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INTRODUCTION

The electroencephalogram (EEG), which has been in clinical use for over 70 years, is still an
essential tool for diagnosis of neural functioning (Kennett, 2012). Well-known applications of
EEGs include identification of epilepsy and epileptic seizures, anoxic and hypoxic damage to
the brain, and identification of neural disorders such as hemorrhagic stroke, ischemia and toxic
metabolic encephalopathy (Drury, 1988). More recently there has been interest in diagnosing
Alzheimer’s (Tsolaki et al., 2014), head trauma (Rapp et al., 2015), and sleep disorders (Younes,
2017). Many of these clinical applications now involve the collection of large amounts of data
(e.g., 72-h continuous EEG recordings), which makes manual interpretation challenging. Similarly,
the increased use of EEGs in critical care has created a significant demand for high-performance
automatic interpretation software (e.g., real-time seizure detection).

A critical obstacle in the development of machine learning (ML) technology for these
applications is the lack of big data resources to support training of complex deep learning systems.
One of the most popular transcribed seizure databases available to the research community,
the CHB-MIT Corpus (Goldberger et al., 2000), only consists of 23 subjects. Though high
performance has been achieved on this corpus (Shoeb and Guttag, 2010), these results have not
been representative of clinical performance (Golmohammadi et al., 2018). Therefore, we introduce
the TUH EEG Seizure Corpus (TUSZ), which is the largest open source corpus of its type and
represents an accurate characterization of clinical conditions.

Since seizures occur only a small fraction of the time in this type of data, and manual annotation
of such low-yield data would be prohibitively expensive and unproductive, we developed a triage
process for locating seizure recordings. We automatically selected data from the much larger TUH
EEG Corpus (Obeid and Picone, 2016) that met certain selection criteria. Three approaches were
used to identify files with a high probability that a seizure event occurred: (1) keyword search
of EEG reports for sessions that were likely to contain seizures (e.g., reports containing phrases
such as “seizure begins with” and “evolution”), (2) automatic detection of seizure events using
commercially available software (Persyst Development Corporation., 2017), and (3) automatic
detection using an experimental deep learning system (Golmohammadi et al., 2018). Data for which
approaches (2) and (3) were in agreement were given highest priority.

Accurate annotation of an EEG requires extensive training. For this reason, manual annotation
of EEGs is usually done by board-certified neurologists with many years of post-medical school
training. Consequently, it is difficult to transcribe large amounts of data because such expertise is
in short supply and is most often focused on clinical practice. Previous attempts to employ panels
of experts or use crowdsourcing strategies were not productive (Obeid et al., 2017). However, we
have demonstrated that a viable alternative is to use a team of highly trained undergraduates at
the Neural Engineering Data Consortium (NEDC) at Temple University. These students have been
trained to transcribe data for seizure events (e.g., start/stop times; seizure type) at accuracy levels
that rival expert neurologists at a fraction of the cost (Obeid et al., 2017; Shah et al. in review). In
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order to validate the team’s work, a portion of their annotations
were compared to those of expert neurologists and shown to have
a high inter-rater agreement.

In this paper, we describe the techniques used to develop
TUSZ, evaluate their effectiveness, and present some descriptive
statistics on the resulting corpus.

METHODS

To build an annotated seizure dataset, we first needed an
abundant source of EEG data. Our work here utilized a subset
which includes approximately 90% of v0.6.0 of TUH EEG. The
data is organized by patient and by session. Each session contains
EEG signal data stored in a standard European Data Format
(EDF; Kemp, 2013) and a de-identified report written by a board-
certified neurologist. The EDF files contain a variable number
of channels (Obeid and Picone, 2016) but during the annotation
process only 19 EEG channels plus two supplementary channels
(heart rate and photic stimulation) were used. The data were
annotated using our open source annotation tool (Capp et al.,
2017).

Since <0.1% of the original data contains actual seizure
events, annotating the entire database would be costly and
inefficient. Therefore, we used three independent approaches
to identify sessions that were likely to contain actual seizure
events. First, we applied off-the-shelf natural language processing
(NLP) techniques to identify reports that had keywords related
to ictal patterns. The reports were preprocessed using filters
that normalized (e.g., removed punctuation and misspellings)
and stemmed the text (Sirsat et al., 2013). Machine learning
experiments were conducted that utilized term frequency-inverse
document frequency (tf-idf) features (Manning et al., 2008).
Popular machine learning approaches such as NegEx (Chapman
et al., 2001), Naïve Bayes and Support Vector Machines with
linear kernel functions (SVM; Vapnik, 1995) were trained to
recognize documents that were most likely to contain seizure
terms. The Naïve Bayes and Support VectorMachines algorithms
used tf-idf features while the NegEx algorithm used raw features
(e.g., words) for classification of reports as ictal or non-ictal.
These algorithms were seeded from 197 reports describing
the occurrence of a seizure and 2,471 reports describing non-
occurrence of a seizure. All three algorithms were tested on a
small data set consisting of 100 reports (50 ictal and 50 non-ictal),
with NegEx performing slightly better than the Naïve Bayes and
SVM classifiers.

The classification of reports using NegEx was performed using
a regular expression rule-based approach. The regular expression
labels were selected based on negation (NEG), context (CNTX),
and affirmation (AFFR). The negation labels were selected based
on three different types of negations: pre-negation (PREN;
i.e., did not experience), post-negation (POST; i.e., infiltrates
were not shown) and pseudo-negation (PSEU). NegEx correctly
classified 99% of the reports used in our pilot study of 100 reports.
When applied to 18,000 sessions in TUH EEG, 844 sessions were
identified as likely to have a seizure. Of these 844 sessions, manual
annotation determined that 174 sessions had actual seizures.

The second method used to triage the data was to process
the data through a state of the art commercial software tool,
P13 rev. B from Persyst Development Corporation. (2017). We
determined that 1,388 files out of 34,698 files contained seizure
events. Our third method used an experimental seizure detection
system known as AutoEEG (Golmohammadi et al., 2018). This
system detected seizures with high confidence in 1,466 files out of
31,645 files. Files for which both systems agreed on a seizure were
given the highest priority for annotation. These automated tools
agreed on 146 files, or 0.42%, of the corpus. The total number
of sessions that were identified as having at least one seizure by
either tool was 28.

Using these three approaches, we identified 872 sessions
containing 2,582 files from the original 16,168 sessions as
high-yield data, meaning they were likely to contain seizures.
Our annotation team then manually annotated all the data in
these sessions and found that 280 of these sessions contained
actual seizure events. It is interesting to note that of the
three approaches for identifying high yield data, keyword
search proved to be most effective. Automated seizure detection
algorithms still suffer from poor performance, especially on short
duration seizure events.

RESULTS

The most recent release of TUSZ is v1.2.0, which was released
in December 2017. It contains 315 subjects with a total of
822 sessions, of which 280 sessions contain seizures. The
transcriptions are provided in two file formats: (1) LBL and (2)
TSE. These files can be found along with their corresponding
EDF file and a de-identified report in each session. The
LBL file format is transcribed on a channel basis whereas
the TSE files are transcribed on a term basis. A channel-
based annotation refers to labeling of the start and end time
of an event on a specific channel. A term-based annotation
refers to a summarization of the channel-based annotations—
all channels share the same annotation, which is an aggregation
of the per-channel annotations. The annotation files with “bi”
extension indicate that they contain binary classes (i.e., seizure
or background).

Based on the neurologist’s report and careful examination of
the signal, our annotation team was able to identify the type of
seizures (e.g., absence, tonic-clonic). A list of these labels is shown
below:

SEIZ: Seizure
GNSZ: Generalized

Non-Specific Seizure
TNSZ: Tonic Seizure

FNSZ: Focal Non-Specific
Seizure

CNSZ: Clonic Seizure

SPSZ: Simple Partial Seizure TCSZ: Tonic Clonic
Seizure

CPSZ: Complex Partial
Seizure

ATSZ: Atonic Seizure

ABSZ: Absence Seizure MYSZ: Myoclonic
Seizure
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FIGURE 1 | Histograms of seizure types in the TUH EEG Seizure Corpus for the evaluation and training sets.

If there was insufficient evidence to classify the type of seizure,
then an event was defined as either “generalized non-specific”
or “focal non-specific” depending on the focality. Histograms of
the frequency of occurrence for these seizure types are shown in
Figure 1.

We then segmented the data into a training and evaluation
set to support technology development. The evaluation set was
designed to provide a representative sampling of all conditions
found in the training set under the constraint that it included
50 patients. Approximately 34% of the evaluation dataset files
contain seizures, which is much higher than typical clinical
EEG data. The evaluation set was designed to be compact
and yet provide representative results so that it would support
rapid turnaround of experiments using a moderate amount of
computational resources.

The entire seizure database has been divided into training
and evaluation sets to support machine learning research. All
files in this corpus are pruned versions of the original EEG
recordings. The duration of a single pruned file is no more
than 1 h. The training and evaluation sets contain 265 and 50
subjects, respectively. The patients in the evaluation set were
selected based on gender (56% of the patients in the evaluation
set are female; 50.5% female in the training set) and selected
to maximize a number of demographic features, as shown in
Figure 2.

In addition to providing the raw signal data and annotations
of seizure events, TUSZ contains metadata such as patient
demographics, seizure type, and the type of EEG study. The EDF
files contain the following metadata:

patient id (anonymized)
gender (male or female)
age (measured in years due to privacy issues)
recording data (DD-MMM-YYYY)

per-channel information:
labels, sample frequency, channel physical dimension,
channel physical min, channel physical max.
channel digital min, channel physical max, channel
prefiltering conditions

We also have released a spreadsheet with the data that describes
each patient and session in terms of the following fields:

patient id (anonymized)
session id
EEG type/subtype:

EMU/EMU (Epilepsy Monitoring Unit)
ICU (Intensive Care Unit) /

BURN (Burn Unit)
CICU (Cardiac Intensive Care)
ICU (Intensive Care Unit)
NICU (Neuro-ICU Facility_
NSICU (Neural Surgical ICU)
PICU (Pediatric Intensive Care Unit)
RICU (Respiratory Intensive Care Unit)
SICU (Surgical Intensive Care Unit)

Inpatient/

ER (Emergency Room)
OR (Operating Room)
General

Outpatient/Outpatient
Unknown/Unknown (location cannot be determined)

LTM or Routine
Normal or Abnormal
Number of Seizures per Session and File
Start Time, Stop Time
Seizure Type
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FIGURE 2 | Histograms of age and duration.

The EEG Type and EEG Subtype fields are used to identify
the general location of the EEG session with the hospital.
A qualitative assessment of the duration of the recording is
indicated a field that indicated whether the EEG was a routine
recording (typically an outpatient session lasting 30min) or an
extended long-term monitoring (LTM). The normal/abnormal
classification follows the clinical criteria described by Lopez
(2017).

While most researchers can work with the information about
seizure events provided in the above spreadsheet, we also provide
a series of label files that allow display of seizure labels in a
time-aligned manner using an open source visualization and
annotation tool (Capp et al., 2017).

DISCUSSION

For deep learning technology to address problems such as seizure
detection, large amounts of annotated data are needed. TUSZ is
the world’s largest publicly available corpus of annotated data for
seizure detection that is unencumbered. No data sharing or IRB
agreements are needed to access the data. The entire database
consists of over 504 h of data. Seizure events comprise about
36 h or about 7% of the data that has been annotated. Version
1.0.0 of the TUH EEG Corpus contains about 16,000 h of data.
We have not completed processing all of that data for seizure

events, but our estimate is that the overall yield for seizure data
using the process described in this paper is 0.2%. Since we are
accessing pruned EEGs, the overall yield from continuous data
is even smaller. This is a quite sobering statistic since it reveals
the challenges in building the big data resources necessary to fuel
deep learning research. Accurate triaging of the data is critical to
building these resources in a cost-effective manner.

TUSZ contains a rich variety of seizure morphologies.
Variation in onset and termination, frequency and amplitude,
and locality and focality protect the evaluation and training sets
against bias toward one type of seizure morphology. Models
trained using this database will be strengthened by the mix
of obvious and subtle seizure morphologies and will have the
potential to be better prepared for applications handling real
world data. Although, part of the sampling process of the seizures
could be somewhat biased by our seizure detection models, our
results seem to be consistent across a wide variety of statistical
models that we have run internally in our research.

Seizures are a biological process that build gradually, often
lacking discrete start and stop times. Event-based and term-
based annotations are therefore included in our corpus in an
effort to represent two different views of seizure evolution and
duration. Event-based annotations are per-channel annotations
and give users a very detailed account of where in the brain
the seizure originates, how it spreads, and how it terminates
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while term-based annotations are the same on every channel and
simply include the earliest seizure start time and the latest seizure
end time. Both multi-class and bi-class annotations are useful for
machine learning research. Multi-class annotations provide users
more specific data on the type of seizure that is occurring, while
bi-class annotations simply answer the question: is there a seizure
occurring or not?

We are working continuously to improve expert knowledge
of seizures that can be directly channeled into improving
and expanding TUSZ. Development of annotation skills and
increased use of automation will allow us to continue to improve
the corpus. We have developed methods to automatically
annotate other events, such as eye movements, generalized
periodic discharges (GPD), periodic lateralized discharges (PLD),
spikes, and sharp wave (Harati et al., 2015). We have also
developed methods for cohort retrieval (Obeid et al., 2016, 2017)
and parsing of EEG reports (Harabagiu and Goodwin, 2016).
Though our focus is currently on seizure annotation, we will
soon releasemoremetadata related to TUSZ that will enable basic
neuroscience research with the data.

TUSZ has been in beta release since late 2016 and can
be downloaded from https://www.isip.piconepress.com/projects/
tuh_eeg/downloads/. Users must register and provide a valid
email address so that we can track usage. Users can also acquire
the data by sending us a disk drive. Our rapidly growing userbase
currently includes over 1,300 registered users.
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