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Histological brain slices are widely used in neuroscience to study the anatomical

organization of neural circuits. Systematic and accurate comparisons of anatomical data

from multiple brains, especially from different studies, can benefit tremendously from

registering histological slices onto a common reference atlas. Most existing methods

rely on an initial reconstruction of the volume before registering it to a reference atlas.

Because these slices are prone to distortions during the sectioning process and often

sectioned with non-standard angles, reconstruction is challenging and often inaccurate.

Here we describe a framework that maps each slice to its corresponding plane in the

Allen Mouse Brain Atlas (2015) to build a plane-wise mapping and then perform 2D

nonrigid registration to build a pixel-wise mapping. We use the L2 norm of the histogram

of oriented gradients difference of two patches as the similarity metric for both steps

and a Markov random field formulation that incorporates tissue coherency to compute

the nonrigid registration. To fix significantly distorted regions that are misshaped or much

smaller than the control grids, we train a context-aggregation network to segment and

warp them to their corresponding regions with thin plate spline. We have shown that

our method generates results comparable to an expert neuroscientist and is significantly

better than reconstruction-first approaches. Code and sample dataset are available at

sites.google.com/view/brain-mapping.

Keywords: nonrigid, image registration, Markov random field, histological images, 2D to 3D, Allen Mouse Brain

Atlas, histogram of oriented gradients

1. INTRODUCTION

Neuroanatomical studies have traditionally been performed in histological sections, followed by
manually annotating data based on histological stains in comparison with a brain atlas. For
large-scale analyses, this procedure is labor-intensive, time-consuming, variable and sometimes
subjective. It is crucial to standardize and digitalize anatomical information to allow data from
multiple brains to be compared in the same reference brain. To this end, detailed anatomical brain
reference atlases have been established for both human and animal model studies (Lein et al., 2007;
Hawrylycz et al., 2012; Bakker et al., 2015; Tiesinga et al., 2015). Ideally, all experimental brain
images would be automatically registered to an anatomical reference volume, creating a platform
for the comparison and integration of results from different experiments. However, registering
laboratory histological images to an atlas is still challenging in terms of accuracy, universality,
and time-efficiency. One of the major issues is that brain histological data sets often suffer from
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artifacts, such as enlarged ventricles (holes), missing tissue,
folding, air bubbles, uneven staining, tears, and slice-independent
distortions, shown in Figure 1. Existing programs mapping a
2D histological sequence to a reference volume often require
an initial reconstruction from these partially corrupted slices
and therefore only work well with datasets of very good
quality. However, histological datasets often require months of
experiments to generate results. Most labs still rely on manual
brain region identification to fully utilize all of the experimental
slices even if they are partially corrupted. This labor-intensive
and time-consuming approach is highly variable and subjective
among researchers.

In this work, we introduce a method to register a sequence of
coronal histological sections of mouse brain to the grayscale Nissl
volume of the Allen Mouse Brain Atlas (2015) (ABA) (Lein et al.,
2007; Allen, 2015) by first identifying the matching sectioning
plane in the atlas volume for each slice and then performing 2D
nonrigid registration. The general idea and an example dataset
are shown in Figure 2.

The problem of mapping a sequence of histological slices to
a reference brain has been well studied (Pichat et al., 2018).
This prior work first reconstructs an initial volume estimate
from the slices and then registers this reconstructed volume
to the reference. Some work focuses on the reconstruction
problem because registration between a reconstructed volume
and a reference is relatively standard (Dauguet et al., 2007; Stille
et al., 2013; Mertzanidou et al., 2017); other work discusses
the reconstruction problem in the absence of reference volumes
(Ourselin et al., 2001; Ju et al., 2006; Bagci and Bai, 2010; Cifor
et al., 2011). Initial work using this approach reconstructed the
experimental volume by pairwise registration of adjacent slices
(Ourselin et al., 2001; Cifor et al., 2011; Stille et al., 2013).
Due to tissue distortions, rigid registration is not sufficient. But
pairwise nonrigid registration propagates any registration errors
throughout the whole brain. This is especially problematic if any
slice has a large deformation such as missing tissue.

To improve overall reconstruction results and reduce error
propagation, some methods align each slice with multiple
neighboring images. For example, Ju et al. (2006) reduced error
propagation by warping each slice with a weighted linear and
nonlinear combination of warp fields to multiple adjacent slices.
Others used blockface images (Dauguet et al., 2007) or selected
internal reference slices to reconstruct small chunks and then put
together the entire volume (Bagci and Bai, 2010; Mertzanidou
et al., 2017). However, with almost every slice at least slightly
distorted, internal nonrigid registration will likely change the
original shape of biological structures. Because this process tries
to maximize the similarity between adjacent thin, e.g. 40 µm
to 60 µm, histological slices, curved 3D structures along the
sectioning direction may end up straightened. This 3D structure-
straightening problem is known as the banana problem or the
z-shift problem (Adler et al., 2014; Majka and Wójcik, 2016).
Once this error is introduced, it is hard to reverse completely even
when this volume is registered to the reference. To avoid these
volume distortion errors, one needs to use the reference volume
earlier in the process by registering each experimental slice to its
corresponding sectioning plane in the reference volume.

Now the main challenge is finding the corresponding plane
for each slice (Yang et al., 2012). This task is made more
difficult because the experimental volumes have a non-standard
sectioning angle, the brains are tilted in the sectioning machine
and have an anisotropic resolution. The reconstructed volume
has a very high resolution in the sectioning plane (determined
by the resolution of the imaging system) and comparatively low
resolution along the sectioning axis (limited by the minimum
slice thickness). The slice-to-slice approaches usually assume
that cutting planes are parallel to the acquisition planes of the
3D medical image (Pichat et al., 2018) or at least the cutting
angle of the microtome are constant through the cutting process
(Gibson et al., 2012; Yang et al., 2012; Goubran et al., 2013).
Abdelmoula et al. (2014a) used one of the most prominent
features—the hippocampus—to determine the best match plane
for each experimental tissue section, however, the searching space
is limited, and the cutting angle difference is not considered.
Papp et al. (2016) developed an interactive tool with which
neuroscientist can reslice a reference volume with adjustable
angle and position. Five to ten slices are mapped, then the
remaining slices are interpolated. Other recent work used an
iterative approach by first reconstructing a small volume and
registering these slices to their corresponding planes in the
reference brain (Yang et al., 2012; Goubran et al., 2013). Yang et al.
(2012) selected a reference slice that maximizes the normalized
mutual information after a 2D rigid registration is performed
between a histological slice and each MRI slice. Goubran et al.
(2013) registered each histological slice of a human brain to its
corresponding MRI slice after blocks of the human brain were
registered. Possum (Majka andWójcik, 2016) developed an open
source software framework that reconstructs a volume with or
without using an external reference. While these methods work
well when the sectioning angle difference is small, they introduce
errors at larger sectioning angles.

To avoid these issues, we concurrently estimate the sectioning
angle difference and the best matching planes in the atlas volume
for each slice. This approach requires us to find the best matching
slice in the reference before applying nonrigid deformations.
Since the resulting slice comparisons are noisy, we aggregate
information from all slices and use information about the brain’s
structure to find the best match. Our method does not have a
reconstruction step, therefore completely eliminating the z-shift
problem. The details of our method are given in the next section.

After each matching reference slice has been determined, we
need to perform a 2D registration between it and its matching
histological slice. Free Form Deformation (FFD) (Rueckert et al.,
1999; Rohlfing and Maurer, 2003) has been the most common
approach in neuroscience studies to map histological brain
images (Jefferis et al., 2007; Geha et al., 2008; Abdelmoula
et al., 2014a,b; Dorocic et al., 2014; Verbeeck et al., 2014; Costa
et al., 2016). Mutual information is often used as the similarity
metric to register histological slices because of image appearance
difference caused by acquisition procedure variability. This
method is highly dependent on the initial condition because
the choice of using mutual information as a similarity metric
often leads to a highly non-convex optimization problem with
many local minima (Haber and Modersitzki, 2006). Because of
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FIGURE 1 | Histological images suffer from multiple artifacts. (A) Enlarged aqueduct, tear, stitching artifact. (B) Uneven staining, air bubble. (C) Missing tissue, air

bubble, uneven staining. (D) Misplaced tissue, fold, uneven staining. (E) Missing tissue, stitching artifact, imaging artifact. (F) Over staining. Scale, 1mm.

FIGURE 2 | Mapping a sequence of histological mouse brain slices to the atlas volume of ABA (horizontal view of coronal sections). Left side shows a real histological

stack. Right hand side is the ABA.

staining variability within a slice, using mutual information does
not always work.

Instead, we find that the L2 norm of histogram of oriented
gradients (HOG) (Dalal and Triggs, 2005) difference suits
histological slice properties better. Because HOG is non-
differentiable, we base our work on the elegant discrete Markov
random field (MRF) approach in Glocker et al. (2008). Based
on the tissue labeling information of the annotation volume of
ABA, we build a MRF model based on tissue coherency. To
better deal with the data-specific properties of our experimental
dataset—the heavily deformed ventricular systems—we make

further improvement including segmenting a biological structure
and warping them with thin plate spline (TPS) (Bookstein, 1989).

Our strategymakes themaximumuse of the reference volume,
successfully deals with the non-standard sectioning angle
problem, preserves the curvature of the object—eliminating the
z-shift problem (Adler et al., 2014), and is more tolerant to
data corruption. This method takes into account some of the
brain’s structural properties to minimize error, including the
compressibility of different brain regions. The algorithm is tested
both on the full brain and sectional brain data, yielding faster and
better correspondence than possible before.
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2. MATERIAL AND METHODS

This section describes in more detail how we find the sectioning
angle difference and the best matching plane in the reference
volume for each histological slice (Section 2.1) and nonrigidly
register each slice to the corresponding sectioning plane in the
atlas (Section 2.2).

Both in the 2D to 3D localization and the 2D nonrigid
registration steps, a relatively sensitive and quantitative similarity
measure is needed. The state of art is to use normalized mutual
information (Jefferis et al., 2007; Geha et al., 2008; Dorocic et al.,
2014; Costa et al., 2016). Despite its wide use, it does not work
well in our images since this metric fails when intra-slice uneven
staining causes intensity variability within a structure, which
breaks the statistical correlation between a slice and its target
image. In addition, because each slice is at least slightly distorted,
when measuring the similarity between a distorted experimental
slice and an atlas slice, we need to either correct the distortions
or find a metric that is friendly with distorted images. The former
is hard because it is hard to constrain the deformation to only
correct the distortions rather than making two images more
similar than it should be. After being rotated, some curves and
edges will be jagged. We therefore decided to find a metric that
worked well even with the existence of distortions.

When searching for a better metric, we also wanted to find one
that would work well for our images. Our image characteristics
include:

1. Staining reagent and microscopic setting difference can cause
direct comparison of intensities to be not useful. Even worse,
due to the non-uniformly applied staining reagent, some slices
are unevenly illuminated.

2. Nissl-stained (Glaser and Van der Loos, 1981) images only
highlight the cell body of neurons. Two matching images will
show corresponding anatomical structures but do not have
pixel-wise cell body level correspondence.

3. Sparsely scattered or densely populated cell bodies make
images low-contrast and noisy. Many descriptors that work
with man-made scenes do not perform well.

4. Distortions caused by brain’s elasticity require metrics that
work even when the two images are slightly distorted from
each other. This distortion tolerance also allows it to compare
a distorted histological slice to a reference slice.

5. Even though the newest Nissl volume of the Allen Mouse
Brain Atlas (2015) is smoother than the Allen Mouse Brain
Atlas (2011), it is still Nissl-stained volume constructed from
physically-sectioned mouse brain slices and is not perfectly
aligned. So an ideal metric should be somewhat tolerant to this
imperfect alignment.

As shown by Dalal and Triggs (2005), HOG has the capability
to deal with pose, illumination, and background variations
which mimic many of the issues in our images. This descriptor
divides an image patch into small cells. In each cell it bins
each pixel’s gradient and forms a histogram. Each histogram
is normalized based on the magnitude of the histograms of its
neighboring cells in a local block. Each block is then described
by the concatenation of these normalized histograms. HOG

describes a small patch rather than individual pixels. Gradient
binning gives some flexibility to distortions but still captures
the overall direction of edges. It also well accommodates the
unsmoothness nature of the atlas volume. Because even if an
unsmooth volume is rotated, and edges are not perfectly aligned,
true gradients are still kept. Normalizing a cell’s magnitude
by the magnitude of its neighboring cells reduces the negative
effect from uneven staining. Therefore we use the L2 norm of
HOG difference between two images as the similarity metric.
To use this metric the two images first are brought to the same
coordinates with a similarity transformation estimated with the
Umeyama method (Umeyama, 1991) based on contour point
correspondence generated by Shape Context (Belongie et al.,
2000). Smooth tissue contours are extracted by applying the
Fourier transform on the boundary curve and removing high-
frequency components. To accommodate the global deformation
caused by the force in the direction of sectioning, slices are
further rescaled in horizontal and vertical directions. We then
extract HOG features from both images and generate a scalar
error by summing the squared difference between HOG feature
vectors for each block at the same coordinate in the two images.
For 2D to 3D localization, we use a large cell size so that the
metric is less sensitive to local distortions. For 2D registration, we
compute the nonrigid transformation that minimizes the HOG
L2 difference with a small cell size.

2.1. 2D–3D Localization
Since histological slices are often cut with near constant angles
with a microtome (Gibson et al., 2012; Yang et al., 2012; Goubran
et al., 2013), it is fair to assume a constant cutting angle
throughout the whole brain. Because the atlas is uniform in each
dimension, to find the cutting angle difference, we rotate the atlas
with different angles, resection it into coronal slices, reindex the
slices in order, and compare the new resectioned atlas slices to the
histological sequence.

The following sections give our dynamic programming
formulation to solve the alignment problem to determine the
slicing angle and a simple method to increase sensitivity to
angular shifts.

2.1.1. Slice Mapping With Dynamic Programming
The best cutting angle is the angle that maximizes the similarity
between all histological slices and their corresponding best
matching slices in the atlas. Because in-plane rotation can be
fixed, we only consider rotation angle α about the superior-
interior (y) axis and β about the left-right (x) axis. To solve
the problem, we first find the best matching slice for each
experimental slice given a potential cutting angle. The problem
can be represented as follows: Let I1...N with spacing sE be the
experimental slice sequence, and VA be an isotropic atlas with
voxel dimension sA, defined on the domain �. After rotating the
atlas with potential best rotation Rαβ , we reslice the rotated atlas
into coronal slices and re-index them as atlas slice sequence J1...M .
Using the L2 norm of HOG differences described in Section 2, we
aim to find a mapping that matches each slice in I to a slice in J
which minimizes the overall difference.
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Taking into account potential compression along the
longitudinal axis, slice quality variation, and intersubject
variation, we formulate the problem with a single subset A of all
slices I, where A is an ordered selection of 1 . . .N, which may or
may not be the whole sequence of experimental slices (depending
on the image sequence quality and the value of sA and sE). A is
chosen to span the full sequence while avoiding damaged slices.

We formulate this slice mapping and difference minimization
problem as a dynamic program. Let IA be the ordered selection
of experimental slices, and let J be the resliced atlas sequence
ordered from the same direction along the longitudinal axis and
spacing sA. The cost, C(i, j), is defined as the minimum cost of
mapping the first i slices in A to a sequence of j slices, where the
ith slice has to be mapped to the jth slice:

C(i, j) =

{

ρ(IAi , Jj), if i = 1

mink(C(i− 1, k)+ ρ(IAi , Jj)), else
(1)

where i ∈ A, 0 ≤ j ≤ card(J), ρ(a, b) denotes the difference score
between Slice a and Slice b measured with the HOG similarity
metric. To reduce the required computation, we only look at
potential matching slices, k, which have plausible spacing:

|
sA(j− k)

sE(Ai − Ai−1)
− 1| < θ (2)

where Ai is the original index of the ith slice in the selected
sequence and θ is a user-defined threshold value. This spatial
constraint constrains the ratio of the distance between slices in
the atlas and the experimental slices match to θ .

We denote the best k that satisfies Equation 2 and is used to
fill in the cost matrix (Equation 1) as k∗. The best intermediate
steps are saved by updating the three-dimensional array MMM for
each i, j:

MMMαβ (i, j) =







[

j
]

, if i = 1
[

MMMαβ (i− 1, k∗) j
]

, else
(3)

MMMαβ (i, j) lists the the indices in J that best match each of the first
i slices in A, where Slice i in A is mapped to Slice j in J and the
atlas is rotated with angle α about the y axis and β about the x
axis. The optimal mapping is therefore given by:

MMM∗
α,β (IA) =MMMα,β (card(A), j

∗) (4)

where

j∗ = argmin
j

C(card(A), j) (5)

The cost of mapping all slices in A to resectioned slices in J with
atlas rotated by αβ is given by C(card(A), j∗).

2.1.2. Cutting Angle Difference Determination
After running this dynamic program with different sectioning
angles we should be able to directly choose the angle that gives
minimum cost score to be the best cutting angle. However, since

HOG is relatively insensitive to local distortions and each slice
is slightly distorted, when summing up all the costs we also sum
up a lot of noise. Therefore when the angle is very close to the
true sectioning angle, the difference among neighboring angles is
not substantial. To improve our robustness, we use a different
approach. This approach also predicts how we should adjust
the rotation and prevents exhaustive searching in the previous
approach.

Biological structures change quickly along the posterior-
anterior direction. It is not hard to tell if an experimental brain
is sectioned with a different angle than the atlas volume, even
if the angle deviation is only several degrees, because structures
that appear in the same slice in the atlas will be in different slices
in the experimental slice sequence. For example, if the left side
of the brain is tilted to be more anterior, on average the right
hand half coronal brain slice will appear to be more posterior
to the left half. Thus if we match the left and right half slices of
an experimental brain separately to the atlas, we will see that the
slice number of the matching slices of the left half brain will be on
average higher than that of the right half. Based on this idea, we
use matching slice index differences of half brains to determine
if a rotation angle best fixes the cutting angle difference between
the experimental brain and the atlas.

Because mouse brains have left-right symmetry, the rotation
angle α about the superior-interior (y) axis tends to be around
zero. The rotation angle β about the left-right (x) axis tends to
be larger because the mouse brain is not flat at the bottom and
can easily be set tilted on the microtome plate. Here we use the
determination of angle β as an example; the flowchart is shown
in Figure 3.

To find the best rotation angle β about the x axis, we solve
the slice mapping problem with the method described in Section
2.1.1 on the upper half slices and the lower half slices respectively.
We take the index difference between the optimal mapping
given by:

D =

1

card(A)

∑

(MMM∗
β (Mupper(IA))−MMM∗

β (Mlower(IA)))
(6)

where Mupper and Mlower denote binary masks to apply to both
experimental image and resliced atlas image to include only half
of a slice. Positive D means upper half experimental slices are
matched to slices more anterior than lower half slices. Therefore
the atlas should be rotated more in the positive direction about
the left-right (x) axis, where the positive direction is defined by
the right-hand rule around the x axis. If D is negative, then the
atlas should be rotated in the negative direction. We reslice the
atlas again after rotation and repeat the above steps until the
index difference flips signs meaning we need to rotate the atlas
in another direction. The rotating angle changes in a step size of
one degree.When the flipping of sign occurs, we choose the angle
between the current angle or the previous angle which gives the
smaller absolute index difference. The same steps are repeated to
determine α.

After finding the optimal rotation R∗αβ , we apply the mapping
method on full slices in A to find their corresponding full slices
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FIGURE 3 | Flow chart for determining sectioning angle about the left-right (x) axis. In the matching half slices step, atlas is stretched for better illustration.

in the optimally rotated atlas. We then interpolate linearly on the
matching slice indices to find the best matching slice for every
other experimental slice in the experimental volume that is not
selected in A.

2.2. Coherency-Based 2D Deformable
Registration
After the 2D to 3D registration, we map all the experimental
slices to their computed corresponding slices in the optimally
rotated atlas with the deformable registration to build a pixel-
wise mapping from the 2D slice sequence to the atlas volume. Let
an experimental image g that is globally transformed to the same
coordinates of its corresponding slice be the target image, and its
best matching slice f be the source image, where � ⊂ Z

2 is the
image domain. In the task of 2D registration, we aim at finding a
transformation T such that

g(x) = f (T(x)),∀x ⊂ � (7)

where g and f become equivalent in terms of anatomical
structures.

For registering histological images, the most common
approach has been mutual information based free form
deformation (FFD) (Rueckert et al., 1999). Like in FFD, we
superimpose a uniformly-spaced sparse grid G ⊂ �. Because
of the properties of the experimental images described in the
previous sections, we continue to use the HOG difference as
the similarity metric but with a smaller HOG cell size to fix
local distortions. Because HOG is not differentiable, we build
our work on a discrete Markov Random Field (MRF) approach
(Glocker et al., 2008), where for each node p ∈ G we seek
to assign a label lp ∈ L that minimizes an energy function
E consisting of two unary terms that ensures similarity to the
corresponding atlas slice and to the previous experimental slice—
HOG difference is used as the similarity metric—and a pairwise
term that regularizes motion between neighboring nodes. The
similarity-to-its-previous-slice term is added to ensure that same
features in experimental slices are aligned, because some features
that exist in our experimental datasets do not always have
corresponding features in the atlas. Each label lp corresponds to a
displacement dp in a predefined displacement set Dp. We define

the bijective function bp between Lp andDp for each node p as bp:
dp → lp.

2.2.1. Model Elasticity With the Pairwise Term
The ventricular system spans throughout the brain, providing
fluid pathways in the brain and creating regions of empty
space in almost every histological slice. Those cavities are
easily deformed during slice preparation procedures and have
much inter-subject variation. Thus when computing this MRF
warp field, one needs to take into account the elasticity of
different regions in the brain. By warping images to match
with each other, we are essentially warping tissues: the more
two adjacent control points are displaced, the more tension
accumulates, if the two control points are connected through
coherent tissue. In contrast, if they are separated by any
hollow structure or empty space, no tension should be built in
between.

The traditional and most common interpolation method for
biomedical image analysis has been the B-spline model (Rueckert
et al., 1999), where each pixel is affected by 4 × 4 neighboring
control points. In the case where two control points are separated
by an empty space, a B-spline interpolation no longer makes
sense because of discontinued tissue coherency. Therefore to
bettermodel tissue deformation, we use the simple bilinearmodel
where a point is only affected by its direct 2 × 2 neighboring
control points. Of course, now our warp generation needs to
ensure some smoothness.

Our system does so with a very simplistic model. We divide
each target slice into two regions: free (ventricular system and
background), and coherent (other areas) based on the annotation
volume of ABA. We then classify the nodes as coherent (red) or
free (green in Figure 4) based on if they are inside a coherent
or a free region. The idea is tension only accumulates when
we compress or stretch two nodes that are connected solely
with a coherent region. If there is an empty space between two
nodes, intuitively compressing them or stretching them should
not build tension in between. Based on this property, we use
the pairwise term—the traditional regularization term—tomodel
tension accumulated between nodes with which we stretch or
compress brain tissues. There is an edge (red line segment in
Figure 4) only if the connecting line segment between the two
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FIGURE 4 | Illustration of the coherency model and grid refinement from level t to level t+1. Grids are overlaid on an atlas image (contrast adjusted for better

illustration) to show the coherency model. Green nodes are free nodes which include nodes in the free regions—ventricle systems and background—and affect real

tissue. Red nodes are coherent nodes which cannot be seen since they become part of the tension edges, represented by red line segments between coherent

nodes. During refinement, image resolution is 2× the resolution of last level. The grid spacing remains the same. Therefore the grid quadruples in each direction, which

is shown in the lower grid. The motion of existing nodes are carried onto the next level. The motion of non-existing nodes in the lower grids are interpolated from the

motion of the existing nodes.

nodes only crosses coherent regions which indicates both nodes
must be coherent as well.

We first extract mask images rc and re representing
coherent region—tissue—and empty space region— ventricles
and background—respectively from the annotation volume of
the ABA and project them to the source image. We further group
control points as coherent or free in Equation 8. Coherent control
points are inside coherent regions. Free control points are the
control points inside an empty space, and moving the control
point will affect pixels inside coherent regions.

p ∈











Gcoherent , if rc(p) = 1

Gfree if
∑

x∈�[η
−1(|x− p|) · rc] > 0

and re(p) = 1

(8)

where the inverse influence function, η(.)−1, adopted in Glocker
et al. (2008), masks pixels influenced by a control point p. We
include the influence function in control points classification,
because we only care about control points that affect image
appearance.

We further define a tension edge set, E, where tension
accumulates when moving the two control points connected by
an edge in this set. Basically an edge epq is in E if the line segment
connecting Node p and Node q only crosses coherent region rc.
Because the spring potential energy is proportional to the square
of displacement, we use squared difference as the pairwise term:

Vpq(lp, lq) = λ(dlp − dlq )
2, epq ∈ E (9)

where λ is a regulation parameter.

2.2.2. Multi-Level Estimation
We need to be able to both correct large distortions and make
small changes to achieve good results. For both computation
efficiency and quality of results, we use a multilevel approach.
Since we are trying to model the tension that the deformations
create, we need the pairwise energy terms to accumulate as we
refine the grids. This requirement means that we cannot use the
approach used by Glocker et al. (2008), but instead solve the
problem using a method where each refinement level maintains
knowledge of the distortions created by previous levels.

The conventional multilevel approach (Glocker et al., 2008)
repeats the same procedure with progressively finer grids:
locations of the control grid points that minimize the unary
and pairwise terms are computed, and then the resulting image
is warped to match these new grid locations. The next level
grid is added to the warped image, and the process is repeated.
To maintain tension in a realistic way, we do not reset the
grids and tension after each iteration and use each iteration to
simply update the allowable possible positions (labels) for the
next iteration. More formally, to carry the squared form tension
correctly to the next level, at every level t for each node p
we update the possible discrete displacements D

p
t to reflect the

accumulated prior displacements of the node plus the current
displacement to be evaluated at the current level.

To correctly carry on calculated displacements to the next
level, we first need to compute the set of possible locations for
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each grid point, which depends on the results from the prior level.
To do this, we denote the grid at level t as Gt and the influence
function as ηt . Let dt

lp
be displacement at node p with label l

at level t. At each level t, we estimate best motion dt
lp
at each

node p ∈ Gt and bilinearly interpolate them to get the initial
displacement for each node in Gt+1 at the next level. We denote

this preset displacement at node p as d
t+1
lp

, therefore the set of

possible displacement at node p level t+1 is given by the sum of
this preset displacement and possible displacement in level t+1:

Dt+1
p = {d : d = d

lp
t+1 + θ , θ ∈ 2} (10)

where2 is the allowable additional displacements and is the same
for every node.

Having created a set of possible locations for each grid point,
we next need to create the image that we will compare at this level
to compute the similarity. In previous work, this warped image is
input to this level, but we need to compute the image from the
displacements of the previous level’s control points and the labels
associated with the node we are evaluating. When estimating the
local patch around node p at level t+1, we use the positions of the
grid points that are around p from the prior level and the position
of p for the given label at this level. This provides an estimate that
incorporates the warp from the prior level and an estimate of the
additional warp created by moving p to the position indicated by
this label at the current level. For simplicity and computational
efficiency, this estimate ignores the warp that will be caused when
other control points at this level move.

We denote the patch that is affected by p in the first level
function η−1

0 (|x − p|) as R0,p. The control points in the patch
at level t+1 is defined as:

Nt+1
p = q ∈ Gt+1

: η0(|q− p|) > 0 (11)

To create the image that we will compare, we set the nodes inNp

at the values from level t, except for node p which we evaluate
with the displacements from the current level in the set Dt+1

p .
Therefore the transformation applied to the affected region R0,p

when we associate label lp with node p at level t + 1 is:

Tt+1
p (x, lp) = x+

∑

q∈Nt+1
p ,q 6=p

η(|x− q|)dlq

+η(|x− p|)dlp

(12)

Thus the unary term is given by the similarity measure between
the warped patch and target patch:

V t+1
p (lp) = ρ(g(x), f (Tt+1

p (x, lp))), l
p ∈ Dt+1

p (13)

where x ∈ R0,p and ρ measures the difference score between two
images. Since at every level, the only region that changes when
we approximate the change for each possible label is centered
around the node being evaluated, we approximate this change
by simply translating the patch centered at the approximate new

node coordinates p + dl
t
p with possible additive displacements

dl
t+1
p at the current level and compare the HOG similarity with

the patch that is centered at the node’s original coordinates in the
fixed image or the previous image. Therefore the unary term is
estimated as:

V
t+1
p (lp) = ρ(g(Rt,p), f (R

t,p+d
ltp+d

lt+1
p

)) (14)

where Rt,p denotes the patch centered at node p in the fixed
image, and R

t,p+d
ltp+d

lt+1
p

denotes the patch centered at newly

estimated coordinates of displaced node p.
Eventually we formulate the MRF energy function at level t

as the summation of the normalized unary similarity term to
the corresponding atlas image, the unary similarity term to the
warped previous image, and the pairwise term:

Et =
∑

p∈Gt

F ◦ V t
p,atlas(lp)+

∑

p∈Gt

F ◦ V t
p,prev(lp)

+
∑

p∈Gt

∑

q∈{q : epq∈E
t}

F ◦ V t
pq(lp, lq) (15)

where F denotes the normalization operation. We obtain the
HOG difference for all nodes and all labels at each level and
normalize the matrix so that the values are within range [0, 1].
The pairwise term is normalized in the same fashion.

Because the free nodes are not constrained with any pairwise
terms, they are essentially assigned labels that minimize the unary
terms:

ltp = argmin
l∈b(Dt

p)

V t
p,atlas(lp)+ V t

p,prev(lp) (16)

where p ∈ Gt
free

. Coherent labels are solved by minimizing the

energy function:

Etcoherent =
∑

p∈Gt
coherent

F ◦ V t
p,atlas(lp)+

∑

p∈Gt
coherent

F ◦ V t
p,prev(lp)+

∑

p∈Gt
coherent

∑

q∈{q : epq∈E
t}

F ◦ V t
pq(lp, lq)

(17)

2.2.3. Contour Alignment With Symmetric Difference
While HOG matches internal features well, we find it hard to
align the contour of images. The atlas has very low-intensity
pixels around real brain tissues as shown in Figure 5. Because
HOG’s relative insensitivity to intensity, this noise can cause
errors in contour alignment. We added an intensity threshold
in the process of computing HOG—if a pixel’s intensity is
lower than the threshold, its gradient is not included in the
histogram. However, this does not solve the problem, because
a single threshold intensity cannot eliminate the background
noise perfectly. To remove the unwanted background, we make
use of the fact that the corresponding slice’s annotation in
the annotation volume of ABA is conservative: it is inside
the actual imaged tissue. Thus all pixels inside the annotation
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are foreground pixels. We further segment the pixels that are
annotated as background in the annotation to the foreground and
real background with the intensity information of the image. We
build an energy function so that the unary terms try to minimize
intensity difference among the pixels that are in the same class,
and the pairwise term encourages two neighboring pixels to be
grouped in different classes when the intensity difference is large
and to be grouped in the same class when the intensity difference
is small:

E(f ) =
∑

p∈V

1(fp = 0) · ip +
∑

p∈V

1(fp = 1)· | ip − Iaverage |

+
∑

p,q∈E

e−(ip−iq)2 (18)

where V represents all the pixels to be classified - the pixels are
annotated as background in the annotation, E denotes pixels that
are in the 4-connected neighborhood, f denotes the assignment
of background - 0 or foreground - 1, ip represents the intensity
at pixel p, and Iaverage is the average intensity of all nonzero
pixels in the image. Solving this energy function, we can obtain
satisfactory result except that some very dark tissue regions near
a slice’s contour will be removed in some slices. To fix it, we keep
the otherwise removed regions if the area is well-connected with
its surrounding regions. This is accomplished by morphological
eroding and dilating the to-be-removed regions with a disk of
20 pixels. We keep a region if it survives the opening operation.
Same numbers are used across slices. We fill in holes in the
computed mask so that the mask consists of a single piece.
Even though the experimental slices are often preprocessed by
neuroscientists to remove the nonzero-intensity background and
keep only the tissues, this procedure is not quality-controlled.
Therefore we refine the experimental images again with a similar
method that is used to preprocess the atlas images, except that
the masks are morphologically eroded and dilated with a disk of
3 pixels to encourage smoothness, and the to-be-removed regions
will be kept if its area is greater than 50 pixels. These parameters
were selected based on experiments on several slices in one
of our experimental brains. Same parameters are used for all
experimental slices. In the case that a slice is missing a relatively
large portion of tissue, after the plane correspondence is found
and before the 2D nonrigid registration, a manual preprocessing
is done on the corresponding atlas slice to crop out the same
corresponding portion that is missing in the corresponding atlas
plane returned by our algorithm.

After fixing the background noise, we find it still hard to
use HOG difference to align image contours because HOG
difference reduces dramatically only when after transformation
the contours overlap or are separated by a distance smaller than
the HOG cell size. Moreover, since the atlas is not a smooth
volume, after rotation, the contours may be jagged - creating
unwanted gradients. A more sensitive and more robust metric is
needed.When displacing nodes that affect image contours, we are
essentially warping the contour to maximize overlapped region
of the two images or equivalently to minimize the symmetric
difference of image foregrounds. Therefore, if a node p influences

contour pixels, we modify the HOG difference term to its
corresponding atlas patch to be the symmetric difference of the
two tissue masks. Because node p is essentially a free node,
Equation 16 is updated to:

ltp = argmin
l∈b(Dt

p)

∑

η−1(|x−p|)=1

(mf (x)−mg(x))+ V t
p,prev(lp) if

∑

x∈�

η−1(|x− p|) · ce > 0 (19)

where the contour of the experiment image’s real tissue is denoted
by ce, and the real tissue in image f and g are mf and mg .
In Equation 16 we estimate the warped patch by translating
the patch center. This estimation improves computation speed
while retaining performance when the similarity measure
is HOG difference or another metric that involves more
internal information. The shape of the experimental images is
often deformed in the preparation process. However, simple
translation does not change the shape. It only reduces the
disjoint area but cannot find a transformation that reverts the
deformation. Therefore instead of simply translating the patch,
we warp the binary masks to evaluate this symmetric difference
term.

2.3. Improvement Based on Data-Specific
Properties
Our framework was used in a systematic anatomical study in
the hindbrain to map the brain regions containing the dorsal
raphe nuclei to the ABA to study the organization of the dorsal
raphe serotonin system and its behavioral functions related to
depression and anxiety (Ren et al., 2018). The dorsal raphe
nuclei are ventral to a hollow structure called aqueduct. Due
to the difference in brain preparation procedure, for example,
the dehydration step, as illustrated in Figure 6, the aqueduct
shows variability between our experimental brains and the atlas.
The difference in size, appearance, and edge orientation of the
aqueduct makes aligning the regions around it difficult using the
coarser grained HOG descriptor alone. This situation is made
even more difficult because a squeezed aqueduct can be smaller
than the grid size in the finest iteration.

We solve the squeezed aqueduct problem by warping the
segmented aqueduct to the corresponding annotated atlas
aqueduct with thin plate spline (TPS) (Bookstein, 1989). Because
aqueduct appearance varies across subjects, sectioning angles,
and longitudinal axis as shown in Figure 6, it is hard to segment
them with a single traditional segmentation method. We trained
manually labeled aqueduct with a network similar to Chen et al.
(2017) implementation of context aggregation (Yu and Koltun,
2015), a convolutional network designed for dense prediction. To
build point correspondence on the aqueduct contours, we find
the highest and lowest point on the aqueduct contours. If there
are multiple highest or lowest points, we choose the point that is
closer to the centroid of the aqueduct contour in the horizontal
direction. We divide the contour into halves with the highest
and lowest points and build point correspondence by uniformly
sampling the same number of points along the curve. The points
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FIGURE 5 | Example atlas slices with nonzero intensity regions circled by white contours. Scale, 1mm.

FIGURE 6 | (A) Expanded aqueduct in an experimental image. (B) Aqueduct in the corresponding atlas image of (A). (C) Squeezed aqueduct in an experimental

image. (D) Aqueduct in the corresponding atlas image of (C). (E–H) Various aqueduct appearance in different brains and slices. Aqueduct contours are marked with

white curve. Scale, 1mm.

on the aqueduct contours only ensure the alignment of inside
the aqueducts. Since the images are mostly aligned with MRF, we
include the control points outside of both aqueducts to add more
control to the TPS warp.

With point correspondence on the aqueducts’ contours, we
add another term to the unary term so that the aqueduct is
brought closer before reshaped with TPS. The term measures the
Euclidean distance between the warped experimental aqueduct
contour points and their corresponding atlas aqueduct contour
points:

Dt
p(lp) = d(vp, T

t
p(up, p)) (20)

where an experimental aqueduct contour point u ∈ up, if its
influence to node p - ηt+1(|u− p|) > 0. vp are the corresponding
aqueduct contour points in the atlas image, and d measures the
Euclidean distance between two sets of points. Therefore the

energy function for coherent nodes in Equation 17 becomes:

Etcoherent = ca
∑

p∈G
t
coherent

F ◦ V t
p,atlas(lp)+ cb

∑

p∈G
t
coherent

F ◦ V t
p,prev(lp)+

cd
∑

p∈G
t
coherent

F ◦ Dt
p(lp)+ cp

∑

p∈G
t
coherent

∑

q∈{q : epq∈E
t}

F ◦ V t
pq(lp, lq)

(21)

where ca, cb, cd and cp are the coefficients before the energy terms.
We assign labels that minimize the new combined unary term to
the free nodes:

ltp = argmin
l∈b(Dt

p)

caV
t
p,atlas(lp)+ cbV

t
p,prev(lp)+ cdF ◦ Dt

p(lp)) (22)

where p ∈ Gt
free

.
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2.4. Implementation
2.4.1. HOG Cell Size
We use a cell size of 15 pixels to measure the image similarity (see
Section 3.1.1). This relatively large cell size allows us to capture
structural similarities even with uncorrected small distortions.
For nonrigid registration in Section 2.2, we decrease the cell
size to 4 pixels, because the purpose of this step is to correct
distortions. In both steps, the block size is 2×2. HOG is computed
with the Vlfeat toolbox (Vedaldi and Fulkerson, 2010).

2.4.2. Set A
We select a subset A from all the slices I to find the best cutting
angle and the best corresponding slices. For full brain data, which
contains about 200 slices, we use about 30 slices with minimal
artifacts - 1/6 to 1/7 of the whole sequence. In the anatomical
study, each sectional brain consists of about 35 slices. We use
every third image for most of the brains - about 12 slices for
each experimental brain. For some brains with relatively more
damaged slices, wemanually checked the automatic selection and
replaced slices with significant damage with a nearby good quality
slice. Since many slices are used to find the best cutting angle, this
manual check and replacement is only performed when many
automatically selected slices are damaged. With Matlab, it takes
38.8s on a 12-core 3GHz Linux machine to evaluate a set of 12
slices, or equivalently to evaluate a cutting angle on a sectioned
brain.

2.4.3. Parameter Selection in the Energy Function
All terms—the unary terms and the pairwise term—in the energy
functions presented in this paper are normalized to the range
[0, 1]. Since the experimental images and the atlas volume are of
the same modality, and the terms are normalized, the parameters
before each term do not need to be heavily tuned to yield
good results. Our original energy function consists of only one
unary term—the HOG similarity term to the atlas slice—and the
pairwise term. With several experiments, we find equal weight
between the unary and the pairwise term generates the best
visual result. In the general energy function in Equation 15, the
HOG similarity term to the previous slice is added to encourage
smoothness in the “reconstructed” volume and make the features
that do not exist in the atlas but exist in the experimental volumes
more consistent. We add an additional Euclidean distance term
between the two aqueduct contour point sets in Equation 21
to suit our dataset better. Since the HOG difference to the
corresponding atlas slice is the dominant term, we set it to be
three times as strong to the HOG difference term to the previous
slice and the Euclidean distance term between the two aqueduct
contour point sets in both forms of the energy function. The
coefficients before the pairwise term is set to be the sum of the
previous coefficients to maintain the equal weight between unary
and pairwise terms.

2.4.4. Iteration Details
We use three iterations to complete the 2D nonrigid registration
described in Section 2.2. The grid spacing is 16 × 16 in all
iterations. In the first iteration, we downsample both images 4×
in both horizontal and vertical directions. In the second iteration,

images are downsampled by 2×. In the final iteration, we use the
original resolution. The maximum displacement at each level is
set to be half of the grid spacing. Therefore the total number of
labels are 17×17 in each iteration. The optimization is computed
with tree-reweighted message passing (TRW), more specifically
TRW-S (Kolmogorov, 2006; Chen and Koltun, 2015).

2.4.5. Segmentation
We chose five brains from all our brains that could represent
the variability of aqueduct appearance and label the aqueduct
of all slices in the selected brains. Both the experimental slices
and aqueduct masks were downsampled to 512× 512. One brain
in these five brains happens to be in the five brains that we
evaluate in the Evaluation Section 3.2. Because our training data
consists of only five brains-about 150 slices, we data-augmented
the training data and predicted the aqueduct of all other brains
with this trainedmodel. The quality of the prediction is correlated
with the quality of the dataset. The generated masks are manually
corrected if necessary which is about 10% of the total number of
slices. The segmentation network consists of 9 layers. The input
and output image has dimensions 512×512×1 where the input is
the image to be segmented, and the output image is the predicted
mask of the aqueduct. The first seven layers have dimension
512×512×32 with dilation rate doubling the rate of the previous
layer starting from 1. The convolution kernel size is 3 × 3.
The largest receptive field in the network is the seventh layer -
256 × 256. The last two layers consist of an undilated smooth
layer with the same kernel size and a linear transformation layer.
We use the intersection over union as the loss function and take
8 points on each half of the segmented aqueduct to compute the
point distance term in the revised similarity term function in
Equation 21.

3. RESULTS

Our framework was developed to register a full mouse brain slice
sequence consisting of 202 60 µm-thick slices to the atlas and was
also used in a systematic anatomical study in the hindbrain to
study the organization of the dorsal raphe serotonin system (Ren
et al., 2018). We mapped all sections of the dorsal raphe region in
36 brains (hereafter referred to as “sectional brain”) in this study
(Ren et al., 2018) to atlas volume of the ABAwith our framework.
The dorsal raphe region from each brain consists of 30 to 55
coronal slices with 40 µm to 50 µm thickness and 5.1 µm per pixel.
Image size varies across brains with resolution ranging from 1
megapixels (1000 × 1000) to 6 megapixels (2000 × 3000) in the
sectioning plane. Because the posterior cerebral cortex in brain
sections that contain the dorsal raphe is easily detached during
the slice preparation procedures, if the cortex is mostly missing
in an experimental brain, we would preprocess the experimental
slices manually to remove all the cerebral cortex tissues before
feeding the data to our framework. The atlas volume used in this
project is 320 × 456 in the coronal plane and consists of 528
slices, with an isotropic 25 µm resolution. For the brain alignment
in this systematic anatomical study, we use the brain section
in that atlas that contains the region of interest. The cerebral
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FIGURE 7 | Boxplots showing the experiment results on the sectional simulated brain and the full simulated brain. The boxplots in the left two columns show the

sectional brain results. We measured the intrinsic expert error, pure computation error, and the TRE - combined expert error and computation error of the

reconstruction-first method and our method. The third column shows the results on the full simulated brain where we measured the pure computation error. The lines

on the boxes represent the minimum, first quartile, median (red), third quartile, and maximum respectively. The star denotes the average.

FIGURE 8 | Boxplots of the TRE on evaluated experimental brains.
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cortex in the atlas is removed if the cerebral cortex in the target
experimental brain is mostly missing.

3.1. Evaluation Method
We use 5 brains in the anatomical study (Ren et al., 2018) to
quantitatively analyze the performance of our framework. In
addition, because of the lack of ground truth in these brains,
we generated a simulated hindbrain and a full simulated brain
from the atlas with known transformations. The hindbrain atlas
section and the original full atlas are resliced with sectioning
angles different from that of the original atlas. The most anterior
and posterior partial slices are removed. We then remove every
other slice so that the thickness is similar to the thickness of our
experimental dataset. For each slice in the simulated dataset, we
apply a random rotation that is smaller than 2.5◦clockwise or
counterclockwise, and a translation smaller than 10 pixels in each
direction. The image is further warped with a randomly picked
nonrigid deformation computed to map an experimental slice to
its corresponding atlas slice. To generate the simulated full brain,

we adjusted the deformation fields by randomly replicating the
deformation fields with the largest span in the horizontal and
vertical direction until the deformation field covers all the tissue
area of the simulated slice. The contrast of each image is adjusted
so that the illumination is different from that of the original atlas
slice.

The most common metric for evaluating image registration
is the target registration error (TRE) measured as the Euclidean
distance between landmark point coordinates in the target image
mapped by a computed transformation to the source image
and the corresponding landmark points in the source image.
We asked one of our neuroanatomist coauthors to identify 20
sparsely-scattered landmarks in the hindbrain of the atlas which
she would be confident in locating in both simulated and real
experimental brains. The points are enough to cover all the
significant brain areas in this study, because 1) an experimental
brain has around 35 slices, 2) on a representative experimental
slice, there are roughly 30 nuclei identified by its anatomical
properties based on neuroscientists’ historical consensus, 3)

FIGURE 9 | Full simulated brain results, sagittal view. Scale, 1mm. (A) Reconstructed simulated volume registered to the atlas volume and (B) Interpolated simulated

volume by placing each slice to the coordinates of the rotated atlas. (C) Original unrotated atlas and (D) Atlas rotated with the best cutting angles returned by our

method. (E) Overlay of A (in green) and B (in magenta) and (F) Overlay of B (in green) and D (in magenta).
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almost all the nuclei are shown on at least 5 slices. The
corresponding points of these 20 points are marked by the same
neuroscientist in the brains that we evaluated. In the full brain, we
select 17 regions - 81 lateral ventricle, 581 triangular nucleus of

septum, 286 suprachiasmatic nucleus, 338 subfornical organ, 223
arcuate hypothalamic nucleus, 830 dorsomedial nucleus of the
hypothalamus, 470 subthalamic nucleus, 884 amygdalar capsule,
587 nucleus of darkschewitsch, 214 red nucleus, 931 pontine gray,

FIGURE 10A | Real experiments results: experimental images and their corresponding atlas planes after registration. Intensity 2× in all images for visualization

purposes. Scale, 1mm.
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FIGURE 10B | Real experiments results: experimental images and their corresponding atlas planes after registration. Intensity 3× in experimental images, 2× in atlas

images for visualization purposes. Scale, 1mm.

872 dorsal nucleus raphe, 642 nucleus of the trapezoid body, 574
tegmental reticular nucleus, 169 nucleus prepositus, 222 nucleus
raphe obsurus, 207 area postrem (the numbers in front of region
names are the region ID in the annotation volume) and generate
landmarks automatically by sampling 100 points along these
brain region boundaries. These regions show contrast to their
neighboring regions in at least a few slices that contain them.
The sampled points cover 32% of the total number of slices
and 72% of the entire brain length. We then map the selected
landmark points with the known transformation to obtain the
ground truth.

In the sectional simulated brain, we can compute the true
error of both our method and of the expert, since we have ground
truth, as well as the TRE - expert and computation combined
error. This information can help interpret the results in the five
experimental brains, where we can only compute the TRE. For
the full brain, we are only able to measure the computation error
since the landmark points are generated automatically, but the

information from expert error in the simulated sectional brain
can help us interpret the results.

To compare our results to previous work, we use Ju’s method
(Ju et al., 2006) to reconstruct the brains because it is a
fully automatic method that corrects distortions nonrigidly and
generates a smooth reconstructed volume which facilitates 3D
registration to the atlas. We use the same exact portion of the
atlas to perform this comparison experiment as in our method.
We first resample the experimental slices to the resolution of
the atlas slices and rigidly align them from the middle slice to
the two ends. Then we nonrigidly reconstruct the sections with
a five-slice neighborhood through Ju’s stack Aligner (Ju et al.,
2006). With stack Aligner, warp functions between every pair of
slices are computed. The weighted average of these warps in the
5-slice neighborhood is then applied to every slice. Finally, the
reconstructed volume is then registered to the atlas with Elastix
(Klein et al., 2010; Shamonin et al., 2014) and the parameter
file created by Hammelrath et al. (2016). This parameter file
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is developed specifically for 3D mouse brain registration and
performs the best among the files that we tested. With Elastix,
reconstructed volumes are first rigidly aligned, then affinely
aligned, and finally elastically aligned with B-spline to the atlas.
Similar to our experiment, we measure computation error on the
simulated brains and the TRE on the sectional simulated brain
and experimental brains.

3.2. Evaluation Result
3.2.1. Quantitative Result
Figure 7 reports the results of separately measured expert
error, computation error, and the TRE - combined expert and
computation error - of the reconstruction-first method and our
method on the sectional simulated brain and the computation
error on the full simulated brain. The expert has an intrinsic
error of about 9 pixels (one pixel equals 25 µm given by the
resolution of the atlas volume of the ABA) - similar to the TRE
of our method on the sectional simulated brain. This figure
also shows that our method, with a 2.24-pixel error on the
sectional simulated brain, is about three times better than the
reconstruction-first approach which has an error of 7.45 pixels.
For the full simulated brain, the TRE of our method is 4.68
pixels vs. the TRE of the reconstruction-first method - 14.59
pixels. We expect the computation error to be slightly greater
and show more variance for the full simulated brain than the
sectional brain, because even though the landmarks are sampled
on region boundaries that show contrast to neighboring regions
at least in some slices, we did not further constrain on the slice
numbers whenwe sampled the landmarks.Moreover, because the
simulated deformations are taken from real experiments, when
applied on a slice in the full brain, some large deformations
unavoidably are applied to regions with relatively uniform
intensity.Without features salient enough as in the original image
where the deformation is generated, it is difficult to fully correct
the deformation. The results agree with our expectations, and the
error of our method is smaller than that of an expert and the
reconstruction-first method.

Figure 8 reports results on real experiments of the
reconstruction-first method and our method without and
with the data-specific improvement. The five brains represent
some of the data variability we see in real datasets. These
distances represent a combination of human and computer
inaccuracy. Based on the simulated result on the sectional
simulated brain, we believe the intrinsic expert error is likely
to be much larger than the computation error of our method.
With data-specific improvements, the average TRE slightly
improves. We see a larger improvement on landmark points
near the aqueduct. The TRE ratio is on average 2.56 between the
reconstruction-first method and our method.

3.2.2. Qualitative Result
For the simulated full brain, we display the sagittal view
(ventricle systems masked out) of the results generated
with the reconstruction-first method and our method. The
reconstruction-first method first reconstructs the brain and
then aligns the reconstructed brain to the atlas. Our method
approaches the problem differently by first finding the best

matching angle and the corresponding slices in the resliced atlas
for each experimental image, then registers each experimental
slice to their corresponding slice individually. To show the
“reconstructed” brain with our method, we place each slice to
the coordinates of the atlas volume rotated with the best cutting
angles and interpolate the volume in the anterior-posterior
direction to fill in the “missing” slices. The results are shown
in Figure 9. For the reconstruction-first method, we show the
reconstructed volume registered to the atlas. The reconstructed
volume is very smooth. In the sagittal view, the central region
seems to register with the atlas well. But it is clear that the front
and back of the brain are misaligned. Because the goal of our
method is to map the experimental slices to its corresponding
coordinates in the atlas volume, we emphasize more on the
correctness of alignment rather than smoothness. The sagittal
view shows that with our method, experimental brains are
positioned correctly on top of the atlas volume.

Because sectional brains only consist of about 1/7 to 1/6 of a
full brain length, showing the sagittal view of these thin stacks
does not exhibit the correctness of alignment. Instead, we show
four evenly-spaced slices in each experimental brain and their
corresponding planes in the atlas volume after we mapped them
to the same coordinates. Figure 10 displays a triplet of images
for each slice location. Each row shows two triplets of images. In
each triplet, the left image is the registered slice using ourmethod,
the center is the corresponding atlas plane, and the right image
is the registered slice using the reconstruction-first method. To
give the registration-first method a fairer comparison, we try to
avoid slices where the corresponding planes don’t contain a full
slice: we constrain our slice selection to the portion that has a
close-to-full slice correspondence in the reconstructed volume.
If the plane correspondence is correct, the images will show
the same anatomical features. Clearly our method catches the
correspondence better than the reconstruction-first method. We
can also glance at the registration performance from Figure 10.

4. DISCUSSION

Histological sectioning is the most commonly used method
to investigate organizations of normal and diseased brains.
Individual brain variations and distortions and intensity
inconsistencies caused by sample preparations make aligning
histological brain slices to a reference a challenging task for both
experts and computer algorithms. To address these challenges,
we put together a direct approach to solving the mapping
problem between a 2D histological sequence and a reference
volume that allows us to determine the best corresponding
slice for each experimental slice before attempting any nonrigid
alignment. It uses the L2 norm of HOG difference as the image
comparison metric and the average matching index difference
between half-images to create a sectioning angle measurement.
The HOG metric enables image similarity comparison without
the need of deformable registration. This produces a robust
framework that leverages brain structural characteristics and
symmetry to determine the cutting angle and matching slices
without initial reconstruction. Avoiding reconstruction improves
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accuracy by preventing z-shift problems as validated by our
comparison experiments. In 2D nonrigid registration, we
augmented the standard MRF on medical image registration to
model accumulated tension when deforming tissues to more
naturally deal with the easily-deformed cavities throughout the
brain. This requires us to use squared distance pairwise term and
pass simulated stress across iterations.

Interestingly, the results from the comparison experiment
between the reconstruction-first method and our method
show that using sectional reconstruction for registration still
introduces small errors. These methods must compromise
between thinner sections, with less z-shift issues, and thicker
sections that contain better matching information. As a result,
our method has better accuracy for registrations of sections with
only 1/7 of the full brain.

Since our method is mostly automatic, and the accuracy is
similar to or better than an expert neuroscientist even for datasets
where many slices are corrupted, we have successfully used our
method to map multiple brain datasets in a recent anatomical
study (Ren et al., 2018) to the ABA, making multi-brain data
analysis possible and accurate. Further work should be able to
improve the quality of our registration by tailoring the non-rigid
deformation to emphasize salient features, and incorporating 3-D
information in this step.

The ABA (2015) also contains a population average of serial
two-photon (STP) tomography images. While we used the
grayscale Nissl volume of the ABA in our project, because our
method is very robust to intensity variation, we tested aligning a
Nissl-stained experimental image to the corresponding STP plane
of the ABA. The STP volume is easier to prepare because the

quality of imaging is overall better. The results are promising. In
fact, we get similar qualitative results as the Nissl-stained atlas
slice. Clearly, while further work will be needed in this multi-
modality task, it seems this method might be useful to these
applications as well.
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