
ORIGINAL RESEARCH
published: 20 December 2018
doi: 10.3389/fninf.2018.00086

Frontiers in Neuroinformatics | www.frontiersin.org 1 December 2018 | Volume 12 | Article 86

Edited by:

Lianne Schmaal,

The University of Melbourne, Australia

Reviewed by:

Dirk Smit,

Academic Medical Center (AMC),

Netherlands

Katja Kobow,

Universitätsklinikum Erlangen,

Germany

*Correspondence:

Dominique Duncan

dduncan@loni.usc.edu

Received: 25 June 2018

Accepted: 02 November 2018

Published: 20 December 2018

Citation:

Duncan D, Barisano G, Cabeen R,

Sepehrband F, Garner R, Braimah A,

Vespa P, Pitkänen A, Law M and

Toga AW (2018) Analytic Tools for

Post-traumatic Epileptogenesis

Biomarker Search in Multimodal

Dataset of an Animal Model and

Human Patients.

Front. Neuroinform. 12:86.

doi: 10.3389/fninf.2018.00086

Analytic Tools for Post-traumatic
Epileptogenesis Biomarker Search in
Multimodal Dataset of an Animal
Model and Human Patients
Dominique Duncan 1*, Giuseppe Barisano 1, Ryan Cabeen 1, Farshid Sepehrband 1,

Rachael Garner 1, Adebayo Braimah 1, Paul Vespa 2, Asla Pitkänen 3, Meng Law 1 and

Arthur W. Toga 1

1 Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC,

University of Southern California, Los Angeles, CA, United States, 2Division of Neurosurgery, Department of Neurology,

University of California at Los Angeles School of Medicine, Los Angeles, CA, United States, 3 A.I. Virtanen Institute for

Molecular Sciences, University of Eastern Finland, Kuopio, Finland

Epilepsy is among the most common serious disabling disorders of the brain, and

the global burden of epilepsy exerts a tremendous cost to society. Most people with

epilepsy have acquired forms of the disorder, and the development of antiepileptogenic

interventions could potentially prevent or cure epilepsy in many of them. However, the

discovery of potential antiepileptogenic treatments and clinical validation would require

a means to identify populations of patients at very high risk for epilepsy after a potential

epileptogenic insult, to know when to treat and to document prevention or cure. A

fundamental challenge in discovering biomarkers of epileptogenesis is that this process

is likely multifactorial and crosses multiple modalities. Investigators must have access

to a large number of high quality, well-curated data points and study subjects for

biomarker signals to be detectable above the noise inherent in complex phenomena,

such as epileptogenesis, traumatic brain injury (TBI), and conditions of data collection.

Additionally, data generating and collecting sites are spread worldwide among different

laboratories, clinical sites, heterogeneous data types, formats, and across multi-center

preclinical trials. Before the data can even be analyzed, these data must be standardized.

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a multi-

center project with the overarching goal that epileptogenesis after TBI can be prevented

with specific treatments. The identification of relevant biomarkers and performance of

rigorous preclinical trials will permit the future design and performance of economically

feasible full-scale clinical trials of antiepileptogenic therapies. We have been analyzing

human data collected from UCLA and rat data collected from the University of

Eastern Finland, both centers collecting data for EpiBioS4Rx, to identify biomarkers of

epileptogenesis. Big data techniques and rigorous analysis are brought to longitudinal

data collected from humans and an animal model of TBI, epilepsy, and their interaction.

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00086
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00086&domain=pdf&date_stamp=2018-12-20
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dduncan@loni.usc.edu
https://doi.org/10.3389/fninf.2018.00086
https://www.frontiersin.org/articles/10.3389/fninf.2018.00086/full
http://loop.frontiersin.org/people/460231/overview
http://loop.frontiersin.org/people/580431/overview
http://loop.frontiersin.org/people/378608/overview
http://loop.frontiersin.org/people/190498/overview
http://loop.frontiersin.org/people/580116/overview
http://loop.frontiersin.org/people/580191/overview
http://loop.frontiersin.org/people/14644/overview
http://loop.frontiersin.org/people/164/overview


Duncan et al. Analytic Tools for Post-traumatic Epileptogenesis

The prolonged continuous data streams of intracranial, cortical surface, and scalp EEG

from humans and an animal model of epilepsy span months. By applying our innovative

mathematical tools via supervised and unsupervised learning methods, we are able

to subject a robust dataset to recently pioneered data analysis tools and visualize

multivariable interactions with novel graphical methods.
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INTRODUCTION

The goal of the Epilepsy Bioinformatics Study for
Antiepileptogenic Therapy (EpiBioS4Rx) is to identify
relevant biomarkers of epileptogenesis after traumatic brain
injury (TBI) and perform rigorous preclinical trials that
permit the future design and performance of economically
feasible full-scale clinical trials of antiepileptogenic therapies.
Discovering these biomarkers of epileptogenesis is challenging,
because this process is multifactorial and involves multiple
modalities. We have been collecting and analyzing multimodal
data, including neuroimaging, electrophysiology, and
molecular/serological/tissue. An informatics infrastructure
has been created to facilitate analysis and collaboration among
scientists from various centers around the world (Duncan et al.,
2018b). We have been developing innovative analytic tools to
be shared with the broader epilepsy research community so
that others may use our tools in addition to their own tools
to advance research in this field. By working on this difficult
problem collaboratively among researchers who possess different
areas of expertise, we expect to identify several biomarkers
of post-traumatic epileptogenesis from the multimodal data
collected as part of EpiBioS4Rx and validate those biomarkers.

Substantial research has been devoted to investigate imaging
biomarkers of epileptogenesis following TBI in an effort to
better understand, prevent, and potentially treat post-traumatic
epilepsy (PTE). Although incidence of PTE has been correlated
with various factors, these results have been gathered and
interpreted independently and are often drawn from models
of human temporal lobe epilepsy, animal models of induced
TBI via fluid percussion injury (FPI), and pilocarpine or
kainic acid-induced status epilepticus. There has been limited
investigation directly comparing these models to human cohort
studies of epileptogenesis following trauma, which is one
area in which our work extends on existing research on
PTE. Also, few multimodality studies have been conducted to
investigate interrelations among identified potential biomarkers,
which could assist in establishing a panel of non-invasive
epileptogenic biomarkers that consistently precedes and predicts
the development of PTE. EpiBioS4Rx is collecting large-scale
imaging data on TBI patients with subsequent seizure activity as
well as imaging data on a rodent model of TBI, allowing for a
multimodality and multi-species investigation.

Several reviews have summarized electrophysiological

(Worrell, 2011; Staba et al., 2014) and imaging (Mishra et al.,

2011; van Vliet et al., 2017; Pitkänen et al., 2018) biomarkers

identified in rat models and human patients in recent years.

Notably, high frequency oscillations (HFOs), standard frequency
between 80 and 600Hz (Staba et al., 2014), are consistently
produced by epileptic neural tissues (Bragin Engel et al., 1999;
Jacobs et al., 2012; Zijlmans et al., 2012) and have also been
reported in rats after administration of lateral FPI within or
adjacent to the injured tissue (Reid et al., 2016). In the same
FPI model, pathologic HFOs and repetitive HFOs and spikes
(rHFOSs) occurred within 2 weeks of insult only in rats that
would later develop seizures (Reid et al., 2016). However,
currently there are no validated electrophysiological biomarkers
of post-traumatic epileptogenesis (Perucca et al., 2018), so one of
our goals is to identify electrophysiological biomarkers that can
be validated. As many models of PTE involve continuous EEG
recordings, automated seizure detection programs have been
investigated to ease data analysis. Approximate entropy (ApEn),
in conjunction with neural networks, has been introduced as an
analytic tool to discriminate normal and ictal or pre-ictal EEG
from epileptic patients and healthy controls (Liang et al., 2010),
refining and enhancing seizure detection, which can ultimately
expedite the EEG analysis workflow.

Magnetic Resonance Imaging (MRI) and Diffusion Tensor
Imaging (DTI) have allowed for non-invasive analysis of
molecular and structural alterations of white matter and
other neural structures at high spatial resolution. MRI may
be used to identify specific abnormalities associated with
increased susceptibility to epileptogenesis, including focal lesions
(D’Alessandro et al., 1982; Dalessandro et al., 1988), intracerebral
hemorrhage (D’Alessandro et al., 1982), biparietal contusions
(Englander et al., 2003) and dural penetration from bone or
metal fragments (Englander et al., 2003). In a lateral FPI model,
diffusion tensor trace alterations in the hippocampus acquired 3
hours after injury were found to predict seizure susceptibility and
number of spikes 12 months later (Kharatishvili et al., 2007). A
follow up study confirmed that Dav (one third of the trace of the
diffusion tensor that is an orientation-independent measure of
water diffusion) at 23 days and 2 months and T1p (a longitudinal
relaxation in the rotating frame, which can be assumed to be
similar to T1 relaxation in the very low magnetic field, thus
probing interaction between water and macromolecules in the
tissue) at 9 days post insult could predict increased seizure
susceptibility following lateral FPI (Immonen et al., 2013).

Axonal damage, visualized with DTI, is seen across all
severities of TBI, although irreversible myelin damage, which
is correlated with worse cognitive prognoses, is more typically
caused by moderate and severe TBI (Kraus et al., 2007).
Decreased fractional anisotropy (FA) has been repeatedly found
in TBI patients compared with healthy controls (Bendlin et al.,
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2008; Sidaros et al., 2008; Irimia et al., 2014), which is especially
relevant considering FA ratios have been found to be significantly
reduced in TBI patients who developed late post-traumatic
seizures compared with non-epileptic TBI patients (Gupta et al.,
2005), and along temporal lobe white matter in benign mesial
TLE (Labate et al., 2015). Additionally, connectomic studies
and tract-based spatial statistics may assist in the understanding
of how white matter degeneration patterns lead to neural and
cognitive impairment (Irimia et al., 2014), so they may also
support a greater understanding in how degeneration patterns
specifically lead to PTE. We plan to use our pipelines for
connectomics to understand the development of PTE as well as
relate these imaging data to the electrophysiological data.

MRI also serves as a useful tool for morphometric analysis.
TBI varies significantly in the severity of insult and subsequent
lesion(s), so precise lesion quantification is necessary to compare
outcomes following stratified severity of injury. Voxel-based
morphometry analysis has indicated reduced hippocampal and
thalamic volumes in TLE patients (Labate et al., 2008). In a lateral
FPI model, Shultz et al. found that hippocampal surface shape
analysis (conducted via MRI-based large-deformation high-
dimensional mapping) at 1 week post-injury could be predictive
of PTE. Rats that later developed PTE showed increased lateral
regions while non-epileptic rats showed decreased medial and
ventral regions (Shultz et al., 2013). We have developed analysis
pipelines to analyze both animal and human imaging data to
relate these and explore the translational components of the
animal data.

Several supervised and unsupervised models of lesion
identification and quantification from T1, T2, and FLAIR images
acquired fromMRI have been introduced in an effort to automate
analysis of multiple sclerosis (Wetter et al., 2016), tumor (Guo
et al., 2015), chronic stroke (Pustina et al., 2016; Guo et al.,
2018), and TBI (Irimia et al., 2011). Automated quantification of
TBI lesions by normalizing and standardizing against standard
templates is challenging given that brain morphology is often
distorted due to insult (Kim et al., 2008), so our work aims to
quantify TBI lesions automatically while maintaining accuracy.

Transforming Research and Clinical Knowledge in TBI
(TRACK-TBI) was a study performed at the University of
California, San Francisco (main site) that proved the feasibility
of large-scale, multi-site analysis of imaging, blood, and clinical
data on nearly 3,000 TBI patients. Patient data gathered through
TRACK-TBI have been used to examine the relationship between
CT and MRI findings that are commonly assessed in emergency
trauma facilities and DTI, both of which have been reported as
potential biomarkers of epileptogenesis following TBI. In mild
TBI cases, FA is significantly reduced in CT/MRI-positive (acute
intracranial lesion, including epidural or subdural hematoma,
subarachnoid hemorrhage, contusion, axonal injury, or skull
fracture) and not reduced in CT/MRI-negative patients (Yuh
et al., 2014). DTI can detect alterations in microstructural white
matter with greater subtlety than MRI, and FA ratios have been
found to be significantly reduced in TBI patients who developed
late PTS compared with non-epileptic TBI patients (Gupta et al.,
2005). In another study, mild TBI patients with CT/MRI-positive
(defined as having any evidence of lesion) and CT/MRI-negative

(no lesions) showed distinct alterations of functional connectivity
in resting state fMRI analysis within days of injury that were
predictive of cognitive outcomes 6 months later (Palacios et al.,
2017).

The EpiBioS4Rx informatics infrastructure contains a
thorough and harmonized multimodal database, including
imaging and EEG data, which enables researchers to correlate
results from imaging analysis to longitudinal epileptiform
activity (Duncan et al., 2018b) from both humans and an
animal model. Recently, analysis of EpiBioS4Rx data found that
early post-traumatic seizures and subsequent development of
PTE following severe TBI are strongly correlated with lesions
localized to the temporal lobe (i.e., hemorrhagic temporal lobe
injury) but not general lesion severity (as measured by the
Glasgow Coma Scale) (Tubi et al., 2018).

DATA

The total amount of data that has been and will be collected in
the ongoing EpiBioS4Rx includes EEG and video-EEG (video
tape recording during EEG monitoring) from cohorts of animals
after TBI (using FPI) recorded continuously for 6 months, in
addition to prolonged continuous intensive care unit (ICU)
EEG recordings from 300 humans, including depth EEG from
100 patients, and intermittent sampling of brain images, blood,
and tissue data over 2 years. The collected rat MRI consist
of structural and diffusion weighted measures. Sprague-Dawley
control rats and TBI rats (left lateral fluid percussion injury)
were used with data collected using a Bruker BioSpin MRI
GmbH using a dtiEpiT SpinEcho sequence (Duncan et al.,
2018b). Patients admitted into the ICU after an acute moderate-
severe TBI involving a frontal and/or temporal lobe hemorrhagic
contusion are screened for the study. Although a number of sites
are collecting data for EpiBioS4Rx, we focus our preliminary
analysis on human data from the University of California, Los
Angeles (UCLA) and animal data from the University of Eastern
Finland, Kuopio.

ANALYSIS METHODS

We present a collection of analytic tools for this multimodal
dataset and present examples of some preliminary work on
sample data from EpiBioS4Rx as well as future directions for this
analysis.

Imaging Methods
We have developed a multimodal image analysis workflow
that includes lesion mapping and tractography reconstruction
of white matter pathways. Additionally, we have analyzed
paravascular spaces (PVS) in the MRI data to aid in our search
for post-traumatic epileptogenesis biomarkers.

Lesion Mapping
Lesions were mapped from fluid-attenuated inversion recovery
(FLAIR) images with an automated segmentation pipeline using
FMRIB Software Library (FSL) tools (Woolrich et al., 2009;
Jenkinson et al., 2012; Wetter et al., 2016). FLAIR suppresses
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the signal produced by cerebrospinal fluid (CSF) and is sensitive
to contrast for mapping lesions in TBI (Gentry et al., 1988;
Bigler, 2001; Narayana, 2017). The pipeline begins with skull
stripping, smoothing, and intensity normalization. Then lesions
are separated from brain tissue and CSF using a histogram-
based thresholding algorithm. Finally, lesions not overlapping
with white matter (WM) are discarded by registering aWMmask
from a standard space into the subject space (FSL-FNIRT is used
for the registration). An example is shown in Figure 1.

In order to separate periventricularWMhyperintensities from
the rest of the WM lesions, we performed a secondary analysis
on the T1-weighted (T1w) images. Structural T1w images are
less sensitive to periventricular lesions due to CSF partial volume
effect, yet they can visualize WM lesions across the brain. The
T1w images were analyzed through a similar pipeline as the
FLAIR images, and the lesions were mapped accordingly.

Tractography
We have developed diffusion MR image analysis pipelines for
quantitative analysis of WM microstructure and connectivity
across both rodent and human datasets. Tractography models
were created from the diffusion-weightedMRI (dMRI) data using
FSL (Jenkinson et al., 2012) and the Quantitative Imaging Toolkit
(QIT) (Cabeen et al., 2018). The dMRIs were first skull stripped
using FSL Brain Extraction Tool (BET) and then corrected for
motion and eddy current artifacts using FSL FMRIB’s Linear
Image Registration Tool (FLIRT). For this, each diffusion scan
was affinely registered to the baseline scan using the mutual
information metric, and the associated gradient orientations
were rotated to account for the registration. Diffusion tensor
models were then estimated from the dMRI using QIT, and the
following tensor parameters were extracted: fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD), and radial
diffusivity (RD). A study specific template was created using
Diffusion Tensor Imaging ToolKit (DTI-TK) (Zhang et al.,
2006), and the deformation field for each scan was used to
register the data to the Illinois Institute of Technology (IIT)
brain template (Zhang et al., 2011) to subject native space.
Tractography models of our bundles of interest, including
uncinate fasciculus, anterior thalamic radiation, corticospinal
tract, inferior longitudinal fasciculus, superior longitudinal
fasciculus, fornix, arcuate fasciculus, and five subdivisions of

the corpus callosum were created using a framework for
deterministic streamline integration (Cabeen et al., 2016). For
each bundle, seed, inclusion, and exclusion masks were manually
drawn in the IIT template (Wakana et al., 2007) in reference
to a white matter atlas (Catani and Thiebaut de Schotten,
2008). The template masks were then resampled in each subject’s
native space image to constrain tractography. Other tractography
parameters included a step size of 1.0mm, a maximum angle
of 45◦C, and a minimum FA of 0.15–25,000 seeds per bundle.
Bundle-specific metrics were then computed, including bundle
volume, track density, track length, and averages of DTI metrics
listed above. In addition to tractography analysis, the human
data were also analyzed using voxel-based analysis to obtain
diffusion MRI metrics in anatomical regions derived from the
Johns Hopkins white matter atlas (Mori et al., 2008; Cabeen et al.,
2017). This method applies to human data (Figure 2) as well as
rodent data (Figures 3, 4). We found that the data allowed multi-
fiber modeling to resolve partial volume effects and crossing fiber
configurations.

Paravascular Spaces
Many studies have shown that paravascular spaces (PVSs) may
play an important role in neuroinflammation: a strong post-
traumatic inflammatory reaction was documented in PVSs of
contused human brain tissue, suggesting that PVSs’ impairment
could explain the altered macrophage activity resulting in seizure
onset (Holmin et al., 1998; Bechmann et al., 2001; Corraliza, 2014;
Abiega et al., 2016). Also structural changes in PVSs may affect
their surrounding white matter networks (Taoka et al., 2017). We
investigate the role of paravascular spaces in TBI as a potential
biomarker for post-traumatic epilepsy.

Study population
We present some analysis performed on human data, focusing
on PVSs’ role as a potential biomarker of epileptogenesis after
TBI; we analyzed clinical data and MRI scans in a sample of 15
patients (12 males, 3 females, age range: 7–68 years old). MRI
scans were performed 14 days after trauma using a 3T MRI
scanner. PVSs were analyzed on 3D T2 Turbo Spin Echo (TSE)
sequences. Six healthy subjects (3 males, 3 females, age range: 12–
62 years old) were used as controls. Demographic characteristics
of TBI patients and healthy subjects are summarized in Table 1.

FIGURE 1 | A lesion map from FLAIR for one patient; the lesions are depicted in yellow.
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PVS analysis
PVSs were defined as tubular-linear or round-ovoid structures
with a CSF-like signal intensity (hyperintense on T2-weighted
images) and a diameter of <3mm. PVSs surround perforating
vessels in the brain, and the largest number of PVSs is usually

FIGURE 2 | Visualizations of diffusion MRI data from a single human subject.

The image shows an axial brain slice rendered with glyphs depicting the

underlying multi-compartment diffusion models. A tractography reconstruction

of the forceps minor is shown alongside a brain lesion. Through 3D modeling

and visualization, we are able to show the impact of the brain trauma on

structural connectivity of the frontal lobe.

found in the basal ganglia and centrum semiovale. The typical
shape, dimensions, and location were used to exclude other
possible differential diagnoses (e.g., lacunar infarcts). In this
study, we omitted PVS with a diameter of <0.5mm, because
their identification and measurement were not sufficiently
reliable.

Image processing on the 3D T2 TSE images was performed
in OsiriX Image Viewing Software (Ratib and Rosset, 2006) by
a reader blinded to subjects’ clinical data. In each subject, we
manually marked and counted all PVSs with a diameter between
0.5 and 3mm. The caliber of PVS was measured with the Ruler
Tool in OsiriX. Both the total number of PVSs and the caliber of
each PVS were systematically recorded. We categorized PVS by
location in the cerebral hemisphere (right and left) to assess the
distribution of PVS in the brain. Because of the possible inter-
individual variability in the total number of PVSs, we calculated
2 ratios (HRright and HRleft) between each hemisphere’s amount
of PVS (PVSright and PVSleft , respectively) and the sum of PVS in
the whole brain (PVStot) for each subject:

Two possible outcomes resulted from these ratios:

• Two equivalent values (HRright =HRleft = 0.5) if no difference
in the number of PVSs was found between the right and left
hemispheres;

• Two different values (HRright 6= HRleft) if the number of
PVSs was not the same in the 2 hemispheres. In this situation,
we defined HRminor and HRmajor to be the ratios obtained
from the hemisphere with less and more PVS compared to the
contralateral hemisphere, respectively. Consequently:

0.0 < HRminor < 0.5 and 0.5 > HRmajor > 1 (1)

Then we calculated the difference between HRminor and HRmajor

as an asymmetry index (AI):

FIGURE 3 | Visualizations of diffusion MRI from the rodent data. The images show diffusion models estimated in each voxel. (A) shows standard diffusion tensor

modeling, and (B) shows multi-compartment modeling that resolves complex anatomical features, such as crossing fibers.
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FIGURE 4 | Visualizations showing tractography-based modeling of rodent imaging data. Multi-fiber tractography was used to create geometric models depicting the

trajectory of white matter fiber bundles. The left panel shows results from whole brain tractography, and the right panel shows how whole brain results can be

decomposed into specific fiber bundles using virtual dissection.

TABLE 1 | Demographic characteristics of TBI patients and healthy subjects.

Characteristics TBI patients Healthy controls

Subjects (#) Total 15 6

Male 12 3

Female 3 3

Age at scan (years)

[Mean ± standard

deviation]

Total 34 ± 23 30 ± 17

Male 35 ± 22 23 ± 12

Female 30 ± 29 37 ± 22

AI = HRmajor−HRminor (2)

with 0≤AI≤1
The higher the AI value was, the more asymmetric the

distribution of PVS in the brain was. As a physiological right-
left asymmetry in the brain has been reported in previous studies
(Asgari et al., 2016; Feldman et al., 2018), and an unbalanced
distribution of PVS may be considered normal, we used a
threshold of AI ≥ 0.2 to define a significantly high asymmetry
in PVS distribution. This value means that one hemisphere has
more than 60% of the total number of PVSs.

Wemeasured the caliber of each marked PVS, and the average
of PVS caliber in the right and left hemispheres (Cright and Cleft ,
respectively) in all subjects. Then we calculated the difference
(|Cdiff |) between the mean PVS caliber in the two hemispheres:

|Cdiff| = Cright− Cleft (3)

Statistical analysis
A Student’s t-test was used to determine if there was a difference
in the total number and the mean distribution of PVSs between
the two cerebral hemispheres in the healthy controls and TBI
group. A difference of p < 0.05 was considered statistically
significant.

RESULTS

Total Number of PVSs
We evaluated the total number of PVSs in TBI patients and
healthy controls: the average was 77 ± 48 in the first group, and
80± 15 in the latter. No significant difference was found between
the two groups (p= 0.40).

In our population, we found a weak positive correlation
between age and the number of PVSs (Pearson’s ρ = 0.28, p =

0.11), as shown in Figure 5.

Asymmetry Analysis
Both TBI patients and healthy controls presented a different
number of PVSs in the two cerebral hemispheres. The HR range
was 0.29–0.71 in TBI patients and 0.43–0.54 in healthy controls;
in the patient group, the mean HRminor and HRmajor were 0.42
and 0.58, respectively, while in the control group, the values were
0.48 and 0.52, respectively (Figure 6). The degree of asymmetry
was significantly different in the two groups (p = 0.001): the
average AI was 0.17 in TBI patients and 0.04 in control subjects.

In the TBI group, we found six patients with a highly
asymmetric distribution of PVS (Figure 7) in the two cerebral
hemispheres (AI≥ 0.2). Five of these patients (83%) experienced
at least one seizure within the first six months after TBI (in four
cases, the seizure happened within the first month); in three
cases, Lateralized Periodic Discharges (LPDs) were detected in
the EEG, and in all cases, the affected hemisphere matched with
the hemisphere where less PVSs were identified. Furthermore,
in all nine TBI patients with intermediate- or high-grade PVS
asymmetry, the cerebral hemisphere that suffered the trauma
showed aminor number of PVSs compared with the contralateral
side.

PVS Caliber Analysis
The mean PVS caliber in TBI patients and healthy controls were
1.37 ± 0.23mm and 1.31 ± 0.26mm, respectively: the difference
in the two groups was not statistically significant (p = 0.39). We
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found a significant positive correlation between AI and |Cdiff |, as
illustrated in the scatter plot in Figure 8 (Pearson’s ρ = 0.41, p=
0.03).

Patients with a more asymmetric distribution of PVS in
the brain had a greater difference in the mean PVS caliber
between right and left hemispheres. In patients who had a post-
traumatic seizure, smaller PVSs were measured on the side
ipsilateral to LPDs and/or affected by the trauma, compared with
the contralateral hemisphere. In four patients, the difference in
the PVS caliber between the two hemispheres was statistically
significant (p-values were 0.031, 0.036, 0.034, and 0.049).
Thus, the evaluation of PVS distribution and quantification
may represent another potential non-invasive neuroimaging
biomarker to predict the development of epilepsy after TBI.

FIGURE 5 | Correlation between age and the number of PVSs in our sample

population.

EEG Methods
Various analytic tools were used to analyze both human and
rodent EEG. Notably, dimensionality reduction techniques,
including diffusion maps and Unsupervised Diffusion
Component Analysis (UDCA), were used to elucidate patterns
or abnormal activity within large data matrices that may be used
to potentially identify biomarkers of epileptogenesis after TBI.
Spectral analysis and measures of relationship, such as mutual
information, were also conducted. We present an overview of
a few analytic tools for EEG with some figures of examples of
preliminary results using EpiBioS4Rx data.

Spectral Analysis
As a first step, raw EEG data were imported via EEGLAB
in MATLAB (Delorme and Makeig, 2004). The Short Time
Fourier Transform (STFT) was applied to the raw, unfiltered
EEG data, seen in Figure 9, and spectrograms were formed to
visualize frequency changes over time. 3D spectrograms, such
as Figure 10, show the relationship among time, amplitude, and
power in addition to the power spectral density (PSD). These

FIGURE 6 | A box plot showing the distribution of HR in the two study groups,

TBI patients and healthy controls.

FIGURE 7 | A bar graph showing all AIs in the 15 TBI patients and 6 healthy controls.
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plots can be used for visualization purposes or for setting a
threshold to focus on a specific frequency range, for example, and
then quantifying changes over time.

Persyst Software Tools
We also use Persyst software (Sierra-Marcos et al., 2015) as a
tool for visualization of the EEG and for artifact removal, spike
detection, and epileptiform activity identification.

FIGURE 8 | The correlation between Cdiff and AI in our sample population.

Mutual Information
Another type of analysis that we perform considers measures of
relationship, such as mutual information (Duncan et al., 2013a),
to study how electrical activity from different areas of the brain
relate to each other and how those relationships change over
time. We plan to relate these measures of relationship in the EEG
to the resting state fMRI to determine if electrode contacts from
areas within resting state networks have higher values of mutual
information and if these networks differ between patients who
develop PTE and those who do not.

FIGURE 9 | The raw EEG from one channel of human scalp EEG data (200

samples/second).

FIGURE 10 | The 3D power spectral density (PSD), corresponding to the raw EEG data in Figure 9, displayed (in color) as well as the relationships among time,

frequency, and magnitude power for a one-channel, brief sample segment of EEG data (200 samples/second).
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FIGURE 11 | The mutual information between two channels calculated at 30-second windows of time for rodent EEG data.

FIGURE 12 | The raw EEG (with a sampling rate of 200 samples/second) of

one of five channels for an example patient with some epileptiform spike

activity seen at several time points.

Figure 11 shows an example of the mutual information
between two channels of rodent EEG. The mutual information
between the two channels was calculated for each consecutive
30-second window and plotted to visualize the relationship
between the two channels located in different parts of the
brain. This analysis allows us to study how this relationship
changes both over time and closer to the occurrence of a
seizure, which enables the study of networks in the brain
and if those play a role in post-traumatic epileptogenesis.
In Figure 11, we see a greater relationship between the two
electrode contacts chosen for the analysis over time and closer
to the seizure onset. Furthermore, we can compare these
networks in rats and humans to determine the extent of their
similarities.

Dimensionality Reduction
Besides analyzing EEG using spectral analysis, spike detection,
and measures of relationship, we can also use dimensionality
reduction techniques to analyse the data more extensively and
classify epileptiform activity. The EEG amounts to a very large
dataset due to the continuous long-term recordings over many
electrode contacts. All 300 patients receive 24 h continuous EEG
(cEEG) for 72 h minimum during the first 7 days after TBI. Scalp
cEEG monitoring is performed using a 16–21 channel bipolar
and referential composite montage implemented at each study
center based on their established ICU EEG protocols. A subset of
100 patients receive additional depth EEGmonitoring during the
first 7 days after TBI for higher resolution and pathologic HFOs
or repetitive HFOs and spikes detection. Furthermore, we have
continuous EEG recordings over 6 months frommany cohorts of
animals (Duncan et al., 2018b).

An algorithm that we have developed, UDCA (Duncan and
Strohmer, 2016; Duncan et al., 2018a), is an extension of
diffusion maps (Coifman and Lafon, 2006) and used to reduce
the dimensionality of this large amount of data as well as
identify patterns in the data that may predict post-traumatic
epileptogenesis.

The steps of this algorithm, UDCA, have been previously
described (Duncan et al., 2018a); here we briefly explain the steps.
The original, raw EEG data matrix (of any number of electrode
contacts and any length of time), for example, Figure 12, is
divided into smaller submatrices that are overlapped by 50%
for smoothing purposes. First, the cross-correlation between
segments is calculated to ensure minimal variance to ensure
similar behavior between the channels that were being analyzed.
Channels showing similar waveforms would be expected to have
decreased covariance. This is applied to all channels used in
the analysis (five channels in the example shown in Figure 13),
after being split into submatrices. The limit is defined as the
difference between the window size, the number of data points in
the predefined submatrices, and the window length, the number
of data points used to define the lag of the cross-correlation.
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FIGURE 13 | The embedding, corresponding to the data in Figure 12, with its average distance from the center of mass calculated for a 5-channel analysis. Color

represents time, and the dark blue points show a clear separation from the other points, indicating a method to identify epileptiform activity.

Then the time-based covariance matrix is calculated from the
covariance of the segment vectors. Singular value decomposition
(SVD) is then performed on the covariance matrices. The
Mahalanobis distance is applied to inverse covariance matrices
that are computed using the SVD to identify outliers; the
combination of the Mahalanobis distance and inverse covariance
matrices has previously been shown to be a successful tool for
denoising data (Talmon et al., 2012). The resulting matrices are
constructed from the outputs of the SVD by taking the complex
conjugate transpose of the product of the unitary matrix, the
inverse of the diagonal matrix, and the other unitary matrix.

The next steps of the algorithm involve constructing the
kernel, shown in Equation (3)

A = exp

(

−d

4 • ke

)

(4)

where d is the Mahalanobis distance (Equation 5), and ke is the
Gaussian kernel (value set to 10, based on the spread of the
original data points in the raw EEG data matrix) (Duncan and
Strohmer, 2016).

d =
[

dataM − datam
]

·

−1
∑

EEG

·
[

dataM − datam
]

(5)

in which dataM is the length of the ith row from the metric data
matrix, datam is the i+1 row, and

∑−1
EEG

[

dataM − datam
]

is the
inverse covariance matrix (Duncan and Strohmer, 2016; Duncan
et al., 2018a).

Construction of the reference kernel is shown below in
Equation (5) using the inverse covariance and the natural
extension of AA’ (Duncan et al., 2013b, 2018a; Duncan and
Strohmer, 2016):

W1 = A∗
1A1 (6)

in which A1 is the quotient of A divided element-wise by a repeat
matrix of the square root of j1 with dimensions equal to that of
the length of dataM. W = A∗A, in which A∗ is the conjugate
transpose, andW is the product of A and its conjugate transpose.
Lastly, j1 =

∑

iW1,i (sum of the elements of W along its columns
for row vector) (Duncan et al., 2013b; Duncan and Strohmer,
2016).

W2 = A∗
2A2 (7)

Additionally, Equation (6) is computed in the same manner
as Equation (2), in which A2 (computed similarly to A1) with
element-wise division by a repeat matrix of the square root of j2.

The computation of the eigenvectors Equation (7) is
performed onW2, extracting the eigenvalues in a diagonal matrix
V and the eigenvectors in a matrix E, corresponding to the
eigenvalues, such that:

EV = W2V (8)

The corresponding eigenvectors are then sorted in a descending
order (Esrt, Vsrt). Corresponding point clouds are calculated from
Equation (8):

Vclds = DVsrt (9)
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in which D is a sparse n x n matrix with the dimensions equal to
the length of dataM, with values consisting of the square root of
one divided-by j2.

Extraction of the two largest eigenvectors was performed
according to Equations (9, 10):

ϕ1 = Vcldsi,1ϕ2 = Vcldsi,2 (10)

Computation of the extension utilized (Equation 11):

ω =
∑

i

A2i (11)

in which the column vector ω is the column-wise sum of A2.
Additionally, A2-norm (‖A2‖) is calculated by element-wise

division of A2 by a repeat matrix consisting of values from ω,
with dimensions equal to that of datam.

ψ̂ =
‖A2‖Vsrti
√

Esrti+1

(12)

Furthermore, ψ̂ (Equation 12), is calculated to be the product of
‖A2‖ andVsrti divided element-wise by the square root of the i-th
+ 1 value of Esrt .

Additionally, ψ (initialized as an empty array) is:

ψi = ψψ̂ (13)

Extended eigenvector extraction corresponding to the two largest
eigenvalues (Equations 14, 15):

ψ1 = ψi,1 (14)

ψ2 = ψi,2 (15)

in which ψ1 and ψ2 are tabulated using all values from the rows
and columns one and two, respectively.

Preliminary Results Using UDCA
All possible combinations of 3 eigenvectors are used to create
the 3D embeddings. Three dimensions were chosen due to this
number of dimensions being optimal for visualization, but any
number can be chosen and then determined which number of
dimensions results in the most important information about
the underlying brain activity being extracted, depending on the
original data. Embeddings that contained the first eigenvector
were excluded due to the normalization that occurs as a result
of the SVD analysis (Duncan and Strohmer, 2016). Furthermore,
some preliminary results indicated that the embeddings that
showed a more diffused spread of points with outliers could
be used to indicate preseizure activity in the subject. The
determination of the spread for each embedding was calculated
by finding each embedded point’s Euclidean distance from the
center of mass of the embedded points. Embeddings with the
largest mean Euclidean distance for each subject were used for
preseizure activity evaluation. This method of determining the

optimal embedding allows the algorithm to be automatic and
unsupervised, but the algorithm can also be used in a semi-
supervised manner as well.

The dark blue points in Figure 13 represent the time farthest
from the seizure in the selected epoch, while the yellow points
represent windows of time that are closest to the occurrence of
the seizure. Figure 12 shows an example subject with EEG data
from channel 4, in a 5-channel analysis, in which epileptiform
spike activity is apparent at several initial time points. The
outliers in the embedding shown could be used to correspond
with several of the epileptiform spikes in the raw EEG data.

UDCA is a promising method that can be used to
detect epileptiform activity that may be a predictor of post-
traumatic epileptogenesis. Quantitatively, the evaluation of each
embedding can be performed through a variety of methods, such
as evaluating the diffusivity in the embedding by calculating the
Euclidean distance of each point in the embedding to either the
origin or the center of mass of all embedded points or by setting
a threshold for the outlier points.

DISCUSSION

We have described some of our analytic tools, including lesion
mapping, tractography, PVS analysis, and various types of EEG
analysis, including spectral analysis, spike detection, mutual
information, and Unsupervised Diffusion Component Analysis,
that we are developing and using to analyze the rich, multimodal
data from different sites that are collecting data for EpiBioS4Rx.
Furthermore, the tools applied to imaging and EEG data are used
for both human and animal data so that we can first analyze them
separately and then compare the animal model to the human data
to determine what translational components exist.

With tractography, we plan to explore the use of a study-
specific template that may improve registration performance.We
also plan to use the lesion mapping obtained from FLAIR to add
lesion statistics to the array of obtained fiber bundle metrics.
Based on our analysis of PVS, our results show that PVS may
be a potential non-invasive neuroimaging biomarker of post-
traumatic epileptogenesis. Moreover, PVS structural analysis
combined with DTI analysis can help define the suspected seizure
onset area. Ultimately, these results may be of benefit for the
design of future clinical trials and for the evaluation of new
possible therapeutic targets.

We plan to analyze the EEG using mutual information and
compare those results with the resting state fMRI data to study
networks in the brain, how they change over time, and how they
differ between PTE and non-PTE. With UDCA, our goal is to
apply advanced statistical tools to the results of the embeddings to
reliably identify epileptiform and preseizure activity in the EEG
of humans and rodents.

CONCLUSIONS

As more data are collected in EpiBioS4Rx, we will continue to
extract features from neuroimaging and electrophysiologic data
as well as molecular, clinical, cognitive, and behavioral measures
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to identify candidate diagnostic biomarkers of epileptogenesis.
When we apply these methods to new data, we will be able
to modify and improve them so that they can be even more
effective in our search for biomarkers of epileptogenesis after
TBI. Our methods will be used to reveal processes, regions,
and stages in epileptogenesis correlated with specific anatomical
changes in imaging and changes in the electrical activity in
the brain. Furthermore, our tools will allow us and other
researchers to easily compare human and animal data to identify
their similarities and differences. Innovative statistical techniques
will be used to build models of epileptogenesis to predict the
probability of developing epilepsy based on biomarker inputs.
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