
ORIGINAL RESEARCH
published: 19 December 2018
doi: 10.3389/fninf.2018.00090

Frontiers in Neuroinformatics | www.frontiersin.org 1 December 2018 | Volume 12 | Article 90

Edited by:

Robert Andrew McDougal,

Yale University, United States

Reviewed by:

Richard C. Gerkin,

Arizona State University, United States

Tadashi Yamazaki,

University of Electro-Communications,

Japan

Salvador Dura-Bernal,

SUNY Downstate Medical Center,

United States

Boris Marin,

Universidade Federal do ABC, Brazil

*Correspondence:

Robin Gutzen

r.gutzen@fz-juelich.de

Received: 18 June 2018

Accepted: 14 November 2018

Published: 19 December 2018

Citation:

Gutzen R, von Papen M, Trensch G,

Quaglio P, Grün S and Denker M

(2018) Reproducible Neural Network

Simulations: Statistical Methods for

Model Validation on the Level of

Network Activity Data.

Front. Neuroinform. 12:90.

doi: 10.3389/fninf.2018.00090

Reproducible Neural Network
Simulations: Statistical Methods for
Model Validation on the Level of
Network Activity Data
Robin Gutzen 1,2*, Michael von Papen 1, Guido Trensch 3, Pietro Quaglio 1,2, Sonja Grün 1,2

and Michael Denker 1

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain

Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 Theoretical Systems Neurobiology,

RWTH Aachen University, Aachen, Germany, 3 Simulation Lab Neuroscience, Jülich Supercomputing Centre, Institute for

Advanced Simulation, JARA, Jülich Research Centre, Jülich, Germany

Computational neuroscience relies on simulations of neural network models to bridge

the gap between the theory of neural networks and the experimentally observed activity

dynamics in the brain. The rigorous validation of simulation results against reference data

is thus an indispensable part of any simulation workflow. Moreover, the availability of

different simulation environments and levels of model description require also validation

of model implementations against each other to evaluate their equivalence. Despite

rapid advances in the formalized description of models, data, and analysis workflows,

there is no accepted consensus regarding the terminology and practical implementation

of validation workflows in the context of neural simulations. This situation prevents

the generic, unbiased comparison between published models, which is a key element

of enhancing reproducibility of computational research in neuroscience. In this study,

we argue for the establishment of standardized statistical test metrics that enable the

quantitative validation of network models on the level of the population dynamics. Despite

the importance of validating the elementary components of a simulation, such as single

cell dynamics, building networks from validated building blocks does not entail the validity

of the simulation on the network scale. Therefore, we introduce a corresponding set

of validation tests and present an example workflow that practically demonstrates the

iterative model validation of a spiking neural network model against its reproduction on

the SpiNNaker neuromorphic hardware system. We formally implement the workflow

using a generic Python library that we introduce for validation tests on neural network

activity data. Together with the companion study (Trensch et al., 2018), the work presents

a consistent definition, formalization, and implementation of the verification and validation

process for neural network simulations.

Keywords: spiking neural network, SpiNNaker, validation, reproducibility, statistical analysis, simulation

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00090
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00090&domain=pdf&date_stamp=2018-12-19
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:r.gutzen@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00090
https://www.frontiersin.org/articles/10.3389/fninf.2018.00090/full
http://loop.frontiersin.org/people/453511/overview
http://loop.frontiersin.org/people/576992/overview
http://loop.frontiersin.org/people/455237/overview
http://loop.frontiersin.org/people/306784/overview
http://loop.frontiersin.org/people/8155/overview
http://loop.frontiersin.org/people/39100/overview

Gutzen et al. Reproducible Neural Network Simulations

1. INTRODUCTION

Computational neuroscience is driven by the development of
models describing neuronal activity on different temporal and
spatial scales, ranging from single cells (e.g., Koch and Segev,
2000; Izhikevich, 2004) to spiking activity in mesoscopic neural
networks (e.g., Potjans and Diesmann, 2014; Markram et al.,
2015), to whole-brain activity (e.g., Sanz Leon et al., 2013;
Schmidt et al., 2018). In order to quantify the accuracy and
credibility of the models they must be routinely validated
against experimental data. In light of the scarcity of available
experimental data, both on the level of structure as well as on the
level of activity, making these data available to the community
is a high priority for today’s neuroscience. This task is being
addressed, in particular, by coordinated, large-scale efforts such
as the Allen Brain Institute1 and the Human Brain Project2.
However, it is of equal importance that models are delivered in
a comprehensible and reproducible form, and that validation is
based on standardized statistical tests.

Although there is no general consensus on how models
should be described and delivered (Nordlie et al., 2009), a
number of frameworks support researchers in documenting
and implementing models beyond the level of custom-written
code in standard high-level programming languages. These
frameworks include guidelines for reproducible network model
representations (Nordlie et al., 2009; McDougal et al., 2016),
domain-specific model description languages (e.g., Gleeson
et al., 2010; Plotnikov et al., 2016), modeling tool-kits
(e.g., BMTK3, NetPyNE4), and generic network simulation
frameworks (Davison et al., 2008). To share these models, but
also data, with the community several databases and repositories
have emerged and are commonly used for this purpose,
for example GitHub5, OpenSourceBrain6, the Neocortical
Microcircuit Collaboration Portal7 (Ramaswamy et al., 2015),
the G-Node Infrastructure (GIN)8, ModelDB9, NeuroElectro10

(Tripathy et al., 2014), or CRCNS 11 (Teeters et al., 2008).
The statistical validation of models, however, lacks a

standardized approach and supporting software tools. Thus, it
is usually open to the authors to define to which degree the
simulation outcome is supposed to match the experimental
data. In consequence of this ad hoc approach, we identify three
difficulties encountered with published models:

1. Models are only tested qualitatively instead of quantitatively.
For example, the spike trains resulting from the simulation are
visually classified (e.g., Voges and Perrinet, 2012), but without
calculating specific statistics to quantify the features of the

1https://www.alleninstitute.org
2https://www.humanbrainproject.eu
3https://github.com/AllenInstitute/bmtk
4https://github.com/Neurosim-lab/netpyne
5https://github.com
6http://opensourcebrain.org
7https://bbp.epfl.ch/nmc-portal
8https://gin.g-node.org
9https://senselab.med.yale.edu/modeldb
10https://neuroelectro.org
11https://crcns.org

activity. This lack of concrete numbers and detailed records of
how the numbers are calculated prevents a direct comparison
to other models.

2. The information provided in a publication on the details of
how the specific statistical analysis is performed and thus
how a model is validated is not sufficient to reproduce the
validation scenario.

3. Models are only compared to a single experimental data set
using a specific statistical measure. Moreover, the choices of
data sets and measures are biased to address specifically the
scientific aim of the publication. However, the absence of
a standardized procedure to base the validation on a broad
set of data sets and statistical measures limits the degree to
which confidence in the model is quantified in a context
detached from the research conducted in the publication at
hand. Moreover, it prevents the direct comparison between
published models and their re-use in related studies.

Generic attempts to overcome these difficulties and formalize
the validation process include the development of the Python

module SciUnit (Omar et al., 2014; Sarma et al., 2016), and
the description of workflows for the validation of models (Senk
et al., 2017; Kriegeskorte and Douglas, 2018; van Albada et al.,
2018). In this study, we build on these efforts in order to

introduce a workflow and supporting software to quantitatively
compare and validate spiking network models. The provided

workflow and software include all necessary analysis steps to
ensure reproducibility of the validation process, including the
details of extracting the statistical measures.

The validation of spiking neural networks can be performed
on two principle levels, which we refer to as “single-cell”
and “network” validation. The single-cell scenario assumes that

validation of the smallest elements of the circuit leads to realistic
emergent dynamics on the network scale (Markram et al.,

2015; Reimann et al., 2015). However, the link between the
dynamics of the smallest elements and that of larger composite

systems is intrinsically complex. Therefore, we argue that the
validation process should also include complementary network-

level validation, which involves the quantitative comparison
of several mono- and bivariate and sometimes higher-order
statistics of the spiking activity to capture the complete dynamics
of the system.

The advantage of single-cell validation is that the cellular
activity, e.g., cellular response to current input, can be well

measured in different labs and even under slightly different
experimental settings. Network-level validation, on the other

hand, is hindered by several aspects. Experimentally, such

dynamics can usually only be measured in-vivo, which involves
more sophisticated experiments than single-cell recordings.
Moreover, the large variability between measured systems, e.g.,
different subjects, can be very large. Such sources of uncertainty
need to be taken into account when interpreting the assessed
quantitative agreement of the simulation outcome with the
experimental reference data.

In this study, we first discuss the concept of validation
and introduce the related terminology in Sections 2.1, 2.2. In
Sections 2.3 we describe in detail the particular scenario of

Frontiers in Neuroinformatics | www.frontiersin.org 2 December 2018 | Volume 12 | Article 90

https://www.alleninstitute.org
https://www.humanbrainproject.eu
https://github.com/AllenInstitute/bmtk
https://github.com/Neurosim-lab/netpyne
https://github.com
http://opensourcebrain.org
https://bbp.epfl.ch/nmc-portal
https://gin.g-node.org
https://senselab.med.yale.edu/modeldb
https://neuroelectro.org
https://crcns.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

model-to-model validation, which is the basis of a concrete
worked example used for illustration during the remainder of
the manuscript. In that example, we quantify the statistical
difference between two implementations of the same model,
namely the polychronization model (Izhikevich, 2006) and
its reproduction on the SpiNNaker neuromorphic hardware
system (cf., companion study Trensch et al., 2018). The models,
the test statistics, and the formal workflow used for this
validation are described in Section 3. In Section 4 we detail
how the interplay of different network-level validation tests
leads to a quantitative assessment of the SpiNNaker model.
Finally, we discuss in Section 5 the conditions under which
the models are in acceptable agreement, i.e., for what kind of
applications the models are interchangeable. We further discuss
the applicability of the proposed workflow for other validation
scenarios.

2. VALIDATION OF NEURAL NETWORK
SIMULATIONS

In this section we explore the conceptual background of
validation in the context of neural network models by first
relating and adapting previously introduced terminology to our
domain, and discussing how to draw valid conclusions from
this workflow. We then introduce the concept of network-level
validation in computational neuroscience; the validation of a
simulation on the basis of measures derived from the collective
dynamics exhibited by the model. Finally, we discuss the special
case of model-to-model validation; the validation of one model
implementation against another implementation of the same or
a related model.

2.1. The Concept of Validation
When considering model simulations and their evaluation, it is
important to precisely define the terminology and to be clear
about the interpretation of the results in order to judge the
validity and the scope of applicability of the model. For all
practical purposes, in modeling one should be concerned with
its testable correctness relative to the given system of interest,
because only this process justifies its use as the basis for analytic
reasoning and prediction making. A central aspect in model
evaluation is its validation, that is, the process of assigning
credibility to a model. Establishing the absolute validity of a
model is inherently impossible, as a model is by design an
abstraction and simplification of reality (Balci, 1997; Sterman,
2000). Nevertheless, the more aspects of the model are covered
by validation tests, the more confidence may be placed into
the model in terms of the features exhibited within the limits
of an accuracy determined by an acceptable agreement. Thus,
there is not a single test that is sufficient for a model to be
validated (Forrester and Senge, 1980), and the outcome of a
validation process should not be understood as a definite verdict
about its validity but as a quantitative evaluation of usefulness
and accuracy. This quantification may typically be given in
the form of a score, which is either a normalized measure of
agreement, or a probability value based on observed evidence

FIGURE 1 | Schematic view of the model simulation environment introduced

by Schlesinger (1979). The figure and terminology is adapted from Thacker

et al. (2004), and defines the relationships between the system of interest,

mathematical model, and executable model as confirmation, verification, and

validation. Modeling and simulation activities are indicated by black solid

arrows, whereas assessment activities are indicated by red dashed arrows.

Figure amended from Trensch et al. (2018).

and a priori assumptions and beliefs (Carnap, 1968). With the
help of such quantified credibility measures, it becomes possible
to understand which aspects are well represented by a model,
and in consequence, how to weigh and interpret its predictions.
Notably, a model thus has a range of applications and a level
of description defined by the credibility measures. Stretching
the model beyond its intended purpose to a wider range of
application would therefore require additional validation tests.

In 1979 the Technical Committee on Model Credibility
of the Society of Computer Simulation established a widely
recognized description of a model verification and validation
environment. We adapt this terminology to the field of neural
network modeling, in line with our companion study (Trensch
et al., 2018). The validation setup is separated into three basic
elements (see Figure 1). The system of interest can be defined
as “an entity, situation, or system which has been selected for
analysis” (Schlesinger, 1979), and constitutes the references
against which validations are carried out. When specifying this
system of interest it is important to also explicitly define the
boundaries in which the modeling is expected to be adequate.
The modeling effort itself is separated into the definition of the
conceptual model, and its implementation as a computerized
model. The conceptual model is an abstract description formed
by analysis and observation of the system of interest. In the
case of network simulations, the conceptual model takes on
the form of a mathematical model describing the dynamics of
neurons, the connectivity structure, and other dynamic features
of the simulation (e.g., inclusion of neuromodulatory effects).
An implementation of the conceptual mathematical model in a

Frontiers in Neuroinformatics | www.frontiersin.org 3 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

computer software or in hardware, on the other hand, results
in a computerized, or more concretely for neural simulation, an
executable model.

In the context of the formalism laid out by Schlesinger
(1979) and refined by Thacker et al. (2004) and others (e.g.,
Sargent, 2013; Murray-Smith, 2015), validation has a precise
definition. Indeed, despite some minor discrepancies, the various
definitions of verification and validation agree on the essential
aspects. Here we summarize the definitions adapted to neural
network modeling and simulation as presented in detail in
our companion study (Trensch et al., 2018) in an effort to
present a formal terminology for the validation framework
developed in this study. The process of ensuring that the
executable model is a correct realization of the mathematical
model is termed “verification.” In contrast, the comparison of the
predictions generated by the computerized model to the system
of interest considering its intended domain of applicability is
the process called “validation.” Together with the process of
“confirmation,” which attributes plausibility to the mathematical
model as a useful description of the system of interest, these three
attributes form a circle that typically receives multiple iterations
consisting of improvements of the mathematical model and its
implementation as an executable model. While our companion
study (Trensch et al., 2018) investigates primarily the verification
step, this study addresses the complementary validation process.

In practice, the conceptual steps are likely to be highly
intertwined. In particular, for validation there are two principal
scenarios in which a failed validation step impacts the
verification. In a first scenario, a validation of the model
may lead to an unacceptable discrepancy, which by its
nature and appearance, triggers a verification step to detect
a previously undetected deficiency of the implementation. In
a second scenario, the validation is followed by a further
sophistication of the underlying mathematical model. This
process of sophistication can be performed either by ignoring the
validation outcome, or by explicitly considering it. In the former
case, the structure of the mathematical model is evaluated based
on modeling the constituent features of the system of interest
alone. In the latter case, the model is altered with the explicit
aim to improve the validation result, guided by intuition of the
scientist on how features and parameters of the mathematical
model will influence its output in a simulation, or even supported
by a brute–force parameter scan.

This latter type of approach is no longer a true validation
step, as it represents a “fitting,” “calibration,” or “optimization”
procedure of the model in order to generate a particular
desired output behavior. An example of such a procedure is
the automatic fitting of single neuron models to experimental
data, as performed using tools such as bluepyopt (Van Geit
et al., 2016). However, one should consider that, first, as a result
of fitting the mathematical model may be altered in ways that
are no longer motivated by the underlying system of interest,
and second, the fitting is not unbiased in that, by definition, it
improves the validation of certain features of the model at the
cost of those not included in the fitting procedure. Manipulating
a parameter until an observable is within the expected margin
of error generally reduces the predictive power of the model.

Therefore, validation shall never result in the adaptation of the
model the way it is done for fitting. In contrast to validation,
fitting parameters within biological reasonable bounds is legit
and common practice in a data-driven modeling approach. Even
though such calibration and validation seem very similar in
practice, they need to be clearly separated. Consequently, models
that are calibrated by use of a particular data set require a second
data set to perform a rigorous validation test (Thacker et al.,
2004).

Since the publication of the depiction of the validation
process shown in Figure 1 many derived diagrams have been
employed which emphasize additional aspects, for example,
the uncertainties in experiment and simulation and their
quantification. Other, more complex diagrams point out that
model validation is an ongoing and iterative process within
a larger workflow of modeling and experimentation (Murray-
Smith, 2015). Notable is the explicit inclusion of the validation
of experimental data (Sargent, 2013). Both the model building
process and the validation rely on experimental data. These data
need to be adequate and correct to ensure that the validation is
actually meaningful.

2.2. Network-Level Validation
There exists a large repertoire of tests and methods to validate
a neural network model. The choice depends on the model,
its intended use, the nature of the data, and the system of
interest. Outside of neuroscience, however, efforts to group
validation methods into phases and extract common schemes
date back four decades (Forrester and Senge, 1980). These phases
include validation on the basis of the model’s structure (e.g.,
model dimensionality and complexity, or the model’s behavior
in boundary cases as a result of the model simplification), its
behavior (e.g., predictive qualities of the executable model, or its
robustness under parameter variations or noise), and its response
under policy changes (i.e., whether the behavior of the system
of interest under change of external policies are reflected by the
model, such as when changing the experimental paradigm in a
neuroscientific experiment).

In the context of neural network models in neuroscience,
one common approach is to start the process of validating the
model in an iterative fashion from the level of the smallest
elements of the network, for example, the validation of single
neuron responses or synapse behavior to experimental data
under application of a constant current injection (see e.g.,
Markram et al., 2015). This single-cell validation is based on the
reasoning that when the basic building blocks of a system are
validated the resulting system composed of many of the validated
building blocks should consequently also perform appropriately.
The validation of a larger, or even the entire, system is carried out
only once all previous validation tests of the sub-elements have
passed with reasonable agreement.

However, the link from the function of the smallest elements
to the function of larger composite systems is in general not
known, i.e., itself part of the modeling. The difficulty is inherent
to multiscale models where emergent properties of a system
interact with the dynamics of the constituting elements (Noble,
2006). Nonlinear effects and sensitivity of individual neurons and

Frontiers in Neuroinformatics | www.frontiersin.org 4 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

circuits of connected neurons to parameter changes (Marder and
Taylor, 2011) prevent a conclusive prediction of the behavior
of the complete model system. Moreover, in models where the
individual cells or sub-circuits are simplified and abstracted (e.g.,
Potjans and Diesmann, 2014), the focus is placed on the question
to what extent global features of the dynamics emerge from the
network structure as opposed to the details of the elements (e.g.,
Schmidt et al., 2018). The advantage of simplified neuron models
is that their dynamics can be mathematically approximated (for
recent examples see Ostojic et al., 2009; Renart et al., 2010;
Litwin-Kumar and Doiron, 2012; Schuecker et al., 2015; Bos
et al., 2016) enabling a better understanding of the governing
mechanisms. Despite their relative simplicity, networks of such
model neurons reproduce many dynamical features observed in
experimental data (Shadlen and Newsome, 1998; Renart et al.,
2010), e.g., the characteristic firing patterns of cortical layers
(Potjans and Diesmann, 2014). For such models, the success of
single-cell validation is necessarily limited to the single-cell level.

Therefore, we propose network-level validation as a
complementary approach that validates the collective dynamics
of a network model using the statistical properties of the
network spiking activity. Network-level validation is an essential
complement to single-cell validation. First, the network dynamics
is likely to be a sensitive indicator for critical weaknesses of the
model and offers the possibility to detect these early on in the
model development process. Second, network-level validation
techniques can be applied to abstracted classes of models. Thus,
network models with different premises may be compared
and validated in a similar manner, including models which lay
their emphasis on macroscopic properties of the network. For
example, the network dynamics emerging from the interaction of
rate neurons can be validated in the same way as spiking neuron
based network models using appropriate rate-based validation
methods.

2.3. Model-to-Model Validation
So far, we considered a scenario in which a model is compared
to experimental observations. However, there are circumstances
in which a model is the object of reference. This model could
be another implementation of the model under scrutiny, an
alternative model, or a different simulation run of the same
model. In the following, we explore such validation scenarios,
which we collectively term “model-to-model” validation.

One possible scenario is the need to demonstrate the
equivalence of alternative implementations of the same
model. These implementations could, for example, be
realized by different simulation engines, for example NEST
(RRID:SCR_002963; Gewaltig and Diesmann, 2007), BRIAN
(RRID:SCR_002998; Goodman and Brette, 2009), and NEURON
(RRID:SCR_005393; Carnevale and Hines, 2006) all having
overlapping domains of application. Here, the implementation
of a model must take into account the specific features and
limitations of a given simulation engine, e.g., the numerical
precision. Thus, the choice of a simulator may influence the
simulation outcome. Fortunately, there are efforts to overcome
the simulator specificity, for example in form of the simulator
independent modeling language PyNN (RRID:SCR_002715;

Davison et al., 2008). Nevertheless, this approach remains
dependent on the degree to which the target simulator adheres
to the PyNN model description.

The comparison between one model and another which is
known to be more accurate (e.g., by means of an independent
verification process or by validation against experimental data)
may also be considered a validation technique in the sense that
the latter model is defined as a reference (Martis, 2006). Testing
against another model which is already rigorously validated can
be described as a “cross-validation.” In the special case where
two non-validated implementations based on the same model
are used in the model-to-model validation, we are left with
an incomplete model assessment process, where there is no
direct relation back to the system of interest. Consequently, we
use the term “substantiation” instead (Figure 2), in order to
not mistake this process for the validation of the model itself,
which still requires conventional validation testing including
experimental data. Trensch et al. (2018) describes substantiation
as “the process of evaluating and quantifying the level of agreement
of two executable models.” An example of such a situation is
the use of validation techniques to disambiguate the effects
of implementing a given model using different integration
strategies or different simulation engines (van Albada et al.,
2018).

Another application of a model-to-model validation is to
check for the robustness of a given model with respect to a
specific parameter change (see e.g., De Schutter and Bower,
1994). This parameter change may involve a random seed
that controls the stochastic input to a model or other model
parameters that are based on experimental observations. Such
variation of model parameters can assess if a feature of the
model behavior robustly emerges from the simulation and is
reproducible. The check for robustness is important because
experimentally based model parameters are usually observed
with a given uncertainty and there are methods to map the
influence of this measurement uncertainty to the model output
(UncertainPy12, Tennøe et al., 2018). For a reasonable sensitivity
analysis of the model, however, multiple simulation runs are
needed to represent the multidimensional parameter space
(Saltelli, 2002; Marino et al., 2008; Zi, 2011; Borgonovo and
Plischke, 2016).

Lastly, model-to-model validation is a useful tool in
accompanying model development. The flexibility and coverage
of a model’s dynamics when testing a model against experimental
data is often limited due to the scarcity and specificity of available
experimental data. Thus, model-to-model testing provides the
opportunity to validate the model outcome in a larger space
of dynamical regimes not necessarily covered by available
data.

The statistical methods presented in this study are generally
suitable for model assessment, i.e., model validation against
experimental data and model-to-model validation, including
substantiation scenarios. To emphasize this generality, the term
validation is used throughout the entire manuscript, even if the
worked example considers substantiation.

12https://github.com/simetenn/uncertainpy

Frontiers in Neuroinformatics | www.frontiersin.org 5 December 2018 | Volume 12 | Article 90

https://scicrunch.org/resolver/RRID:SCR_002963
https://scicrunch.org/resolver/RRID:SCR_002998
https://scicrunch.org/resolver/RRID:SCR_005393
https://scicrunch.org/resolver/RRID:SCR_002715
https://github.com/simetenn/uncertainpy
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

FIGURE 2 | Model verification and substantiation workflow. The workflow

shown is an adaption of the verification and validation processes (Figure 1) for

the comparison of two executable models (i.e., a model-to-model validation

test). The executable models share the same system of interest and the same

mathematical model, but differ in the model implementation (e.g., by using

different simulation engines). We propose the term “substantiation” instead of

“validation” to indicate that this assessment activity cannot evaluate the

accuracy of the model with respect to its system of interest. Modeling and

simulation activities are indicated by black solid arrows, whereas assessment

activities are indicated by red dashed arrows. Figure amended from Trensch

et al. (2018).

3. METHODS

3.1. Methods for Network-Level Validation
For network validation one usually cannot expect a spike-to-
spike equivalence between the simulated spiking activity and the
experimental data or between two models. Even for different
implementations of the same model, the computation depends
on the capabilities and limitations of the computer hardware and
the exact details of the computer environment (Glatard et al.,
2015). Therefore, the simulation outcomes must be compared
statistically in order to quantify the level of similarity. In
the following we outline a number of measures of increasing
complexity that capture a broad range of network activity
dynamics.

Mono- and multivariate measures can, in a sense, be
regarded as forming a hierarchical order. Monovariate statistics
consider only the single unit activity, irrespective of other
units’ behavior, while multivariate statistics consider how

the pairwise or higher-order activity of units is coordinated
within the system. Nevertheless, it should be noted that this
conceptual hierarchy does not imply a hierarchy of failure, i.e.,
a correspondence on the highest order does not automatically
imply correspondence of lower order measures. Therefore, it is
imperative to independently evaluate each statistical property.

3.1.1. Monovariate Measures
We characterize activity of single neurons in the network using
the distributions of several monovariate measures. The level of
network activity can be estimated by the average firing rate

FR = nsp/T, (1)

where nsp denotes the number of spikes during an observation
interval of length T. The inter-spike intervals are defined by

ISIi = ti+1 − ti, (2)

where ti denote the ordered spike times of a neuron. The
distribution of ISIi is used to characterize the temporal structure
of the single spike trains. Ameasure particularly suited to analyze
the regularity of the spike intervals is the local coefficient of
variation

LV =
1

n− 1

n−1
∑

i= 1

3(ti − ti+1)
2

(ti + ti+1)2
, (3)

which is equal to 1 for a Poisson process (Shinomoto et al., 2003).

3.1.2. Bivariate Measures
For pairwise statistics we analyze the cross-correlation function

Rxy(τ) =
〈

x(t)y(t + τ)
〉

=
1

N

N
∑

t= 1

x(t)y(t + τ) , (4)

where 〈·〉 denotes the temporal average (Tetzlaff and Diesmann,
2010). It quantifies correlations between spike counts of two
binned spike trains, x(t) and y(t), for a range of lags τ given
N bins. Subtracting the average spike counts µx =

〈

x(t)
〉

and
µy =

〈

y(t)
〉

yields the covariance function

Cxy(τ) =
〈(

x(t)− µx

) (

y(t + τ)− µy

)〉

= Rxy(τ)− µxµy . (5)

Normalizing the covariance function by the standard deviations
σx =

√
Cxx(τ = 0) of the processes, one obtains the cross-

correlation coefficient function

ρxy(τ) =
Cxy(τ)

σxσy
. (6)

The Pearson correlation coefficient is given by ρxy(τ=0) (Perkel
et al., 1967). The matrix of correlation coefficients, C, evaluates
the non-delayed (i.e., zero-lag) correlation of spikes. The activity
on different scales can be analyzed applying different bin sizes.
Here we use binned spike trains on a fine temporal scale (Pearson
correlations denoted by CC, using a bin width of 2 ms) and on
a coarse scale (Pearson correlations denoted by RC, using a bin

Frontiers in Neuroinformatics | www.frontiersin.org 6 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

width of 100 ms). The correlations on coarser scales are often
referred to as rate correlation. In particular, RC is able to capture
characteristic population-wide fluctuations of network activity
that are often observed on the associated temporal scales (see e.g.,
the stripy asynchronous irregular state in Voges and Perrinet,
2012).

Since the particular model used as an example in the present
study was originally conceived to exhibit a spatiotemporal
arrangement of the spiking activity (polychronous groups), we
analyze in addition potential delayed correlations by considering
the cross-correlation coefficient function ρxy(τ). We select a bin
width of 2 ms and calculate the sum of the cross-correlation
coefficient function for lags up to 100 ms, corresponding to an
interval of [−1;1] bins around 0 with 1 = 50:

Pxy =
1

∑

τ =−1

ρxy(τ) (7)

in order to quantify the fine temporal correlation including
potential lagged correlations.

3.1.3. Correlation Structure
Eigenvectors of the correlation matrix capture the correlation
structure of network activity (Friston et al., 1993; Peyrache et al.,
2010). Consider the eigendecomposition of the symmetric, zero-
lag correlation matrix according to

Cvi = λivi, (8)

where λi are eigenvalues and vi are eigenvectors. Due to the
symmetry of the real valued matrix C it follows that λi ≥ 0 and
eigenvectors vi are real and orthogonal to each other. A large
eigenvalue corresponds to an intra-correlated group of neurons,
whose activity explains a large amount of variance in the system,
and relates to dominant features in the correlation structure.
The loadings of the corresponding eigenvector vi identify the
neurons constituting such groups. Consequently, a suitable
sorting algorithm, for example hierarchical clustering, exposes
intra-correlated groups as block like features of the correlation
matrix. Here, we use the scipy (RRID:SCR_008058; v1.0.0)
implementation scipy.cluster.hierarchy.linkage() with method=
“ward” and otherwise default settings.

To quantify to which degree the correlation structure of two
simulation outcomes (1 and 2) is similar, one may flatten the
upper triangular matrices of the correlation matrices C1 and C2

into vectors c1 and c2, respectively. This omits duplicate entries
due to symmetry and the unity auto-correlation on the diagonal.
The normalized scalar product

0 ≤
|c1 · c2|
‖c1‖ ‖c2‖

≤ 1 (9)

then constitutes a measure of similarity. A value of 1 denotes two
identical vectors and a value of 0 two perpendicular vectors. The
order of pairwise correlation coefficients in the two vectors c1 and
c2 needs to be identical, i.e., the similarity measure is sensitive
to the labeling of the neurons. Therefore, it should only be

applied to compare two network simulations of the same neuron
population. Accordingly, reordering the neuron population of
one network statistically decreases the similarity measure of
any existing structured correlation matrices while preserving
the value for non-structured, e.g., homogeneous, correlation
matrices. As a test statistic, the distribution of the normalized
scalar product is not known and depends on the distribution of
cross-correlation coefficients in c1 and c2. The significance of the
similarity measure is therefore estimated by means of surrogate
data. The associated null distribution is computed by randomly
shuffling the neuron order of one network 10, 000 times.

3.1.4. Spatiotemporal Patterns
The evaluation of the correlation structure presented so far
considers only pairwise measures. Nevertheless the spiking
activity of complex networks may include higher-order
interactions. Several methods for the detection of higher-order
correlation have been developed in recent years (for a review see
Quaglio et al., 2018) that do not make any specific assumption
about the underlying connectivity and are thus well suited as
statistical measures for model validation. Here, we focus on the
SPADE (Spike Pattern Detection and Evaluation) method (Torre
et al., 2013; Quaglio et al., 2017). SPADE is a statistical method
designed to detect spatiotemporal spike patterns, i.e., temporally
precise spike sequences, including synchronous spiking activity.
The method is composed of two main steps: (a) using Frequent
Itemset Mining to detect repeated spike sequences in parallel
spike trains, and (b) selecting the sequences that occur often
enough to be significant with respect to the null hypothesis
of independent firing. The features of the patterns (neurons
forming the sequences, number and time of occurrences, lags
between the spikes forming the sequence, statistical significance
of the pattern) characterize the network activity in terms of
higher-order statistics.

3.1.5. Statistical Comparison of Distributions
Consider two sample distributions with means µi and standard
deviations σi. Here, such sample distributions represent the
neuron-wise or pairwise evaluation of one of the measures
described above. According to Hedges (1981), the effect size

d =
µ1 − µ2

σ
, (10)

characterizes the difference of the mean values where

σ =

√

(n1 − 1)σ 2
1 + (n2 − 1)σ 2

2

(n1 + n2 − 2)
(11)

is the pooled standard deviation and the ni specify the number of
samples entering each distribution. In the case of equal sample
sizes the definition is equivalent to Cohen (1988, p. 67). In
case of multiple simulation runs, we calculate the average effect
size of the respective measures. This is possible because the
simulations are independent and there is no systematic trend
of the measures for the evolving network states. Calculating
the effect size assumes that both distributions are Gaussian.
Even though this assumption is not fulfilled for every measure,

Frontiers in Neuroinformatics | www.frontiersin.org 7 December 2018 | Volume 12 | Article 90

https://scicrunch.org/resolver/RRID:SCR_008058
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

we calculate the effect size as a simple quantification of the
difference between the non-normal distributions. Note, that for
non-normal distributions a small effect size does not necessarily
indicate similarity because there might still be a mismatch in
the shape of the distribution. In these cases additional tests are
needed to give a more complete evaluation. Candidates are the
scalar product measure to compare correlation structures, and
statistical hypothesis tests.

The present work employs hypothesis tests to assess the
equality of the means (two-sample Student’s t-test) and the
equality of the distributions (Kolmogorov-Smirnov test, Mann-
Whitney U test). This quantifies the discrepancy in the results
by a p-value. The two-sample t-test is only applicable to normally
distributed data, while the latter two tests are non-parametric and
thereby applicable to any form of distribution. The Kolmogorov-
Smirnov test computes the supremum of the difference of the
two cumulative distribution functions, while the Mann-Whitney
U test compares the rank sums of the jointly sorted samples. In
general, when applying hypothesis tests the interpretation of the
p-values as a similarity assessment must also take into account
potential biases and dependencies, e.g., on the sample size, and
the simulation time (Cohen, 1994).

3.2. Implementation of Validation Tests in a
Modular Framework
Rigorous validation testing requires that test results are not
affected by details of the actual testing procedure. This translates
to performing the extraction of test statistics and its evaluation
with the exact same methods for both data sources entering
the test. In a more complex scenario, this also includes
finding an appropriate mapping between the data sources, for
instance when comparing a large-scale simulation of spiking
activity to experimental data taken from few electrodes only.
Ultimately, validation methodologies should be standardized
within the neuroscientific community to ensure consistency
of the validation scores across different validation cycles of
related models or data sets. The starting point for drafting a
common base for validation testing is the formalization of the
validation workflow for the individual research domains. For
network-level validation of spiking activity data we created this
formalization as the open-source Python module NetworkUnit13

(RRID:SCR_016543). All quantitative comparisons of statistical
measures of this study are carried out in this framework and
the workflow to reproduce the findings of this study using
NetworkUnit is available online as a Jupyter notebook14.

NetworkUnit focuses on the statistical comparison of
measures characterizing spiking neural network models. It is
based on the Python package SciUnit (RRID:SCR_014528; Omar
et al., 2014), which provides a generic basis for the testing of
models, employing similar concepts to those of unit testing in
software engineering. SciUnit consists of three base classes for
models, tests, and scores. The model class defines the model to be
validated and, if needed, handles its execution. The test defines
which measure, or feature, is to be extracted from the model,

13https://github.com/INM-6/NetworkUnit
14https://web.gin.g-node.org/INM-6/network_validation

and defines against which experimental data the model is to be
validated. Finally, the score defines the validation method to be
applied and quantifies the result of the validation cycle. Models
and tests are connected via their capabilities, e.g., a definition
of what types of data output a model provides, and what type
of data input the test requires to extract its measure. Figure 3
schematically depicts the interplay of these components and the
class hierarchy for the cases of validation of a model against
experimental data or substantiation against another model.

For the analysis presented in this paper, the components in
Figure 3 can be understood as follows: the basic underlying
capability is the class ProducesSpikeTrains as all analyzed
measures are based on the spike times. The SpiNNaker
model is implemented as the sim_model that is to be
validated. It could either be validated against experimental data
(exp_data), or substantiated against another instance of the
model (sim_model_B), e.g., the original implementation as
illustrated in our worked example. The test statistics we use
in XYTest are the distributions of the measures presented in
Section 3.1, e.g., firing rate or correlation coefficient. All these
tests involve the comparison of distributions, so they are derived
from a corresponding BaseTest (and potentially additional
base tests). Some statistics, e.g., the correlation coefficient,
depend on additional parameters (controlled by Params) such
as the binsize. The ScoreType in our case are statistical
hypothesis tests or the effect size.

The test instance uses spike trains from the model and
the experimental data or, as in our case, from the reference
model implementation to generate a “prediction” and an
“observation,” respectively. The calculation of features on activity
data is performed using the Electrophysiology Analysis Toolkit15

(Elephant, RRID:SCR_003833). Both observation and prediction
are passed on to the score class, which evaluates their statistical
congruence, e.g., in form of a two-sample t-test. Finally, the judge
function of the test instance returns the results, for example the
p-value of the statistical hypothesis test. This design formalizes
the generation of the results and makes them reproducible. The
modular design of model and test classes enables the reuse
of existing tests which facilitates the comparison of results of
different models.

In practice, performing a single test for validating a
model does not sufficiently capture the model behavior
to comprehensively quantify it and document the model’s
scientific applicability. Thus, a whole range of validation
tests is usually performed, which may in some cases differ
only in details or may depend on a parameter. Instead of
rewriting the test definition each time, it is more feasible to
make use of class-based inheritance as indicated in Figure 3

(BaseTest→XYTest→XYTest_paramZ). All specific tests
derive from the sciunit.Test base class. They add and
overwrite the required functionality, as for example generating
the prediction by calculating the correlation coefficients from
spike trains. Because there may be a lot of different tests
making use of correlation coefficients (for example, calculating
correlations on different time scales), it is recommended

15http://python-elephant.org

Frontiers in Neuroinformatics | www.frontiersin.org 8 December 2018 | Volume 12 | Article 90

https://scicrunch.org/resolver/RRID:SCR_016543
https://scicrunch.org/resolver/RRID:SCR_014528
https://github.com/INM-6/NetworkUnit
https://web.gin.g-node.org/INM-6/network_validation
https://scicrunch.org/resolver/RRID:SCR_003833
http://python-elephant.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

FIGURE 3 | Illustration of a typical test design within NetworkUnit. The blue boxes indicate the components of the implementation of the validation test, i.e.,

classes, class instances, data sets, and parameters. The relation between the boxes are indicated by annotated arrows. The basic functionality is shown by green

arrows. The difference in the test design for comparing against experimental data (validation) and another simulation (substantiation) is indicated by yellow and red

arrows, respectively. The relevant functionality of some components for the computation of test score is indicated by pseudo-code. The capability class

ProducesProperty contains the function calc_property(). The test XYTest has a function generate_prediction() which makes use of this capability,

inherited by the model class, to generate a model prediction. The initialized test instance XYTest_paramZ makes use of its judge() function to evaluate this model

prediction and compute the score TestScore. The XYTest can inherit from multiple abstract test classes (BaseTest), which is for example used with the

M2MTest to add the functionality of evaluating multiple model classes. To make the test executable it has to be linked to a ScoreType and all free parameters need

to be set (by a Params dict) to ensure a reproducible result.

to implement first an abstract generic test class to handle
correlations. This abstract test class cannot be accessed explicitly
by a user but only acts as a parent class for the actual
executable test class, which, e.g., implements the test for a
specific choice of the bin size. This class-based inheritance
guarantees that all tests build on the same implementation
and workflow.

In this study we concentrate on model-to-model validation.
In this scenario, the test instance compares the prediction of
two model instances and accordingly needs to accept two model
instances as input. For that scenario, SciUnit provides the test
class TestM2M, in which the experimental data (exp_data) in
Figure 3 are replaced by a second model class (sim_model_B).

3.3. Substantiation of the Izhikevich
Polychronization Model
In a companion study, Trensch et al. (2018) demonstrate
a rigorous model substantiation workflow. In a first step,
the authors replicate a published minimal spiking network
model, capable of exhibiting the development of polychronous

groups of spiking neurons (Izhikevich, 2006), referred to in
the following as the “polychronization model.” In a further
step, the study details the iterative processes of implementation,
verification, and substantiation of the original implementation
of the polychronization model against a reproduction on the
SpiNNaker neuromorphic system. Trensch et al. focus on the
refinement of the implementations and their verification, i.e., the
source code verification and calculation verification, and address
the question of the degree of numerical precision required on
neuromorphic systems. This is complemented by this study
focusing on the details of the corresponding substantiation
process, the testing for equivalence of statistical features of
the collective dynamics in five selected network states. This
section summarizes the polychronization model description, the
simulation setup, and the model substantiation procedure of
Trensch et al. (2018).

3.3.1. Polychronization Model
We chose the polychronization model (Izhikevich, 2006) to
demonstrate a rigorous model substantiation process. The

Frontiers in Neuroinformatics | www.frontiersin.org 9 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

choice was motivated by a number of non-standard features
in its conceptual and implementation choices that make it
an illustrative example for the source code and calculation
verification process conducted in a complementary study
(Trensch et al., 2018) and, particularly, for an reproduction
on the SpiNNaker (Furber et al., 2013) neuromorphic system.
The model exposes essential aspects in the formalization and
simulation of neural networks as it produces a rich repertoire of
network dynamics. Note that we do not evaluate the emergence
of polychronous groups, as this turns out to be rather sensitive
to details of the implementation choices. For a comprehensive
investigation of this aspect, see Pauli et al. (2018). The original
model is implemented in the C programming language and is
available for download from the website of the author16.

The polychronization model consists of 1,000 neurons with
four times more excitatory than inhibitory neurons. Each
neuron is described by the model specified in Izhikevich (2003).
In accordance with the definitions by Izhikevich, excitatory
neurons are parameterized to exhibit regular spiking, and
inhibitory neurons to show fast spiking behavior. The neurons
are connected randomly with a fixed out-degree of 100, where
inhibitory neurons only form connections to the excitatory
population. Each excitatory connection is assigned a fixed delay
drawn from a discrete uniform distribution between 1 and
20 ms in intervals of 1 ms and all inhibitory connections
are assigned a delay of 1 ms. Synaptic weights are initialized
with an initial value of 6 for excitatory and −5 for inhibitory
connections. The original model uses dimensionless variables,
however, currents can be interpreted in units of pA. The network
is driven by random input realized by an external current
pulse of 20 pA injected into one randomly chosen neuron
in each time step. The simulation time step is 1 ms, within
which multiple intermediate steps are calculated, depending
on the implementation (Trensch et al., 2018). The stimulated
spiking activity in the network modifies the connection weights
according to a spike-timing-dependent plasticity (STDP) rule.
Synaptic weight changes are buffered for one biological second
and then the weight matrix is updated for all plastic synapses
simultaneously. We leave out a detailed description of the
implementation of plasticity here because it is not of relevance
for the remainder of the study as it considers only the dynamics
after freezing the learned connectivity matrix, and refer to Pauli
et al. (2018).

3.3.2. Simulation Setup
Trensch et al. (2018) consider for the validation task the dynamics
of the original C implementation of the polychronization model
in five arbitrarily selected network states. Figure 4 illustrates the
setup of the simulation. Analyzing five network states within
one simulation process instead of the outcome of multiple
different simulations with different random seeds is motivated
by the findings of Pauli et al. (2018) who show that the model
may converge into two distinctly different activity states. By
analyzing the sample activity at different training times within
one simulation this ambiguity problem for the analysis is

16https://www.izhikevich.org/publications/spnet.htm

bypassed. In order to generate the network activity data for the
statistical analysis and to save the network states, the authors
perform the following three steps:

1. Execute the C implementation with STDP for 5 h of biological
time. During this simulation run, save the network state at five
points in time ti, i = (1, 2, ..., 5) after 1, 2, 3, 4, and 5 h. The
network state is defined by the weight matrixW(ti) containing
the current strength of each synapse, the connectivity matrix
A, and the delay matrix D. Additionally, record the first 60s of
the random series of neurons to which the external stimulus is
applied (I(t), Figure 4A).

2. Switch off STDP in the C implementation. Re-initialize the
network model with A, D, I, and the respective W(ti) for the
five simulation runs i = (1, 2, ..., 5). In each run record the
network spiking data SCi over 60 s (illustrated in Figure 4B).

3. Repeat step (2) with the implementation on the SpiNNaker
neuromorphic system (NM) of the polychronization model to
obtain the spiking data SNMi .

The spiking data SCi and SNMi are then subject to the statistical
analysis and comparison described in detail in the present work.
Note that for the sake of simplicity only the excitatory population
is considered in the following validation, yet the results for the
inhibitory population do not differ qualitatively.

3.3.3. Substantiation Workflow
The complementary study (Trensch et al., 2018), which details
the activities of implementation, verification and validation
conducted in the course of the substantiation process, presents
three iterations of the entire workflow. In the following, we
summarize the actions taken in these iterations. As each of the
iterations demonstrates a different aspect of validation testing,
the present study refers to the corresponding iteration where
suitable.

First, the original C implementation of the polychronization
model (Izhikevich, 2006) underwent a source code verification,
inspection and refactoring task, while paying attention to
preserving bit identity, i.e., bit-wise replicability, of the
simulation outcome. A reproduction of the polychronization
model was implemented on the SpiNNaker neuromorphic
system using the Izhikevich neuron model implementation
provided by the SpiNNaker software stack, using the Explicit
Solver Reduction (ESR) implementation of the dynamics
described in Hopkins and Furber (2015). The substantiation of
a choice of statistical features exposed discrepancies. This led
the authors to the definition of verification tasks, in terms of
calculation verification, to verify the accuracy of the numerical
algorithms and computations.

The second iteration carried out these verification activities.
As a result, the ODE solver implementation for both, the
SpiNNaker and the C model, was replaced by a semi-
implicit fixed-step size forward Euler scheme. Additionally, the
revised implementations include a precise threshold detection,
and for some critical calculations an optimized fixed-point
representation for improving the numerical precision of
computations.

Frontiers in Neuroinformatics | www.frontiersin.org 10 December 2018 | Volume 12 | Article 90

https://www.izhikevich.org/publications/spnet.htm
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

A

B

C

FIGURE 4 | Design of the simulation setup. The time line is annotated by the variables saved or loaded at specific time points of the simulation for the three types of

simulations used in the substantiation scenario. (A) Generation of the five initial network states used to simulate data. At the start (t = 0 s) of running the C

implementation of the polychronization model (with STDP) the connectivity matrix A and delay matrix D are saved. At the following times ti , the weight matrix W(ti) is

saved. The random input stimulus to the network I(t) is recorded for the duration of the simulation. (B) Generation of data from the five simulations of the C

implementation (without STDP) for use in the validation tests based on the random input I(t) and the five sets of initial conditions (A, D, W(ti)) recorded in (A),

respectively. The network spiking activity SC
i
(W(ti), t) is recorded for 60 s. (C) Identical setup as in (B), but for the SpiNNaker implementation without STDP, where

SNM
i

(W(ti), t) denotes the simulation result. The data from (B,C) are subject to validation testing based on their statistical features (red dotted lines). Figure amended

from Trensch et al. (2018).

The third iteration is concerned with a shift that was observed
in the LVs but not in the other monovariate measures such
as the firing rate. The formalized workflow of verification and
validation uncovered this shift to be caused by an implementation
issue leading to a small systematic lag in spike timing. Each
iteration thus constitutes a refinement of the implementation step
with a subsequent verification assessment and a substantiation
(utilizing NetworkUnit) as depicted in Figure 2. A short
summary of the specific changes in each iteration is depicted
in Table 1. The model source codes, simulation scripts and
the codes used in the verification activities, developed in our
companion study, are available on GitHub17.

4. RESULTS

In this section we present the results of the various validation
tests of the SpiNNaker implementation against the C simulation
of the polychronization model. Pauli et al. (2018) expose
that the model dynamics is sensitive to small changes in
model parameters and numerics. Accordingly, we do not

17https://github.com/gtrensch/RigorousNeuralNetworkSimulations

(doi: 10.5281/zenodo.1435831)

expect a spike-to-spike equivalence between the SpiNNaker
neuromorphic system, which makes use of 32-bit fixed-point
numerics, and the C implementation, employing floating-point
numerics. Hence, any comparison needs to rest on statistical
measures. Following the results of the various validation tests
of the SpiNNaker implementation against the C simulation, in
Section 4.1 we show that the application of validation tests
during model development and implementation quantifies and
guides the progress. Section 4.2 demonstrates the importance
of incorporating multiple measures in the validation of network
activity, since the agreement of a higher order statistical measure
does not entail the agreement of measures of lower order.
As the last step of the validation process Section 4.3 uses
a selection of test measures and scores to comprehensively
validate the SpiNNaker model implementation against the
C implementation.

4.1. Comparison of Network Activity During
Implementation
The modeler already benefits from the use of quantitative
statistical comparisons for model validation during the iterative
process of model implementation. Based on our example, we
demonstrate this by the improvements of the implementation on

Frontiers in Neuroinformatics | www.frontiersin.org 11 December 2018 | Volume 12 | Article 90

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://doi.org/10.5281/zenodo.1435831
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

TABLE 1 | Summary of the development steps of the model implementations.

C model SpiNNaker model

Iteration I Uses a semi-implicit

fixed-step size forward Euler

ODE-solver with step size

1 ms

(i) Uses the SpiNNaker Explicit

Solver Reduction (ESR)

implementation of the Izhikevich

neuron model

(ii) Uses Izhikevich’s algorithm for

the neural dynamics

(iii) Uses a more exact fixed-step

size forward Euler ODE-solver

with step size 1 ms.

Iteration II Uses a 1/16 ms step size

and a more precise

detection of threshold

crossing

Uses a 1/16 ms step size and a

more precise detection of

threshold crossing

Applies fixed-point conversion

for critical calculations

Iteration III Remains unchanged Resolves an implementation

issue

with the threshold detection

The iterative development of the simulation codes is based on a replication of Izhikevich’s

original implementation. The steps (ii) and (iii) represent incremental improvements in

between iterations I and II. ODE, ordinary differential equation.

SpiNNaker obtained in three iterative steps denoted by i–iii in
Figure 5 (see also Table 1). The results shown are taken from 60
s of simulated data starting from the network state after 5 h of
biological time.

Figure 5A displays the spiking data of the C implementation
(corresponding to iteration I in Trensch et al., 2018) compared
to the three consecutive steps of the SpiNNaker implementation.
Step i denotes the initial SpiNNaker implementation using an
Explicit Solver Reduction (ESR) algorithm for the Izhikevich
neuron dynamics (see iteration I in Trensch et al., 2018).
In step ii this algorithm is replaced by a reimplementation
of the neuron dynamics described in Izhikevich (2006). Step
iii improves this algorithm, by applying a fixed step size
forward Euler method (see iteration II in Trensch et al.,
2018). Step i does not exhibit the strong fluctuation of the
population activity (visible as vertical stripes in the raster
plot) that are present in the C simulation. The following
SpiNNaker simulation steps ii and iii, in contrast, do exhibit
these fluctuations. As expected, none of the SpiNNaker
simulations show a spike-to-spike equivalence with the C
implementation.

In order to assess the statistical agreement between the C and
SpiNNaker simulations during implementation development, we
compare the distributions of FRs, LVs, and pairwise CCs using
the effect size defined in Section 3.1.5. The results are shown in
Figure 5B for the 9 comparisons (3 steps, 3 measures). Visually,
the agreement between the C and the SpiNNaker simulations
improves with each step of the SpiNNaker implementation. This
is also quantitatively confirmed by the effect size displayed in
Figure 5C. This information guides the modeler in assessing
the model improvement in the iteration steps. The effect size
declines with each iteration step consistently for all measures.
However, despite the good visual agreement of the raster
plots for the final step, the discrepancy in the distributions

of firing rates is still considerable. There remains also a
shape mismatch between the distributions of CCs (step iii,
Figure 5B).

The distribution of the sum of the cross-correlation coefficient
of the SpiNNaker simulation (step iii, Figure 5D) is much
broader than the distribution obtained from the C simulation
and also shows a much larger tail, while the distribution for
the C simulations is close to a Gaussian. The corresponding
correlation matrix (Figure 5E) for SpiNNaker reveals that the
largest values as well as the smallest values causing the deviation
are arranged in horizontal and vertical lines. The correlation
matrix for the C simulation, on the other hand, does not show
similar outliers. The line structure uncovers individual neurons
that are highly correlated or anti-correlated (within a ±100 ms
delay window) to a large number of other neurons. Further
investigation reveals 8 particular neurons, that in the following
we refer to as overactive neurons. These overactive neurons
not only cause the long tail in the distribution of integral
correlations P, but also exhibit larger firing rates than the rest of
the population. This suspicious behavior motivates a closer look
at their spiking activity revealing occasional episodes with firing
rates of 1 kHz for several hundred milliseconds (see Figure 5F

for an illustration of such episodes). Subsequent analysis and
review of the source code determines an implementation issue
of the neural dynamics as the origin of the problem. The
episodes in question are triggered by an overflow of a fixed-
point variable in the calculation of themembrane potential. Thus,
the validation process reveals a mismatch in the dynamics that
provides valuable information to guide a subsequent verification
step.

4.2. Differential Effects on Statistical
Measures
Next, we investigate the statistical properties of spiking
activity for the SpiNNaker implementation resulting from
the next iteration step that addresses the overflow discussed
above. Briefly, the refinements of the SpiNNaker and the
C code are the employment of an improved forward Euler
ODE solver, a precise detection of threshold crossings, and
a more accurate fixed-point representation on SpiNNaker
(for details, see Table 1 and iteration II in Trensch et al.,
2018).

In Figure 6 the distributions of mean firing rates and
correlation coefficients show a good agreement in terms of effect
sizes and an overall better visual agreement of the shapes of
the distributions (Figure 5B, bottom row). The LV distributions,
however, exhibit a clear shift toward lower values not present
in the previous iteration, reflected by an increased mean
effect size. The spiking activity in the SpiNNaker simulations
is therefore considerably more regular despite similar mean
firing rates and pairwise correlations as the C simulation.
Thus, Figure 6 illustrates a situation where the refinement of
an implementation improves two statistical measures while
it worsens a third. The implementation process needs to be
accompanied by the simultaneous consideration of multiple
statistics.

Frontiers in Neuroinformatics | www.frontiersin.org 12 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

FIGURE 5 | Comparison of the C simulation with simulations of three consecutive stages of the SpiNNaker implementation. (A) Raster plot of the spiking network

activity (800 excitatory neurons) of the C simulation (bottom, blue) and three stages of the SpiNNaker implementation; i, ii, and iii (top, shades of green). The top and

right histograms show the population spike counts in 60 ms bins and the mean firing rates, respectively. (B) Distributions of firing rates (FR, left), local coefficients of

variation (LV, middle), and correlation coefficients (CC, right) for the C and SpiNNaker simulations. Each row (subsequent implementation steps: i, ii, iii) represents a

specific SpiNNaker simulation (green) that differs in the underlying neuron model implementation. Data shown for the C simulation (blue) are identical in the three rows.

(C) The difference between the distributions is quantified by the effect size with error bars indicating the 95% confidence interval. In step iii the effect sizes for the FR,

LV, and CC measure are 0.90, 0.05, and 0.36, respectively. (D) Distributions of the sum of the cross-correlation coefficient (Pxy , Equation 7) in logarithmic

representation for C and SpiNNaker (implementation step iii). (E) Color coded correlation matrices for the sum of the cross-correlation coefficient in implementation

step iii. The symmetric matrices display results for the subset of 100 excitatory neurons with highest spike rates in the SpiNNaker simulation. (F) Raster plot of 8

overactive neurons in the SpiNNaker simulation (implementation step iii) showing episodes of 1 kHz spiking (emphasized by red markers). The top and right

histograms show the population spike counts in 60 ms bins and the mean firing rates for the entire recording, respectively.

Frontiers in Neuroinformatics | www.frontiersin.org 13 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

2 4 6

FR (Hz)

0

50

co
un

t

0.5 1.0

LV

0

50

100

0.00 0.05

CC

0

2

4

×10
4

C

SpiNNaker

FR LV CC

0.0

0.5

1.0

eff
ec

t
si
ze

FIGURE 6 | Comparison of statistical measures after model refinement. The panels show from left to right the distributions of FR, LV, and CC of the C and SpiNNaker

simulation after the first refinement of the implementations by Trensch et al. (2018) for the network state after t5 = 5 h (same display as in Figure 5B). The histogram

on the right visualizes the effect size in the three statistical measures (mean and standard deviation across all five network states t1, t2, . . . , t5). The numerical values

are FR: 0.077± 0.025, LV: 1.28± 0.086, and CC: 0.074± 0.006 respectively.

4.3. Comprehensive Assessment and
Higher-Order Collective Properties
The refinement of the last iteration is the correction of the
threshold detection algorithm of the SpiNNaker implementation,
while the C simulation remains unchanged (for details, see
Table 1 and iteration III in Trensch et al., 2018). At this point,
the effect sizes of the statistical measures decreased substantially,
suggesting the inclusion of further measures of the collective
properties of the system into the validation. In this way we obtain
an impression of how far the present measures constrain the
dynamics of the system and to what extent higher-ordermeasures
of interest for the experimentalist are preserved.

Figure 7 shows the three distributions considered in previous
iterations (FR, LV, and CC; cf. Figures 5B, 6) and in addition
the distributions of the ISIs, the RC, and the eigenvalues (λ) of
the rate correlation matrices. According to the interpretation of
Cohen (1988), the comparisons of all six measures exhibit effect
sizes of small to medium size.

Compared to the previous iteration (Section 4.2), the
LV of the SpiNNaker implementation better matches the C
implementation. The firing rates, however, now show a small but
systematic shift to larger rates compared to the C simulation.
Despite a slight increase in the effect size for firing rates and
correlation coefficients, the overall agreement in terms of the
effect sizes improves due to the improved match of the LV
distributions. The distributions of ISIs appear log-normal and
are well matched. The higher peak in the distribution for the
SpiNNaker simulation results from the increased firing rates in
the SpiNNaker simulation.

The SpiNNaker simulations also show a small shift to larger
RC. For the C and SpiNNaker simulations the corresponding
distributions of eigenvalues (λ) of the rate correlation matrices
are similar. Both distributions have a single eigenvalue that is
considerably larger than the rest. Therefore, one single mode
explains a large part of the total variance of the population
activity. This largest eigenvalue, however, is considerably larger
for the SpiNNaker simulation. This indicates that the intermittent
increases of population activity observed in SpiNNaker are larger

in terms of amplitude compared to the C simulation (see e.g., the
oscillations described by Bos et al., 2016).

We test for equivalent sample distributions of all six measures
shown in Figure 7 using the non-parametric Kolmogorov-
Smirnov test and the Mann-Whitney U test for all 5 network
states. We also apply the parametric Student’s t-test to those
measures which are approximately Gaussian distributed (FR, LV,
RC, log(ISI)). All tests reject their null hypotheses with p-values
clearly below a 5% significance level (without correction for
multiple comparisons). The only exception are the eigenvalue
distributions, which yield p-values between 0.17 and 0.96 for the 5
network states. In conclusion, all but the eigenvalue distributions
are statistically different.

Figure 8 displays the rate-correlationmatrices of all excitatory
neurons for the C and SpiNNaker simulation. The clustering
arranges large correlation values close to the diagonal in the C
result. A similar arrangement is not visible for the SpiNNaker
result. Vice versa, a similar behavior is observed if the SpiNNaker
data are used to cluster the neurons (not shown).

The similarity of the correlation structure is further quantified
using the normalized scalar products of the RCs for the C and
SpiNNaker simulation in the 5 network states, as described in
Section 3.1.3. The resulting values range from 0.176 to 0.209.
We assess the significance of the similarity by comparing the
SpiNNaker data to 10,000 surrogate matrices computed by
random permutations of the neuron identities. The mean of
the surrogate scalar products reflecting structurally independent
correlations range from 0.081 to 0.108. The observed score of the
two implementations is thus at least 43 standard deviations away
from the corresponding surrogatemean and indicates a similarity
of correlation structures clearly beyond chance.

In addition to mono- and bivariate statistics we analyze the
spiking activity for both C and SpiNNaker simulation with
SPADE (Quaglio et al., 2017) to detect spatiotemporal patterns
(STPs) as potential dynamic signatures of the underlying network
connectivity. In order to have the largest possible sample of
patterns we consider all repeated spike sequences irrespective of
their significance. This is justified as we are not interested in the

Frontiers in Neuroinformatics | www.frontiersin.org 14 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

2.5 5.0

FR (Hz)

0

50

100
co
un
t

0.2 0.4 0.6 0.8 1.0

LV

0

50

100

10
1

10
3

ISI

0

2

4

6

8

×10
3

FR LV ISI

0.0

0.2

0.4

eff
ec
t
si
ze

0.00 0.02 0.04

CC

0

2

4

co
un
t

×10
4

−0.2 0.0 0.2

RC

0

1

2

3

×10
4

0 10 20

λ

10
0

10
1

10
2

C

SpiNNaker

CC RC λ

0.0

0.1

0.2

eff
ec
t
si
ze

FIGURE 7 | Distributions of characteristic measures of network activity simulated with C and SpiNNaker after the final step of refinement. The top row shows single

neuron statistics FR, LV, and the ISIs (same display and data specification as in Figure 5B). The histograms of ISIs are displayed using semi-logarithmic scaling. The

bottom row shows pairwise statistics and network properties, namely the CC using 2 ms bins, the rate correlation (RC) using 100 ms bins, and the eigenvalues (λ) of

the RC matrices displayed on the vertical axis using a logarithmic scaling. Right: effect size using the same display as in Figure 6. The effect sizes for the tested

measures are FR: 0.41± 0.08, LV: 0.28± 0.09, ISI: 0.14± 0.03, CC: 0.17± 0.03, RC: 0.14± 0.02, and λ: < 8× 10−17, respectively.

C

ra
te

co
rr

el
at

io
n

SpiNNaker

−0.16

−0.08

0.00

0.08

0.16

FIGURE 8 | Rate-correlation matrices for the C and SpiNNaker simulations of the network state after 5 h. Matrix elements show the RCs (color bar) of all pairs the 800

excitatory model neurons in the simulation computed from 60 s of data. The order of the neuron ids in both symmetric matrices is determined by hierarchical

clustering (Ward’s variance minimization algorithm, details see Section 3.1.3) of the C matrix. Auto-correlations are set to 0 to not stretch the color scale.

significance of the results of the C and SpiNNaker simulation but
in the comparison of the respective pattern formation. Figure 9
summarizes two characterizations of pattern occurrence: the total
number of patterns and the temporal lags between the spikes
forming a specific STP. While SpiNNaker shows a larger total
number of patterns, the lag distributions are qualitatively similar
in both simulations. Furthermore the power spectrum of the
spiking activity pooled across all neurons (Figure 9C) exposes
a clear peak around 35 Hz for both SpiNNaker and C, which
explains the large number of lags around 27 ms in the patterns’

lags distribution (Figure 9B). The phenomenon is enhanced in
the SpiNNaker simulations, which exhibit both a larger average
firing rate and a larger power around 35 Hz, explaining the larger
number of spatiotemporal patterns.

5. DISCUSSION

The study describes a workflow for the systematic, formalized
and reproducible validation of network models based on the
statistical comparison of the emerging neuronal activity. We

Frontiers in Neuroinformatics | www.frontiersin.org 15 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

A B C

FIGURE 9 | Frequency and structure of spatiotemporal spike patterns. (A) Bar diagram of the number of patterns detected using the SPADE method (Quaglio et al.,

2017) in the two simulations. Displayed are the mean and standard deviation of the results for the 5 network states. The spike times of all 800 excitatory neurons are

discretized by 3 ms bins and only spike sequences that repeated 3 or more times, are formed by at least 5 spikes, and with a temporal length between first and last

spike shorter than 60 ms are considered. (B) Normalized distributions of the temporal lags between any two spikes involved in one of the patterns. The results for

each of the 5 network states are displayed as a separate distribution. (C) Power spectra of the population activity in each network state. The spectra are calculated by

Welch’s method with a 100 Hz sampling frequency and a 1 Hz frequency resolution (window overlap: 50%). In all panels, data from the C and SpiNNaker simulations

are indicated in blue and green, respectively.

show that a statistical approach is required, as not only
the explicit model parameters but also the properties of the
simulation engine affect the simulation outcome, leading in
general to simulations that are not identical in their spike times.
A quantitative comparison of model vs. experiment and of model
vs. model is beneficial not only as a final validation but also guides
the development process. The tests applied in our workflow
span from monovariate (e.g., firing rates) to bivariate (e.g.,
correlation coefficients) to higher-order (e.g., spike patterns)
statistical measures. Eachmeasure of the spiking statistics reflects
only a certain aspect of network activity. Therefore, the validation
is enriched by including multiple measures to capture a broad
range of network dynamics. The presented workflow is available
online in an executable format with the intent to serve as a
template and building block for validation tasks in computational
neuroscience.

In conjunction with work presented in (Trensch et al.,
2018) we assess as an example the implementation of
the polychronization model by Izhikevich (2006) in the
programming language C and on the neuromorphic hardware
SpiNNaker. As the aim of this comparison is to validate the
implementation of this model on SpiNNaker, we perform a
model substantiation technique, where the C simulation assumes
the role of the reference model.

Initially, the quantitative comparison of characteristic
measures of the population dynamics (Section 4.1) exposes
an artifact. The artifact originates from an overflow of
the SpiNNaker fixed-point data type that is caused by an
inappropriate detection of threshold crossing (see Trensch et al.,
2018, for details) leading to several overactive neurons that
sporadically enter phases in which they fire in every simulation
time step. Thus, rigorous validation testing in the iterative model
development process is useful already in early stages because it
uncovers mismatches also in simple measures and complements
the model verification.

Further refinement of the ODE solvers for both model
implementations leads to an improved agreement of FR and
CC, but increases the discrepancy of the distributions of LVs
between the C and SpiNNaker implementation (Figure 6). This
intermediate result emphasizes the importance of considering
multiple statistics in parallel throughout the validation process as
each statistic highlights different dynamic characteristics of the
underlying model. The example also demonstrates that statistics
of higher order (here pairwise correlations) are not necessary
informative of differences in the network activity captured
by lower order statistics (here monovariate LV). Therefore, a
sufficient agreement in the statistics of a given order does not
imply sufficient agreement in the statistics of lower order.

Subsequent analysis traces the discrepancy in the LV measure
back to a software issue causing a small delay in spike timing.
Solving this issue in the final iteration step leads to a satisfactory
agreement between the C and SpiNNaker implementations in
terms of the effect sizes of the different statistical measures
(Section 4.3). An analysis of the spatiotemporal structure of
the spiking activity in the network shows that the temporal
structure (lag distributions) of spike patterns found in the data is
qualitatively similar for the two implementations. However, the
dominant elements of the correlation structure (in the sense of
strong intra-correlated groups of neurons) cannot be attributed
to the same neurons in the two simulations (Figure 8). Statistical
hypothesis tests for equality of the mean (t-test) and equality
of the distributions (Kolmogorov-Smirnov, Mann-Whitney U
test) failed for all statistics except the distribution of eigenvalues.
Taken together, the complexity of these findings emphasizes the
importance of using multiple statistical tests to obtain a complete
understanding of the validation outcome.

Quantifying the similarity between the simulations is not
the final step of validation. It has to be evaluated whether
or not this similarity (or, range of accuracy) represents an
acceptable agreement with respect to the intended application of

Frontiers in Neuroinformatics | www.frontiersin.org 16 December 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

the respective models. This evaluation requires consideration of
the requirements and intentions of the application. Conversely,
the statistical agreement obtained in the validation process
defines the applicability and accuracy of the model. Following
the latter approach, this study quantifies the accuracy of
the SpiNNaker implementation. Strong requirements for the
SpiNNaker simulations, such as an equal number of patterns
found with SPADE or the statistical equivalence of the calculated
distributions as assumed by the null hypothesis of typical two-
sample tests, can so far not be fulfilled. This means that
the acceptable agreement is not yet reached for analyses with
strong statistical requirements. With the intention of achieving a
qualitative reproduction of Izhikevich’s polychronization model,
however, we can state that the final model implementation on
SpiNNaker is in acceptable agreement with the corresponding
C simulation. An alternative end of the iterative validation
loop occurs when remaining discrepancies are understood and
result from the intrinsic limitations of the underlying simulation
technology (e.g., the SpiNNaker neuromorphic hardware and its
software stack). Particularly, experimental electrophysiological
recordings often contain considerable variability (see e.g., Arieli
et al., 1996; Mochizuki et al., 2016; Riehle et al., 2018, for trial-to-
trial and subject-to-subject variability). Therefore, the acceptable
agreement for a model to explain relevant experimental data
may in some cases be formulated less strictly, e.g., in terms of
effect sizes that reflect the typical variability between multiple
equivalent data sets.

The framework implemented by NetworkUnit can also be
used for such a quantitative comparison of two experimental data
sets. To illustrate this, we developed a second worked example
showing the statistical quantification of the difference between
two published experimental data sets (Brochier et al., 2018)
obtained in the motor cortex of two macaque monkeys. The
detailed and fully documented analysis can be found online18.
In summary, we find that the spike statistics, evaluated on the
basis of the FR, ISI, and LV measures, are significantly different
between the two monkeys, but exhibit effect sizes below 1.
However, care must be taken in interpreting such comparisons of
experimental data due to the large number of factors contributing
to the observed variability.

The question of the required accuracy in the representation of
parameters of the model (e.g., synaptic weights) could be further
investigated using the tools presented in the work. Thus, further
development of the neuromorphic hardware while continuously
reapplying the verification and validation tests outlined in this
paper and in Trensch et al. (2018) may lead to a more accurate
implementation that will widen the range of applications.

The statistical tests and tools for quantitative comparison
are realized within the open source framework of the Python
module NetworkUnit. It is based on SciUnit, a module designed
for scientific model validation (Omar et al., 2014). The aim
of NetworkUnit is to provide a battery of tests applicable to
compare network activity from spiking neural network models.
As such, its intent is to provide a formal structure and

18https://web.gin.g-node.org/INM-6/network_validation/src/master/

NetworkUnit_examples.ipynb

standard implementations for validation tests to simplify even
complex validation scenarios, such as the successful port of
the cortical microcircuit model (Potjans and Diesmann, 2014)
to SpiNNaker described by van Albada et al. (2018). Indeed,
the process of defining validation workflows and corresponding
performance indices to evaluate accuracy and usefulness has
common practice in other computational disciplines, such
as climate research (Feichter, 2011), and represents a core
component in large-scale modeling efforts, such as the Human
Brain Project.

The presented workflow and the tests can be easily adapted
to a range of other validation and substantiation scenarios,
including the comparison to experimental data, to other models,
but also the quantitative comparison of different experimental
data sets, e.g., to test for inter-subject consistency. Network-
level validation is in principle not even restricted to a specific
format of activity. Since we here evaluate a spiking network
model all tests of this study are based on the model capability
to produce spike trains. However, the evaluation of models
which predict continuous activity signals such as LFP, MEG,
or EEG, is equally tractable using tests that are based on
the corresponding capability (i.e., to produce corresponding
signals). NetworkUnit can be further extended to include
different statistical measures and statistical hypothesis tests
in order to account for user-specific validation scenarios of
simulated and/or experimental results. Other examples include
the separate analysis of subpopulations such as inhibitory
and excitatory units and the question of how the biophysical
complexity of neuron models influences the emerging network
dynamics. A note of care, however, has to be issued concerning
the interpretation of tests performed on subpopulations of a
network, where its quantified evaluation will most likely be
contingent on the detailed dynamics exhibited by the other
populations.

The continued evolution of such concepts and software
components to rigorously define and formalize the validation
process is a key step to increase the confidence in models
developed by the neuroscience community, and ultimately leads
not only to more replicability, but also true reproducibility of
scientific findings.

SOFTWARE AND DATA RESOURCES

The data and the code to perform the analysis presented in
this study can be found at https://web.gin.g-node.org/INM-6/
network_validation (doi: 10.12751/g-node.85d46c). Validation
testing was performed using the NetworkUnit Python module
available at https://github.com/INM-6/NetworkUnit. All data
analysis, including the SPADE method, was performed using the
Elephant Python package http://python-elephant.org.

AUTHOR CONTRIBUTIONS

RG, MvP, GT, SG, and MD designed the study. RG and PQ
performed the analysis. GT performed the simulations and
implemented the model. RG, MvP, and PQ wrote the software

Frontiers in Neuroinformatics | www.frontiersin.org 17 December 2018 | Volume 12 | Article 90

https://web.gin.g-node.org/INM-6/network_validation/src/master/NetworkUnit_examples.ipynb
https://web.gin.g-node.org/INM-6/network_validation/src/master/NetworkUnit_examples.ipynb
https://web.gin.g-node.org/INM-6/network_validation
https://web.gin.g-node.org/INM-6/network_validation
https://doi.org/10.12751/g-node.85d46c
https://github.com/INM-6/NetworkUnit
http://python-elephant.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

for performing the validations. RG, MvP, PQ, GT, SG, and MD
contributed to writing of manuscript.

FUNDING

This project has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and
Innovation under Specific Grant Agreements No. 720270
(Human Brain Project SGA1) and 785907 (Human Brain Project
SGA2). Additionally, the project is funded by the Helmholtz
Association Initiative and Networking Fund under project
number ZT-I-0003.

ACKNOWLEDGMENTS

We would like to thank Andrew Davison, Shailesh Appukuttan,
and Lungsi Sharma for their insightful discussions on
the concepts of validation and the implementation of a
corresponding software module and in particular Shailesh
Appukuttan for integrating the M2MTest functionality into
the SciUnit package. We also thank Robin Pauli and Philipp
Weidel for their helpful insights into the properties and behavior
of the polychronization model. We thank Markus Diesmann
for providing extensive, valuable feedback in preparing the
manuscript.

REFERENCES

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics of ongoing

activity: explanation of the large variability in evoked cortical responses. Science

273, 1868–1871. doi: 10.1126/science.273.5283.1868

Balci, O. (1997). “Verification validation and accreditation of simulation

models,” in Proceedings of the 29th Conference on Winter Simulation,

WSC ’97 (Washington, DC: IEEE Computer Society), 135–141.

doi: 10.1145/268437.268462

Borgonovo, E., and Plischke, E. (2016). Sensitivity analysis: a review of recent

advances. Eur. J. Operat. Res. 248, 869–887. doi: 10.1016/j.ejor.2015.

06.032

Bos, H., Diesmann, M., and Helias, M. (2016). Identifying anatomical origins

of coexisting oscillations in the cortical microcircuit. PLoS Comput. Biol.

12:e1005132. doi: 10.1371/journal.pcbi.1005132

Brochier, T., Zehl, L., Hao, Y., Duret, M., Sprenger, J., Denker, M., et al.

(2018). Massively parallel recordings in macaque motor cortex during an

instructed delayed reach-to-grasp task. Sci. Data 5:180055. doi: 10.1038/sdata.

2018.55

Carnap, R. (1968). “Inductive logic and inductive intuition,” in The Problem

of Inductive Logic vol. 51 of Studies in Logic and the Foundations

of Mathematics, ed I. Lakatos (Amsterdam, NL: Elsevier), 258–314.

doi: 10.1016/S0049-237X(08)71047-4

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:

Cambridge University Press.

Cohen, J. (1988). Statistical Power Analysis for the The Behavioral Sciences.

Mahwah, NJ: L. Erlbaum Associates.

Cohen, J. (1994). The earth is round (p<.05). Am. Psychol. 49, 997–1003.

doi: 10.1037/0003-066X.49.12.997

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2008). PyNN: a common interface for neuronal network simulators. Front.

Neuroinformatics 2:11. doi: 10.3389/neuro.11.011.2008

De Schutter, E., and Bower, J. M. (1994). An active membrane model of the

cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol.

71, 375–400. doi: 10.1152/jn.1994.71.1.375

Feichter, J. (2011). “Sharing reality with algorithms: the earth system,” in From

Science to Computational Sciences: Studies in the History of Computing and

Its Influence on Today’s Sciences, ed G. Gramelsberger (Zürich: Diaphanes),

209–218.

Forrester, J. W. and Senge, P. M. (1980). “Tests for building confidence in system

dynamics models,” in System Dynamics, TIMS Studies in Management Sciences

Vol. 14, (New York, NY: North-Holland) 209–228.

Friston, K., Frith, C., Liddle, P., and Frackowiak, R. (1993). Functional

connectivity: the principal-component analysis of large (pet) data sets. J. Cereb.

Blood Flow Metab. 13, 5–14. doi: 10.1038/jcbfm.1993.4

Furber, S., Lester, D., Plana, L., Garside, J., Painkras, E., Temple, S.,

et al. (2013). Overview of the spinnaker system architecture.

IEEE Trans. Comp. 62, 2454–2467. doi: 10.1109/TC.

2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C., et al.

(2015). Reproducibility of neuroimaging analyses across operating systems.

Front. Neuroinformatics 9:12. doi: 10.3389/fninf.2015.00012

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). Neuroml: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Goodman, D. F. M., and Brette, R. (2009). The Brian simulator. Front. Neurosci.

3:192–197. doi: 10.3389/neuro.01.026.2009

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of

effect size and related estimators. J. Educ. Behav. Stat. 6, 107–128.

doi: 10.3102/10769986006002107

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point neural

ODE solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/neco_a_00772

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw.

14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 5, 1063–1070. doi: 10.1109/TNN.2004.832719

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural

Comput. 18, 245–282. doi: 10.1162/089976606775093882

Koch, C., and Segev, I. (2000). The role of single neurons in information

processing. Nat. Neurosci. 3, 1171–1177. doi: 10.1038/81444

Kriegeskorte, N., and Douglas, P. K. (2018). Cognitive computational

neuroscience. Nat. Neurosci. 21, 1148–1160. doi: 10.1038/s41593-018-0210-5

Litwin-Kumar, A., and Doiron, B. (2012). Slow dynamics and high variability

in balanced cortical networks with clustered connections. Nat. Neurosci. 15,

1498–1505. doi: 10.1038/nn.3220

Marder, E., and Taylor, A. L. (2011). Multiple models to capture the

variability in biological neurons and networks. Nat. Neurosci. 14, 133–138.

doi: 10.1038/nn.2735

Marino, S., Hogue, I. B., Ray, C. J., and Kirschner, D. E. (2008). A methodology

for performing global uncertainty and sensitivity analysis in systems biology. J.

Theor. Biol. 254, 178–196. doi: 10.1016/j.jtbi.2008.04.011

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,

Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical

microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Martis, M. S. (2006). Validation of simulation based models: a theoretical outlook.

Electr. J. Busin. Res. Methods 4, 39–46.

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility in

computational neurosciencemodels and simulations. IEEE Trans. Biomed. Eng.

63, 2021–2035. doi: 10.1109/TBME.2016.2539602

Mochizuki, Y., Onaga, T., Shimazaki, H., Shimokawa, T., Tsubo, Y., Kimura, R.,

et al. (2016). Similarity in neuronal firing regimes across mammalian species.

J. Neurosci. 36, 5736–5747. doi: 10.1523/JNEUROSCI.0230-16.2016

Murray-Smith, D. J. (2015). Testing and Validation of Computer Simulation

Models. Cham: Springer. doi: 10.1007/978-3-319-15099-4

Noble, D. (2006). The Music of Life: Biology Beyond the Genome. Oxford: Oxford

University Press.

Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible

descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456.

doi: 10.1371/journal.pcbi.1000456

Frontiers in Neuroinformatics | www.frontiersin.org 18 December 2018 | Volume 12 | Article 90

https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1145/268437.268462
https://doi.org/10.1016/j.ejor.2015.06.032
https://doi.org/10.1371/journal.pcbi.1005132
https://doi.org/10.1038/sdata.2018.55
https://doi.org/10.1016/S0049-237X(08)71047-4
https://doi.org/10.1037/0003-066X.49.12.997
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1152/jn.1994.71.1.375
https://doi.org/10.1038/jcbfm.1993.4
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fninf.2015.00012
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.3102/10769986006002107
https://doi.org/10.1162/neco_a_00772
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1038/81444
https://doi.org/10.1038/s41593-018-0210-5
https://doi.org/10.1038/nn.3220
https://doi.org/10.1038/nn.2735
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.1523/JNEUROSCI.0230-16.2016
https://doi.org/10.1007/978-3-319-15099-4
https://doi.org/10.1371/journal.pcbi.1000456
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

Omar, C., Aldrich, J., and Gerkin, R. C. (2014). “Collaborative infrastructure

for test-driven scientific model validation,” in Companion Proceedings of the

36th International Conference on Software Engineering - ICSE Companion 2014,

(New York, NY: ACM) 524–527. doi: 10.1145/2591062.2591129

Ostojic, S., Brunel, N., and Hakim, V. (2009). How connectivity, background

activity, and synaptic properties shape the cross-correlation between spike

trains. J. Neurosci. 29, 10234–10253. doi: 10.1523/JNEUROSCI.1275-09.2009

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing

polychronization: a guide to maximizing the reproducibility of spiking

network models. Front. Neuroinformatics 12:46. doi: 10.3389/fninf.2018.

00046

Perkel, D. H., Gerstein, G. L., and Moore, G. P. (1967). Neuronal spike trains and

stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440.

doi: 10.1016/s0006-3495(67)86597-4

Peyrache, A., Benchenane, K., Khamassi, M., Wiener, S. I., and Battaglia, F. P.

(2010). Principal component analysis of ensemble recordings reveals cell

assemblies at high temporal resolution. J. Comput. Neurosci. 29, 309–325.

doi: 10.1007/s10827-009-0154-6

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Rumpe, B., and Morrison, A.

(2016). “NESTML: a modeling language for spiking neurons,” inModellierung

2016, vol. P-254 of Lecture Notes in Informatics (LNI), eds A. Oberweis and

R. Reussner (Karlsruhe: Gesellschaft für Informatik e.V. (GI)), 93–108.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Quaglio, P., Rostami, V., Torre, E., and Grün, S. (2018). Methods for identification

of spike patterns in massively parallel spike trains. Biol. Cybern. 112, 57–80.

doi: 10.1007/s00422-018-0755-0

Quaglio, P., Yegenoglu, A., Torre, E., Endres, D. M., and Grün, S. (2017).

Detection and evaluation of spatio-temporal spike patterns in massively

parallel spike train data with spade. Front. Comput. Neurosci. 11:41.

doi: 10.3389/fncom.2017.00041

Ramaswamy, S., Courcol, J.-D., Abdellah, M., Adaszewski, S. R., Antille, N.,

Arsever, S., et al. (2015). The neocortical microcircuit collaboration portal:

a resource for rat somatosensory cortex. Front. Neural Circuits 9:44.

doi: 10.3389/fncir.2015.00044

Reimann, M. W., King, J. G., Muller, E. B., Ramaswamy, S., and Markram, H.

(2015). An algorithm to predict the connectome of neural microcircuits. Front.

Comput. Neurosci. 9:120. doi: 10.3389/fncom.2015.00120

Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al.

(2010). The asynchronous state in cortical circuits. Science 327, 587–590.

doi: 10.1126/science.1179850

Riehle, A., Brochier, T., Nawrot, M., and Grün, S. (2018). Behavioral context

determines network state and variability dynamics in monkey motor cortex.

Front. Neural Circuits 12:52. doi: 10.3389/fncir.2018.00052

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Anal. 22,

579–590. doi: 10.1111/0272-4332.00040

Sanz Leon, P., Knock, S., Woodman, M., Domide, L., Mersmann, J., McIntosh, A.,

et al. (2013). The virtual brain: a simulator of primate brain network dynamics.

Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Sargent, R. G. (2013). Verification and validation of simulation models. J. Simul.

7, 12–24. doi: 10.1057/jos.2012.20

Sarma, G. P., Jacobs, T. W., Watts, M. D., Ghayoomie, S. V., Larson, S. D., and

Gerkin, R. C. (2016). Unit testing, model validation, and biological simulation.

F1000Research 5:1946. doi: 10.12688/f1000research.9315.1

Schlesinger, S. (1979). Terminology for model credibility. Simulation 32, 103–104.

doi: 10.1177/003754977903200304

Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada, S. J.

(2018). Multi-scale account of the network structure of macaque visual cortex.

Brain Struct. Funct. 223, 1409–1435. doi: 10.1007/s00429-017-1554-4

Schuecker, J., Diesmann, M., and Helias, M. (2015). Modulated escape from

a metastable state driven by colored noise. Phys. Rev. E 92:052119.

doi: 10.1103/PhysRevE.92.052119

Senk, J., Yegenoglu, A., Amblet, O., Brukau, Y., Davison, A., Lester, D. R., et al.

(2017). “A collaborative simulation-analysis workflow for computational

neuroscience using HPC,” in High-Performance Scientific Computing. JHPCS

2016, vol. 10164 of Lecture Notes in Computer Science, eds E. Di Napoli, M.-A.

Hermanns, H. Iliev, A. Lintermann, and A. Peyser (Cham: Springer), 243–256.

doi: 10.1007/978-3-319-53862-4_21

Shadlen, M. N., and Newsome, W. T. (1998). The variable discharge of cortical

neurons: implications for connectivity, computation, and information coding.

J. Neurosci. 18, 3870–3896. doi: 10.1523/jneurosci.18-10-03870.1998

Shinomoto, S., Shima, K., and Tanji, J. (2003). Differences in spiking

patterns among cortical neurons. Neural Comput. 15, 2823–2842.

doi: 10.1162/089976603322518759

Sterman, J. D. (2000). Business Dynamics. System Thinking and Modeling

for a Complex World. Boston, MA: McGraw-Hill Education.

doi: 10.1016/S0022-3913(12)00047-9

Teeters, J. L., Harris, K. D., Millman, K. J., Olshausen, B. A., and Sommer, F. T.

(2008). Data sharing for computational neuroscience. Neuroinformatics 6,

47–55. doi: 10.1007/s12021-008-9009-y

Tennøe, S., Halnes, G., and Einevoll, G. T. (2018). Uncertainpy: a Python

toolbox for uncertainty quantification and sensitivity analysis in computational

neuroscience. Front. Neuroinformatics 12:49. doi: 10.3389/fninf.2018.00049

Tetzlaff, T., andDiesmann,M. (2010). “Dependence of spike-count correlations on

spike-train statistics and observation time-scale,” in Analysis of Parallel Spike

Trains, eds S. Rotter and S. Grün (Berlin: Springer), 103–127.

Thacker, B. H., Doebling, S. W., Hemez, F. M., Anderson, M. C., Pepin, J. E., and

Rodriguez, E. A. (2004). Concepts of Model Verification and Validation. Los

Alamos, NM: Tech. rep., Los Alamos National Lab.

Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., and Grün, S. (2013).

Statistical evaluation of synchronous spike patterns extracted by frequent item

set mining. Front. Comput. Neurosci. 7:132. doi: 10.3389/fncom.2013.00132

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018).

Rigorous neural network simulations: a model substantiation methodology for

increasing the correctness of simulation results in the absence of experimental

validation data. Front. Neuroinform. 12:81. doi: 10.3389/fninf.2018.00081

Tripathy, S. J., Savitskaya, J., Burton, S. D., Urban, N. N., and Gerkin, R. C. (2014).

NeuroElectro: a window to the world’s neuron electrophysiology data. Front.

Neuroinformatics 8:40. doi: 10.3389/fninf.2014.00040

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,

A. B., et al. (2018). Performance comparison of the digital neuromorphic

hardware SpiNNaker and the neural network simulation software NEST

for a full-scale cortical microcircuit model. Front. Neurosci. 12:291.

doi: 10.3389/fnins.2018.00291

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller,

E. B., et al. (2016). BluePyOpt: leveraging open source software and

cloud infrastructure to optimise model parameters in neuroscience. Front.

Neuroinformatics 10:17. doi: 10.3389/fninf.2016.00017

Voges, N., and Perrinet, L. (2012). Complex dynamics in recurrent cortical

networks based on spatially realistic connectivities. Front. Comput. Neurosci.

6:41. doi: 10.3389/fncom.2012.00041

Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models.

IET Syst. Biol. 5, 336–346. doi: 10.1049/iet-syb.2011.0015

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Gutzen, von Papen, Trensch, Quaglio, Grün andDenker. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 19 December 2018 | Volume 12 | Article 90

https://doi.org/10.1145/2591062.2591129
https://doi.org/10.1523/JNEUROSCI.1275-09.2009
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.1016/s0006-3495(67)86597-4
https://doi.org/10.1007/s10827-009-0154-6
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1007/s00422-018-0755-0
https://doi.org/10.3389/fncom.2017.00041
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fncom.2015.00120
https://doi.org/10.1126/science.1179850
https://doi.org/10.3389/fncir.2018.00052
https://doi.org/10.1111/0272-4332.00040
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1057/jos.2012.20
https://doi.org/10.12688/f1000research.9315.1
https://doi.org/10.1177/003754977903200304
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.1103/PhysRevE.92.052119
https://doi.org/10.1007/978-3-319-53862-4_21
https://doi.org/10.1523/jneurosci.18-10-03870.1998
https://doi.org/10.1162/089976603322518759
https://doi.org/10.1016/S0022-3913(12)00047-9
https://doi.org/10.1007/s12021-008-9009-y
https://doi.org/10.3389/fninf.2018.00049
https://doi.org/10.3389/fncom.2013.00132
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.3389/fninf.2014.00040
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.3389/fncom.2012.00041
https://doi.org/10.1049/iet-syb.2011.0015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data
	1. Introduction
	2. Validation of Neural Network Simulations
	2.1. The Concept of Validation
	2.2. Network-Level Validation
	2.3. Model-to-Model Validation

	3. Methods
	3.1. Methods for Network-Level Validation
	3.1.1. Monovariate Measures
	3.1.2. Bivariate Measures
	3.1.3. Correlation Structure
	3.1.4. Spatiotemporal Patterns
	3.1.5. Statistical Comparison of Distributions

	3.2. Implementation of Validation Tests in a Modular Framework
	3.3. Substantiation of the Izhikevich Polychronization Model
	3.3.1. Polychronization Model
	3.3.2. Simulation Setup
	3.3.3. Substantiation Workflow

	4. Results
	4.1. Comparison of Network Activity During Implementation
	4.2. Differential Effects on Statistical Measures
	4.3. Comprehensive Assessment and Higher-Order Collective Properties

	5. Discussion
	Software and Data Resources
	Author Contributions
	Funding
	Acknowledgments
	References

