screening: the Pap smear, 1980; Richart, 1980;
Shield et al., 1987), so that the relative spatial configuration of the
cells contains no diagnostic information. It should be much easier
to extend our results to such fields, provided a requisite number
of training images, or image fragments (e.g., fragments limited to
individual cells), can be acquired.

Many fields of medicine, such as surgery, angiography,
cardiology, colonoscopy, etc., rely more on three-dimensional
(3D) video feeds (i.e., 4-D images, where the fourth dimension
is time) as much as, or more than, static 2D images. It should be
possible, in principle, to extend the DL/DS methodology to 4D
images as well.

Systematically Manipulating Medical Images
As can be seen by comparing the original and synthesized
counterparts in this report (Figures 3, 4A), our current
methodology is capable of randomly manipulating medical
images, e.g., by changing the image location of calcification.
However, it would be even more useful to systematically
manipulate information, e.g., systematically changing the
location of the calcification.

Enhancing the Explainability of DL and DS to Human
Users
So far, our collective understanding what DNNs can do has more
than outpaced our understanding of how DNNs do what they do.
That is, the operation of DNNs can be so abstract and opaque
that it can hard to interpret or explain the outputs of the DNNs in
understandable terms. Naturally, lack of explainability can reduce
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the confidence of the end users, or “clients”, in the computational
output of expert machines.

While the explainability gap decidedly applies to our DNN, it
is no means limited to it. Explainability is a common problem of
DNNs in general, and of intelligent machines at large (de Visser,
2012; Gunning, 2016; Ribeiro et al., 2016; Doshi-Velez and Been,
2017; Holzinger et al., 2017).

Explainability of medical image synthesis is particularly
important because the end users benefit by understanding how
the methodology works, and the methodology benefits by trust
and confidence that explainable system tend to inspire in end
users (Elmore et al., 1994; Goldstein et al., 2015; Ribeiro et al.,
2016; Fernandes et al., 2017; Holzinger et al., 2017; Hegdé, 2018).

Enhancing the Usefulness of DNNs With
“Human-in-the-Loop”
As noted above, one of the main advantages of the DL/DS
methodology in the context of medical images is that it can help
overcome the barrier posed by limited availability of data sets.
Machine systems can be made even more effective in overcoming
the limitations of input data, or their own operational limitations,
using human experts (Holzinger, 2016). This allows the biological
expert “system” called the highly trained human mind to
compensate for the shortcomings of the machine expert system,
and vice versa. Including a human in the loop in this fashion
is especially important in the context of medical images, both
not only because the clinical decisions will ultimately have to be
made by a human decision-maker, but also because the factors
that hamper machine systems, such as the limitations of data, are
an ever-present problem in medicine.

CONCLUSION

Our results demonstrate that DS is a feasible approach
for synthesizing medical images. With the aforementioned
improvements, it is likely to be a powerful tool in clinical training,
development of machine systems for clinical data analysis and
decision-making, and clinical research.
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