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Recordings of extracellular electrical, and later also magnetic, brain signals have been

the dominant technique for measuring brain activity for decades. The interpretation

of such signals is however nontrivial, as the measured signals result from both

local and distant neuronal activity. In volume-conductor theory the extracellular

potentials can be calculated from a distance-weighted sum of contributions from

transmembrane currents of neurons. Given the same transmembrane currents,

the contributions to the magnetic field recorded both inside and outside the

brain can also be computed. This allows for the development of computational

tools implementing forward models grounded in the biophysics underlying electrical

and magnetic measurement modalities. LFPy (LFPy.readthedocs.io) incorporated a

well-established scheme for predicting extracellular potentials of individual neurons

with arbitrary levels of biological detail. It relies on NEURON (neuron.yale.edu) to

compute transmembrane currents of multicompartment neurons which is then used

in combination with an electrostatic forward model. Its functionality is now extended

to allow for modeling of networks of multicompartment neurons with concurrent

calculations of extracellular potentials and current dipole moments. The current dipole

moments are then, in combination with suitable volume-conductor head models,

used to compute non-invasive measures of neuronal activity, like scalp potentials

(electroencephalographic recordings; EEG) and magnetic fields outside the head

(magnetoencephalographic recordings; MEG). One such built-in head model is the

four-sphere head model incorporating the different electric conductivities of brain,

cerebrospinal fluid, skull and scalp. We demonstrate the new functionality of the software

by constructing a network of biophysically detailed multicompartment neuron models

from the Neocortical Microcircuit Collaboration (NMC) Portal (bbp.epfl.ch/nmc-portal)

with corresponding statistics of connections and synapses, and compute in vivo-like
extracellular potentials (local field potentials, LFP; electrocorticographical signals, ECoG)

and corresponding current dipole moments. From the current dipole moments we

estimate corresponding EEG and MEG signals using the four-sphere head model.

We also show strong scaling performance of LFPy with different numbers of
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message-passing interface (MPI) processes, and for different network sizes with different

density of connections. The open-source software LFPy is equally suitable for execution

on laptops and in parallel on high-performance computing (HPC) facilities and is publicly

available on GitHub.com.

Keywords: modeling, neuron, neuronal network, local field potential, LFP, ECoG, EEG, MEG

1. INTRODUCTION

Ever since the 1950s, electrical recordings with sharp electrodes
have been the most important method for studying in vivo
activity in neurons and neural networks (Li and Jasper, 1953). In
the last couple of decades, however, a host of new measurement
methods has been developed and refined. One key development
is the new generation of multicontact electrodes allowing for
high-density electrical recordings across cortical laminae and
areas, and the accompanying resurgence of interest in the
low-frequency part of the extracellular signal, the “local field
potential” (LFP) (Buzsáki, 2004; Buzsáki et al., 2012; Einevoll
et al., 2013). The LFP is a population measure reflecting
how dendrites integrate synaptic inputs, insight that cannot
be obtained from measurement of spikes from a handful of
neurons (Einevoll et al., 2013). Many new optical techniques for
probing cortical activity have also been developed. Of particular
interest is two-photon calcium imaging, which can measure
the action potentials of individual neurons deep into cortical
tissue (Helmchen and Denk, 2005), and voltage-sensitive dye
imaging (VSDI), whichmeasures the averagemembrane potential
across dendrites close to the cortical surface (Grinvald and
Hildesheim, 2004). These add to the more established systems-
level methods such as electroencephalography (EEG, Nunez and
Srinivasan, 2006), which measures electrical potentials at the
scalp, and magnetoencephalography (MEG, Hämäläinen et al.,
1993) which measures the magnetic field outside the head.

A standard way of analyzing such neurophysiological data has
been to look for correlations between measurements and how the
subject is stimulated or behaves. For example, most of what we
have learned about neural representation of visual information
in visual cortex has come from receptive-field studies where the
correlation betweenmeasured spikes and presented visual stimuli
is mapped out (Hubel and Wiesel, 1959). The same approach
has been used to map out the receptive fields for other sensory
modalities (sound, touch, etc.), objects and celebrities (Quiroga
et al., 2005), or the spatial location of the animal (O’Keefe and
Dostrovsky, 1971; Hafting et al., 2005).

This purely statistical approach has limitations, however. For
one, it only provides estimates for the neural representation
and gives no direct insight into the circuit mechanisms giving
rise to these representations. Secondly, the receptive field is
inherently a linear measure of activity (Dayan and Abbott, 2001)
and cannot in general capture non-linear network dynamics. The
receptive field in primary visual cortex depends, for example,
strongly on stimulation of the surrounding regions of visual
space, an inherently non-linear effect (Blakemore and Tobin,
1972). For other cortical measurements, such as the LFP or

VSDI, a statistical analysis is further complicated by the fact
that the signals reflect activity in neuron populations rather
than individual neurons (Petersen et al., 2003; Einevoll et al.,
2013). This makes commonly-used statistical signal measures
such as power spectra, correlation, coherence, and functional
connectivity difficult to interpret in terms of activity in neurons
and networks (Einevoll et al., 2013).

An alternative approach to a purely statistical analysis is,
following in the tradition of physics, to formulate candidate
hypotheses precisely in mathematics and then compute what
each hypothesis would predict for the different types of
measurements. Until now candidate cortical network models
have typically only predicted spiking activity, thus preventing a
proper comparison with measurements other than single-unit
and multiunit recordings. To take full advantage of all available
experiments, there is a need for biophysics-based forward-
modeling tools for predicting other measurement modalities
from candidate network models (Brette and Destexhe, 2012),
that is, develop software that faithfully models the various types
of measurements themselves. To facilitate the forward-modeling
of extracellular potentials, both LFPs and spikes [i.e., either
single-unit or multi-unit activity (MUA)], we developed LFPy
(LFPy.readthedocs.io, Lindén et al., 2014), a Python tool using
the NEURON simulator (Carnevale and Hines, 2006) and its
Python interface (Hines et al., 2009).

The first release of LFPy (Lindén et al., 2014) implemented
a well-established forward-modeling scheme where the
extracellular potential is computed in a two-step process (Holt
and Koch, 1999): First, the transmembrane currents of
multicompartment neuron models are computed using
NEURON. Second, the extracellular potential is computed as
a weighted sum over contributions from the transmembrane
currents from each compartment with weights prescribed by
volume-conductor theory for an infinite volume conductor. In
LFPy these functions are provided by a set of Python classes that
can be instantiated to represent the cell, synapses, stimulation
devices and extracellular electric measurement devices. By now
this forward-model method has been used in a number of studies,
for example to model extracellular spike waveforms (Holt and
Koch, 1999; Gold et al., 2006, 2007; Pettersen and Einevoll, 2008;
Pettersen et al., 2008; Franke et al., 2010; Schomburg et al., 2012;
Thorbergsson et al., 2012; Reimann et al., 2013; Hagen et al., 2015;
Ness et al., 2015; Cserpán et al., 2017; Miceli et al., 2017), LFP
signals (Pettersen et al., 2008; Lindén et al., 2010, 2011; Gratiy
et al., 2011; Makarova et al., 2011; Schomburg et al., 2012; Łęski
et al., 2013; Martín-Vázquez et al., 2013, 2015; Reimann et al.,
2013; Głąbska et al., 2014, 2016; Mazzoni et al., 2015; Sinha and
Narayanan, 2015; Taxidis et al., 2015; Tomsett et al., 2015; Hagen
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et al., 2016, 2017; Ness et al., 2016, 2018) and recently axonal LFP
contributions (McColgan et al., 2017). Some of these used LFPy
to predict extracellular potentials (Łęski et al., 2013; Lindén et al.,
2014; Hagen et al., 2015, 2016, 2017; Mazzoni et al., 2015; Ness
et al., 2015, 2016, 2018; Tomsett et al., 2015; Miceli et al., 2017;
Luo et al., 2018), while in Heiberg et al. (2016) LFPy was used
to construct a small-world LGN network without predictions of
extracellular potentials. Further, in Uhlirova et al. (2016) LFPy
was used to compute neuronal membrane potentials.

Here we present a substantially extended version of LFPy,
termed LFPy 2.0, including several new features, that is, support
for (i) simulations of networks of multicompartmental neuron
models, (ii) computation of LFP/MUAwith anisotropic electrical
conductivity, (iii) computation of LFP/MUA in the presence of
step-wise varying electrical conductivity (such as at the interface
between cortical gray matter and white matter), (iv) computation
of ECoG signals (i.e., electrical potentials recorded at the cortical
surface), (v) computation of EEG signals, and (vi) computation
of MEG signals, see illustration in Figure 1. To illustrate the
computation of these measures by LFPy 2.0 we show in Figure 2

the LFP, EEG, and MEG signals generated by a single synaptic
input onto a single simplified “pyramidal” neuron. As both
electric and magnetic signals sum linearly, the recorded signals
in real applications will stem from the sum of a large number of
such contributions.

Potential uses of LFPy 2.0 include (but are not limited
to): Comparison of candidate neuron and network models
with arbitrary levels of detail to experiments in order to
aid the interpretation of experimental data, validation of
data analysis methods by testing them on synthetic (model-
based) measurements with known underlying ground truth, and
comparison of model predictions from different types of models
with different levels of detail.

The manuscript is organized as follows: In section 2 we
first review the biophysical forward-modeling scheme used to
predict extracellular potentials in different volume-conductor
models. Thenwe describe calculations of current dipolemoments
and corresponding calculation of EEG and MEG signals. We
further describe the implementation of an example network
using available data and biophysically detailed cell models from
the Blue Brain Project’s Neocortical Microcircuit Collaboration
(NMC) Portal, and various technical details. In section 3
we investigate the outcome of our example parallel network
simulation and corresponding measurements, and assess parallel
performance of LFPy when running on HPC facilities. In section
4 we outline implications of this work and discuss possible future
applications and developments of the software. In the Appendix
we describe new LFPy classes and corresponding code examples
for set-up of networks.

2. METHODS

2.1. Multicompartment Modeling
2.1.1. Calculation of Transmembrane Currents
The origin of extracellular potentials is mainly transmembrane
currents (Buzsáki et al., 2012; Einevoll et al., 2013), even
though diffusion of ions in the extracellular space alone also

can give rise to such potentials (Halnes et al., 2016). In the
presently (and frequently) used forward modeling approach,
these transmembrane currents are obtained from spatially
discretized multicompartment neuron models (De Schutter and
Van Geit, 2009) which allow for high levels of biophysical and
morphological detail. Such models have historically been used
to model spatiotemporal variations in the membrane voltages
Vm(x, t), where x denotes the position along an unbranched piece
of dendritic cable. From this cable theory it also follows that
the transmembrane current density, that is, the transmembrane
current per unit length of membrane, for any smooth and
homogeneous cable section is given by (Koch, 1999):

im(x, t) =
1

ri
∂2Vm(x, t)

∂x2
, (1)

where ri represents the axial resistance per unit length along
the cable. Assuming a homogeneous current density per unit
length im along a single compartment with length 1s, the total
transmembrane current Im = im1s.

As in the first release of LFPy (Lindén et al., 2014), we rely
on the NEURON simulation environment (Carnevale and Hines,
2006) to compute transmembrane currents. As of NEURON v7.4,
a faster and direct method of accessing transmembrane currents
is provided through its CVode.use_fast_imem() method,
which we now utilize in an exclusive manner. NEURON’s
“extracellular” mechanism is thus no longer used to predict
extracellular potentials (cf. Lindén et al., 2014, section 5.6).
Note, however, that this mechanism itself is still used when
an external extracellular potential is imposed as a boundary
condition outside each compartment using the Cell.insert_
v_ext() class method.

2.1.2. Calculation of Axial Currents
To compute the magnetic fields stemming from electrical
activity in neurons, the axial currents within cells are
needed (Hämäläinen et al., 1993). The axial current for the
cable is given by (Koch, 1999):

Ia(x, t) = −
1

ri
∂Vm(x, t)

∂x
. (2)

Assuming homogeneous axial current density between the
midpoints of two neighboring compartments n and n + 1 along
the cable, one may obtain the axial current from Ohm’s law:

Ian,n+1(t) =
Vm
n+1(t)− Vm

n (t)

rin,n+11sn,n+1
=

Vm
n+1(t)− Vm

n (t)

Rin,n+1

. (3)

Here, Vm
n and Vm

n+1 are the compartment midpoint membrane
potentials, rin,n+1 the axial resistance per unit length between the
two compartments, 1sn,n+1 the distance between compartment
midpoints and Rin,n+1 the corresponding axial resistance.

Further, we outline how axial currents from complex
reconstructed neuron morphologies are calculated in
LFPy 2.0, and provide the technical implementation
details in Algorithm A1 in the Appendix. For a more
comprehensive explanation, see Næss (2015). The corresponding
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FIGURE 1 | Illustration of measurement signals computed by LFPy 2.0. The figure illustrates the EEG, ECoG, LFP/MUA (linear multielectrode) and MEG recordings of

electrical and magnetic signals stemming from populations of cortical neurons. Here three separate cortical populations are depicted. EEG electrodes are placed on

the scalp, ECoG electrodes on the cortical surface, while the LFP and MUA both are recorded by electrodes placed inside cortex. In MEG the tiny magnetic fields

stemming from brain activity is measured by SQUIDs placed outside the head. The MUA signal, that is, the high-frequency part of the recorded extracellular potential

inside cortex, measures spikes from neurons in the immediate vicinity of the electrode contact, typically less than 100 µm away (Buzsáki, 2004; Pettersen and

Einevoll, 2008; Pettersen et al., 2008). The “mesoscopic” LFP and ECoG signals will typically contain information from neurons within a few hundred micrometers or

millimeters from the recording contact (Einevoll et al., 2013), while the “macroscopic” EEG and MEG signals will have contributions from cortical populations even

further away (Hämäläinen et al., 1993; Nunez and Srinivasan, 2006).

implementation is in LFPy 2.0 provided by the class method
Cell.get_axial_currents_from_vmem().

In NEURON, a section is a continuous piece of cable split into
an arbitrary number of segments (compartments) indexed by n.
Morphologies with branch points must therefore be represented
by more than one section. We here denote the relative length
from start to end point of each section by χ ∈ [0, 1], see
Figure 3A. All segments within the morphology except the initial
segment of the root section (typically the somatic section) have a
parent segment indexed by f . Each segment in a section can have
an arbitrary number of child segments, thus a parent segment
is the segment which connects to the start point of a child
segment. We also distinguish between start-, mid- and end-point
coordinates of each segment (Figure 3A).

In Figures 3B,C we illustrate the simplest possible calculation
of axial current between the midpoints of two neighboring
segments f and n belonging to the same section. Their
corresponding membrane voltages are Vm

f
and Vm

n , separated

by a total (series) axial resistance Ri
fn
. From NEURON we can

easily obtain the axial resistance between the segment midpoint
and the segment’s parent node. The parent node is here the
midpoint of the parent segment, as the child and parent belong
to the same section. Therefore, NEURON gives us the total axial
resistance Ri

fn
directly, in this case. The axial current magnitude

between segment midpoints is then trivial to compute using

Ohm’s law (Equation 3), but as the currents flowing within
segments f and n may not lie on the same axis, we differentiate
between the current magnitudes Iam and Iam+1, their axial line
element vectors dm and dm+1, and the midpoints of each
rm and rm+1 (Figure 3C). The corresponding current indices
are denoted by m and m + 1 as detailed in Algorithm A1
(Appendix).

Figure 3D represents the case where the parent and child
segments f and n belong to different sections. The child segment
is here the bottom segment in a section, and it is connected to the
end point of f . As the parent node (the node the child segment
connects to on the parent segment) is here located between the
two segments, NEURON does in this case not give us the total
axial resistance directly. Instead, the total (series) axial resistance
Ri
fn

= Ri
f
+ Rin must first be computed to estimate the axial

current. Ri
f
is here the resistance between the parent midpoint

and the connecting node, and Rin the resistance between the
parent node and the segment midpoint.

NEURON allows child sections to be connected anywhere
along the parent section (χ ∈ [0, 1]). Illustrated in Figure 3E,
a child segment is connected to the point χ = 0.5 and the axial
resistance in the parent segment does not enter the calculation
of axial current magnitude. LFPy 2.0 still accounts for a virtual
axial current Iam from the parent mid point to the child start
point. These virtual currents ensure that the total current dipole
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A B C

D E F

FIGURE 2 | Illustrations of forward model, dipole approximation, EEG and MEG model. (A) Illustration of forward-modeling scheme for extracellular potentials from

multicompartment neuron models. The gray shape illustrates soma and dendrites of a 3D-reconstructed neuron morphology and the equivalent multicompartment

model. A single synaptic input current isyn(t) (red triangle, inset axes I) results in a deflection of the membrane voltage throughout the morphology, including at the

soma (Vsoma (t), inset axes II). LFPy allows for computing extracellular potentials φ in arbitrarily chosen extracellular locations r (inset axes III) from transmembrane

currents (Imn (rn, t)), as well as the components of the current dipole moment p (black arrow, inset axes IV). Compartments are indexed n, rn denote compartment

positions. The image plot shows the extracellular potential in the xz-plane at the time of the largest synapse current magnitude (t = 2.25 ms). (B) Illustration of the

extracellular electric potential calculated both from the current dipole moment and transmembrane currents for the situation in (A). Within a radius r < 500 µm from

the “center of areas” (see below) of the morphology the panel shows extracellular potentials φ(r) predicted using the line-source method, while outside this radius the

panel shows extracellular potentials φp(r) predicted from the current dipole moment (p, black arrow). Here, an assumption of an homogeneous (same everywhere)

and isotropic (same in all directions) extracellular conductivity was used. The ‘center of areas‘ was defined as
∑nseg

n=1 Anrn/
∑nseg

n=1 An where An denotes compartment

surface area. The time t = 2.25 ms as in (A). The inset axis shows the potential as function of time in the four corresponding locations (at |R| = 750 µm) surrounding

the morphology (colored circular markers). (C) Visualization of magnetic field component Bp · ŷ (y-component) computed from the current dipole moment, outside a

circle of radius r = 500 µm (as in B). Inside the circle, we computed the same magnetic field component from axial currents. The inset axis shows the y-component of

the magnetic field as function of time in the four corresponding locations (at |R| = 750 µm) surrounding the morphology (circular markers). (D) Illustration of upper half

of the four-sphere head model used for predictions of EEG scalp potentials from electric current dipole moments. Each spherical shell with outer radii r ∈ {r1, r2, r3, r4}
has piecewise homogeneous and isotropic conductivity σe ∈ {σ1, σ2, σ3, σ4}. The EEG/MEG sites numbered 1–9 mark the locations where electric potentials and

magnetic fields are computed, each offset by an arc length of r4π/16 in the xz-plane. The current dipole position was θ = ϕ = 0, r = 78 mm (in spherical coordinates).

(E) Electric potentials on the outer scalp-layer positions 1-9 in (D). (F) Tangential component of the magnetic field Bp · ϕ̂ in positions 1–9. (Note that at position 5, the

unit vector ϕ̂ is defined to be directed in the positive y-direction).

moments computed either from transmembrane currents or
from axial currents are identical (see section 2.3.1 for details).

At morphology branch points, several child segments may
protrude from a parent segment as illustrated in Figure 3F. As
the segment n and its sibling ñ both share the same parent
f , we estimate the potential Vm

× at the branch node using
Ohm’s law and Kirchhoff’s current law, accounting for the
axial resistivities (Ri

f
, Rin,R

i
ñ) and potentials (Vm

f
, Vm

n ,Vm
ñ ),

in order to compute the corresponding axial currents Iam

and Iam+1. The full procedure presently used for computing
axial currents in LFPy 2.0 for the cases illustrated in
Figures 3B–F is provided in full detail in Algorithm A1
(Appendix).

2.2. Forward Modeling of LFP and MUA
Signals
The relation between transmembrane currents and extracellular
potentials is calculated based on volume conduction theory
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A B C D E F

FIGURE 3 | Axial currents in multicompartment neuron models. (A) Schematic illustration of sections (colored rectangles), segments and equivalent electric circuit of a

simplified multicompartment neuron model. The relative length χ varies between 0 and 1 from start- to end-point of each section. (B) Axial current line element vectors

(dm,dm+1) and corresponding midpoints (rm, rm+1) of axial currents (Iam, Iam+1) between two connected segments. (C) Axial currents (Iam, Iam+1), membrane potentials

(Vmf ,Vmn ), and axial resistance (Rifn) in equivalent electric circuit for a parent segment f and child segment n in a single section. (D) Similar to panel B, but parent and

child segments belong to two different sections. The total series resistance is here Rif + Rin. (E) Illustration of the case where the child segment n is connected to a

point χ = 0.5 on the parent section. For children connected at χ ∈ 〈0, 1〉 the voltage difference (Vmn − Vmf ) is only across the child segment axial resistance Rin, but
the (virtual) current from the node connecting the child start point to the parent midpoint Iam is still accounted for. (F) Illustration of axial currents at branch point

between different sections of the morphology. The child segment n has one parent f and one sibling indexed by ñ, where Vm× denotes the virtual membrane potential

at the node connecting the parent end-point to the children start-points. Vmñ is the voltage in the midpoint of the sibling segment, while Riñ and Iam̃ denotes the axial

resistance and current between the sibling midpoint and the branch point.

(Nunez and Srinivasan, 2006; Einevoll et al., 2013). At
the relatively low frequencies relevant in neurophysiology
(below a few thousand hertz), this derivation is simplified by
omitting terms with time derivatives in Maxwell’s equations
(quasistatic approximation, Hämäläinen et al., 1993, p. 426).
Further, the extracellular medium is in all situations considered
below assumed to be ohmic, that is, linear and frequency-
independent (Pettersen et al., 2012; Einevoll et al., 2013; Miceli
et al., 2017).

2.2.1. Homogeneous and Isotropic Media
We first consider the simplest situation, where the medium is
homogeneous, that is, the same in all positions corresponding
to an infinite volume conductor, and isotropic, that is, the
same electrical conductivity in all directions. The medium is
then represented by a scalar extracellular conductivity σe. The
extracellular potential φ(r, t) at position r and time t is then given
by (Nunez and Srinivasan, 2006; Lindén et al., 2014)

φ(r, t) =
1

4πσe

I(t)

|r− r′|
, (4)

where I(t) represents a time-varying point current source at
position r′. For transmembrane currents Imjn (t) of individual

compartments n ∈ [1, n
seg
j ] of all cells j in a population of N cells,

the extracellular potential can be computed as the linear sum of
their contributions as

φ(r, t) =
1

4πσe

N
∑

j=1

n
seg
j

∑

n=1

Imjn (t)

|r− rjn|
, (5)

but only under the assumption that each transmembrane current
can be represented as a discrete point in space. This point-
source assumption can be used in LFPy by supplying the
keyword argument and value method="pointsource" to
the RecExtElectrode class (Lindén et al., 2014).

As a homogeneous current distribution along each cylindrical
compartment is assumed, we may employ the line-source
approximation for somatic and dendritic compartments (Holt
and Koch, 1999). The formula is obtained by integrating 4
along the center axis of each cylindrical compartment n, and by
summing over contributions from every n

seg
j compartment of

all N cells (Holt and Koch, 1999; Pettersen and Einevoll, 2008;
Lindén et al., 2014):

φ(r, t) =
1

4πσe

N
∑

j=1

n
seg
j

∑

n=1

Imjn (t)
∫

1

|r− rjn|
drjn

=
1

4πσe

N
∑

j=1

n
seg
j

∑

n=1

Imjn (t)

1sjn
ln

∣

∣

∣

∣

∣

∣

√

h2jn + r2⊥jn − hjn
√

l2jn + r2⊥jn − ljn

∣

∣

∣

∣

∣

∣

. (6)

Compartment length is denoted 1sjn, perpendicular
distance from the electrode point contact to the axis
of the line compartment is denoted r⊥jn, longitudinal
distance measured from the start of the compartment
is denoted hjn, and longitudinal distance from the other
end of the compartment is denoted ljn = 1sjn + hjn.
The corresponding keyword argument and value to class
RecExtElectrode is method="linesource" (Lindén
et al., 2014).

A final option in LFPy is however to approximate the
typically more rounded soma compartments as spherical current
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sources, thus the line-source formula (Equation 6) for dendrite
compartments is combined with the point-source equation
(Equation 4), obtaining (Lindén et al., 2014):

φ(r, t) =
1

4πσe

N
∑

j=1







Imj,soma(t)

|r− rj,soma|
+

n
seg
j

∑

n=2

∫ Imjn (t)

|r− rjn|
drjn







=
1

4πσe

N
∑

j=1







Imj,soma(t)

|r− rj,soma|
+

n
seg
j

∑

n=2

Imjn (t)

1sjn
ln

∣

∣

∣

∣

∣

∣

√

h2jn + r2⊥jn − hjn
√

l2jn + r2⊥jn − ljn

∣

∣

∣

∣

∣

∣






.

(7)

The corresponding keyword argument and value is method=
"soma_as_point".

If the distance between current sources and electrode contacts
is smaller than the radius of the segment, unphysical singularities
may occur in the computed extracellular potential. Singularities
are in LFPy automatically prevented by either setting r⊥jn or
|r − rjn| equal to the cylindrical compartment radius dependent
on the choice of line or point sources.

Electrode contacts of real recording devices have finite spatial
extents. A good approximation to the electric potential across
the uninsulated surface of metal electrode contact is obtained
by computing the spatially averaged electric potential (Robinson,
1968; Nelson et al., 2008; Nelson and Pouget, 2010; Ness et al.,
2015), in particular for current sources being located at distances
larger than approximately one electrode radius (Ness et al., 2015).
The disc-electrode approximation to the potential (Camuñas-
Mesa and Quiroga, 2013; Lindén et al., 2014; Ness et al., 2015)

φdisc(u, t) =
1

AS

∫∫

S
φ(u, t) d2r ≈

1

m

m
∑

h=1

φ(uh, t) , (8)

is incorporated in LFPy, with corresponding parameters for
contact radius rcontact, numberm of random points uh on the flat,
circular electrode contact surface when averaging (Lindén et al.,
2014). The surface normal vector for each electrode contact must
also be specified.

2.2.2. Discontinuous and Isotropic Media
Above we described the case for an infinite volume conductor,
that is, a constant extracellular conductivity σe, as implemented
in the initial LFPy release (Lindén et al., 2014). For cases where
σe vary with position, i.e., σe = σe(r), such as for cortical in
vivo recordings close to the cortical surface (Einevoll et al., 2007)
or in vitro recordings using microelectrode arrays (MEAs) (Ness
et al., 2015), this approximation does not generally hold. Instead
a generalized Poisson equation must be solved (Nicholson and
Freeman, 1975):

∇ ·
(

σe(r)∇φ(r, t)
)

= −C(r, t), (9)

where C(r, t) is the current-source density. This equation can
always be solved numerically by means of the Finite Element
Method (FEM) (McIntyre and Grill, 2001; Ness et al., 2015) or
other mesh-based methods (see for example Tveito et al., 2017).

In the special case where the conductivity σe is discontinuous
in a single direction, that is, a constant conductivity in the

xy-plane and a piecewise constant σe(z) in the z-direction,
the ‘Method-of-Images’ (MoI) can be used to make analytical
formulas for the extracellular potentials, analogous to 4–7
above (Nicholson and Llinas, 1971; Nunez and Srinivasan, 2006;
Ness et al., 2015). When applicable, these formulas substantially
simplify the modeling of the extracellular potentials compared to
FEMmodeling.

Electrical potentials across microelectrode arrays (MEAs): The
first MoI application is to model recordings in a MEA setting
where a slice of brain tissue is put on an insulating recording chip
(MEA-chip) and covered with saline (Hagen et al., 2015; Ness
et al., 2015). In this three-layer situation separate conductivity
values are assigned to the topmost saline layer conductivity σS
for z ∈ [h,∞], the middle tissue layer conductivity σT for
z ∈ [0, h) and the lowermost electrode σG for z ∈ [−∞, 0).
The parameter h denotes the thickness of the middle tissue
layer. The corresponding implementation is provided by the class
RecMEAElectrode, and has at present the limitations that all
current sources (segments) must be contained on the interval
z ∈ [0, h), and that the line-source approximation can only be
used when σG = 0 and when computing extracellular potentials
for z = 0. For other forward-model configurations (for example
for 0 ≤ z ≤ h and/or σG > 0) the point-source approximation
can be used. For a detailed derivation of the MoI with two planar
electrical boundaries, see Equation (4) in Ness et al. (2015). A
corresponding example is provided with LFPy 2.0 (example_
MEA.py) which illustrates the computation of extracellular
potentials as recorded by a MEA following synaptic activation of
a pyramidal cell model.

Electrical potentials close to cortical surface: The second MoI
application is to model in vivo recordings of electrical potentials
at or immediately below the cortical surface, that is, the interface
between cortical gray matter and dura. Here the extracellular
conductivity above the cortical surface σS can be higher or lower
than the conductivity in cortical gray matter σT depending on
how the measurements are done, for example whether saline or
oil is used to cover an inserted laminar electrode (Einevoll et al.,
2007). Such a conductivity jump will affect both the electrical
potential recorded at the cortical surface (ECoG recording) as
well as the potentials recorded in the top cortical layers (Pettersen
et al., 2006). This can be modeled with the same framework
as above, that is, by using the class RecMEAElectrode,
with the cortical surface at height h, while ignoring the lower
planar boundary by setting σG = σT. In this situation the
potential at or below the cortical surface at position (x, y, z) for
a current source, I(t), positioned at (x′, y′, z′) is given by (Nunez
and Srinivasan, 2006; Pettersen et al., 2006; Ness et al., 2015)
as:

φ(x, y, z, t) =
I(t)

4πσT

(

1
√

(x− x′)2 + (y− y′)2 + (z − z′)2
(10)

+
σT − σS

σT + σS

1
√

(x− x′)2 + (y− y′)2 + (z + z′ − 2h)2

)

.

This approach assumes a flat cortical surface. Note, however,
that in LFPy 2.0 the ECoG signal can also be modeled
by means of the four-sphere EEG head model as described
below in section 2.3.4. An example is provided with LFPy 2.0
(example_ECoG.py) which illustrates extracellular potentials
recorded in the cortex and at the cortical surface following
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activation of multiple synapses distributed across a pyramidal cell
model.

Electrical potentials in spherical conductor:
LFPy 2.0 also incorporates a spherical conductor model,

adapted from Deng (2008), where the conductivity is
constant within the sphere and constant outside (class
OneSphereVolumeConductor). Note that this model
is applicable for monopolar current sources, unlike the more
complex multi-sphere head models described below in section
2.3 which only apply to dipolar current sources. Although not
pursued here, one application of this volume-conductor model
could possibly be modeling of LFPs measured in spheroidal brain
nuclei.

2.2.3. Homogeneous and Anisotropic Media
For homogeneous media, that is, when the extracellular
conductivity is the same at all positions, we also added support
for anisotropic media (Nicholson and Freeman, 1975). In this
case the extracellular conductivity in 9 must be replaced by a rank
2 (3 × 3) tensor where the diagonal elements are σx, σy, and σz
and the off-diagonal elements are zero (Nicholson and Freeman,
1975). This could for example be used to mimic experimental
observations of such anisotropy in cortex (Goto et al., 2010),
that is, electric currents flow with less resistance along the
depth direction (z-direction) than in the lateral directions (x, y-
directions). In this case σz > σx = σy (Ness et al., 2015). The
corresponding implementation is based on the description and
implementation provided by Ness et al. (2015), and is in LFPy
presently supported by the class RecExtElectrode, but not
the class RecMEAElectrode.

2.3. Forward Modeling of EEG, ECoG, and
MEG Signals From Current Dipoles
The forward modeling of EEG and MEG signals from current
dipoles has a long history (Hämäläinen et al., 1993; Nunez
and Srinivasan, 2006). Here the EEG contacts and the MEG
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, (12)

magnetometers are located so far away from the neural sources
that only the current dipole moments contribute to the
measured signals, that is, the contributions from higher-order
current multipoles are negligible. From charge conservation, it
follows that current monopoles do not exist. To compute the
contribution to EEG and MEG signals from detailed neuron
models, we thus first need to compute single-neuron current
dipole moments as described in section 2.3.1. Next these must
be combined with appropriate volume-conductor models for the
head.

In LFPy 2.0 we include two “head” models for computing
EEG signals from current dipole moments: the (very simplified)
infinite homogenous volume-conductor model (section 2.3.2),
and the much more involved four-sphere head model where
the brain tissue, cerebrospinal fluid (CSF), skull and scalp
are represented with different values for the electrical
conductivity (Nunez and Srinivasan, 2006; Næss et al.,
2017), cf. section 2.3.3. For the MEG signals the forward
model is simpler as the magnetic permeability is the same
throughout the head as in free space (Hämäläinen et al.,
1993). In LFPy 2.0 we include simulation code for computing
neural contributions to MEG signals applicable for all head
models with spherically-symmetric electrical conductivities,
for example, the four-sphere head model, cf. section 2.3.5.
While these head models allow for direct calculation of
EEG and MEG signals from neurons, it should be noted
that the computed current dipole moments also can be
used for subsequent calculation of EEG and MEG signals
by means of boundary element (BEM) or finite element
models (FEM) with anatomically detailed head models (He
et al., 2002; Bangera et al., 2010; DeMunck et al., 2012),
(Huang et al., 2016).

2.3.1. Calculation of Current Dipole Moments
Current dipole moments from transmembrane currents: The
current dipole moment from a single neuron can be computed
from transmembrane currents as (Lindén et al., 2010):

p(t) =
nseg
∑

n=1

rnI
m
n (t) , (11)

where Imn is the transmembrane current at time t from
compartment n at position rn. For a population of N cells
with n

seg
j compartments each, the current dipole moment

at discrete time steps can be formulated as the matrix
product:

where pu(t) is the u-component (u ∈ {x, y, z}) of the current
dipole moment at time t (thus p(t) ≡ px(t)x̂ + py(t)ŷ +

pz(t)ẑ), Imjn (t) the transmembrane currents of segment n of

cell j at time t and r
(u)
jn the corresponding u-coordinates

of each segment’s midpoint. x̂, ŷ and ẑ denote the cartesian
unit vectors. For more compact notation we here show the
transpose (denoted by the raised T) of the matrix containing
transmembrane currents. Note that the same formula may be
used to also compute current dipole moments pj of individual
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cells j (or subsets thereof) by slicing the corresponding matrix
elements.

Current dipole moments from axial currents: Alternatively, the
current dipole moment can be computed from axial currents
between neighboring segments (see section 2.1.2). As an example,
we consider a two-compartmental dendritic stick model, where
segment one will act as a current sink, and segment two as a
current source. The transmembrane current entering segment
two Im2 will be the same as the axial current Ia between the two
segments, which is also equal to the current leaving compartment
one Im1 , such that Im1 = −Im2 = Ia. An axial line element
vector d represents the path traveled by the axial current,
which corresponds to the displacement r1 − r2 between the
compartment midpoints. From equation 11 it thus follows that
the current dipole moment is:

p =

2
∑

n=1

rnI
m
n = Iad. (13)

Multiplying each axial current with the respective current path
gives a set of current dipoles:

pm(t) = Iam(t)dm. (14)

Calculating sets of current dipole moments from neural
simulations can be useful, for example for ECoG predictions (see
section 2.3.4) or magnetic fields in proximity of the neuron (see
section 2.4).

2.3.2. EEG Signal for Homogeneous Volume

Conductor
From eletrostatic theory we have that the electric potential
outside a spatial distribution of current sinks and sources can
be described by a multipole expansion φ(r) = Cmonopole/R +

Cdipole/R
2 + Cquadrupole/R

3 + Coctupole/R
4 + ... , where R is the

relative distance from the multipole to measurement location
(and the coefficients C depends on the spherical angles). Due
to charge conservation, current monopoles do not exist (Nunez
and Srinivasan, 2006). For sufficiently large values of R where
Cdipole/R

2 ≫
∑∞

q=3 Cq−pole/R
q, the electric potential of a neuron

can be approximated solely from its current dipole moment, as
contributions from quadrupolar and higher-order terms become
negligible. The electric potential from a current dipole in an
ohmic, homogeneous and isotropic medium is given by (Nunez
and Srinivasan, 2006)

φp =
p · R

4πσeR3
, (15)

where p is the current dipole moment as defined above, σe
the conductivity of the extracellular medium, R = r − r′ the
displacement vector between dipole location r′ andmeasurement
location r, and R = |R|. Predictions of extracellular potentials
from current dipole moments in homogeneous media are
provided by the class InfiniteVolumeConductor.

2.3.3. EEG Signal in Four-Sphere Head Model
The computation of EEG signals assuming a homogeneous
volume conductor model is obviously a gross approximation as
it neglects the large variation in the extracellular conductivity
in the head. In order to compute more realistic EEG
signals from underlying neuronal sources, we implemented in
LFPy 2.0 the inhomogeneous four-sphere head model in class
FourSphereVolumeConductor. This model is composed
of four concentric shells representing brain tissue, cerebrospinal
fluid (CSF), skull and scalp, where the conductivity can be set
individually for each shell (Srinivasan et al., 1998; Nunez and
Srinivasan, 2006). Note that corrections to the original model
formulation was recently provided in Næss et al. (2017). LFPy 2.0
incorporates this corrected four-sphere head model.

2.3.4. ECoG Signal From Four-Sphere Head Model
The four-sphere head model is not restricted to EEG predictions,
but can also be applied for modeling electric potentials in
other layers of the inhomogeneous head model, such as ECoG
signals at the interface between the brain tissue and the CSF.
In contrast to EEG electrodes, however, the ECoG electrodes
are located only micrometers away from the apical dendrites.
The electrode’s proximity to the neuronal source makes the
four-sphere model a less obvious candidate model, as the model
is based on the current dipole approximation, giving good
predictions only when the measurement point is more than
some dipole lengths away from the source (Lindén et al., 2010).
However, in the FourSphereVolumeConductor class
method calc_potential_from_multi_dipoles(),
this problem can be avoided by taking advantage of the fact
that electric potentials sum linearly in ohmic media: Instead of
computing a single current dipole moment for the whole neuron,
we compute multiple current dipole moments, one for each axial
current, as described in section 2.3.1. Since these current dipoles
have small enough source separations for the current dipole
approximation to be applicable, we can compute the ECoG signal
contribution from each current dipole moment separately, using
the four-sphere model. The ECoG signal is finally predicted by
summing up each contribution. The corresponding LFPy 2.0
example file is /examples/example_ECoG_4sphere.py.

2.3.5. MEG Signals in Spherically-Symmetric Head

Models
For spherically-symmetric head models the MEG signal can
be computed from the current dipole moments set up by
intracellular axial currents (Hämäläinen et al., 1993, p. 428). To
compute magnetic fields Bp from current dipole moments we
incorporated the special form of the magnetostatic Biot-Savart
law (where magnetic induction effects are neglected) (Nunez and
Srinivasan, 2006, Appendix C) given as:

Bp =
µ0

4π

p× R

R3
. (16)

As above, p is the dipole source, R = r − r′ the displacement
between dipole location r′ and measurement location r, and R =

|R|. For a detailed derivation of this expression see Hämäläinen
et al. (1993). The magnetic field B is related to the commonly
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used quantity H (often also termed magnetic field) through B =

µ0H + M = µH where M is the magnetization and µ the
magnetic permeability of the material. However, in biological
tissues the magnetization M is very small, and µ is very close to
themagnetic constant (i.e., themagnetic permeability of vacuum)
µ0 (Hämäläinen et al., 1993). Predictions of magnetic signals are
in LFPy 2.0 incorporated in the class MEG, which provides the
method calculate_H in order to compute the magnetic field
from a current dipole moment time series. Its output must be
multiplied by µ to obtain the magnetic field Bp.

Throughout this paper, we show for the four-sphere head
model magnetic field components decomposed into tangential
and radial components at different positions on spherical
surfaces. The tangential components were computed in the
direction of the angular unit vectors θ̂ = cos θ cosϕx̂ +

cos θ sinϕŷ − sin θ ẑ and ϕ̂ = − sinϕx̂ + cosϕŷ as B · θ̂ and
B · ϕ̂, respectively. The radial component was computed as Bp · r̂

where r̂ denotes the radial unit vector from the center of the
sphere in the direction of the contact. Furthermore, we also
show tangential and radial components of the surface magnetic
field where the underlying dipoles were rotated by an angle
θ = π/2 around the x-axis, denotedBRx(π/2)p·θ̂ ,BRx(π/2)p·ϕ̂ and
BRx(π/2)p · r̂, respectively. For this purpose we used the rotation
matrix

Rx

(π

2

)

=





1 0 0
0 0 −1
0 1 0



 (17)

multiplied with the current dipole moment p in cartesian
coordinates.

Note that experimental MEG equipment using gradiometers
measure changes in the magnetic field across space in units
of T/m (Hämäläinen et al., 1993). We here display the time-
varying magnitude of magnetic fields in units of T.

2.4. Magnetic Signals Close to Neurons
Most studies of magnetic fields generated by neural activity have
been based on MEG recordings where the neuronal sources
are so distant from the magnetic-field sensors that the far-field
dipole approximation in 16 can be applied. However, probes
are also being developed for measuring magnetic fields in direct
vicinity of the neurons (Barbieri et al., 2016; Caruso et al.,
2017). To compute the magnetic fields in the vicinity of neurons,
LFPy 2.0 also implements the relevant Biot-Savart law for this
situation (Blagoev et al., 2007):

B(r) =
µ0

4π

ma
∑

m=1

Iam
dm × (r− rm)

|r− rm|3
. (18)

This formula provides the magnetic field for ma axial currents
Iam where dm are axial line element vectors, and rm the midpoint
positions of each axial current. The use of this formula assumes
that contributions to the magnetic fields from extracellular
volume currents are negligible (Hämäläinen et al., 1993, p.
427). Predictions of magnetic signals from axial currents (or
equivalently sets of current dipoles) are in LFPy 2.0 facilitated by
the corresponding class method MEG.calculate_H_from_

iaxial(). We show (in Figure 2) the y-components of the
magnetic fields in vicinity of a model neuron computed as B · ŷ

and Bp · ŷ respectively.

2.5. Description of Biophysically Detailed
Network in Example Use Case
2.5.1. Neuron Models
Our example network model presented in section 3 comprised
about 5500 biophysically detailed multicompartment neurons
obtained from The Neocortical Microcircuit Collaboration
(NMC) Portal (https://bbp.epfl.ch/nmc-portal, Ramaswamy
et al., 2015). The NMC portal provides NEURON code for about
1,000 different single-cell models as well as connectivity data of
a reconstruction and simulation of a rat somatosensory cortex
column (Markram et al., 2015).

For simplicity of this demonstration, we here use only four
different single-cell models as shown in Figure 2A for the
different network populations. For layers 4 and 5 we chose
the most common excitatory cell type and most common
inhibitory interneuron cell type, in accordance with statistics
of the reconstructed microcircuit of Markram et al. (2015) as
provided on the NMC portal. The table in Figure 4A summarizes
population names (X– presynaptic; Y– postsynaptic) which here
coincide withmorphology type (m), electric type (e), cell model #,
compartment count per single-cell model (n

seg
j ), number of cells

NX in each population, occurrence FX ≡ NX/
∑

X NX , the
number of external synapses on each cell next, rate expectation
of external synapses νext and the mean zsoma

X and standard
deviation σ soma

z,X of the normal distributionN (zsoma
X , σ soma

z,X ) from
which somatic depths are drawn for each population. The cell
type can be derived from the “m” and “e” type in the table.
Using the nomenclature of Markram et al. (2015), L4 and
L5 are abbreviations for layer 4 and 5; PC – pyramidal cell;
LBC – large basket cell; TTPC1 – thick-tufted pyramidal cell
with a late bifurcating apical tuft; MC – Martinotti cell; cAD
– continuous adapting; dNAC – delayed non-accommodating;
bAC – burst accommodating. Thus, L4_PC_cAD corresponds
to a layer 4 pyramidal cell with a continuously adapting firing
pattern as a response to depolarizing step current and so forth.
As multiple variations of the same cell types are provided on
the NMC portal, the cell model # can be used to identify
the particular single-cell model and corresponding file sets
used in the network described here. These single-cell model
files can be downloaded one after another from the portal as
for example L5_TTPC1_cADpyr232_1.zip, or all together in a
single archive. For simplicity we ignore heterogeneity in e-types
for each m-type, thus the population counts NX correspond
to the count per m-type in the reconstructed microcircuit.
Note for the present network description that {X,Y , m} ∈

{L4_PC, L4_LBC, L5_TTPC1, L5_MC}.

2.5.2. Population Geometry
The centers of somatic compartments for all cells i ∈

X were distributed with even probability within a circular
radius of 210 µm corresponding to the radius of the
reconstructed somatosensory column in Markram et al. (2015).
The corresponding depths were drawn from the normal
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FIGURE 4 | Details of the example network. (A) Biophysically detailed neuron models of the network, with depth-values of boundaries of layers 1–6. The lower left

table summarizes population names (X – presynaptic; Y – postsynaptic) which here coincide with morphology type (m); electric type (e); cell model #; compartment

count per single-cell model (nsegj ); number of cells NX in each population; occurrence FX (defined as NX/
∑

X NX ); the number of external synapses on each cell next;

rate expectation of external synapses νext; the expected mean zsoma
X and standard deviation σ soma

z,X of the normal distribution N from which somatic depths are

drawn. (B) Pairwise connection probability CYX between cells in presynaptic populations X and postsynaptic populations Y . (C) Average number nsyn of synapses

created per connection between X and Y . (D) Layer specificity of connections LYXL (Hagen et al., 2016) from each presynaptic population X onto each postsynaptic

population Y . Gray values denote LYXL = 0. (E) Illustration of cylindrical geometry of populations including a laminar recording device for extracellular potentials (black

circular markers) and a single ECoG electrode above layer 1 (gray line). n = 15 neurons of each population are shown in their respective locations. (F) Laminar

distribution of somas for each network population (1z = 50 µm) in one instantiation of the circuit. (G) Laminar distribution of synapses across depth onto each

postsynaptic population Y from presynaptic populations X (1z = 50 µm).

distribution N (zsoma
X , σ soma

z,X ) using population-specific mean
and standard deviations given in Figure 4A. Neuron positions
resulting in any neuron compartments protruding above the
hypothetical cortical surface at z = 0 or below layer 6 at z =

−2082 µm were redrawn from the depth distribution. All cells
were rotated around their local vertical z-axis by a random angle
θ ∈ [0, 2π).

2.5.3. Synapse Models
For synapses made by cells in a presynaptic population X
onto a postsynaptic population Y we used synapse model
files provided with the single-cell model files from the
NMC portal. There are two base models with connection-
specific parameterization which were obtained from the portal.
Excitatory synapses are modeled as probabilistic AMPA and
NMDA receptors, while inhibitory synapses are modeled
as probabilistic GABAA receptors. Both synapse types were
modeled with presynaptic short-term plasticity. The synapse
parameterization procedure and validation is described in

detail in Markram et al. (2015), with code implementations
based on Fuhrmann et al. (2002). The synapse parameters
are summarized in Table 1, detailing the synapse model
names, average synaptic conductances gsyn and corresponding
standard deviations σ

syn
g , release probabilities Pu, relaxation

time constants from depression τDep, relaxation time constants
from facilitation τFac, ratios of NMDA vs. AMPA (excitatory
connections only), rise and decay time constants τ rU and τdU of
the two-exponential conductances of each current type U ∈

{AMPA,NMDA,GABAA}, and reversal potentials esyn. Random
conductances for each individual synapse were drawn from
the capped normal distribution N (gsyn, σ

syn
g )H(g − gmin). For

our network we set the minimum synaptic conductance to be
gmin = 0 nS.

2.5.4. Extrinsic Input
Synapses from external inputs to the neurons in our network
were modeled similarly to excitatory synapses of intrinsic
network connections. For inputs to a population Y in layer L
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TABLE 1 | Summary of intrinsic synapse parameters.

Postsynaptic population (Y )

Parameter L4_PC L4_LBC L5_TTPC1 L5_MC

p
re
sy
n
a
p
tic

p
o
p
u
la
tio

n
(X
)

L4_PC syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

NMDA ratio

τ rAMPA (ms)

τdAMPA (ms)

τ rNMDA (ms)

τdNMDA (ms)

esyn (mV)

ProbAMPANMDA

0.3

0.11

0.859

670

17

0.4

0.2

1.737

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.398

560

130

0.4

0.2

1.74

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.5

670

17

0.4

0.2

1.742

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.093

140

660

0.4

0.2

1.742

0.29

43

0

L4_LBC syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

τ r
GABAA

(ms)

τd
GABAA

(ms)

esyn (mV)

ProbGABAAB

0.89

1.3

0.213

730

21

0.2

7.604

-80

ProbGABAAB

0.33

0.15

0.254

700

21

0.2

8.373

-80

ProbGABAAB

0.98

1.3

0.226

750

21

0.2

7.364

-80

ProbGABAAB

0.33

0.16

0.253

710

21

0.2

8.349

-80

L5_TTPC1 syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

NMDA ratio

τ rAMPA (ms)

τdAMPA (ms)

τ rNMDA (ms)

τdNMDA (ms)

esyn (mV)

ProbAMPANMDA

0.29

0.11

0.5

670

17

0.4

0.2

1.743

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.369

550

140

0.4

0.2

1.743

0.29

43

0

ProbAMPANMDA

0.31

0.11

0.5

670

17

0.4

0.2

1.744

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.092

150

690

0.4

0.2

1.741

0.29

43

0

L5_MC syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

τ r
GABAA

(ms)

τd
GABAA

(ms)

esyn (mV)

ProbGABAAB

0.66

0.15

0.3

1200

2.1

0.2

8.291

-80

ProbGABAAB

0.33

0.15

0.25

700

21

0.2

8.295

-80

ProbGABAAB

0.66

0.15

0.299

1200

2.2

0.2

8.271

-80

ProbGABAAB

0.33

0.15

0.252

710

21

0.2

8.339

-80

we chose to duplicate the synapse parameters of connections
made by the presynaptic excitatory population within the
same layer (as we were unable to assess what parameters
were used for extrinsic connections in Markram et al., 2015).
Our synapse parameters are given in Table 2. For each cell
in the network we created next synapses set randomly onto
dendritic and apical compartments with compartment specificity
of connections Sjn/

∑

n∈{dend,apic} Sjn, where Sjn denotes surface
area of compartment n of cell j. The random activation
times of each synapse were set using Poisson processes with
rate expectation νext for the duration of the simulation. The
values for next and νext are given in Figure 4A, and were
set by hand in order to maintain spiking activity in all
populations.

2.5.5. Connectivity Model
Random connections in our network were set using the Python-
implementation of the “connection-set algebra” of Djurfeldt
(2012) and Djurfeldt et al. (2014) (github.com/INCF/csa). Using
this formalism, we constructed boolean connectivity matrices

C
(r)
YX for postsynaptic cells j(r) ⊂ Y distributed across each

separate parallel MPI rank (denoted by the superset “(r)” for

rank number) and presynaptic cells i ∈ X. Each instance of C(r)
YX

had shape (NX × Nj(r)⊂Y ), with entries equal to True denoting

connections from cell i to j(r), as expressed mathematically by

C
(r)
YX(CYX)(i, j

(r)) =

{

True with probability CYX ,

False otherwise .
(19)
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TABLE 2 | Synapse parameters for extrinsic input.

Postsynaptic population (Y )

Parameter L4_PC L4_LBC L5_TTPC1 L5_MC

P
re
sy
n
a
p
tic

p
o
p
.
(X
) ext syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

NMDA ratio

τ rAMPA (ms)

τdAMPA (ms)

τ rNMDA (ms)

τdNMDA (ms)

esyn (mV)

ProbAMPANMDA

0.3

0.11

0.859

670

17

0.4

0.2

8.291

0.29

43

0

ProbAMPANMDA

0.33

0.15

0.254

700

21

0.4

0.2

8.295

0.29

43

0

ProbAMPANMDA

0.31

0.11

0.5

670

17

0.4

0.2

8.271

0.29

43

0

ProbAMPANMDA

0.33

0.15

0.252

710

21

0.4

0.2

8.339

0.29

43

0

For X = Y and i = j(r), entries in C
(r)
YX were set to False

(no autapses). We used fixed connection probabilities CYX as
obtained from the NMC portal between our chosen m-types.

2.5.6. Multapses
As multiple synapses per connection appear to be a prominent
feature in cortical networks (see Markram et al., 2015; Reimann
et al., 2015 and references therein), we drew for every connection
between presynaptic cell i and postsynaptic cell j a random
number of synapses nsyn rounded to an integer from the capped
normal distribution N (nsyn, σ

syn
n )H(n). Conduction delays from

action-potential detection (threshold θAP = −10 mV) in cell i
for each corresponding synapse onto cell j were drawn from the
distributionN (δ

syn
, σ

syn
δ

)H(δ−δmin). For our network we set the
minimum delay δmin = 0.3 ms for all connections.

2.5.7. Layer-specificity of connections
In order to position each individual synapse of a connection on
a cell j ∈ Y , in a simplified manner that depended on the degree
of overlap between presynaptic axons and postsynaptic dendrites
(“Peter’s rule”), we calculated for each postsynaptic population
Y layer-specificities of connections LYXL in layer L for synapses
made by presynaptic populations X (Hagen et al., 2016), by first
computing the sums 1siXL =

∑

n∈axon 1sinXL, that is, the total
axon length of a presynaptic cell type per layer L and sums
1sjYL =

∑

n∈{soma,dend} 1sjnYL of total dendrite and soma length
for each postsynaptic cell type across each layer. Then we defined
the layer-specificity of connections as

LYXL =
√

1siXL1sjYL/
∑

L

√

1siXL1sjYL .

The sums
∑

L LYXL = 1 for all X and Y . Synapse
sites of connections onto cell j were then set randomly
with a compartment specificity of connections
Sjn

∑

L PrN (LYXL ,1L/2)(znj)/
∑

n Sjn, where Sjn is the surface
area of compartment n of the cell j centered at depth znj and
PrN (...) the probability density function of the distribution
N (LYXL, 1L/2). 1L denotes the thickness of layer L.

All connectivity parameter values (CYX , nsyn, σ
syn
n ,

δ
syn

, σ
syn
δ

,LYXL) are summarized in Table 3. Visual

representations of CYX , nsyn and LYXL are shown in
Figures 4B–D. Figure 4E shows 15 cells in each population
X with corresponding distribution of NX somas across depth
(1z = 50 µm) in Figure 4F. Panel G shows the resulting
distribution of synapses across depth for all combinations of Y
and X (1z = 50 µm).

2.5.8. Computation of Extracellular Potentials Inside

Cortical Column
For ourmulticompartment neuron network we chose to compute
the extracellular potential vertically through the center of the
column, with the most superficial contact at the top of layer 1
(z = 0) to a depth of z = −1500 µm within layer 6. The inter-
contact distance was 1z = 100 µm, and contacts were assumed
to be circular with radius rcontact = 5 µm and surface normal
vectors aligned with the horizontal y-axis. For the electrode
surface averaging we used m = 50 (cf. Equation 8 and Lindén
et al., 2014). For the calculation of extracellular potential inside
the cortical column we assumed a homogeneous, isotropic, linear
and ohmic extracellular conductivity σe = 0.3 S/m.

2.5.9. Computation of ECoG Signal From

Method-of-Images
The extracellular potential on top of cortex (ECoG) was
computed by means of the Method-of-Images (MOI, see section
2.2.2). In the example, the conductivity below the contact was
set as σG = σT = 0.3 S/m, corresponding to the gray-matter
value used above, while the conductivity on top of cortex was
to set to be fully insulating, that is, σT = 0 S/m. This could
correspond to the situation where a grid of ECoG contacts are
embedded in an insulating material (see for example, Castagnola
et al., 2014). We further considered a single circular ECoG disk
electrode with contact radius r = 250µmwith its surface normal
vector perpendicular to the brain surface. The disk electrode was
centered at the vertical population axis and positioned at the
upper boundary of layer 1. For the disk-electrode approximation
(cf. Equation 8) we set m = 500. (Note that the present
MoI implementation requires all transmembrane currents to be
represented as point sources confined within the boundaries of
the middle (cortical) layer.
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TABLE 3 | Summary of connectivity parameters.

Postsynaptic population (Y )

Parameter L4_PC L4_LBC L5_TTPC1 L5_MC

P
re
sy
n
a
p
tic

p
o
p
u
la
tio

n
(X
)

L4_PC CYX
nsyn
σn,syn
δsyn (ms)

σ
δ,syn (ms)

LYXL1
LYXL2
LYXL3
LYXL4
LYXL5
LYXL6

0.076

3.3

1.4

1.35

0.867

0.0

0.058

0.152

0.336

0.454

0.0

0.042

7.9

3.0

1.17

0.763

0.0

0.0

0.0

0.53

0.47

0.0

0.11

4.3

1.7

1.433

0.817

0.0

0.069

0.106

0.105

0.719

0.0

0.034

7.6

2.7

1.521

0.978

0.0

0.0

0.0

0.0

0.73

0.27

L4_LBC CYX
nsyn
σn,syn
δsyn (ms)

σ
δ,syn (ms)

LYXL1
LYXL2
LYXL3
LYXL4
LYXL5
LYXL6

0.063

16.0

6.2

1.006

0.367

0.0

0.0

0.1

0.672

0.228

0.0

0.062

14.0

6.0

1.076

0.395

0.0

0.0

0.0

0.818

0.182

0.0

0.056

17.0

7.2

1.064

0.399

0.0

0.0

0.109

0.328

0.563

0.0

0.027

10.0

3.5

1.677

0.494

0.0

0.0

0.0

0.0

1.0

0.0

L5_TTPC1 CYX
nsyn
σn,syn
δsyn (ms)

σ
δ,syn (ms)

LYXL1
LYXL2
LYXL3
LYXL4
LYXL5
LYXL6

0.011

2.5

0.89

2.374

0.811

0.0

0.02

0.129

0.244

0.608

0.0

0.0069

6.1

2.1

2.227

0.903

0.0

0.0

0.0

0.379

0.621

0.0

0.063

6.2

2.6

1.445

0.653

0.0

0.02

0.078

0.066

0.836

0.0

0.045

9.2

3.1

1.372

0.577

0.0

0.0

0.0

0.0

0.739

0.261

L5_MC CYX
nsyn
σn,syn
δsyn (ms)

σ
δ,syn (ms)

LYXL1
LYXL2
LYXL3
LYXL4
LYXL5
LYXL6

0.04

12.0

3.9

1.91

0.994

0.111

0.13

0.249

0.329

0.18

0.0

0.035

12.0

3.7

1.732

0.663

0.0

0.0

0.0

0.735

0.265

0.0

0.083

14.0

5.6

2.252

1.549

0.136

0.187

0.209

0.124

0.344

0.0

0.038

12.0

3.4

1.341

0.787

0.0

0.0

0.0

0.0

0.926

0.074

2.5.10. Computation of EEG and MEG Signals
The most direct approach for computing EEG and MEG signals
would be to (i) compute the per-neuron current dipole moment,
(ii) compute the contribution to the signals from each neuron,
and (iii) sum these signals to get the total EEG and MEG signals
from the entire network. To reduce the computational demands,
we instead compute the per-population current dipole moment
pX(t) using equation 12. The total current dipole moment is then
obtained by summing over all populations, that is, p =

∑

X pX .
From pX we computed the EEG (surface electric potentials

on the scalp layer) of the four-sphere head model as described
above, and similarly magnetic fields Bp. For the four-sphere head
model we assumed conductivities σs ∈ {0.3, 1.5, 0.015, 0.3} S/m

and radii rs ∈ {79, 80, 85, 90} mm for brain, cerebrospinal
fluid (CSF), skull and scalp, respectively (Nunez and Srinivasan,
2006; Næss et al., 2017). We positioned each population current
dipole pX below the brain-CSF boundary on the vertical z-
axis (thus x = y = 0) at z = r1 + zsoma

X , where zsoma
X

was the average soma depth within each population. Surface
potentials, that is, EEG potentials, and magnetic fields where
computed for polar angles θ ∈ [−π/4,π/4] with angular
resolution 1θ = π/16 as illustrated in Figure 2D (azimuth
angles ϕ = 0), resulting in a contact separation along the arc
of r4π/16 ≈ 18 mm. Different magnetoelectroencephalogram
(MEG) equipment may be sensitive to different components of
the magnetic field (Hämäläinen et al., 1993). We show different
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scalar components of the magnetic field computed on the surface
of the four-sphere head model as described above (in section
2.3.5).

2.5.11. Simulation Details
Simulations were run for a total duration of T = 1, 500 ms
with a simulation step size dt = 0.0625 ms (16 kHz
sampling frequency). The first 500 ms were discarded as startup
transient. All neurons were initialized at a membrane voltage
Vm
init = −77 mV and temperature Tcelsius = 34◦C (affecting

membrane-channel dynamics).

2.6. Technical Details
2.6.1. Code Availability
All source codes and development history of past and present
versions of LFPy are publicly available on GitHub (see
github.com/LFPy/LFPy), using “git” (git-scm.com) for code
provenance tracking. LFPy is released with an open-source
software licence (GPL), which alongside GitHub functionality for
listing issues, integration with automated testing, easy forking,
local development and merges of upstream changes, facilitates
continued, community-based LFPy development.

2.6.2. Requirements
LFPy 2.0 requires Python (continuously tested w. v2.7, v3.4-
3.6), an MPI (message-parsing interface) implementation such
as OpenMPI, NEURON v7.4 or newer compiled with MPI and
bindings for Python, Cython, and the Python packages mpi4py,
numpy, scipy, h5py, csa (github.com/INCF/csa) and NeuroTools
(neuralensemble.org/NeuroTools). In order to run all example
files also matplotlib and Jupyter (jupyter.org) have to be installed,
but prebuilt Python distributions such as Anaconda
(anaconda.com) should provide these common Python packages,
or easy means of installing LFPy dependencies (issuing, for
example, "conda install mpi4py" on the command line). Detailed
instructions for installing dependencies for common operating
systems (MacOS, Linux, Windows) are provided in the online
LFPy documentation (lfpy.readthedocs.io).

2.6.3. Installation
The latest stable LFPy release on the Python Package Index
(pypi.python.org) can be installed by issuing:

$ pip install LFPy --user

whichmay prompt the install of also other missing dependencies.
The command

$ pip install --upgrade --no-deps LFPy --user

may be used to upgrade an already existing installation of
LFPy (without upgrading other dependencies). In order to obtain
all LFPy source codes and corresponding example files, we
recommend users to checkout the LFPy source code on GitHub,
after installing the git version control software:

$ cd <path to repository folder>

$ git clone https://github.com/LFPy/LFPy.git

$ cd LFPy

$ pip install -r requirements --user

$ python setup.py develop --user

More detail is provided on lfpy.readthedocs.io.

2.6.4. Reproducibility
The simulated results and analysis presented here were
made possible using Python 2.7.11 with the Intel(R) MPI
Library v5.1.3, NEURON v7.5 (1472:078b74551227), Cython
v0.23.4, LFPy (github.com/LFPy/LFPy, SHA:0d1509), mpi4py
v2.0.0, numpy v1.10.4, scipy v0.17.0, h5py v2.6.0, parameters
(github.com/NeuralEnsemble/parameters, SHA:v0aaeb), csa
(github.com/INCF/csa, SHA:452a35) and matplotlib v2.1.0
running in parallel using 120-4800 cores on the JURECA cluster
in Jülich, Germany, composed of two 2.5 GHz Intel Xeon
E5-2680 v3 Haswell CPUs per node (2 x 12 cores), running the
CentOS 7 Linux operating system. Each node had at least 128
GB of 2133 MHz DDR4 memory. All software packages were
compiled using the GNU Compiler Collection (GCC) v4.9.3. All
source codes for this study are provided as LFPy example files on
GitHub.

3. RESULTS

3.1. Single-Neuron Activity and
Extracellular Measurements
The first version of LFPy (Lindén et al., 2014) assumed the
model neurons to be embedded in an infinite homogeneous
volume conductor and was most suited to compute extracellular
potentials (spikes, LFPs) inside the brain. One new feature of
LFPy 2.0 compared to the first version of LFPy is that electrical
potentials outside cortex (ECoG, EEG), as well as magnetic fields
both inside and outside cortex (MEG), can be computed. These
new measures are illustrated in Figure 2 for a single synaptically
activated “pyramidal” neuron (composed of soma and dendrite
sections only).

Figure 2A presents a basic LFPy simulation example where
a passive neuron model with simplified morphology receives
a single synaptic input current (inset I). We computed the
extracellular potential in the xz-plane (color image plot),
using the assumption of line sources for each dendritic
compartment, a spherical current source representing the soma,
and homogeneous conductivity (7). The postsynaptic response is
reflected as a somatic depolarization (inset II) and as a deflection
in the extracellular potential in the location r (blue dot, inset III).
The corresponding current dipole moment p(r, t) was computed
using equation 12 and is illustrated by the black arrow. The x-
and z-components (p · x̂, p · ẑ) of the current dipole moment
are illustrated in inset IV, and we note the much larger dipole
moment component in the vertical z-direction compared to the
lateral x-direction. We do not show the y-component of the
current dipole moment as all segments in this simplified neuronal
morphology are located in the xz-plane (hence p · ŷ = 0).

To illustrate the fact that a current dipole potential (Equation
15) gives a good approximation to the extracellular potential
φ far away from the neuron, we compare with results from
using the more comprehensive line-source method (Equation
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6) in Figure 2B: The line-source potential φ is shown inside the
dashed circle of radius r = 500 µm, while the dipole potential
φp is shown outside the circle. The inset shows the dipole
potential corresponding to the colored dots located at a distance
of 750 µm.

In Figure 2C we similarly compute the magnetic field for
radii r > 500 µm using the current dipole moment (Equation
16), and axial currents inside (Equation 18). The axial currents
were computed from per-compartment membrane potentials
as described in section 2.1.2. For both color image plot and the
inset, we show the dominating magnetic field component, that
is, the y-component. As for the electrical potential in Figure 2B,
we see that the predicted magnetic fields match well at the
r = 500 µm interface.

Figure 2D illustrates the layout of scalp-layer measurement
sites on the four-sphere head model described in section 2.3.3.
The numbered points along the outer scalp layer represents
measurement locations for EEG and MEG signals. The single
current dipole moment is positioned beneath the CSF-brain
boundary on the vertical z-axis (see caption for details).
Figure 2E shows the corresponding scalp surface potentials
which is dominated by the z-component of the current dipole
moment (p · ẑ, Figure 2A inset IV). Figure 2F shows the
corresponding dominant azimuthal tangential magnetic field
component (Bp · ϕ̂) computed from the current dipole moment
using equation 16. At the center location (location 5) only the x-
component (p · x̂) contributes to the signal, in the other locations
both the x- and y-components contribute.

3.2. Network Activity and Extracellular
Measurements
The second main new feature of LFPy 2.0 is the possibility to
simulate recurrently connected networks of neurons in parallel.
Our exemple network, shown in Figure 4, demonstrating this
new feature is based on a subset of cortical single-cell models,
synapsemodels and connectivity data fromMarkram et al. (2015)
obtained from The Neocortical Microcircuit Collaboration
(NMC) Portal (Ramaswamy et al., 2015). The implementation is
described in detail in section 2.5.

In addition to supporting simulations of neuronal networks
with simplified or biophysically detailed single-neuron models
in parallel, LFPy 2.0 allows for concurrent calculations of
extracellular measures of network activity. Specifically, the
extracellular potentials at specific positions can be computed at
each time step which avoids the memory-demanding process
of recording transmembrane currents in all compartments for
the duration of the simulation, either to disk or to memory.
In the present example, the current dipole moment was
calculated at every time step, and this amounted to a useful
dimensionality reduction, as only the x, y, z-axis components
of p per population X had to be stored. Assuming serial
execution, then for each neuron population X, the total memory
consumption is then reduced by a factor 3/(NXn

seg) where NX

is the population size and nseg the number of compartments
per neuron (see Figure 4A for values), compared to storing
currents. The per-population current dipole moments were
then used to predict EEG scalp surface potentials and MEG
signals in the corresponding locations. Note that per-population

current dipole moments can be stored, EEG and MEG
signal can be computed with other head models at a later
stage.

3.2.1. Network Spiking Activity
Figure 5 shows the various predicted measurements for
a one-second period of network activity. The spike raster
and corresponding spike-count histogram (Figures 5A,B)
demonstrate the network’s tendency to produce synchronous
irregular patterns of activity with the parameterization
summarized in section 2.5, Tables 1–3 and Figure 4. The per-
neuron spike occurrences in the excitatory populations L4_PC
and L5_TTPC1 were sparser than for the inhibitory populations
L4_LBC and L5_MC. As in the full circuit of Markram et al.
(2015), it is possible that an asynchronous network state
could have been obtained by modifying extracellular [Ca2+]o-
dependent release probabilities Pu for the different synapse
types in the model (Borst, 2010; Markram et al., 2015). A
modification of release probabilities can shift the effective
balance between excitatory and inhibitory synapse activations,
but also incorporation of a larger sample of heterogeneous
cell types in the model could have brought the network into
an asynchronous state, essentially by increasing the amount
of inhibitory feedback. In particular interneuron expression
in neocortex is known to be more heterogeneous and more
dense than demonstrated here (Markram et al., 2004, 2015).
However, as our main focus here is to present new simulation
technology now incorporated in LFPy, we did not pursue this line
of inquiry.

3.2.2. Local Field Potentials (LFPs)
The extracellular potentials as would be measured by a 16-
channel laminar probe positioned through the center axis of
the cylindrical column, are shown in Figure 5C. The computed
extracellular potentials are observed to be of the same order of
magnitude as experimentally measured spontaneous potentials
(≃0.1–1 mV, see Maier et al., 2010; Hagen et al., 2015; Reyes-
Puerta et al., 2016). We further observe that the synchronous
events seen in the spiking activity (Figure 5A) are reflected
as substantial fluctuations in the extracellular potential with
amplitudes close to 0.5 mV.

The signals in neighboring channels are further observed to be
fairly correlated with comparable amplitudes, irrespective of the
presence of somatic compartments at the depths of the contacts
(Figure 4F). At the superficial channels 1–6, deflections in the
electric potential following synchronous network activation are
predominantly negative, while a change in sign occur around
channel 7 (near the boundary between layer 3 and 4). The
strongest deflections of the extracellular potential are typically
observed at contacts within layer 5 (ch. 11–13), that is, at
depths corresponding to the dense branching of basal dendrites
and somas of the large layer 5 pyramidal neuron population.
These deflections reflect that the soma compartments and basal
dendrites are expected to act as dominant sources of the
transmembrane currents setting up the extracellular potential
(Lindén et al., 2010). Adding further to this, layers 4 and 5 also
had the highest overall densities of excitatory and inhibitory
synapses in the present model (Figure 4G). Some spike events

Frontiers in Neuroinformatics | www.frontiersin.org 16 December 2018 | Volume 12 | Article 92

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Hagen et al. LFPy 2.0

A B C

E

H

I

F

D

G

FIGURE 5 | Intra- and extracellular measures of activity in example network. (A) Spike raster plot for each population. Each row of dots corresponds to the spike train

of one neuron, color coded by population. (B) Population spike rates computed by summing number of spike events in each population in temporal bins of width

1t = 5 ms. (C) Extracellular potentials as function of depth assuming an infinite volume conductor. (D) Extracellular potential on top of cortex (ECoG) assuming a

discontinuous jump in conductivity between brain (σ = 0.3 S/m) and a non-conducting cover medium (σ = 0 S/m) and electrode surface radius r = 250 µm. The

signal is compared to the channel 1 extracellular potential in (C) (gray line). (E) Component-wise contributions to the total current dipole moment p(t) summed over

population contributions. (F) Illustration of upper half of the four-sphere head model (with conductivities σs ∈ {0.3, 1.5, 0.015, 0.3} S/m and radii

rs ∈ {79, 80, 85, 90} mm for brain, csf, skull and scalp, respectively), dipole location in inner brain sphere and scalp measurement locations. The sites in the xz-plane
numbered 1–9 mark the locations where electric potentials and magnetic fields are computed, each offset by an arc length of r4π/16 ≈ 18 mm. (G) EEG scalp

potentials from multicompartment-neuron network activity with radially oriented populations. (H) Tangential and radial components of the head-surface magnetic field

(MEG) from multicompartment-neuron network activity with radially oriented population. (I) Tangential and radial components of the magnetic field (MEG) on the head

surface, with underlying dipole sources rotated by an angle θ = π/2 around the x-axis (thus with apical dendrites pointing into the plane). (Note that at position 5, the

unit vectors ϕ̂ and θ̂ are defined to be directed in the positive y- and x-directions, respectively).

(extracellular signatures of action potentials) are seen in ch. 15,
produced by one or several neurons located near the virtual
recording device.

Further investigation of the different contributors
(Figures 6A–D) to the extracellular potential (Figure 5C),
revealed that most of the signal variance across depth can be
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explained by transmembrane currents of the two excitatory
populations (Figure 6E). Even if the cell numbers in the two
pyramidal-cell population were similar, population L5_TTPC1
contributed more to the signal than population L4_PC at all
channels except at channels 8-9 (around which the L4_PC somas
are positioned).

3.2.3. ECoG Signal
Figure 5D compares the extracellular potential in the topmost
channel 1 (gray line), predicted under the assumptions of
dendritic line sources, somatic spherical sources and an infinite
homogeneous extracellular medium (cf. Equation 7), with our
ECoG prediction at the same depth (black line). The ECoG signal
was computed assuming a wide contact (rcontact = 250 µm)
aligned horizontally on top of a flat cortex (z = 0). Further,
for the ECoG signal the method-of-images (MoI; cf. Equation
11) was used to account for a conductivity discontinuity at
the cortical surface. Here, zero conductivity (mimicking, for
example, the situation with an insulating mat surrounding the
ECoG contact, Castagnola et al., 2014) was assumed above the
cortical surface, while the gray-matter value of σe = 0.3 S/m was
assumed below.

The amplitude of the ECoG trace was slightly increased
compared to the potential measured by the smaller electrode.
This amplitude increase can be attributed to the fact that a
reduction in conductivity above the boundary would decrease
the value of the denominator of equation 11, and hence increase
the signal amplitude below insulating cortical surfaces (Pettersen
et al., 2006). The expected increased signal amplitude from
this conductivity step is here counter-measured by the larger
diameter of the ECoG contact (rcontact = 250 µm vs. rcontact =
5 µm) resulting in an increased average distance from the
signal source to the contact point averaged over the contact’s
surface. Detailed investigation of each signal normalized to
the same standard deviation (not shown) revealed virtually
indistinguishable features across time and in their power spectra.

3.2.4. Current Dipole Moments
Figure 5E shows the three components of the total current
dipole moment p stemming from the network activity. The
most striking feature is the much larger z-component compared
to the lateral x- and y-components. This large difference in
component size, about two orders for magnitude, reflects (i) that
the vertically aligned pyramidal cell morphologies span across
several layers, and (ii) the near rotational symmetry of the model
populations around the z-axis. Unlike the z-component, the
lateral components largely cancel out. In the same way as for
the extracellular potential, the two pyramidal populations are also
the dominant sources of the total dipole moment (Figures 6F–J).
We also note that the z-component of the population current
dipole moment generally dominates the other components of
the population dipoles, with the exception of the L4_LBC
population. Here all components are tiny, reflecting the stellate
dendritic morphology and the evenly distributed synapses onto
the neurons in this population.

For our model network we note that the maximummagnitude
of the current dipole moment is about 0.1 nAm, which is

about two orders of magnitude smaller than previously estimated
typical “mesoscopic” dipole strengths (Hämäläinen et al., 1993,
p. 418).

3.2.5. EEG Signals
As a demonstration of predicting non-invasive electric
(“EEG”) signals outside of the brain with LFPy 2.0, we
utilized the four-sphere head model (as implemented in class
FourSphereVolumeConductor, see 2) and defined scalp-
layer measurement locations as illustrated in Figure 5F. We
assumed the modeled network to represent a piece of cortical
network positioned at the top of a cortical gyrus, so that the
population axes were in the radial direction of the spherical head
model. The current dipoles (computed above) were positioned
below the interface between the CSF and the brain, more
specifically the layer-4 and layer-5 population dipoles were
positioned at the depth of the center of layer 4 and layer 5,
respectively.

As observed in Figure 5G, the temporal form of the scalp
potentials corresponds directly to the temporal form of the
dominant z-component of the current dipole moment in
Figure 5E. For an infinite volume conductor it follows directly
from 15 that the recorded scalp potential will be proportional
to this dipole moment at recording positions directly (radially)
above the dipole location. Likewise, inspection of the formulas
for the four-sphere head model shows that this is also the case
for the scalp-potential contributions from both the radial (Næss
et al., 2017, Equations 5–6) and tangential (Næss et al., 2017,
Equations 17–18) dipole components (although with different
proportionality constants for the two components).

For the present example network comprising 5,594 neurons
of which 5,077 are pyramidal cells, we observe the magnitudes
of the fluctuating scalp potential directly on top of the dipole
sites to be on the order of 0.1 µV. This is about two orders of
magnitude smaller than the typical size of measured EEG signals
of∼10 µV (Nunez and Srinivasan, 2006, Figure 1.1).

The weakly conducting skull layer (compared to the highly
conductive brain, spinal fluid and scalp layers) results in a spatial
“low-pass filter effect” from volume conduction (Nunez and
Srinivasan, 2006, Ch. 6). This low-pass effect accounts for the
relatively weak attenuation of the EEG signal with lateral distance
from the center position (position 5 in Figure 5F) along the head
surface, as observed in Figure 5G. On the surface of a spherical
volume conductor with homogeneous conductivity inside the
sphere, but otherwise zero conductivity outside the sphere’s
surface (1-sphere head model), the potential from a current
dipole would decay in amplitude at a higher rate compared to
our 4-sphere head-model case with a spherical skull layer with
low conductivity. However, in an infinite homogeneous volume
conductor the decay in electric potential along the putative
sphere’s surface would decay with a lower rate than both the
1-sphere and 4-sphere head models, see Nunez and Srinivasan
(2006, Ch. 6) for a comparison.

3.2.6. MEG Signals
The computed current dipole moments in Figure 5E was also
used to compute MEG signals. Figure 5H shows the computed
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FIGURE 6 | Per-population contributions to the extracellular potential and current dipole moment and corresponding signal variance. (A–D) Contributions to the

extracellular potential from populations X ∈ {L4_PC, L4_LBC, L5_TTPC1, L5_MC} in the network across depth. (E) Extracellular potential variance across depth for

contributions of each population, and for the sum over populations. (F–I) x, y, z-components of the per-population contribution to the summed current dipole moment.

(J) Per-component current dipole moment variance for each population and for summed signals.

magnetic fields for the same set-up providing the EEG signals in
Figure 5G, that is, radially oriented population current dipoles.
In this situation the only sizable magnetic field is directed in the
tangential direction around the vertical z-axis.With our spherical
coordinates this corresponds to the ϕ-direction where the unit
vector ϕ̂ points in counter-clockwise direction. Note also that the
magnetic field is almost zero straight above the dipole (position
5), as here the vectors p and R are near parallel so that the vector
product in equation 16 is very small. We also observe that the
magnetic field is symmetric around the center position (position
5), so that the field at position 6 is always similar to the field at
position 4, and so on.

For EEG signals, equivalent radial dipoles located at the
“crowns” of gyri are generally expected to give the largest signal
contributions (Nunez and Srinivasan, 2006). ForMEG signals, on
the other hand, equivalent current dipoles in brain sulci oriented
tangentially to the head surface is expected to provide the largest

signals (Hämäläinen et al., 1993). In Figure 5I we thus show the
magnetic field with the current dipole moments directed in a
tangential direction (that is, in the y-direction into the paper in
Figure 5F) rather than in the radial direction. In this situation the
largest magnetic field component is in the tangential direction θ̂

(around the y-axis) in position 5. The ϕ̂-component is as expected
negligible, while the radial component is antisymmetric around
position 5, but negligible in position 5 itself.

Typical magnetic fields measured in human MEG are on the
order of 50–500 fT (Hämäläinen et al., 1993), and in Figure 5I

we find that magnetic fields of similar magnitudes (∼100 fT) are
predicted when the current dipole moment from our network is
oriented in parallel to the cortical surface. Note, however, that
in our model set-up, the dipole is only 11 mm away from the
closest MEG sensor at position 5, while in human recordings the
minimum distance between tangential dipoles in brain sulci and
the MEG sensors may be several centimeters (Hämäläinen et al.,
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1993). As the magnetic field from a current dipole decays as the
square of the distance (see Equation 16), our model likely gives
an overestimate of the contribution to the MEG signal from our
model network when applied to a human setting.

In Figure 5H we also observe sizable magnetic fields (∼20–
40 fT) generated by radially-oriented current dipoles. However,
the generated fields are in the angular φ-direction where the
fields have opposite directions on each side of the central position
(position 5). Thus, in a setting with several such neighbouring
dipoles (generated by neighbouring populations) on cortical
gyri, there will be large cancellations effects. Despite the larger
distances from the MEG sensors, tangentially oriented dipoles
in sulci is therefore expected to dominate the measured MEG in
human settings (Hämäläinen et al., 1993).

Animations of EEG surface potentials (color coded) and
magnetic field (arrows) of the radially and tangentially oriented
current dipole moments are available as Supplementary Video 1

(radial_dipole.mp4) and Supplementary Video 2

(tangential_dipole.mp4), respectively. For the case with a
tangential dipole the characteristic “butterfly”-like pattern
often seen in MEG recordings is observed (see e.g., Figure 5 in
Hämäläinen et al., 1993).

3.3. LFPy Parallel Network Performance
In order to assess the performance figures of multicompartment-
neuron network implementations in LFPy on a high-
performance computing (HPC) facility, we performed a
series of simulations with two-population versions of the
network presented above. These modified networks consisted
only of the layer-5 m-types L5_TTPC1 and L5_MC.Wemodified
cell counts per population NX and connection probabilities CYX

depending on chosen network population sizes NX as noted in
the text below. All other simulation parameters were kept fixed
as given in Tables 1–3.

First, we compared set-up times, creation times of populations
and connections, and simulation times for instantiations of
similarly sized reference networks (N(1)

L5_TTPC1 = 2400,N(1)
L5_MC =

480) for different number of MPI processes NMPI (Figure 7A).
NMPI was set identical to the number of available physical cores
(no multi-threading). A seed value for the random number
generator for each network instantiation was varied to obtain
an N = 3 sample size for each tested value of NMPI. Both
with predictions of extracellular potentials and current dipole
moments (continuous lines) and without (dotted lines), the
biggest fraction of the total computational time was spent
during the main simulation part (red curves), that is, where the
simulation is advanced time step by time step. The additional
computational cost of computing extracellular potentials and
current dipole moments was less than half compared to just
simulating the spiking activity in the recurrently connected
network. The times spent creating all recurrent connections and
synapses (green curves) were between a factor 16 and 32 shorter
than the simulation time.

The creation of connections and simulation times scaled
strongly with NMPI. An optimal, or strong, log-log-linear scaling
curve can be represented as a function t(NMPI) ∝ N−1

MPI, in
particular for NMPI ≤ 480, as these NMPI-values result in an

even load balance across parallel processes with the presently
used round-robin distribution of cells across MPI processes (see
section A2 inAppendix for details). Each parallel process has the
same number of cells of each m-type, segments (n

seg
j ) and state

variables corresponding to different active ion-channel models.
Only variations in per-cell in-degrees (synapse counts) across
different processes and simulations occurred due to the random
network connectivity model, but even with different random
seeds in each trial the trial variability was small (error bars
denoting standard deviations are hardly seen).

The creation of populations (orange curves) however showed
worse scaling behaviour for NMPI > 480, in part due to uneven
load balance. Another possible reason for reduced performance
was the increased strain on the file system as all processes
simultaneously access the same single-neuron source files upon
instantiating individual NetworkCell objects. This might have
been avoided by creating local copies of the necessary files on
each compute node, but we did not pursue this here as the overall
time spent instantiating neuron populations was only a fraction
of the observed simulation times. The loading of parameters
and other needed data (blue curves) was, as expected, fairly
constant for different values of NMPI as we did not parallelize the
corresponding code.

As a second scaling-performance test, we ran series of
simulations with NMPI = 480 but varied the total network
size by a factor b ∈ {0.2, 0.25, 0.5, 1, 2, 4} while keeping the
expected number of connections KYX (and thus the number of
synapses) between pre- and post-synaptic populations X and Y
fixed (Figure 7B). The expected number of randomly created
(binomially distributed) connections KYX was calculated using
the relation (Potjans and Diesmann, 2014):

CYX = 1−

(

1−
1

NXNY

)KYX

, (20)

with reference network size (N(1)
L5_TTPC1 = 2400,N(1)

L5_MC = 480)
and connection probabilities CYX as given in Table 3. Similar to
the test presented in Figure 5A, most of the total computation
time was spent during the main simulation part (red curves),
followed by creation of connections (green curves) and loading
of different parameters (blue curves).

In contrast to the previous case, the creation of cells in
the network displayed strong scaling with network size (which
implies a relationship t(r) ∝ b). The supra-optimal scaling
seen for connections can be explained by the creation of similar
connection counts across different factors b. (Note that supra-
optimal scaling implies that t(r) ∝ bq with exponent q ∈

(0, 1), while sub-optimal scaling implies that q > 1.) For the
tested factors b = 0.25 and b = 0.5 we expected sub-optimal
scaling for creating populations and connections, as well as for
simulation duration. These b-values gave different cell counts
and thus inhomogeneous load-balances across MPI processes,
which was unavoidable with the presently used round-robin
parallelization scheme. A jump in performance was seen for b =

0.2 which resulted in only one multicompartment neuron and
corresponding calculations on each MPI process.
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FIGURE 7 | Parallel performance with networks in LFPy. (A) Initialization of parameters (par.), population create (pop.), connectivity build (conn.) and main simulation

time (sim.) as functions of number of physical CPU cores/MPI processes (NMPI). The reference network population sizes N(1)
X for X ∈ {L5_TTPC1, L5_MC} are given in

the panel title. The network was otherwise constructed with synapse, stimulus and connectivity parameters for each possible connection as given in Tables 1–3.

Times shown with continuous lines were obtained for simulations that included calculations of extracellular potentials and current dipole moments as in Figures 2–6

(w. E.P.), while times shown with dotted lines were obtained for simulations with no such signal predictions (w.o. E.P.). Each data value is shown as the mean and

standard deviation of times obtained from N = 3 network realizations instantiated with different random seeds. (B) Initialization of parameters, population create,

connectivity build and main simulation time as functions of network size relative to the reference network population sizes N(1)
X for X ∈ {L5_TTPC1, L5_MC} as given in

the panel title. The superset “(1)” denotes a relative network size b = 1. Simulations were run using a fixed MPI process count NMPI and connection probabilities C(r)
YX

were recomputed for different values of b, such that the expected total number of connections K(1)
YX was constant between each simulation (using 20). The set-up was

otherwise identical to the set-up in (A). (C) Same as (B), but with a fixed expected per-cell synapse in-degree k(r)YX ≡ rK(1)
YX/N(1)

Y across different relative network sizes.

As a third scaling-performance test we fixed the mean per-
cell synapse in-degree kYX (count of incoming connections per
cell) and reran network simulations for different network sizes
(Figure 7C). The total number of connections was thus set
to bK

(1)
YX and corresponding connection probabilities CYX were

recomputed accordingly using equation 20. As expected, this
modification mostly affected the time spent creating connections
(green curve), and resulted in a near-linear performance curve
for scaling factors b ≥ 1.

As a final performance assessment we repeated the experiment
described above with upscaled networks and increased MPI pool
sizes. In Figure 8A we set the reference network population sizes
N

(1)
L5_TTPC1 = 12, 000 and N

(1)
L5_MC = 2, 400 and varied NMPI

between 600 and 4,800. LFPy’s parallel performance was strong
also here, and Figure 8A consequently shows trends similar
to the findings for the smaller network. Here, the time spent
creating populations (orange curves) was reasonably invariant
for different NMPI values, and increased overall by some factor
2–4 compared to the previous case. The parameter loading times
were similar, while the time spent connecting the network was
increased by a factor∼ 4, but the simulation times increased only
by a factor . 2. The differences in connection and simulation
times seen here, can be explained by the fact that the typical
synapse in-degrees were not preserved. Instead, the synapse in-
degrees were increased for the larger network, as we used the
connection probability values defined in Table 3.

In Figures 8B,Cwe setNMPI = 2, 400, and varied the network
population sizes relative to the reference network population
sizes in Figure 8A by the factor b ∈ {0.2, 0.25, 0.5, 1, 2, 4}. Again,
the performance figures were in qualitative agreement with the
previous results for the smaller network and smaller MPI pool

sizes. The population creation times and simulation times with
and without signal predictions displayed strong scaling with
relative network size. The time spent loading parameters was
increased by a small amount (by a factor . 2), which likely
reflected the increased strain on the file and communication
system on the cluster, due to larger MPI pool sizes. The times
spent creating the populations were also here near ideally
dependent on NMPI in both Figures 8B,C. As the total number
of connections (and synapses) were conserved across network
population sizes in Figure 8B, the connection times varied
only by a factor two from the smallest to the largest network.
In Figure 8C, where the number of connections per neuron
was kept approximately constant, a doubling in network size
resulted in a doubling in connection times. The larger network
simulations required approximately twice the amount of time,
compared to the smaller network simulations in Figure 7. In
Figure 8C, simulations with LFP predictions consistently failed
for the largest network size (b = 4), most likely due to lack
of available memory to create arrays for storing current dipole
moments and extracellular potentials with the increased count of
instantiated connections.

4. DISCUSSION

In the present paper we have presented LFPy 2.0, a majorly
revised version of the LFPy Python package with several added
features compared to its initial release (Lindén et al., 2014).

4.1. New Features in LFPy 2.0
The first version of LFPy only allowed for the computation
of electrical measurements from activity in single neurons or,
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FIGURE 8 | Parallel performance with networks in LFPy II. (A) Similar to Figure 7A, but with network population sizes upscaled by a factor 5, and a corresponding

increase in parallel job sizes. (B,C) Similar to Figures 7B,C, but with network population sizes and parallel job sizes increased by a factor 5.

by trivial parallellization, populations of neurons only receiving
feedforward synaptic input. LFPy 2.0 allows for simulations of
recurrently connected neurons as well, for example the types of
neuronal networks in cortex. Further, the first version of LFPy
was tailored to compute extracellular potentials (spikes, LFPs)
inside the brain. Here it was assumed that all active neurons were
embedded in an infinite homogeneous (i.e., same extracellular
conductivity everywhere) and isotropic (i.e., same extracellular
conductivity in all directions) volume conductor (section 2.2.1).
LFPy 2.0 includes several new features and measures of neural
activity:

• Stepwise discontinuities in the extracellular conductivity,
such as at the cortical surface, can be included by
means of the Method-of-Images (section 2.2.2) to compute
potentials immediately below or on the cortical surface (i.e.,
electrocorticographic recordings; ECoG). This approach can
also be applied in the computation of potentials recorded by
microelectrode arrays (MEAs) (Ness et al., 2015).

• Cylindrical anisotropic conductivity (section 2.2.3) can
be included in the computation of spikes and LFPs,
reflecting for example that in cortex and hippocampus the
conductivity might be larger in the depth direction (along
the apical pyramidal-neuron dendrites) than in the lateral
directions (Goto et al., 2010).

• Current dipole moments from single neurons and populations
of neurons are computed (section 2.3.1) for later use in
calculation of signals of systems-level electrical and magnetic
recordings (EEG, ECoG, MEG), also for more detailed head
models than what is considered presently in LFPy 2.0 (as
described in next two items).

• Electrical potentials at the scalp (electroencephalographic
recordings; EEG) are computed from the current dipole
moments and spherical head models, in particular the four-
sphere head model (Nunez and Srinivasan, 2006; Næss et al.,
2017), cf. section 2.3.3. This four-sphere head also predicts
ECoG signals (section 2.3.4).

• Magnetic fields outside the head (magnetoencephalographic
recordings; MEG) can be computed from the current dipole
moments assuming a spherically symmetric head model
(section 2.3.5). Likewise, magnetic field inside the brain can be
computed directly from neuronal axial currents (section 2.4).

LFPy 2.0 also includes much more rigorous code testing
with more than 270 unit tests, automated build testing with
TravisCI (travis-ci.org/LFPy/LFPy) with different versions of
Python (2.7, 3.4-3.6), test coverage of code using coveralls
(coveralls.io/github/LFPy/LFPy), automated documentation
builds using Read the Docs (lfpy.readthedocs.io), and several
updated example files, as well as new examples demonstrating
different scientific cases using the new functionalities. The
software runs on a wide variety of operating systems, including
Linux, Mac OS and Windows.

4.2. Example Applications
To illustrate some of the new measurement modalities
incorporated in LFPy 2.0 we showed in Figure 2 the LFP
and EEG signature of a simple pyramidal-like neuron receiving
a single excitatory synaptic input on its apical dendrite. In
this example the extracellular medium was assumed to be
homogeneous, and a characteristic dipolar profile was observed
in the extracellular potential (Figure 2B). The accuracy of
the far-field electrical dipole approximation (Equation 15) for
distances of a few millimeters or more away from the neuronal
source, was also demonstrated. The corresponding magnetic
field set up by the neuron (Figure 2C) was quite distinct from the
electric potential pattern, but also here far-field magnetic dipole
approximation (Equation 16) was observed to be accurate some
distance away.

To illustrate the implementation of networks in LFPy 2.0
we show in section A2 (Appendix) a code example for a small
network using simplified ball-and-stick neurons connected by
conductance-based synapses. Our main example applications
were on a network of about 5,500 morphologically and
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biophysically detailed neuron models from the reconstructed
somatosensory cortex column of Markram et al. (2015),
connected using probabilistic synapse models with short-term
plasticity. For this example, Figure 5 provided results for a one-
second epoch of network activity where spikes (Figures 5A,B),
LFPs inside the cortical model column (Figure 5C), the ECoG
signal recorded at cortical surface ( Figure 5D), and the
net current dipole moment (Figure 5E) were depicted. The
computed current dipole moment was further used to compute
the corresponding EEG signal with the four-sphere head model
for the situation where the model network was placed on top
of a cortical gyrus where the apical dendrites of the pyramidal
neurons, and thus the current dipole moment, is pointing
in the radial direction (Figure 5G). The same current dipole
moment was also used to compute the MEG signal, assuming a
spherically-symmetric head volume-conductor model, both for
the case when the net current dipole is directed perpendicular
(Figure 5H) and parallel (Figure 5I) to the scalp. The latter
situation could correspond to the case where the model network
is positioned in a cortical sulcus.

While the example network was set up mainly to demonstrate
the new features in LFPy 2.0, some of the example results
are notable. As expected the two excitatory pyramidal cell
populations in the network provided almost all of the recorded
LFP signal (except in the deep layers where the layer-5 inhibitory
Martinotti-cell population also gave a sizable contribution),
cf. Figure 6E. Likewise, the two excitatory pyramidal cell
populations also gave the dominant contributions to the net
current dipole moment providing the EEG and MEG signals
(Figure 6J).

For the present example network comprising about 5000
pyramidal neurons, we observed the maximummagnitude of the
EEG signal to be about 0.1 µV (Figure 5G), that is, about two
orders of magnitude smaller than the typical size of measured
EEG signals of∼10µV (Nunez and Srinivasan, 2006, Figure 1.1).
Thus our example model network appears too small, that is,
it incorporates too few pyramidal neurons, to account for the
typical experimentally recorded EEG signal amplitudes.

The maximummagnetic field computed at the cortical surface
was seen in Figures 5H,I to be about 100 fT, that is, similar in
magnitude to typical magnetic fields measured by MEG sensors
in a human setting (∼50–500 fT, Hämäläinen et al., 1993).
However, our model predictions assumed the minimum distance
between the current dipoles and the magnetic-field recording
device to be only about a centimeter, likely much smaller than
the typical minimal distance between the dominant tangential
dipoles in cortical sulci and the human MEG sensors. Since the
magnetic field around a current dipole decays as the square of
the distance, our modeling likely substantially overestimates the
magnetic field that would produced by the computed current
dipoles in a human setting.

4.3. Use of LFPy
4.3.1. Comparison of Candidate Models With

Experiments
An obvious application of LFPy is, following the tradition of
physics, to (i) compute predictions of the various available

measures of neural activity from different candidate models
and (ii) identify which model, or which class of models, is in
best agreement with the experimental data. While not always
possible, the approach is preferably pursued on multimodal data
measured simultaneously (for example simultaneous recordings
of spikes, LFP and ECoG). The multi-objective comparison of
experimental data with candidate models is a subject on its own,
and will not be discussed here (but see, for example, Druckmann
et al., 2007).

4.3.2. Validation of Data Analysis Methods
Neuroscience relies on data analysis, and data analysis methods
should be validated (Denker et al., 2012). An important
application of LFPy could be to provide model-based ground-
truth benchmarking data for such validation. This approach has
already been used with biophysically detailed neuron models
to test methods for spike sorting (Einevoll et al., 2012; Hagen
et al., 2015; Lee et al., 2017), neuron classification (Buccino
et al., 2017), estimation of firing rates from multi-unit activity
(MUA) (Pettersen et al., 2008), current-source density (CSD)
analysis (Pettersen et al., 2008; Łęski et al., 2011; Ness et al.,
2015), independent component analysis (ICA) (Głąbska et al.,
2014) and laminar population analysis (LPA) (Głąbska et al.,
2016). Other analysis methods to consider are for example EEG
and MEG source localization methods, for example as provided
by open-source projects like MNE (martinos.org/mne, Gramfort
et al., 2013, 2014), BrainStorm (neuroimage.usc.edu/brainstorm,
Tadel et al., 2011), EEGLAB (sccn.ucsd.edu/eeglab, Delorme
and Makeig, 2004), Fieldtrip (fieldtriptoolbox.org, Oostenveld
et al., 2011), nutmeg (nutmeg.berkeley.edu/, Dalal et al., 2004)
and SPM (fil.ion.ucl.ac.uk/spm) where LFPy 2.0 can be used to
generate benchmarking data with known “ground truth.”

Likewise, LFPy could be used to aid in the interpretation
of various statistical measures of electrophysiological activity
such as spike-triggered LFP or mutual information (Einevoll
et al., 2013). The interpretation of these measures in terms of
the underlying neural network activity is a priori not trivial,
but intuition and understanding can be gained by LFPy model
investigations where simulation results can be compared with
neural activity directly. An example of this was given in Hagen
et al. (2016). There the spike-triggered LFP as measured in the
model simulation was compared with other ways of accounting
for spike-LFP relationships with a simpler physical explanation,
that is, the LFP signature following activation of a presynaptic
neural population.

It should be noted that the LFPy network model does not
necessarily have to be finely tuned to a particular experimental
system in order for it to be suitable for validation of data analysis
methods: Methods claimed to have fairly general applicability
should also be applicable to biologically plausible example
network models.

4.3.3. Testing of Simplified Modeling Schemes
LFPy now allows for the concurrent simulation of intracellular
(membrane potential) and extracellular signals (spikes, MUA,
LFP, EEG, MEG) for recurrent networks of biophysically
and morphologically detailed neuron models. Such network
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models are computationally demanding to run (Markram et al.,
2015), in particular when extracellular signals are computed
simultaneously (Reimann et al., 2013). A computationally less
demanding alternative is a hybrid LFP scheme where the network
dynamics, that is, spikes, are modeled with simple point-neuron
models such as the integrate-and fire model, and the stored
spikes are played back in a second computational step computing
the extracellular potentials using multicompartment neuron
models (Mazzoni et al., 2015; Hagen et al., 2016).

This scheme requires that salient features of spiking activity
of networks of detailed multicompartment neuron models
can be accurately captured by point-neuron network models.
This was for example demonstrated by Rössert et al. (2016)
who reproduced key network behaviour of a reconstructed
somatosensory column (Markram et al., 2015) by systematic
mapping of synaptic input to somatic responses in generalized
leaky integrate-and-fire neurons. Likewise, the accuracy of the
second step in the hybrid scheme where the extracellular
potential is computed, can be systematically tested by comparing
resulting predicted extracellular potential with the ground-
truth potentials provided by LFPy. The same approach can
also be applied to test other simplified schemes for computing
extracellular signals.

4.4. Possible Refinements of Measurement
Models in LFPy
4.4.1. Frequency-Dependence of Extracellular

Conductivity
The present forward-modeling schemes for electrical potentials
assume the extracellular conductivities σe to be independent
of frequency. If such a frequency dependence is found and
described, it can in principle be straightforwardly incorporated
by considering each frequency (Fourier) component of recorded
signal independently. This was, for example, pursued in
Miceli et al. (2017) where each frequency component of
the spikes and LFP signals were computed independently
(i.e., each frequency component had a specific value of σe
and a corresponding phase shift required by the Kramers-
Kronig relations to preserve causality) and eventually
summed to provide the full electric potential. However,
on balance the experimental evidence points to at most a
weak frequency dependence of σe with only minor putative
effects on the recorded spikes and LFPs (Miceli et al.,
2017). Therefore, the present approximation in LFPy 2.0
to assume a frequency-independent conductivity σe, seems
warranted.

4.4.2. Modeling of ECoG Signals
LFPy 2.0 provides two different methods for computing ECoG
signals, that is, signals at the cortical surface: the method-
of-images (MoI) section 2.2.2 and the four-sphere model
section 2.3.4 which both have their pros and cons. The
MoI method assumes a planar cortical interface and that
the media above this interface can be described electrically
by means of a single isotropic electrical conductivity. The
four-sphere model assumes a spherical cortical surface and
uses the far-field dipole approximation which requires the

dipolar sources to be sufficiently far away from the recording
contacts. With the present use of current dipole moments
representing entire neuron populations, this approximation
is challenged by the relatively short distance between in
particular the most superficial populations and the cortical
surface (Næss, 2015). A future project is to systematically
explore the accuracy of these two methods for ECoG modeling,
for example by comparing their predictions for different
situations.

The present forward modeling of electrical potentials are
based on stylized spatial (planar/spherical geometries, step-
wise varying conductivities) and directional (isotropy/cylindrical
anisotropy) variations. More complicated models for the
variation of the extracellular conductivity can be accounted
for by means of finite-element modeling (FEM, Logg et al.,
2012; Lempka and McIntyre, 2013; Ness et al., 2015; Næss
et al., 2017) for which the “lead field,” that is, the contribution
from transmembrane currents or dipole moments to electric
signals, always can be computed (Malmivuo and Plonsey,
1995). FEM could, for example, be used to explore in detail
how the recording device affects the recorded ECoG signal
when a grid of ECoG contacts are embedded in an insulating
material (see for example, Castagnola et al. (2014)), in analogy
to the study of multielectrode arrays (MEAs) in Ness et al.
(2015).

4.4.3. More Complicated Head Models
The current dipole moments computed by LFPy can also be
used to compute EEG and MEG signals based on geometrically
detailed head models measured by MRI (Bangera et al., 2010;
DeMunck et al., 2012; Vorwerk et al., 2014; Huang et al., 2016).
Note, however, that geometrically detailed head models do not
automatically transfer to electrically detailed head models, and
it is thus not always clear how much accuracy is gained by
using such models rather than the simpler head models currently
implemented in LFPy (see discussion in Nunez and Srinivasan,
2006, Ch. 6).

4.5. Possible Improvements of LFPy Code
While we here demonstrated a relatively strong scaling of parallel
network implementations in LFPy, the code itself could be
further optimized for improving overall simulation speeds and
reduced memory consumption allowing for larger networks for
any given MPI pool size.

One common way of improving efficiency of Python
applications is rewriting “slow” code to use Cython (C-extensions
for Python, cython.org, Smith, 2015). The current LFPy version
uses Cython to a limited extent, but remaining code bottlenecks
could be identified and addressed accordingly. One potential
problem with efficient porting of parts of LFPy’s Python code to
Cython is repeated calls to NEURON’s Python interface, which
from a performance point of view should be avoided.

One known bottleneck with parallel implementations of
multicompartment neuron networks is uneven load balance,
resulting from the fact that individual neurons with very uneven
numbers of compartments may be assigned to the different MPI
processes. Uneven load balance could potentially be addressed
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by incorporating the multi-split method described in Hines et al.
(2008), as it appears compatible with the presently used CVode.
use_fast_imem() method (available since NEURON v7.4).
LFPy could then be updated accordingly.

Even without the NEURON multi-split method, distribution
of cells among MPI processes using a round-robin scheme
could, however, be optimized to level out large differences
in compartment counts (and corresponding numbers of state
variables). Memory consumption could also be addressed by
choosing more efficient memory structures or generators, for
example, for connectivity management, and by avoiding in-
memory storage of output data wherever possible. File-based I/O
operations during ongoing simulations may, however, come at
the expense of increased simulation times.

In terms of improved support for simulator-independent
(agnostic) model description languages for neuronal models such
as NeuroML (Gleeson et al., 2010; Cannon et al., 2014) or
NESTML (Plotnikov et al., 2016), LFPy’s TemplateCell and
NetworkCell classes already now support loading of active
and passive single-neuron model files translated to NEURON’s
HOC and NMODL languages from NeuroML and NeuroML2
(now in development). A growing number of such single-neuron
models is becoming available through, for example the Open
Source Brain initiative (opensourcebrain.org), which can readily
be used in order to construct new network models. While
certainly doable, LFPy is at present not set up for automatic
loading of entire neuron networks specified in NeuroML. Also,
single-cell and network models specified using LFPy could,
in principle, be possible to translate into NeuroML as well,
which would allow for executing such models using for example
NetPyne (netpyne.org) or LEMS (Cannon et al., 2014).

4.6. Other Measurement Modalities in LFPy
The present version of LFPy only models recording of electric
and magnetic brain signals. Optical recording methods are
now frequently used in neurophysiology, however, and forward-
modeling of such signals would be a natural extension of the
present functionality. In voltage-sensitive dye imaging (VSDi),
the recorded signals reflects a weighted average of the membrane
potentials, and such averages can be readily computed since the
membrane voltages in all neuronal compartments are computed
during a network simulation simulation (Chemla and Chavane,
2010a,b). This must then be combined with proper forward-
modeling of the propagation of the light through the brain
tissue (Tian et al., 2011; Abdellah et al., 2015, 2017).

Calcium imaging has become a wide-spread method for
measuring neural dynamics (Grienberger and Konnerth, 2012).
With the use of neuron models that explicitly includes dynamic
modelling of the intracellular calcium concentrations (for
example, Hay et al., 2011; Almog and Korngreen, 2014) such
signals could be directly modeled as well.

4.7. Alternatives to LFPy
For the purpose of computing extracellular potentials under
the assumption of homogeneous extracellular conductivity
and networks of multicompartment neuron models, some
alternatives to LFPy 2.0 exist. Genesis (genesis-sim.org,

Bower and Beeman, 1998) incorporates the simple point-
source formalism (Equation 4), while the MATLAB
tool Vertex (vertexsimulator.org, Tomsett et al., 2015)
allows for computing extracellular potentials but not for
multicompartment neuron models with arbitrary levels of
detail. The MOOSE simulator (https://moose.ncbs.res.in,
Ray and Bhalla, 2008) do not appear to natively incorporate
electrostatic forward models. An extension to NEURON
named LFPsim (github.com/compneuro/LFPsim, Parasuram
et al., 2016) supports single neurons and networks but
relies on the NEURON GUI. This may allow for simple
evaluation of LFPs generated by small networks, but
hampers application to large-scale networks running in
parallel.

The Python and NEURON based tools NetPyne (netpyne.org)
and BioNet (github.com/AllenInstitute/bmtk, Gratiy et al.
(2018)), part of the Allen Brain Institute’s Brain Modeling
Toolkit, do, however, support biophysically detailed networks
of neurons running in parallel with predictions of extracellular
potentials, but presently without the wider range of electric and
magnetic forward models now provided in LFPy 2.0. Similar
to LFPy 2.0, high-level functionality to specify networks are
provided to simplify the generation of networks.

Finally, the recent ‘Human Neocortical Neurosolver’
(hnn.brown.edu) can compute LFP, MEG and EEG signals,
but has a focus on signals generated by specific generic
cortical network topologies, namely using neurons with
few compartments organized in two “cortical layers” 2/3
and 5. In contrast, LFPy 2.0 supports defining networks
with an arbitrary number of layers and biophysical
detail.

4.8. Outlook
While information in the brain might largely be represented
by spike trains, we believe that tools such as LFPy will be
instrumental in testing candidate network models aiming to
account for this information processing. In the foreseeable future,
experimental data against which candidate models can be tested
will be a limiting factor. It is thus key that such candidate
models can be tested not only against spike trains, but also other
measurement modalities.

This updated version of LFPy makes a major step toward
being a true multi-scale simulator of neural circuits, allowing
for flexible incorporation of highly detailed neuron models at
the micrometer scale, yet able to also predict recorded signals
such as EEG and MEG at the systems-level scale. The largest
network considered here had 57,600 neurons. With the present
code, not optimized for numerical efficiency, the simulation of
1.5 s of biological time on this network required about 1,600
CPU hours across 2,400 MPI processes. With optimized code,
we expect that much larger networks can soon be addressed
routinely as ever more powerful computers gradually become
available. The software is also publicly available on GitHub and
retains the open-source software license of its initial release, and
our hope is that continued development remains driven by needs
and contributions of individuals and groups of researchers.
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Głąbska, H., Potworowski, J., Łȩski, S., and Wójcik, D. K. (2014). Independent
components of neural activity carry information on individual populations.
PLoS ONE 9:e105071. doi: 10.1371/journal.pone.0105071
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Łęski, S., Pettersen, K. H., Tunstall, B., Einevoll, G. T., Gigg, J., and Wójcik, D.
(2011). Inverse current source density method in two dimensions: inferring
neural activation frommultielectrode recordings.Neuroinformatics 9, 401–425.
doi: 10.1007/s12021-011-9111-4

Li, C. L., and Jasper, H. (1953). Microelectrode studies of the electrical
activity of the cerebral cortex in the cat. J. Physiol. 121, 117–140.
doi: 10.1113/jphysiol.1953.sp004935

Lindén, H., Hagen, E., Łeski, S., Norheim, E. S., Pettersen, K. H., and Einevoll,
G. T. (2014). LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front. Neuroinformatics 7:41.
doi: 10.3389/fninf.2013.00041

Lindén, H., Pettersen, K. H., and Einevoll, G. T. (2010). Intrinsic dendritic filtering
gives low-pass power spectra of local field potentials. J. Comput. Neurosci. 29,
423–444. doi: 10.1007/s10827-010-0245-4

Lindén, H., Tetzlaff, T., Potjans, T. C., Pettersen, K. H., Grün, S., Diesmann,
M., et al. (2011). Modeling the spatial reach of the lfp. Neuron 72, 859–872.
doi: 10.1016/j.neuron.2011.11.006

Logg, A., Mardal, K.-A., and Wells, G. (2012). Automated Solution of Differential

Equations by the Finite Element Method: The FEniCS Book, Vol. 84. Berlin;
Heidelberg: Springer Science & Business Media.

Luo, J., Macias, S., Ness, T. V., Einevoll, G. T., Zhang, K., Moss, C. F. (2018). Neural
timing of stimulus events with microsecond precision. PLoS Biol. 16:e2006422.
doi: 10.1371/journal.pbio.2006422

Maier, A., Adams, G. K., Aura, C., and Leopold, D. A. (2010). Distinct superficial
and deep laminar domains of activity in the visual cortex during rest and
stimulation. Front. Syst. Neurosci. 4:31. doi: 10.3389/fnsys.2010.00031

Makarova, J., Ibarz, J. M., Makarov, V. A., Benito, N., and Herreras, O. (2011).
Parallel readout of pathway-specific inputs to laminated brain structures. Front.
Syst. Neurosci. 5:77. doi: 10.3389/fnsys.2011.00077

Malmivuo, J., and Plonsey, R. (1995). Bioelectromagnetism. Oxford, UK: Oxford
University Press.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., andWu,
C. (2004). Interneurons of the neocortical inhibitory system.Nat. Rev. Neurosci.
5, 793–807.

Martín-Vázquez, G., Benito, N., Makarov, V. A., Herreras, O., and Makarova, J.
(2015). Diversity of LFPs activated in different target regions by a common CA3
input. Cereb. Cortex 26, 4082—4100.

Martín-Vázquez, G., Makarova, J., Makarov, V. A., and Herreras, O. (2013).
Determining the true polarity and amplitude of synaptic currents
underlying gamma oscillations of local field potentials. PLoS ONE 8:e75499.
doi: 10.1371/journal.pone.0075499

Mazzoni, A., Lindén, H., Cuntz, H., Lansner, A., Panzeri, S., and
Einevoll, G. T. (2015). Computing the local field potential (lfp) from
integrate-and-fire network models. PLoS Comput. Biol. 11:e1004584.
doi: 10.1371/journal.pcbi.1004584

McColgan, T., Liu, J., Kuokkanen, P. T., Carr, C. E., Hermann, W., and Kempter,
R. (2017). Dipolar extracellular potentials generated by axonal projections. eLife
6:109918. doi: 10.7554/eLife.26106

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore,
M., et al. (2017). Twenty years of ModelDB and beyond: building essential
modeling tools for the future of neuroscience. J. Comput. Neurosci. 42, 1–10.
doi: 10.1007/s10827-016-0623-7

McIntyre, C. C., and Grill, W. M. (2001). Finite element analysis of the current-
density and electric field generated by metal microelectrodes. Ann. Biomed.

Eng. 29, 227–235. doi: 10.1114/1.1352640

Miceli, S., Ness, T. V., Einevoll, G. T., and Schubert, D. (2017).
Impedance spectrum in cortical tissue: implications for propagation
of LFP signals on the microscopic level. eNeuro 4:ENEURO.0291–16.
doi: 10.1523/ENEURO.0291-16.2016

Næss, S. (2015). Biophysical Modeling of EEG Signals From Neurons in the Brain.
Master’s thesis, Norwegian University of Life Science, Ås.

Næss, S., Chintaluri, H. C., Ness, T. V., Dale, A. M., Einevoll, G. T., and Wójcik,
D. K. (2017). Corrected four-sphere head model for EEG signals. Front. Hum.

Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490
Nelson, M. J., and Pouget, P. (2010). Do electrode properties create a problem in

interpreting local field potential recordings? J. Neurophysiol. 103, 2315–2317.
doi: 10.1152/jn.00157.2010

Nelson,M. J., Pouget, P., Nilsen, E. A., Patten, C. D., and Schall, J. D. (2008). Review
of signal distortion through metal microelectrode recording circuits and filters.
J. Neurosci. Methods 169, 141–157. doi: 10.1016/j.jneumeth.2007.12.010

Ness, T. V., Chintaluri, C., Potworowski, J., Łȩski, S., Głąbska, H., Wójcik,
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APPENDIX

A1. Algorithms

Algorithm 1 Axial current calculations in LFPy 2.0

1: children = dict. of child indices n of each parent section sec
2: connections = dict. of relative location χ ∈ [0, 1] where children connect onto parent section
3: Ri = list of axial resistances of child segments to corresponding parent nodes
4: Vm = list of membrane potentials at midpoints of each segment
5: Initialize length 2(nseg − 1) lists Ia, d and r indexed bym ∈ {0, 1, . . . , 2(nseg − 1)− 1}
6: set current and segment indicesm = n = 0
7: set root_sec = True

8: for sec in neuron morphology do
9: if sec has parent section then

10: set parent segment index f from children and connections
11: set init_seg = True and root_sec = False

12: if count(children[sec])>1 then

13: set branch = True

14: set χ =connections[sec]

15: for seg in sec do

16: if root_sec then

17: set n = 1 and f = 0
18: set init_seg = False and root_sec = False

19: continue

20: set Ri
fn
= Ri[n]

21: set Vm
f

= Vm[f ]
22: set Vm

n = Vm[n]
23: if not init_seg or 0 < χ < 1 then
24: compute Ia[m] = (Vm

f
− Vm

n )/Ri
fn

(see Figure 3B,C,E)
25: else

26: set Rin = Ri[n] (axial resistance from mid to start point of segment n)
27: set Ri

f
(axial resistance from end to mid point of parent segment f )

28: if not branch then

29: compute Ia[m] = (Vm
f
− Vm

n )/(Ri
f
+ Rin) (see Figure 3D)

30: else

31: compute branch point potential

Vm
× =

∑

h V
m
h

/Ri
h

∑

h 1/R
i
h

for h ∈ {f , n1, n2, . . . nchildren}

32: compute Ia[m] = (Vm
× − Vm

n )/Rin (see Figure 3F)

33: set Ia[m+ 1] = Ia[m]
34: compute d[m] by subtracting the midpoint of f from the start point of n
35: compute d[m+ 1] by subtracting the start point of n from the midpoint of n
36: compute r[m] by subtracting 0.5 · d[m] from the start point of n
37: compute r[m+ 1] by subtracting 0.5 · d[m+ 1] from the midpoint of n
38: set f = n, n = n+ 1 andm = m+ 2
39: set branch = False and init_seg = False

A2. New Classes and Network Use-Case Implementation
The first release of LFPy described in Lindén et al. (2014) included a set of Python class definitions for instantiating single-cell
models (Cell, TemplateCell) and corresponding instrumentation of the models with synapse point processes attached to the
cell (Synapse), patch-clamp electrodes (StimIntElectrode) and extracellular recording electrodes (RecExtElectrode).
Simulations with multiple simultaneous cell-object instances were at the time not supported. Class TemplateCell supported the
use of template specifications, a requirement for networks in NEURON, but was primarily written to support source codes of ‘network-
ready’ single-cell models such as the Hay et al. (2011) models of layer-5 pyramidal neurons available from, for example, ModelDB
(senselab.med.yale.edu/modeldb, McDougal et al. (2017)).
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The “one cell at a time” approachmay seem limited, in particular when considering ongoing network interactions, but knowing that
forward-modeling of extracellular potentials can be decoupled from the network simulation, users could always set up simulations of
each individual cell, play back synapse activation times as occurring in the connected network, and sum up the single-cell contributions
to the extracellular potential. Thus, the calculation of extracellular potentials can even be dealt with in an “embarrassingly” parallel
manner (Foster, 2007; Hagen et al., 2016). These simplifying steps are not possible if the extracellular potential itself affects the cellular
dynamics, that is, if mutual interactions between cellular compartments belonging to the same or different cells occur through the
extracellular potential, so-called ephaptic interactions (Anastassiou et al., 2011; Goldwyn and Rinzel, 2016; Tveito et al., 2017).

For the present LFPy 2.0 release, we added support for simulations of recurrently connected multicompartment models with
concurrent calculations of extracellular potentials and current dipole moments. As described above, the current dipole moment is
used for predictions of distal electric potentials (for example scalp surface potentials as in EEG measurements) and magnetic fields
(as in MEG measurements). For our example use case, we considered a recurrent network of four populations of multicompartment
neuron models. We added a new set of generic class definitions in LFPy to represent the network, its populations and neurons, as well
as classes representing different volume-conductor models and measurement modalities as summarized next.

Cells: Each individual neuron in an LFPy network exists as an instantiation of class NetworkCell. As this class definition uses
class inheritance from the old TemplateCell and in turn Cell classes, it retains all common methods and attributes from its
parent classes. The NetworkCell can therefore be instantiated in a similar manner as its parent class (plotted output not shown):

#!/usr/bin/env python

"""example_network_cell.py"""

# import modules:

from matplotlib.pyplot import subplot, plot

from LFPy import NetworkCell, StimIntElectrode

# class NetworkCell parameters:

cellParameters = dict(

morphology='BallAndStick.hoc',

templatefile='BallAndStickTemplate.hoc',

templatename='BallAndStickTemplate',

templateargs=None,

v_init=-65.

)

# create cell:

cell = NetworkCell(

tstart=0., tstop=100.,

**cellParameters

)

# create stimulus device:

iclamp = StimIntElectrode(

cell=cell,

idx=0,

pptype='IClamp',

amp=0.5,

dur=80.,

delay=10.,

record_current=True

)

# run simulation:

cell.simulate()

# plot cell response:

subplot(2, 1, 1)

plot(cell.tvec, iclamp.i)

subplot(2, 1, 2)

plot(cell.tvec, cell.somav)

The morphology and template files referred to above are defined in NEURON “hoc” language files. A “ball and stick” style morphology
file with active soma (Hodgkin & Huxley Na+, K+ and leak channels) and passive dendrite sections and corresponding template file
was written as:

/* -------------------------------

BallAndStick.hoc

------------------------------- */

// Create sections:

create soma[1]

create apic[1]
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// Add 3D information:

soma[0] {

pt3dadd(0, 0, -15, 30)

pt3dadd(0, 0, 15, 30)

}

apic[0] {

pt3dadd(0, 0, 15, 3)

pt3dadd(0, 0, 1015, 3)

}

// Connect section end points:

connect apic[0](0), soma[0](1)

// Set biophysical parameters:

forall {

Ra = 100.

cm = 1.

all.append()

}

soma { insert hh }

apic {

insert pas

g_pas = 0.0002

e_pas = -65.

}

/* ---------------------------- */

and

/* -------------------------------

BallAndStickTemplate.hoc

------------------------------- */

begintemplate BallAndStickTemplate

public init, soma, apic

public all

objref all

proc init() {

all = new SectionList()

}

create soma[1], apic[1]

endtemplate BallAndStickTemplate

/* ---------------------------- */

In contrast to class TemplateCell, class NetworkCell has built-in methods to detect somatic action potentials and set-ups of
synapses being activated by such threshold crossings in other cells.

Network populations: One step up in the hierarchy, class NetworkPopulation represents a size NX population of
NetworkCell instantiations of one particular cell type (X) in the network. The class can be used directly as (print output not
shown):

#!/usr/bin/env python

"""example_network_population.py"""

# import modules

from mpi4py.MPI import COMM_WORLD as COMM

from LFPy import NetworkPopulation, NetworkCell

# class NetworkCell parameters:

cellParameters = dict(

morphology='BallAndStick.hoc',

templatefile='BallAndStickTemplate.hoc',

templatename='BallAndStickTemplate',

templateargs=None,

delete_sections=False,

)

# class NetworkPopulation parameters:

populationParameters = dict(

Cell=NetworkCell,

cell_args=cellParameters,
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pop_args=dict(

radius=100.,

loc=0.,

scale=20.),

rotation_args=dict(x=0., y=0.),

)

# create population:

population = NetworkPopulation(

first_gid=0, name='E',

**populationParameters

)

# print out some info:

for cell in population.cells:

print('RANK {}; pop {}; gid {}; cell {}'.format(

COMM.Get_rank(), population.name,

cell.gid, cell))

Direct instantiation of class NetworkPopulation, however, is of limited use as it does not provide any means of simulation
control by itself, and has only one built-in method to draw and set random cell-body positions within a chosen radius
(pop_args[’radius’]) and depth from the normal distribution N (u, σu). In the code example above, pop_args[’loc’]
refers to expected mean depth u and pop_args[’scale’] to the corresponding standard deviation σu. A random cell rotation
around its own vertical z-axis is applied by default. The integer cell.gid value accessed above is a unique global identifier gid of
each cell in the network, and is assigned in running order from the number first_gid. For parallel execution using MPI, cells will
be distributed among threads according to the round-robin rule if the condition gid%NMPI == k is True, where % denotes a division
modulus operation, NMPI the MPI pool size and k ∈ [0, 1, ...,NMPI − 1] the corresponding rank number.

Networks: The new network functionality is provided through class Network. An instantiation of the class sets attributes for the
default destination of file output, temporal duration t and resolution dt of the simulation, a chosen initial voltage Vm

init and global
temperature control Tcelsius (which affects channel dynamics). Furthermore, the class instance provides built-in methods to create

any number of NX-sized populations X. Different built-in class methods create random connectivity matrices C(r)
XY (per rank, see

Connectivity Model in section Section 2.5) between any presynaptic population X and postsynaptic population Y , and connect X and
Y using an integer number of synapses per connection nsyn drawn from the capped normal distributionN (nsyn, σ

syn
n )H(n) whereH(·)

denotes the Heaviside step function. Similarly, synaptic conductances gsyn are drawn from the distribution N (gsyn, σ
syn
g )H(g − gmin)

(where gmin denotes minimum synaptic conductance) with connection delays δsyn fromN (δ
syn

, σ
syn
δ

)H(δ− δmin) (where δmin denotes
the minimum delay in the network). The network class handles the synapse model in NEURON and corresponding parameters (time
constants, reversal potentials, putative synapse locations etc.), and finally provides a simulation control procedure. The simulation
control allows for concurrent calculation of network activity and prediction of extracellular potentials as well as the current dipole
moment.

In order to set up a complete network simulation we may choose to define NetworkCell and
NetworkPopulation parameters as above, and define parameter dictionaries for our instances of Network and extracellular
measurement device RecExtElectrode:

#!/usr/bin/env python

"""example_network.py"""

# import modules

import numpy as np

import scipy.stats as st

from mpi4py import MPI

from LFPy import NetworkCell, Network

import neuron

# relative path for simulation output:

OUTPUTPATH = 'example_network_output'

# class NetworkCell parameters:

cellParameters = dict(**cellParameters)

# class NetworkPopulation parameters:

populationParameters = dict(**populationParameters)

# class Network parameters:

networkParameters = dict(

dt=2**-4,

tstop=1200.,

v_init=-65.,

celsius=6.5,

OUTPUTPATH=OUTPUTPATH
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)

# class RecExtElectrode parameters:

electrodeParameters = dict(

x=np.zeros(13),

y=np.zeros(13),

z=np.linspace(1000., -200., 13),

N=np.array([[0., 1., 0.] for _ in range(13)]),

r=5.,

n=50,

sigma=0.3,

method="soma_as_point"

)

# method Network.simulate() parameters:

networkSimulationArguments = dict(

rec_current_dipole_moment=True,

rec_pop_contributions=True,

)

Furthermore, we define population names (X) and corresponding sizes (NX), as well as one overall connection probability (CYX):

# population names, sizez and connection probability:

population_names = ['E', 'I']

population_sizes = [80, 20]

connectionProbability = [[0.05, 0.05], [0.05, 0.05]]

Then, we may chose to define the synapse model and corresponding parameters (here using NEURON’s built-in two-exponential
model Exp2Syn) for synapse conductances (weight), delays and synapses per connection (multapses), as well as layer-specificities of
connections (LYXL, see Hagen et al., 2016 and below):

# synapse model. All corresponding parameters for weights,

# connection delays, multapses and layerwise positions are

# set up as shape (2, 2) nested lists for each possible

# connection on the form:

# [["E:E", "E:I"],

# ["I:E", "I:I"]].

synapseModel = neuron.h.Exp2Syn

# synapse parameters

synapseParameters = [[dict(tau1=0.2, tau2=1.8, e=0.),

dict(tau1=0.2, tau2=1.8, e=0.)],

[dict(tau1=0.1, tau2=9.0, e=-80.),

dict(tau1=0.1, tau2=9.0, e=-80.)]]

# synapse max. conductance (function, mean, st.dev., min.):

weightFunction = np.random.normal

weightArguments = [[dict(loc=0.002, scale=0.0002),

dict(loc=0.002, scale=0.0002)],

[dict(loc=0.01, scale=0.001),

dict(loc=0.01, scale=0.001)]]

minweight = 0.

# conduction delay (function, mean, st.dev., min.):

delayFunction = np.random.normal

delayArguments = [[dict(loc=1.5, scale=0.3),

dict(loc=1.5, scale=0.3)],

[dict(loc=1.5, scale=0.3),

dict(loc=1.5, scale=0.3)]]

mindelay = 0.3

multapseFunction = np.random.normal

multapseArguments = [[dict(loc=2., scale=.5), dict(loc=2., scale=.5)],

[dict(loc=5., scale=1.), dict(loc=5., scale=1.)]]

# method NetworkCell.get_rand_idx_area_and_distribution_norm

# parameters for layerwise synapse positions:

synapsePositionArguments = [[dict(section=['soma', 'apic'],

fun=[st.norm, st.norm],

funargs=[dict(loc=500., scale=100.),

dict(loc=500., scale=100.)],

funweights=[0.5, 1.]

) for _ in range(2)],

[dict(section=['soma', 'apic'],
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fun=[st.norm, st.norm],

funargs=[dict(loc=0., scale=100.),

dict(loc=0., scale=100.)],

funweights=[1., 0.5]

) for _ in range(2)]]

Note that we above relied on Python list-comprehension tricks for compactness. Having defined all parameters, one can then create
the network, populations, stimulus, connections, recording devices, run the simulation and collect simulation output:

if __name__ == '__main__':

####################################################################

# Main simulation

####################################################################

# create directory for output:

if not os.path.isdir(OUTPUTPATH):

if RANK == 0:

os.mkdir(OUTPUTPATH)

COMM.Barrier()

# instantiate Network:

network = Network(**networkParameters)

# create E and I populations:

for name, size in zip(population_names, population_sizes):

network.create_population(name=name, POP_SIZE=size,

**populationParameters)

# create excitatpry background synaptic activity for each cell

# with Poisson statistics

for cell in network.populations[name].cells:

idx = cell.get_rand_idx_area_norm(section='allsec', nidx=64)

for i in idx:

syn = Synapse(cell=cell, idx=i, syntype='Exp2Syn',

weight=0.002,

**dict(tau1=0.2, tau2=1.8, e=0.))

syn.set_spike_times_w_netstim(interval=200.)

# create connectivity matrices and connect populations:

for i, pre in enumerate(population_names):

for j, post in enumerate(population_names):

# boolean connectivity matrix between pre- and

# post-synaptic neurons in each population

# (postsynaptic on this RANK)

connectivity = network.get_connectivity_rand(

pre=pre, post=post,

connprob=connectionProbability[i][j]

)

# connect network:

(conncount, syncount) = network.connect(

pre=pre, post=post,

connectivity=connectivity,

syntype=synapseModel,

synparams=synapseParameters[i][j],

weightfun=np.random.normal,

weightargs=weightArguments[i][j],

minweight=minweight,

delayfun=delayFunction,

delayargs=delayArguments[i][j],

mindelay=mindelay,

multapsefun=multapseFunction,

multapseargs=multapseArguments[i][j],

syn_pos_args=synapsePositionArguments[i][j],

)
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# set up extracellular recording device:

electrode = RecExtElectrode(**electrodeParameters)

# run simulation:

SPIKES, OUTPUT, DIPOLEMOMENT = network.simulate(

electrode=electrode,

**networkSimulationArguments

)

The argument SPIKES returned by the final network.simulate method call is a dictionary with keys gids and times, where
the corresponding values are lists of global neuron ID’s (gID) and numpy arrays with spike times of each respective unit in the network.
The returned OUTPUT and DIPOLEMOMENT arguments are numpy arrays with structured datatypes (sometimes referred to as record
arrays). The array OUTPUT[’imem’] is the total extracellular potential from all transmembrane currents in units of mV, the entries
’E’ and ’I’ contributions from the excitatory and inhibitory neuron populations, respectively. DIPOLEMOMENT similarly contains
the current dipole moment from populations ’E’ and ’I’, but not the sum as the current dipole moment of different populations
may, in principle, be freely positioned in different locations within a volume conductor. The computed current dipole moments
by themselves have no well defined positions in space and must explicitly be assigned a position by the user, unlike the individual
compartment positions used when computing the extracellular potential.

The corresponding LFPy 2.0 example files discussed throughout this section are:

• /examples/example_network/example_network_cell.py,
• /examples/example_network/example_network_population.py

• /examples/example_network/example_network.py.
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