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Brain neurons exhibit complex electroresponsive properties – including intrinsic

subthreshold oscillations and pacemaking, resonance and phase-reset – which are

thought to play a critical role in controlling neural network dynamics. Although these

properties emerge from detailed representations of molecular-level mechanisms in

“realistic” models, they cannot usually be generated by simplified neuronal models

(although these may show spike-frequency adaptation and bursting). We report here

that this whole set of properties can be generated by the extended generalized leaky

integrate-and-fire (E-GLIF) neuron model. E-GLIF derives from the GLIF model family and

is therefore mono-compartmental, keeps the limited computational load typical of a linear

low-dimensional system, admits analytical solutions and can be tuned through gradient-

descent algorithms. Importantly, E-GLIF is designed to maintain a correspondence

between model parameters and neuronal membrane mechanisms through a minimum

set of equations. In order to test its potential, E-GLIF was used to model a specific

neuron showing rich and complex electroresponsiveness, the cerebellar Golgi cell,

and was validated against experimental electrophysiological data recorded from Golgi

cells in acute cerebellar slices. During simulations, E-GLIF was activated by stimulus

patterns, including current steps and synaptic inputs, identical to those used for the

experiments. The results demonstrate that E-GLIF can reproduce the whole set of

complex neuronal dynamics typical of these neurons – including intensity-frequency

curves, spike-frequency adaptation, post-inhibitory rebound bursting, spontaneous

subthreshold oscillations, resonance, and phase-reset – providing a new effective tool

to investigate brain dynamics in large-scale simulations.

Keywords: neuronal modeling, point neuron, leaky integrate-and-fire, model simplification, neuronal

electroresponsiveness, Golgi cell, cerebellum

INTRODUCTION

The causal relationship between components of the nervous system at different spatio-temporal
scales, from subcellular mechanisms to behavior, still needs to be disclosed and this represents
one of the main challenges of modern neuroscience. To this aim, bottom-up modeling is an
advanced strategy that allows to propagate low-level cellular phenomena into large-scale brain
networks (Markram, 2013; Markram et al., 2015; D’Angelo and Gandini Wheeler-Kingshott, 2017).
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Precise biophysical representations can be generated by
“realistic” neuron and network models, but these need then
to be simplified to achieve computational efficiency (Gerstner
and Naud, 2009; D’Angelo et al., 2016a). Simplified neuron
models are fundamental for studying the emergent properties of
neural circuits in large-scale simulations and for summarizing
in a principled way the electrophysiological intrinsic neural
properties that drive network dynamics and high-level behaviors
(Gerstner et al., 2014). The specific electroresponsive properties
of single neurons are crucial for efficient signal processing,
e.g., contributing to noise filtering, signal coding, and synaptic
plasticity. The expression of detailed neuron dynamics in
simplified models would allow to analyze physiological and
pathological phenomena of spiking networks during simulations
of sensorimotor tasks in closed-loop control systems, allowing
the inference of causal relationships across scales. A critical issue
is therefore to obtain simplified neuronal models, that should be
at the same time biologically meaningful and computationally
efficient.

The first effort toward dimensionality reduction has
been made through single-compartment neurons based on
the Hodgkin-Huxley (HH) model (Golomb et al., 1993;
Guckenheimer et al., 1993; Hill et al., 2001; Doloc-Mihu
and Calabrese, 2011). While being able to simulate realistic
membrane potential shape and complex patterns like tonic
bursting and network oscillations, these models still include
more than 5 differential equations, resulting in a significant
computational load when simulating large-scale circuits.
Other models abstract the biophysical properties of neurons,
simplifying the geometry-depended propagation of action
potential (Rall, 1962). A compromise between accuracy and
efficiency has been reachedwith simplifiedmono-compartmental
neuron models (or point neuron models), which neglect
morphology and loose some functionalities compared to
detailed multi-compartmental models but gain computational
efficiency. A mono-compartmental neuron model that has been
widely used as the basic element of Spiking Neural Networks
(SNNs) in different brain areas is the Leaky Integrate and Fire
(LIF) (Lennon et al., 2014). LIFs represent neurons as first-order
capacitive circuits and embed a threshold-based reset mechanism
to reproduce spiking activity (Burkitt, 2006). LIFs are able to
generate simple subthreshold dynamics and spike patterns
but, in their original formulation, cannot reproduce smooth
spike initiation zone, firing adaptation and bursting properties.
Non-linear adaptive LIFs have been developed to enhance
electrophysiological realism. In the Izhikevich model of cortical
neurons, the dynamics of membrane potential, Vm, depends
on both V2

m and a membrane recovery variable (Izhikevich,
2003). By introducing an exponential term in the differential
equation of membrane potential and an adaptive current with
slow dynamics, the action potential shape was well-fitted without
the need of a threshold-reset mechanism (Brette and Gerstner,
2005). However, the nonlinearity entailed more difficulties in
optimizing model parameters and in computational efficiency.
Therefore, recently, new linear adaptive point models have
been developed (Generalized LIF, GLIF), with spike-triggered
currents and moving threshold as the source of adaptation

(Mihalaş and Niebur, 2009) and with stochastic processes in
firing emission (Pozzorini et al., 2015; Rössert et al., 2016).
The possibility to use a linear and analytically solvable neuron
model is fundamental when simulating large-scale SNNs, since
computational efficiency can be enhanced without severe loss
in spike time accuracy and realism (Hanuschkin et al., 2010).
However, unless an oscillating input current is applied (Brunel
et al., 2003), these GLIF with first-order dynamics can hardly
generate phenomena like intrinsic subthreshold oscillations,
resonance and phase-reset, which are critical for large-scale
network entrainment and communication (Buzsáki, 2004;
Buzsáki and Draghun, 2004).

We propose here an extended GLIF (E-GLIF) model, which
achieves a sound compromise between model complexity,
biological plausibility and computational efficiency (Figure 1)
(Geminiani et al., 2018b). The model has only three state
variables, themembrane potential and two currents, which can be
associated to main biophysical subcellular mechanisms. Thanks
to its mathematical structure, which is similar to GLIF and
analytically solvable, E-GLIF can be optimized by traditional
optimization algorithms (Pozzorini et al., 2015; Teeter et al.,
2018) avoiding metaheuristic methods, like Genetic Algorithms,
used for multi-compartment realistic neurons with high-
dimensional parameter search space (Masoli et al., 2015) or non-
linear LIFmodels (Venkadesh et al., 2018). E-GLIF can reproduce
a rich variety of electroresponsive properties with a single set
of optimal parameters: autorhythmicity, depolarization-induced
excitation and post-inhibitory rebound bursting, specific input-
output (f-Istim) relationships, spike-frequency adaptation, phase-
reset, sub-threshold oscillations and resonance. A comprehensive
example of this entire set of excitable properties was given
by the E-GLIF of a cerebellar Golgi cell (GoC), whose
electrophysiological properties have been carefully investigated
and modeled previously using realistic multi-compartmental
approach (Forti et al., 2006; Solinas et al., 2007a,b). And
since the GoC expresses among the most common and varied
electroresponsive properties, the E-GLIF model should be easily
applied to various central neurons that can be represented with
mono-compartmental models and promote the investigation of
complex brain dynamics in large-scale simulations (Jordan et al.,
2018).

METHODS

In this work, taking the move from previous GLIF neurons
(Mihalaş and Niebur, 2009; Hertäg et al., 2012; Pozzorini et al.,
2015), we have developed and tested the E-GLIF neuron. The
model was implemented in the Neural Simulation Tool (NEST)
(Diesmann and Gewaltig, 2002), using NESTML (Plotnikov et al.,
2016) and the C++ core of NEST. Experimental recordings were
performed from cerebellar GoCs using patch-clamp recording
techniques for validation.

The Model
E-GLIF couples time-dependent and event-driven algorithmic
components to generate a rich set of electrophysiological
behaviors, while keeping the advantages of LIF neuron models
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FIGURE 1 | From complex to simplified neuron model. Neurons exhibit

complex properties that affect synaptic plasticity, circuit dynamics and

behavior. The point neuron described here shows that it is possible to capture

this complexity through a simplified model. The top left panel shows a Golgi

cell of mouse cerebellum stained with red tomato and reconstructed using a

fluorescence confocal microscope (courtesy of Prof. Javier De Felipe,

Department of Neuroanatomy and Cell Biology, Instituto Cajal (CSIC), Madrid,

Spain). The Golgi cell shows a complex set of dendritic and axonal

ramifications. In whole-cell patch-clamp electrophysiological recordings from

the soma, the Golgi cell behaves as a pacemaker generating adapting spike

trains in response to step current injection (bottom left) and other more

complex properties that are explained in this paper. As shown in the picture,

membrane potential firing and subthreshold properties recorded in vitro (Left)

can be observed in simulated spiking patterns and subthreshold dynamics

obtained through the E-GLIF point neuron (Right).

in terms of simplicity and analytical solvability. The E-GLIF
neuron includes 3 linear Ordinary Differential Equations (ODEs)
describing the time evolution of membrane potential (Vm) and of
two intrinsic currents (Iadap and Idep). Each of these three state
variables is modified by an update rule at spike events, which
are generated according to a probabilistic threshold crossing
controlled by an escape noise.

The model is defined as follows:

• State variables evolution (second-order 3-dimenstional ODE
system):















d Vm(t)
dt

= 1
Cm

·

(

Cm
τm

· (Vm (t) − EL) − Iadap (t) + Idep (t) + Ie + Istim

)

d Iadap(t)

dt
= kadap ·

(

Vm(t)− EL
)

− k2 · Iadap (t)
d Idep(t)

dt
=−k1 · Idep (t)

(1)

where:

Istim = external stimulation current;

Cm =membrane capacitance;
τm =membrane time constant;
EL = resting potential;
Ie = endogenous current;
kadap, k2 = adaptation constants;
k1 = Idep decay rate.

• Spike generation: if the neuron is not in the refractory interval
1 tref , a spike is generated stochastically at tspk, based on a
point process that depends on the escape rate function λ(t) as
explained more in detail in Appendix I (Gerstner and Kistler,
2002; Jolivet et al., 2006):

λ(t) = λ0e
Vm(t)−Vth

τV (2)

where:

Vth = threshold potential;
λ0, τV = escape rate parameters.
Spike times do not correspond strictly to when the potential
reaches the threshold: they occur with higher probability if
the membrane potential is near the threshold, depending on
the parameters τV and λ0 that define the minimum distance
from threshold corresponding to the maximum probability of
having a spike (Gerstner et al., 2014).

• Update: following a spike, the state variables are modified
according to the rules:











































Vm

(

t+
spk

)

= Vr

Iadap

(

t+
spk

)

= Iadap
(

tspk
)

+ A2

Idep

(

t+
spk

)

= A1

(3)

where:

t+
spk

= time instant immediately following the spike time tspk
Vr = reset potential;
A2, A1 =model currents update constants.

The parameters in the model include those directly related to
neurophysiological quantities (Cm, τm, EL,1tref , Vth, Vr in blue),
that are fixed for each specific cell type, and the more abstract
ones related to neuron-specific functional mechanisms, that need
to be optimized (kadap, k2, k1, A2, A1, Ie, in red).

In addition to the leaky current term, Cm
τm

(Vm − EL), each
one of the membrane currents defined in the model (Ie, Iadapt ,
Idep) accounts for a different mechanism that can be properly
parameterized:

• Ie is an endogenous current modeling the net contribution
of depolarizing ionic currents generating autorhythmicity
(Mihalaş and Niebur, 2009).

• Iadap is an adaptive current, usually hyperpolarizing, which
is characterized by a small spike-triggered increment (A2)
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that decays thereafter according to kadap and k2. Iadap
models the activation of potassium channels generating a
slow hyperpolarizing current. Since Iadap activates slowly

while Idep is already decaying, the balance between the

two currents generates spike-frequency adaptation and after
Hyperpolarization potential. Moreover, by being coupled with

Vm by kadap, Iadap endows the model with the capability

of generating post-inhibitory rebound bursting, intrinsic
subthreshold oscillations and resonance (Brette and Gerstner,
2005; Hertäg et al., 2012).

• Idep is a depolarizing spike-triggered current, which has
a larger spike-triggered increment (A1) and faster decay
(k1) compared to Iadap. Idep mimics the fast (almost

instantaneous) activation and deactivation of sodium

channels. Idep can generate depolarization-induced
excitation and sustain post-inhibitory rebound bursts
(Mihalaş and Niebur, 2009).

By computing the analytical solution of the model (see
Appendix I), we were able to associate different regions in the
parameter space to different system responses (i.e., exponential

or oscillatory and stable or unstable). Specifically, as reported

in Figure 2A, the k2-kadap plane includes an area corresponding

to exponential and stable solutions (green in the figure) and
an area with oscillatory stable solutions (red in the figure).

Within the latter, the red line corresponding to k2 = 1
τm

defines the condition for not-damped oscillatory solutions, which

allow to reproduce self-sustained oscillations of the membrane
potential.

Optimization
Model Parameters
To generate a neuron-specific model, we first considered the
parameters that are directly measured as neurophysiological
quantities (fixed parameters, highlighted in blue in section The

Model): Cm, τm, EL, 1tref , Vth, Vr were fixed to biological
values taken from literature or available from animal experiments

or databases (Tripathy et al., 2014). For the other neuron-
specific functional parameters (tunable parameters, highlighted
in red in section The Model), kadap, k2, k1, A2, A1, Ie,
we developed an optimization strategy based on a desired
input-output relationship, considering a current step Istim as
the input and spike times as the output. Specifically, we
supposed to evaluate the neuron response to the inputs listed in
Table 1:

- Istim = 0 pA: zero current (zero_stim) generating spikes at
frequency tonic_freq to evaluate autorhythm;

- Istim at three increasing excitatory current steps (exc1 < exc2
< exc3) producing firing with increasing frequency (freq1 <

freq2 < freq3) to reproduce the f-Istim relationship and spike-
frequency adaption (i.e., steady-state decreased frequency
with gain1 > gain2 > gain3);

- Istim = inh, an inhibitory input current to evaluate the
occurrence of an inhibition-induced silence followed by
rebound burst, made of at least 2-spikes.

TABLE 1 | Inputs and expected outputs for the optimization algorithm with

corresponding target electrophysiological property.

Input current step Expected output Corresponding property

Istim = zero_stim Firing at tonic_freq Autorhythm

Istim = exc1 > 0 Firing at freq1 and

adaptation with gain1

f-Istim relationship

Depolarization-induced

excitation

Spike-frequency adaptation

Istim = exc2 > exc1 Firing at freq2 and

adaptation with gain2

Istim = exc3 > exc2 Firing at freq3 and

adaptation with gain3

Istim = inh <0 Silence period during

hyperpolarization and return

to spiking with at least

2-spike burst (faster than

tonic_freq) when

hyperpolarization stops.

Post-inhibitory rebound

bursting

Cost Function, Constraints, and Algorithm
To evaluate different parameter sets by computing the
corresponding cost function, we exploited the analytical
tractability of the model and we evaluated the model solution
Vm(t), within the most significant time windows (initial,
transitory, and steady state) during each stimulation current
step. For each Istim = (i) = zero_stim, exc1, exc2, exc3,

the three time windows taken into account were: 1t
(i)
1 ,

from t
(i)
start to first spike t

(i)
1 , 1t

(i)
2 between t

(i)
1 and second

spike time t
(i)
2 , and 1t

(i)
ss between two spikes at Steady-State

(ss).
At the beginning of each depolarizing phase (i.e., during

1 t
(i)
1 ), we supposed the state variables to be initialized as follows:



















Vm

(

t = t
(i)
start

)

= EL

Idep

(

t = t
(i)
start

)

= 0

Iadap

(

t = t
(i)
start

)

= 0

(4)

Then, for the following time intervals, the initial conditions
were derived from the update rules of the model, supposing
that the system had reached the steady-state condition
when the adaptive current, Iadap, decayed during the inter-
spike interval of an amount equal to A2, i.e., its update
constant.

Analogously, to evaluate rebound bursting, we computed
the solutions with Istim = 0 pA, just after a hyperpolarization
(Istim = inh < 0 pA), within 2 consecutive time windows:

1t
(inh)
lat_reb

, from the end of the inhibitory current stimulus
to the first rebound spike time 1tlat_reb, and during the

1st Inter-Spike Interval (ISI) of rebound burst (t
(inh)
1st_reb

).
Again, the initial conditions were derived using the update
rules.

Starting from all the solutions computed in terms of Vm(t),
for each input Istim in Table 1, we derived the desired spike times

(t
(i)
1_des

, t
(i)
2_des

, t
(i)
ss_des

, or t
(inh)
lat_reb_des

and t
(inh)
1st_reb_des

), by imposing
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FIGURE 2 | Mathematical properties of the model. (A) Parameter plane. The solution types as a function of parameters kadap and k2. The light blue lines identify the

critical values separating sub-planes where the solution type changes, based on the system discriminant 1 (see Appendix I). Green area: exponential and stable

solutions (where 1 > 0 and kadap >(Cm/τm)·k2 and k2 >1/τm). Red area: oscillatory stable solutions, specifically not damped in the red segment, where 1 < 0 and

k2 = 1/τm. (B) Cost function evaluation exemplified by showing Vm(t) within one time interval (from relative initial time t0 = 0). Blue: the actual Vm(t), crossing the

threshold (Vth) at spike time tact. Green dashed: the simplified target Vm(t), crossing the threshold (Vth) at spike time tdes. Both Vm(t) curves start from reset value (Vr ).

The error is computed as the difference of blue and green areas, neglecting trend above Vth. (C) The short continuous stimulation protocol is represented. This is used

for assessing model optimization, applying the same input current values used during optimization, i.e., a zero-current phase, 3 depolarizing steps with input exc1,

exc2, exc3 = 200, 400, 600pA, and a hyperpolarizing step with input inh = −200pA, all interleaved with zero-current phases. (D) The full multi-phase in vitro

stimulation protocol is reported. This has been used for the continuous long simulations (48.93 s) to validate the model and consequently for the input definition in the

experimental protocol. After 10 s at zero current (spontaneous activity), 6 increasing current steps are imposed (from 100 to 600pA, with 100pA of increase), each

lasting 1 s; they are interleaved by 1 s of zero-current. Then, two impulses are provided (4,000 and 6,800pA, each lasting 0.5ms). Then, 2 negative current steps are

imposed (−100 and −200pA), each lasting 1 s. Finally, 13 sequences of pulse trains are provided. Each sequence is made up of 5 pulses (each 600pA lasting 30ms);

the time interval between pulses is constant within each sequence (2, 0.5, 0.28, 0.2, 0.17, 0.13, 0.1, 0.08, 0.06ms).

a spike event at the time when Vm(t) = Vth. Therefore, the
spike generation during optimization was assumed deterministic.
To take into account the variability in spike generation due
to the stochasticity into the model, for each stimulation
input during training, we used a distribution of 10 desired
firing frequencies with specific mean and Standard Deviation
(SD), and thus a distribution instead of a single target spike
time.

The parameters kadap, k2, A2, k1, A1, Ie were optimized
through the Sequential Quadratic Programming (SQP) algorithm
from the MATLAB R2015b Optimization Toolbox, with
normalized parameter values and constraints. SQP optimization
aims at the simultaneous minimization of a cost and constraint
function, using a gradient-based minimization method. We
set the stopping criteria to the iteration when the variations
in parameter search, cost or constraint functions were below
10−3 or the cost function reached a value lower than 0.1. We
chose the cost function for gradient minimization, summing
all the errors relative to the analyzed properties along the

stimulation protocol as in Table 1 (zero input, 3 excitatory
currents, first and second spikes of the post-inhibitory rebound
burst).

cost_function =

√
∑

error(i) + error(inh)

6
(i) = zero_stim, exc1, exc2, exc3

(5)

Each error term compared the actual area Aact , i.e. the
area between the actual Vm(t) curve and the Vm(t) = Vth

horizontal line, during each desired ISI, to the target area Atarget

(Figure 2B):

error(i) =
1

3
·

[

(

abs
(

Aact

(

1t
(i)
1_des

)

− Atarget

(

1t
(i)
1_des

)))2
+

+

(

abs
(

Aact

(

1t
(i)
2_des

)

− Atarget

(

1t
(i)
2_des

)))2

+

(

abs
(

Aact

(

1t
(i)
ss_des

)

− Atarget

(

1t
(i)
ss_des

)))2
]

(6)
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for each input current (i)
where:

Aact

(

1t
(i)
j

)

=

∫ t
(i)
j

t0

(Vth − Vm (t)) ·
(

sign (Vth − Vm (t)) + 1
)

dt

j = 1_des, 2_des, ss_des (7)

computing only the area from the relative initial time t0 = 0
to the desired spiking time, before reaching the threshold, since
spike-reset mechanisms were enabled in the model simulations.

Atarget(1t
(i)
j ) = 0.5 · (Vth − Vm (t0)) · 1t

(i)
j

j = 1_des, 2_des, ss_des (8)

that can be considered an approximation of the ideal sub-
threshold membrane potential for a linear LIF neuron not firing
at very low spiking frequencies.

error(inh) =

(

abs
(

Aact

(

1t
(inh)
lat_reb_des

)

− Atarget

(

1t
(inh)
lat_reb_des

)))2
+

+

(

abs
(

Aact

(

1t
(inh)
1st_reb_des

)

− Atarget

(

1t
(inh)
1st_reb_des

)))2

(9)

considering two aspects of the rebound burst following
inhibition, the time of the first spike after hyperpolarization and
the distance of the second spike after it.

Based on the mathematical considerations in section The
Model and Appendix I about the dynamics of the solutions,
the parameter space needed to be constrained to obtain the
desired membrane voltage evolution (Figure 2A). Further limits
in the parameter space could be included to take into account
neuron-specific information from neurophysiology.

In order to evaluate the convergence and stability of the
optimization process, for each optimization run, parameters
were initialized to random values within their ranges and
5 optimizations were performed with different random
initializations. The median of all the resulting parameters was
then considered as the final optimal set and used to run complete
simulations using the simulator PyNEST (Eppler et al., 2009) for
assessing the optimization results and for further validation.

E-GLIF Model of the Cerebellar Golgi Cell
E-GLIF model and optimization were applied to reproduce
the complex electroresponsiveness of cerebellar Golgi cells
(GoC). GoCs are the main inhibitory neurons in the granular
layer of cerebellum and are responsible for reshaping the input
signals coming from mossy fibers. In single-cell recordings,
GoCs show spontaneous firing around 8Hz, a nearly-linear
input-output relationship (about 0.25 Hz/pA), input-dependent
spike-frequency adaptation when depolarization is maintained,
rebound bursting after hyperpolarization, phase-resetting,
subthreshold self-sustained oscillations and resonance in the
theta band (around 3–6Hz) (Forti et al., 2006; Solinas et al.,
2007a,b; D’Angelo et al., 2016a). A multi-compartmental realistic
model (Solinas et al., 2007a,b) assumed that dendrites were
passive and used them to redistribute the passive electrotonic

load while placing all the ionic channels in the soma, suggesting
that an appropriate single point model could have been effective
as well. In the present E-GLIF model, all electrical properties
are collapsed in a point and gating kinetics of ionic channels are
substituted by lumped and simplified membrane mechanisms.

Model Construction and Optimization: Physiological

Parameters, Cost Function and Constraints
As reported in section Model parameters, the values of the
electrophysiological parameters were taken from literature (Forti
et al., 2006; Solinas et al., 2007a,b) and databases (Tripathy
et al., 2014) describing experimental GoC properties in vitro;
their values, used in optimization and simulations, are listed in
Table 2.

The optimization of the remaining tunable parameters was
achieved setting proper values to the target behavior of the
optimization algorithm, derived from literature (Forti et al., 2006;
Solinas et al., 2007a,b), as shown in Table 3.

In order to account for the whole-set of GoC
electrophysiological properties, the cost function included
all the terms reported in cost_function in section Cost function,
constraints, and algorithm. In addition, the parameter space
was limited to fulfill mathematical and neurophysiological
constraints. First, once we had set the neurophysiological
parameters to literature values, we constrained k2 and
kadap to obtain not-damped oscillations of the membrane
potential at a preferred frequency. We also constrained Vm

oscillation amplitude during zero and hyperpolarizing input.
Further boundaries were applied on A1, A2, Ie, and k1 to
obtain neurophysiological values of currents into the neuron.
Additional details on the parameters constraints are described in
Appendix II.

The optimal parameter set was chosen as the median of the
final values over the 5 optimization runs with different random
parameter initialization.

Model Simulations
Following parameter optimization in MATLAB, we derived
irregular firing parameters (λ0 and τV ), with the aim to obtain a
physiological variability of spike events during autorhythmicity.
In fact, in the PyNEST model simulations, we activated the firing
stochasticity that was disabled during optimization. Then, the
GoC simulations in NEST proceeded in two phases.

First, we implemented a multi-step protocol with the same
input currents used for optimization, taken from literature (see
Table 3 and section Model Construction and Optimization:

TABLE 2 | Electrophysiological parameters of the cerebellar GoC taken from

literature.

Parameter Value References

Cm 145 pF Solinas et al., 2007a

τm(= Cm*Rin) 44ms Solinas et al., 2007a

EL −62mV Solinas et al., 2007a

1tref (spike width) 2ms Tripathy et al., 2014

Vr −75mV Tripathy et al., 2014

Vth −55mV Forti et al., 2006
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TABLE 3 | Input-output relationship for GoC model optimization with corresponding electroresponsive properties (Forti et al., 2006; Solinas et al., 2007a,b).

Input current step (Istim) Expected output

(mean ± SD)

Desired spike times Corresponding

properties

zero_stim = 0 pA tonic_freq = 8 ± 1Hz 1t
(zero_stim)
1_des = 1t

(zero_stim)
2_des = t

(zero_stim)
ss_des

= 125ms (mean)

Autorhythm

exc1 = 200 pA freq1 = 40 ± 2Hz 1t
(exc1)
1_des = 1t

(exc1)
2_des = 25ms (mean) f-Istim relationship

Depolarization-induced

excitation

Spike-frequency adaptation

adaptation gain1 = 0.7 1t
(exc1)
ss_des = 35ms (mean)

exc2 = 400 pA freq2 = 100 ± 15Hz 1t
(exc2)
1_des = 1t

(exc2)
2_des = 10ms (mean)

adaptation gain2 = 0.5 1t
(exc2)
ss_des = 20ms (mean)

exc3 = 600 pA freq3 = 150 ± 20Hz 1t
(exc3)
1_des = 1t

(exc3)
2_des = 6.6ms (mean)

adaptation gain3 = 0.4 1t
(exc3)
ss_des = 16ms (mean)

0 pA after inh = −200 pA Latency of 1st spike lower than

0.5·(1/tonic_freq)

1t
(inh)
lat_reb_des < 62.5ms (uniform

distribution)

Post-inhibitory rebound

bursting

rebound_freq > 2·tonic_freq 1t1st_reb_des < 62.5ms (uniform

distribution)

Input: current step values (zero_stim, exc1, exc2, exc3, inh). Output: the distribution of desired firing rates during the autorhythmic phase (tonic_freq), at the beginning and end of

depolarizing phases (freq1, freq2, freq3), and during the rebound burst (latency and rebound_freq compared to tonic_freq). For each output, the desired spike intervals in the significant

time windows (1t
(i)
1_des, 1t

(i)
2_des, 1t

(i)
ss_des, 1t

(inh)
lat_reb_des, 1t

(inh)
1st_reb_des) are computed for each input current (superscript in brackets).

Physiological Parameters, Cost Function and Constraints). This
phase was fundamental to assess the effectiveness of parameter
tuning in continuous simulations with escape noise during
application of dynamic input patterns, and not only in sample

intervals (i.e.,1 t
(i)
1 , 1 t

(i)
2 , 1 t

(i)
ss , or 1 t

(inh)
lat_reb

and 1 t
(inh)
1st_reb

). In
these sequences, after a 10-s zero-current phase used to evaluate
firing irregularity, we delivered three 1 s steps of increasing
amplitude (exc1, exc2, exc3 = 200, 400, 600 pA) to monitor the
f-Istim slope and spike-frequency adaptation, interleaved with 1-s
zero-current to let the neuron recover to its spontaneous activity.
We then stimulated the neuron with a 1-s inhibitory step current
(−200 pA) for evaluating rebound bursting during a subsequent
zero-current step (Figure 2C).

Secondly, we added stimulation patterns required to evaluate
the emergence of model features (autorhythmicity, rebound
bursting, f-Istim, adaptation) at higher resolution and to check for
further emergent properties that were not considered during the
optimization process (e.g., resonance, phase-reset), including:

• an initial zero-current phase of 10 s to evaluate frequency and
irregularity of intrinsic firing;

• six depolarizing steps lasting 1 s, with input currents ranging
from 100 to 600 pA (increments of 100 pA), interleaved with
1-s zero-current phases, to test intrinsic excitability;

• two zero-input phases lasting 2.5 s, where we provided a short
pulse excitation (amplitude 4 nA and 6.8 nA, for 0.5ms), to
measure phase-reset mechanism;

• two 1-s hyperpolarizing phases with inhibitory current −200
and−100 pA, followed by a 1-s zero-stimulation phase, where
evaluating rebound bursting properties;

• a sequence of 5 steps, each of amplitude 600 pA, lasting 30ms,
at increasing frequencies: 0.5-2-3.5-5-6.3-7.7-10-12-15Hz, to
evaluate resonance.

The resulting total duration of the whole protocol was 48.93 s
(Figure 2D). Each simulation with the same optimized set of
Golgi neuron parameters was run 10 times with different seeds of
the random number generator used to produce the escape noise,
and thus spike stochasticity.

Finally, we assessed the capability of the model to intrinsically
generate self-sustained Vm oscillations, running a 1-s simulation
with Istim = 0 pA, where Vth was increased to −5mV to avoid
the spiking mechanisms, which partially hide the underlying
oscillations.

Model Synaptic Activation
Synaptic mechanisms were added to the model in order to
allow its connection with different input neural populations and
simulate the GoC response to network activity. The synapses
were conductance-based, with a spike-triggered change of the
synaptic conductance gsyn according to an alpha function (Roth
and van Rossum, 2013):

gsyn (t) = Gsyn

t − tspk

τsyn
e
1−

t−tspk
τsyn (10)

This change of synapse conductance caused a change in the Vm

through the input synaptic current:

Isyn (t) = gsyn (t) · (Vm (t) − EL) (11)

This kind of synaptic model was chosen to maximize the realism
in synapses behavior, despite losing the neuron model analytical
tractability when connecting to other neurons and increasing the
computational load. This solution can be considered acceptable
when using a small-/medium- scale SNN. However, the NEST
platform flexibility guarantees the possibility to use the E-
GLIF with current-based synapses, which are less realistic but
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also require a lower computational load and can be suitable
for large-scale SNN simulations (Cavallari et al., 2014). In
simulations of synaptic responsiveness, synaptic strength Gsyn

and delay τsyn were set to different values for excitatory and
inhibitory synapses (excitatory synapses: Gsyn = 40 nS and τsyn
= 0.1ms, inhibitory synapses: Gsyn = 10 nS and τsyn = 0.1ms).
GoC E-GLIF was connected to two different spike generators,
excitatory and inhibitory, respectively.We provided a 50Hz spike
train on the excitatory synapse lasting for 800ms, while the
inhibitory synapse received a short spiking burst, for evaluating
the capability of the neuron model to produce a rebound burst
after an inhibitory spiking input.

Experimental Data Acquisition and Analysis
The outcome of simulations using the long multi-phase protocol
was compared to real data acquired ad hoc from mice GoCs
in acute cerebellar slices. These data are not identical to
those derived from literature, allowing therefore to test the
generalization capability of GoC E-GLIF beyond the specific
dataset used formodel construction. As for themodel, also for the
data we evaluated the same electrophysiological properties and
used similar inputs to the neurons described in section Model
Simulations (see the protocol in Figure 2D).

The experiments have been conducted on 16-to-21-days-old
(P0 = day of birth) male and female mice heterozygous for
the bacterial artificial chromosome insertion of EGFP under
the control of the glycine transporter type 2 gene (Zeilhofer
et al., 2005) (GlyT2-GFP mice). All procedures were conducted
in accordance with European guidelines for the care and use
of laboratory animals (Council Directive 2010/63/EU), and
approved by the ethical committee of Italian Ministry of Health
(628/2017-PR). The mice were anesthetized with halothane (1ml
in 2 L administered for 1–2min) and killed by decapitation
in order to remove the cerebellum for acute slice preparation
according to a well-established technique (Forti et al., 2006;
Cesana et al., 2013). The cerebellum was gently removed, and
the vermis was isolated and fixed on the stage of a vibroslicer
(Leica VT1200S) with cyanoacrylic glue. Acute 220-µm-thick
slices were cut in the parasagittal plane in cold Kreb’s solution and
maintained at 32◦C before being transferred to a 1.5ml recording
chamber mounted on the stage of un upright epifluorescence
microscope (Axioskop 2 FS; Carl Zeiss, Oberkochen, Germany)
equipped with a 63, 0.9 NA water-immersion objective. Slices
were perfused with Kreb’s solution and maintained at 32◦C with
a Peltier feedback device (TC-324B, Warner Instrument Corp.,
Hamden, CT). The Kreb’s solution contained the following (in
mM): 120 NaCl, 2 KCl, 1.2 MgSO4, 26 NaHCO3, 1.2 KH2PO4, 2
CaCl2, and 11 glucose, and was equilibrated with 95% O2 and 5%
CO2, for pH 7.4.

Whole-cell patch-clamp recordings were performed with
Multiclamp 700B (-3dB; cutoff frequency 10 kHz), sampled with
Digidata 1550 interface, and analyzed off-line with pClamp10
software (Molecular Devices). Patch pipettes were pulled from
borosilicate glass capillaries (Sutter Instruments, Novato, CA)
and filled with internal solution containing (in mM): potassium
gluconate 145, KCl 5, HEPES 10, EGTA 0.2, MgCl2 4.6, ATP-Na2
4, GTP-Na2 0.4, adjusted at pH 7.3 with KOH. Pipettes had a

resistance of 3–5 M� when immersed in the bath. Signals were
low-pass filtered at 10 kHz and acquired at 50 kHz. The stability
of whole-cell recordings can be influenced by modification of
series resistance (Rs). To ensure that Rs remained stable during
recordings, passive electrode-cell parameters were monitored
throughout the experiments.

In each recording, once in the whole-cell configuration, the
current transients elicited by 10mV hyperpolarizing pulses from
the holding potential of −70mV in voltage-clamp mode showed
a biexponential relaxation. The recording properties for 5 cells
from 3mice weremeasured as follows (values reported asmean±
Standard Error of Mean): membrane capacitance was evaluated
from the capacitive charge (37.1 ± 8.5 pF), while the membrane
resistance was computed from the steady-state current flowing
after termination of the transient (195.9 ± 97.8 G�). The 3 dB
cutoff frequency of the electrode-cell system, fVC, was calculated
as fVC = (2π • 2τVC)

−1, with τVC = 215.7 ± 7.4 µs, resulting
in 0.7 ± 0.02 kHz. These properties were constantly monitored
during recordings. Cells showing variation of Rs higher than 20%
were discarded from analysis.

After switching to current clamp, GoCs were maintained
at resting membrane potential by setting the holding current
at 0 pA. Intrinsic excitability was investigated by injecting 1-s
steps of current (from −200 to 600 pA in a 100-pA increment).
Resonance was investigated by applying sequences of 30-ms
600 pA current steps repeated 5 times at different frequencies
(range from 2 to 10Hz) or injecting a single 0.5-ms step of 4
nA. Finally, the cells were maintained at their resting membrane
potential for evaluating subthreshold Vm oscillations.

Using an automatic spike detection algorithm, spike times
were extracted from the experimental recordings, and used
for electrophysiological feature extraction (see section Feature
Extraction).

Feature Extraction
To evaluate GoC electroresponsive behavior, multiple parameters
were computed according to (Solinas et al., 2007a,b), from both
simulation and recording spike trains:

• the tonic firing rate, ftonic, was the inverse of the mean ISI,
during the initial zero-current phase;

• the coefficient of variation of inter-spike intervals (CVISI)
was measured during the 10-s zero-input step to quantify the
irregularity of firing;

• the firing rate, f, was the inverse of the mean ISI, during the
first 2 spikes of each depolarizing phase;

• the f-Istim slope was derived from initial responses to the
excitatory step currents;

• the fss/f ratio was used to evaluate spike-frequency adaptation,
where fss was computed at the end (last 5 spikes) of the first 1 s
interval of depolarizing stimulation;

• the parameter phase_param =
ISIpost−pre

ISItonic
was computed to

evaluate phase-reset; ISIpost−pre was the interval between the
2 spikes preceding and following the impulse current, while
ISItonic was the average ISI during the 2.5-s zero-input intervals
of phase-reset testing (Figure 2D);
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• latency and frequency of 1st spike were measured in the
rebound burst after hyperpolarization (lat_rebound and
rebound_freq, respectively);

• the response speed was computed to evaluate resonance, as
the inverse of the mean spike latency in each resonance step;
then the values from multiple simulation tests and frequencies
were fitted through a smoothing spline in order to obtain the
resonance curve (Gandolfi et al., 2013).

Parameter values for simulations and recordings are reported as
mean± SD.

In addition, for quantifying experimental subthreshold
oscillations, the power spectral density of 1 s Vm traces was
computed and, for each recording, the main oscillation frequency
was associated to the spectrum peak.

RESULTS

The E-GLIF neuron is a linear mono-compartment neuron
model using three differential equations for membrane potential
(Vm), a depolarizing current (Idep), and an adaptation current
(Iadap). These state variables are updated at each spike event,
which occurs according to a probabilistic threshold crossing
controlled by escape noise. E-GLIF contains 6 fixed parameters
(Cm, τm, EL, 1tref , Vth, Vr) and 6 tunable parameters (kadap, k2,
A2, k1, A1, Ie) and is designed to obtain a flexible representation
of complex firing dynamics. The equation system is analytically
solvable. The interdependency across state variables makes
the model able to show oscillatory behaviors. The update
mechanisms occurring at spike events, that are specific for each
state variable, generate adaptive behaviors on multiple time
scales.

In the present development, an optimization strategy using a
gradient-based minimization method allowed full control over
the search of optimal parameters. This operated with explicit
solutions related to specific time frames making unnecessary
to compute the state variables at each time instant throughout
a simulation. Desired spike times were imposed depending on
input stimulation.

To challenge E-GLIF in a complex and meaningful case, the
cerebellar GoC was chosen as the target neuron to be modeled.
Once extracting the optimal parameters, a complete simulation
of the neuron could be carried out by applying a multi-phase
stimulation protocol able to reveal the emergence of the various
spiking response patterns. An identical protocol was used to
stimulate real GoCs in acute cerebellar slices, so as to obtain
experimental data for robust model validation.

Optimization
In order to reproduce non-damped membrane potential

oscillations, k2 was set to 1
τm

= 0.02 ms−1 (section Model
Construction and Optimization: Physiological Parameters, Cost
Function and Constraints). For the remaining parameters,

multiple optimization runs with random initialization converged
toward similar values for all the 5 runs within 200 iterations,
without achieving values on the boundary of the search space

(Figures 3A–E). Optimization, exploring the 5-D space of

tunable parameters, stably met minimization of the cost function
and compliance with all the mutual parameter constraints: all
the optimization runs ended with a cost function value lower
than 0.5 and all the constraints verified (Figure 3F). Considering
the median of the final parameter sets, the resulting parameters
were: kadap, A2, k1, A1, Ie = [0.22 MH−1, 178.01 pA, 0.03 ms-1,
259.99 pA, 16.21 pA]. These values were used for all simulations,
thus making the different neuron responses (e.g., autorhythm,
adaptation, or rebound firing) depending only on the input
stimulus rather than on property-specific parameter sets.

Model Responsiveness During Current
Step Protocols
The optimized model was tested by 10 simulations in PyNEST
(Eppler et al., 2009), letting Vm and the two synthetic currents to
evolve in time and to be updated at each spike, thus generating
corresponding spike patterns, following the stochastic rule (see
section The Model).

Using the parameters resulting from the optimization process,
the model was able to generate a linear relationship between Istim
and response frequency f, with a constant slope of 0.2 Hz/pA
(Figure 4A). The autorhythm was at frequency ftonic = 12.8 ±

0.02Hz (Figures 4A,B). The escape noise process caused a slight
ISI variability (CVISI = 3.4 ± 1.4% during the zero-current
phase) with the parameters λ0 and τV set to 1 ms−1 and 0.4mV,
respectively.

The model response at increasing Istim lasting 1 s was (mean±
SD): Istim = 200 pA, firing rate 49 ± 6Hz at the beginning of the
current step and 36± 0.2Hz at the end; Istim = 400 pA, firing rate
90 ± 10Hz at the beginning of the current step and 53 ± 0.2Hz
at the end; Istim = 600 pA, firing rate 134± 8Hz at the beginning
of the current step and 68 ± 0.2Hz at the end (Figure 4A).
As shown in Figure 4C, the higher initial frequencies reflected
the depolarization-induced excitation driven by Idep, while the
decrease of the firing rate along the stimulation step was mainly
caused by the slightly slower Iadap increase and corresponds to
spike-frequency adaptation, which becomes more pronounced
at higher stimuli (Figure 4A) (Solinas et al., 2007a). At the end
of the stimulus current step, when Istim goes back to zero, the
balance among model currents result in a hyperpolarization of
the neuron followed by a return to autorhythm.

After a hyperpolarizing current step (-200 pA), the model
showed a post-inhibitory rebound doublet (i.e., a couple of spikes
at a higher frequency followed by a short quiescent period)
before recovering to spontaneous firing rate, with latency 30
± 13ms and frequency 47 ± 5Hz (Figure 4D) (Izhikevich,
2006). This effect reflected the different dynamics of the two
currents, Iadap and Idep, affecting Vm: the current Iadap, being
coupled with Vm, reached negative values during inhibitory
stimulation and thus contributed to depolarize the neuron
when the stimulation stopped (section The Model), affecting the
latency of rebound burst. After the first spike, the fast current Idep
sustained burst persistence; after the first 2 spikes Iadap attained
a steady state balance with Idep, bringing back the activity to
the autorhythm (Figure 4D). It should be noted that during the
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FIGURE 3 | Parameter optimization. (A–E) Tunable parameters evolution over 5 optimization runs. Normalized parameter values (kadap, A2, k1, A1, Ie) are represented

along iterations. In each run (different colors), the parameter starts from random values within permitted ranges (shown normalized on y-axis). In each panel, the red

point represents the optimal final parameter value (median across optimization runs). (F) Cost and constraints functions over 5 optimization runs. The cost and the

constraint functions are reported for the iterations in 5 optimization runs (different colors). Especially in the starting iterations, the optimization algorithm tries to minimize

the cost function while respecting the constraints. Parameter search can cause evident changes in the cost function value, especially in the first explorative iterations.

hyperpolarizing phase, the subthreshold Vm is not constant but
exhibits oscillations due to the second-order dynamics of the
system. Nevertheless, these oscillations do not generate spikes
(seeAppendix II) and the realistic spiking behavior of the neuron
is preserved.

Model Validation Against Experimental
Data
Experimental data from 5 GoCs showed physiological inter
and intra variability in recorded voltage traces under different
stimulation protocols. They exhibited autorhythm at a rate
of 11.5 ± 8Hz, increasing depolarization-induced excitation

and spike-frequency adaptation in response to positive current
steps, rebound doublet bursts after negative current steps
(Figures 5A–C). These features were tested in the GoC model
in a validation test using more numerous and different current
inputs (see Figure 2D). The autorhythm was stably reproduced
(Figures 5D, 6A); the linearity between Istim and response f
was maintained over multiple Istim levels (Figures 5E, 6A),
confirming the results of the first simulations with a shorter
stimulation protocol (Figure 4). With increasing input current
steps, the balance of model currents at the end of stimulation
resulted in a pronounced hyperpolarization before returning to
autorhythm. This effect, that was not observed in physiological
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FIGURE 4 | PyNEST simulations. (A) f-Istim relationships. Responses of the

optimized GoC neuron during continuous simulations in PyNEST

(Continued)

FIGURE 4 | including firing stochasticity. For each stimulation current step

(zero-current, 200, 400, and 600pA lasting 1 second each), the frequency of

spiking activity at the beginning (dot markers–f ) and at the end (triangle

markers–fss ) is computed. Black: simulation results (mean and SD across 10

simulation runs, with low variability in the autorhythm and steady state

frequencies). Green: target values used in the optimization (mean and SD of

the target value distribution). The difference between instantaneous

frequencies of the first spikes (f ) and of the last spikes at 1 second (fss) is an

estimation of the spike-frequency adaptation. (B–D) Model responses to

different stimulations. Membrane potential (black), spike events (black lines in

the upper part), and the input current (red) in three blow-ups (1 s time windows)

along a continuous simulation in PyNEST of the optimized GoC neuron. (B)

Autorhythm phase with zero-stimulation current; (C) Depolarization-induced

excitation and spike-frequency adaptation during a current step injection of

200 pA. The currents Idep (yellow line) and Iadap (orange line) are plotted along

with the membrane potential: Idep is faster and contributes to bursting

mechanisms, while Iadap (with lower update rate) generates spike-frequency

adaptation reaching its steady-state value after the first 2 spikes following

depolarization have already occurred. (D) Rebound doublet after a negative

current step of −200pA, followed by a short quiescent period before returning

to tonic firing. Being coupled with Vm, Iadap reaches negative values during

hyperpolarization (resulting in a depolarizing effect on Vm ), and contributes to

the latency of rebound burst when the external inhibitory stimulation stops,

while Idep activating after the first spike, sustains the burst.

recordings, was due to the high value of Iadap at the end of
current steps required to achieve spike-frequency adaptation.
The rebound burst systematically occurred as a doublet after a
hyperpolarization and its internal speed and latency increased,
with higher absolute values of the preceding negative current
steps, consistent with experimental results (Figure 5F, Table 4).

A linear fitting on the experimental data resulted in the
same f-Istim slope (0.2 Hz/pA) as when fitting simulation
data (Figure 6A). Experimental recordings and model behaviors
evidently differed in the steady-state response rate (fss) that
may be related to experimental mechanisms not modeled in
simulations. Indeed, the experimental fss values were lower than
in the model (Figure 6A), thereby reducing adaptation in the
model compared to experiments (Figure 6B).

An important phenomenon evident in GoCs (as well as
in some other brain neurons) is phase-reset, which allows
desynchronization within sub-circuits triggered by strong
impulses (Figure 7A; Buzsáki, 2004; Buzsáki and Draghun,
2004). The GoC E-GLIF was able to reproduce this feature
(Figure 7B), thanks to the coupling between Iadap and Vm

that caused a rapid increase of Iadap when Vm value raised
following a huge external pulse; this blocked spike generation
for the same time interval independent from the phase of
autorhythm before the pulse, resetting the cells phase of the
autorhythm. Impulse amplitude was an element affecting the
after hyperpolarization duration following the pulse-triggered
spike, slightly increasing the phase-reset parameter as the pulse
charge increased (Table 4). The E-GLIF simulations matched
the experimental results with the impulse at 4,000 pA and
predicted the slightly increased phase-reset in case of higher pulse
current (6,800 pA), confirming literature results (Solinas et al.,
2007b).

Finally, another property evident in GoCs and often observed
in central nervous system neurons is the presence of endogenous
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FIGURE 5 | Responses to current steps. (A–C) Example of GoC membrane potential recorded during in vitro experiments under different step current stimulation

protocols. (A) Autorhythm; (B) Depolarization-induced excitation and spike-frequency adaptation with increasing current steps from 100 to 600pA (with increments of

(Continued)
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FIGURE 5 | 100pA); (C) Rebound burst after a negative current step of −100 and −200pA. (D–E) Simulated spike patterns during 1-s time windows of the

multi-phase stimulation protocol, with different input step currents used also in the recordings (red). (D) Autorhythm with ISIs irregularity. (E) Depolarization-induced

excitation and spike-frequency adaptation at increasing levels of input current (from 100 to 600pA, with increments of 100pA). Reflecting experimental behavior, a

clear firing rate increase is present as the stimulation starts, soon decreasing to the steady state value. Both initial and final spiking frequencies are higher with

increasing input currents. (F) Post-inhibitory rebound bursting (doublet) following a hyperpolarization of −100pA (upper panel) and −200pA (lower panel): bursting

properties are enhanced after a stronger inhibitory current step, coherently with experimental results.

FIGURE 6 | Excitability and adaptation. (A) f-Istim curve: different firing rates at the beginning (f ) and after 1 second (fss) of stimulation with increasing step currents, in

mouse recordings (mean value highlighted in blue, all experimental data in light blue) and simulations (in black, mean and SD in 10 simulations). Linear fitting curves for

both simulations and experimental data (dashed lines) result in the same f-Istim slope (0.2 Hz/pA). (B) Spike-frequency adaptation: comparison of adaptation rate in

experiments (blue) and model simulations (mean and SD of 10 simulations, in black). Both in (A,B), the imperfect match between recordings and model is likely to

reflect steady-state experimental degeneration not accounted for by the model.

subthreshold oscillations, which provide a fundamental
mechanism for efficient network intercommunication and
plasticity. Oscillations are correlated to resonance, and
both have been shown to depend on intrinsic membrane
properties (Hutcheon and Yarom, 2000). The cerebellar GoCs
exhibit intrinsic theta-frequency subthreshold oscillations
and resonance (Solinas et al., 2007b) that are thought to be
instrumental to propagate similar properties throughout the
entire cerebellum granular layer (Gandolfi et al., 2013). GoCs
work as a band-pass filters by amplifying the input in the theta
band. The present experimental data showed Vm subthreshold
oscillations at 4.2 ± 1.4Hz (Figure 8A): the normalized power
spectral density from 9 experimental Vm traces had a peak
between 2 and 6Hz (theta band). As a result, during 5 recordings
with the periodic stimulation protocol, the average response
speed curve (evaluating resonance) exhibited a maximum
at 3.5Hz (Figure 8B) and all the curves in each individual
recording also had the highest value at 3.5Hz. Consistently,
the simulated GoC model behaved as a band-pass filter with
a prominent peak at 3.5Hz (Figure 8D), while exhibiting
pure Vm self-sustained oscillations at 5.5Hz (Figure 8C)
(section Model Construction and Optimization: Physiological
Parameters, Cost Function and Constraints). In order to verify
the low- and high-pass properties of the fstim-response rate
curves, the model was simulated with additional stimulation
frequencies and generated points falling within the predicted
band-pass filter region (Figure 8D). It should be noted that
the slight difference among the frequencies of autorhythm,
subthreshold oscillations, and resonance (Hutcheon and Yarom,
2000) observed in the experimental data [for a similar effect

TABLE 4 | Validation and prediction (e.g., phase reset with higher pulse) of

rebound bursting and phase reset phenomena.

Parameter Protocol phase Experimental value

(mean ± SD)

Simulation value

(mean ± SD)

lat_rebound [ms] after inh = −100pA 20.5 ± 8.5 21.9 ± 5.6

after inh = −200pA 24.1 ± 8.3 26.3 ± 10.9

rebound_freq [Hz] after inh = −100pA 36.8 ± 17.2 30.4 ± 3

after inh = −200pA 44.2 ± 18.7 45.6 ± 7.7

phase_param after pulse = 4000 nA 1.65 ± 0.38 1.84 ± 0.09

after pulse = 6800 nA not acquired 1.9 ± 0.16

see (Solinas et al., 2007a,b)] was also observed in model
simulations.

Model Responsiveness to Synaptic
Stimulation
As shown in Figure 9B, synaptic stimulation of E-GLIF caused
an alpha-shaped change in synaptic conductance. The excitatory
spike train increased irregularity in neuron firing (CVISI = 39%),
consistent with the irregular spiking of GoCs in vivo (Cerminara
and Rawson, 2004; D’Angelo, 2009). The inhibitory spike train
generated a rebound burst in E-GLIF after the end of the input
stimulus, due to the intrinsic changes of the model currents
(Figure 9A). This result confirmed the ability of GoC E-GLIF to
reproduce the rich variety of electrophysiological properties of
GoCs.
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FIGURE 7 | Phase reset. Phase reset in a series of 10 experimental

acquisitions (A) and simulations (B), with input current pulse of amplitude Istim
= 4,000pA. In panel A, we show the input current and the neuron spikes

derived from 10 recorded Vm traces, while in panel B we show the input

current and spike events (gray lines) for 10 simulations. In both cases, at the

impulse time, the neuron fires, thus realigning the spike event to the input,

independently from the phase of the rhythmic firing before the impulse.

DISCUSSION

This work reports the development, optimization and testing of
the extended generalized leaky integrate-and-fire neuron model,
E-GLIF. E-GLIF is a simplified point-neuron based on a system
of 3 linear ordinary differential equations that is able to represent
multiple complex electrophysiological mechanisms at different
levels of abstraction. Like GLIF, E-GLIF maintains analytical
tractability, allows to define different solution regimes and to
optimize model parameters through minimization methods.
The main improvement provided by E-GLIF is to generate
a richer set of neuronal dynamics beyond depolarization-
induced excitation and adaptation, which includes also rebound
bursting, phase-reset, intrinsic sub-threshold oscillations, and
resonance. Thus, E-GLIF covers almost the whole set of neuronal
discharge properties relevant for microcircuit functioning and
network entrainment. Moreover, E-GLIF is designed to maintain
a traceable correspondence between lumped parameters and
ionic conductances of the neuronal membrane. In this way, E-
GLIF allows to combine GLIF computational efficiency with

the ability of reproducing the salient dynamic properties of
neuronal discharge, while keeping insight into the underlying
cellular mechanisms. E-GLIF appears therefore suitable to
bridge the gap between biophysically detailed realistic models
and computationally efficient simplified models, and could
be used to investigate the impact of neuronal dynamics in
large-scale networks. As a prove of its validity, E-GLIF was
shown to reproduce the main spiking discharge properties of
the cerebellar GoC, a prototype of a neuron with complex
electroresponsiveness.

Model Parameterization and Optimization
Strategy
By exploiting its analytical solution, the E-GLIF GoC model was
optimized using gradient descent minimization methods. This
allowed to fast-tune a unique set of parameters generating the
appropriate spiking responses to various input patterns. The
cost function was designed to evaluate sub-threshold membrane
potential dynamics using the integral of membrane potential all
over the inter-spike interval: in this way, the cost function was
still differentiable, while taking into account the full history of the
signal preceding the spike. Supra-threshold dynamics may not
be relevant since E-GLIF used a spike-update-reset mechanism.
In addition, the general cost function could be customized by
disabling the terms corresponding to the properties that are
not exhibited by the specific neuron model. For example, for a
neuron without autorhythm, the errorzero_stim term would not
be included in the cost function. For the remaining terms, the
desired output parameters listed in Table 1 were derived from
electrophysiological studies reported in literature and generally
applicable to many different neuron types. It should also be
noted that, although stochasticity in spike generation was not
expressed in the explicit model solution used for optimization,
it was accounted for by optimizing the neuron on a distribution
of desired spike times.

Compared to other optimization strategies, which are based
on semi-automatic fitting on a training set of neural traces or
spiking patterns (Pozzorini et al., 2015; Rössert et al., 2016) or
realistic model mapping (Marasco et al., 2012), E-GLIF tuning
was based on features related to neurophysiological activity
(primarily membrane capacitance and time constant, resting
potential, refractory period, spike threshold) and on input-
output relationships. Then, the model was validated against real
experimental data. This feature-based approach guarantees high
generalization capability and would be particularly suitable when
the data needed for SNN models reconstructions have been
obtained in different laboratories and therefore do not share the
uniform database required for automatic fitting and validation.

Comparison to Other Simplified Models
E-GLIF integrates elements taken from the theory of point
neuron models in order to reach a good compromise between
computational efficiency, number of tunable parameters and
biological plausibility (Izhikevich, 2004; Pozzorini et al., 2015;
Teeter et al., 2018).

First, E-GLIF reproduces sub-threshold responses and
spike timing rather than the shape of action potentials.
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FIGURE 8 | Subthreshold oscillations and resonance. (A) Normalized power spectral density (PSD) of 1-s membrane potential traces from 9 experimental recordings.

All plots show a peak in theta band (between 2 and 6Hz). (B) Response speed values for 5 experimental recordings with the resonance protocol (using fstim from 2 to

10Hz), and fitted resonance curve showing a maximum at 3.5Hz, despite data variability. (C) Model membrane potential self-sustained sinusoidal subthreshold

oscillations in theta band, when the spiking mechanism is blocked. To avoid firing, we increased the Vth value from −55mV (dotted green line), to −5mV. (D)

Response speed during 10 simulations with the periodic input pattern fitted with a smoothing spline, showing resonance in theta band (higher peak at 3.5Hz).

Simulation results confirm the low- and high-pass effect in the frequency ranges not acquired during experiments (gray areas in panel (B)).

Nonetheless, some spike properties, such as spike width and after
hyperpolarization, are accounted for by the reset rules, which
map the state after the spike to that before it (Teeter et al., 2018).
It should be noted that monocompartment and simplified HH
models or non-linear point neuron models would be useful to
reproduce supra-threshold dynamics or accurate action potential
and bursting initiation (Fitzhugh, 1961; Hindmarsh and Rose,
1984; Guckenheimer et al., 1993; Brette and Gerstner, 2005);
however, it is not needed in E-GLIF, which is conceived for
embedding into SNN and therefore privileges spike timing and
population spiking patterns.

Secondly, the E-GLIF analytical tractability can be exploited to
implement versions designed for time-driven simulations, where
the exact spike time can be computed through iterative methods
like bisection (Hanuschkin et al., 2010). This would be useful to
decrease simulation time resolution without losing spike timing
accuracy in large-scale SNNs.

Thirdly, E-GLIF exploits an adaptive current coupled with
membrane potential to model spiking responses driven by
adaptation mechanisms, like spike-frequency adaptation and
post-inhibitory rebound bursting, rather than a sliding threshold
depending on the actual membrane voltage (Mihalaş and
Niebur, 2009; Pozzorini et al., 2015). This E-GLIF feature, in

addition to decreasing the number of ODEs in the model,
correlates effectively to the membrane mechanisms of firing,
as exemplified in the case of cerebellar GoCs (cf. Solinas
et al., 2007a,b). In GoCs, both the f-Istim curve shift during
adaptation and post-inhibitory rebound bursting are driven by
the adapting current Iadap, in agreement with ionic mechanisms
revealed by data-driven realistic modeling (Solinas et al., 2007a)
and with mechanisms adopted in other simplified models
(Benda et al., 2010; Naud and Gerstner, 2012). Moreover, the
adaptive current coupled with membrane potential allowed to
simulate intrinsic self-sustained subthreshold oscillations at a
preferred frequency and thus to generate intrinsic resonance
(Richardson, 2003). Importantly, this is not possible either in
the traditional GLIF neurons (Pozzorini et al., 2015) with first-
order dynamics or in other non-linear adaptive point neurons
(Touboul, 2012). The spike-triggered updates of Iadap and Idep
can be associated to mechanisms of ion-channel activation/de-
activation, in particular concerning K+ (slow) and Na+ (fast)
currents (Mihalaş and Niebur, 2009), as further considered
below.

Finally, for testing the neuron with synaptic inputs,
conductance-based synaptic receptors were embedded into
the model. It should be noted that current-based synapses may
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FIGURE 9 | Responses to synaptic inputs. Simulation of the neuron model

response to synaptic inputs on two synaptic receptor mechanism (Rexc and

Rinh). The synaptic models are conductance-based, with an alpha-shaped

conductance change. As shown in (A), the excitatory spike train (bottom

panel–red) increases irregularity in neuron firing (top panel), while the inhibitory

input burst (bottom panel–blue) produces the rebound burst. Synaptic

conductances are modified according to an alpha function, with delay 0.1ms

and maximum change depending on the weight of the synapse (middle panel).

A zoom on the conductance change is shown in (B).

be used to further improve computational efficiency at the
expense of biophysical realism (Cavallari et al., 2014).

Limitations of the E-GLIF Model
While appropriately reproducing the physiological spiking
patterns in response to various input stimuli, the E-GLIF neuron
presents some limitations. As an Integrate and Fire model, the
action potential shape is not reproduced but is approximated
to a spike event followed by a refractory period that takes
into account the duration of the action potential. In addition,
thanks to second-order dynamics, the subthreshold E-GLIF
Vm intrinsically oscillates at a preferred frequency, also in

response to a step current. This allows obtaining spontaneous
subthreshold oscillations (Figure 8), but, unavoidably, causes
non-physiological oscillations in membrane potential with
constant hyperpolarizing currents (Figures 4, 5). In addition,
oscillations are highly sensitive to kadap and k2: to obtain not-

damped oscillations, k2 needs to be fixed to 1
τm

(Figure 2A) and
consequently the frequency of oscillations depends only on kadap
(see Appendix II). This is far from the cellular behavior where a
balance across multiple mechanisms is responsible for generating
the neuron response (Solinas et al., 2007b). These limitations
can be considered minor though, since this simple second-order
model is able to produce the neurophysiological output activity
pattern.

We chose to optimize the neuron model with a multi-
objective approach, since we aimed at generating different
spiking patterns with a single set of parameters based only on the
input stimulus. As a consequence, some quantitative properties
do not match exactly the experimental values. For example, the
amplitude of subthreshold oscillations is higher in the model
than in recordings, but this mismatch does not compromise
the realistic spiking behavior. Also, the high-amplitude After
Hyperpolarization potential at the end of depolarizing steps
does not overlap the experimental behavior. The reason is the
high steady-state value of Iadap: this is necessary for spike-
frequency adaptation, but it unavoidably strongly hyperpolarizes
the neuron when the external excitatory current stops. This
hyperpolarization causes also the lower values of resonance
parameters in simulations (Figure 8), because it slows down
the membrane potential dynamics during repetitive current step
stimulation. However, this does not affect the final resonance
frequency value. Therefore, we preferred to find the best
combination of parameters to generate multiple spiking patterns
that could be crucial for SNN simulations, instead of fitting a
specific single electroresponsive property.

Correspondence of Model Parameters to
Subcellular Mechanisms
Given the specific design of E-GLIF (see above), it is possible to
trace the relationship between E-GLIF parameters and the ionic
and membrane mechanisms generating the spiking response
in real neurons and realistic models. This comparison is well-
exemplified by considering the ionic mechanisms of cerebellar
GoCs, which have been previously determined in great detail
(Solinas et al., 2007a,b). Table 5 shows a list of membrane
currents generating various electrophysiological properties in
the cerebellar GoC (D’Angelo et al., 2013) and their remapping
onto the lumped parameters of E-GLIF, at a different level of
abstraction.

While, in order to simultaneously generate 8
different electrophysiological properties (action potential,
autorhythmicity, depolarization-induced burst, post-inhibitory
rebound burst, spike-frequency adaptation, phase-reset,
subthreshold oscillations, resonance), the realistic GoC model
engages 10 ionic currents (Ih, INa−t, INa−p, INa−r, ICa−HVA,
ICa−LVA, IK−V, IK−A, IK−AHP, IK−slow), E-GLIF has just 3
currents (Ie, Iadap, Idep) controlling a digital spike generator.
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TABLE 5 | Correspondence between subcellular mechanisms that generated specific electrophysiological properties and how they were simplified in E-GLIF model

elements.

Ionic channel mechanisms Electrophysiological property E-GLIF mechanisms

INa−t ↑ / IK−V ↓ balance Action potential Digital

Ih ↑

INa−p ↑ / IK−slow ↓ balance

ICa−HVA ↑/ IK−AHP ↓ balance

Autorhythmicity Ie ↑/ Iadap↓ balance

INa−r ↑ and IK−A ↓ Depolarization-induced burst Idep↑

ICa−HVA ↑/ IK−AHP ↓ balance

IK−slow ↓

Spike-frequency adaptation Iadap ↓

ICa−HVA ↑/ IK−AHP ↓ balance Phase-reset Iadap↓

Ih ↑

ICa−LVA ↑

Post-inhibitory rebound burst Iadap ↑ and Idep ↑

IK−slow ↓ and INa−p ↑ Subthreshold oscillations Vm–Iadap coupling

IK−slow ↓ and INa−p ↑ Resonance Vm–Iadap coupling

The arrow indicate depolarizing (↑) and hyperpolarizing (↓) actions of the membrane currents in the real cell and models. INa−t: transient sodium current; IK−V : delayed rectifier potassium

current; Ih: hyperpolarization-activated current; INa−p: persistent sodium current; IK−slow: slow M-like potassium current; ICa−HVA: high voltage-activated calcium current; IK−AHP: SK-type

calcium-dependent potassium current; INa−r : resurgent sodium current; IK−A: A-type potassium current; definitions and properties of the ionic currents are given in (Forti et al., 2006;

Solinas et al., 2007a,b).

Actually, there are correlations between ionic mechanisms
(e.g., ICa−HVA and IK−AHP are coupled), the same ionic
mechanisms can influence multiple electrophysiological
properties (e.g., the ICa−HVA /IK−AHP balance influences both
autorhythmicity, adaptation, and phase-reset), and some
electroresponsive properties are at least partly bound one
to each other (e.g. subthreshold oscillations and resonance)
reducing the dimensionality of the real neuron parameter
space (Solinas et al., 2007a,b). De facto, with its 3 currents and
spike-reset mechanisms, E-GLIF can effectively abstract the
high-dimensional response pattern of the GoC, supporting the
concept that appropriate models can provide a mathematical
interpretation of complex neuronal properties (Gerstner and
Naud, 2009). It should be noted that the association between
model elements and firing responses is more difficult in
other simplified non-linear models (e.g., Izhikevich, 2003),
which appear to be less interpretable in mechanistic terms.
Nevertheless, those models can more accurately reproduce the
membrane potential shape and phenomena like tonic bursting
(Izhikevich and Hoppensteadt, 2004). In addition, they associate
regions of the parameter space to different spiking regimes,
instead of generating different firing responses based only on
the input stimulus: this makes it difficult to exploit them in
large-scale cerebellar simulations where neurons are supposed to
generate multiple spiking patterns based on the received external
stimuli.

CONCLUSIONS

This work shows that it is possible to represent complex neuronal
firing dynamics through a mono-compartment neuron model
by updating the GLIF into E-GLIF at the modest computational
expense of 3 ODEs. Yet there is a remarkable efficiency gain with
respect to realistic multi-compartmental models. For example,
compared to the realistic version of the GoC model (Solinas

et al., 2007a,b) with 23 ODEs, there is an 80-fold computational
time reduction to simulate the same stimulation protocol with
the E-GLIF. Together with the computational efficiency, the
E-GLIF was able to reproduce multiple electrophysiological
features with a single set of model parameters, moving forward
the traditional approach of neuron modeling and resulting
in a higher biological plausibility (Izhikevich, 2004). Specific
advantages of E-GLIF are the second-order dynamics and the
linearity: the model admits an oscillatory response to constant
inputs and an analytical solution that allows to extend the
theoretical analysis of complex firing dynamics. Moreover, E-
GLIF keeps a correspondence between lumpedmodel parameters
and electrophysiological mechanisms, limiting black-box fitting
and supporting the interpretation of neuronal physiological
properties and their changes by neuromodulation and plasticity.
There is a large category of neurons that could be represented
as point processes and could indeed be modeled with E-GLIF.
For example, good candidates are the granule cells and the
stellate and basket cells in the cerebellum as well as various
interneurons in the neocortex and hippocampus. Nonetheless,
when dendritic or axonal computations become critical, E-GLIF
modifications would be needed, e.g., by connecting multiple
E-GLIF style compartments one to each other and adopting
dendritic compression and synaptic efficacy scaling procedures
(Marasco et al., 2012). This could be the case of Purkinje cells
(Masoli et al., 2015;Masoli andD’Angelo, 2017) in the cerebellum
and of pyramidal cells in the neocortex and hippocampus
(Migliore et al., 2008). Together with the other GLIF neurons,
E-GLIF could contribute to generate a standardized database of
computationally efficient models capable of generating a rich
repertoire of non-linear firing patterns applicable to diverse
brain regions and scientific issues by the community (Pozzorini
et al., 2015; Tiesinga et al., 2015; Rössert et al., 2016; Teeter
et al., 2018). Along this line, the implementation of E-GLIF
on the NEST platform (Diesmann and Gewaltig, 2002) is
expected to bring salient aspects of neuronal firing dynamics into
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large-scale network simulations, where different point neuron
models can be combined based on the complexity of the
neural population to be represented (Destexhe et al., 1996;
Geminiani et al., 2018a). The resulting SNN models could help
understanding how brain networks generate their computations.
Indeed, E-GLIF has been designed to investigate cerebellar
network dynamics during closed-loop behavioral testing in
neurorobots (Casellato et al., 2014, 2015; Antonietti et al.,
2016; D’Angelo et al., 2016b). In conclusion, E-GLIF could
effectively bridge bottom-up and top-downmodeling approaches
(Herz et al., 2006) paving the way to the establishment of a
set of simplified yet biologically meaningful spiking neuron
models as the fundamental elements of multi-scale brain
modeling.
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