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Computer simulations play an important role in testing hypotheses, integrating

knowledge, and providing predictions of neural circuit functions. While considerable effort

has been dedicated into simulating primate or rodent brains, the fruit fly (Drosophila

melanogaster) is becoming a promising model animal in computational neuroscience for

its small brain size, complex cognitive behavior, and abundancy of data available from

genes to circuits. Moreover, several Drosophila connectome projects have generated a

large number of neuronal images that account for a significant portion of the brain, making

a systematic investigation of the whole brain circuit possible. Supported by FlyCircuit

(http://www.flycircuit.tw), one of the largest Drosophila neuron image databases, we

began a long-term project with the goal to construct a whole-brain spiking network

model of the Drosophila brain. In this paper, we report the outcome of the first phase

of the project. We developed the Flysim platform, which (1) identifies the polarity of

each neuron arbor, (2) predicts connections between neurons, (3) translates morphology

data from the database into physiology parameters for computational modeling, (4)

reconstructs a brain-wide network model, which consists of 20,089 neurons and

1,044,020 synapses, and (5) performs computer simulations of the resting state.

We compared the reconstructed brain network with a randomized brain network by

shuffling the connections of each neuron. We found that the reconstructed brain can be

easily stabilized by implementing synaptic short-term depression, while the randomized

one exhibited seizure-like firing activity under the same treatment. Furthermore, the

reconstructed Drosophila brain was structurally and dynamically more diverse than the

randomized one and exhibited both Poisson-like and patterned firing activities. Despite

being at its early stage of development, this single-cell level brain model allows us to

study some of the fundamental properties of neural networks including network balance,

critical behavior, long-term stability, and plasticity.
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INTRODUCTION

Understanding brain function requires knowledge of both
molecular biology at the cellular level and of the interactions
between neurons and the underlying circuit structure (Morgan
and Lichtman, 2013). In addition to various experimental
approaches, computational modeling is becoming an
increasingly important technique because it facilitates the
validation of hypotheses and theories regarding neural circuit
operation through the integration of existing observations into
computer models (Sporns, 2013; Chaudhuri and Fiete, 2016;
Churchland and Abbott, 2016; Denève and Machens, 2016).
Indeed, extensive studies on neural network models covering
Caenorhabditis elegans (Palyanov et al., 2011; Szigeti et al.,
2014; Izquierdo and Beer, 2016; Sarma et al., 2018), insects
(Wessnitzer and Webb, 2006), rodents, and primates (Markram,
2006; Izhikevich and Edelman, 2008; Eliasmith et al., 2012)
have greatly contributed to our understanding of neural circuit
functions at the systems level. However, computer modeling
also faces two major challenges: (1) a large number of neural
network models were built to simulate specific functions in one
or few brain regions (Izhikevich and Edelman, 2008; Eliasmith
et al., 2012). This approach limits our ability to study integrated
functions or behavior at the systems level. (2) Due to the lack
of connectomic data at the single-cell level for most species,
large-scale neural network models can only be constructed based
on the connectome at the macroscopic level (Izhikevich and
Edelman, 2008).

These challenges can be addressed by large-scale connectome
projects (Milham, 2012; Burns et al., 2014; Peng et al., 2015;
Lo and Chiang, 2016), which aim to reconstruct a high-
resolution connectome of the whole brain at the single-cell
level. While this is still a major challenge for large animals
such as primates (Helmstaedter, 2013), acquisition of single-
cell level connectomes for small animals, such as the Drosophila
melanogaster (fruit fly), has seen rapid progress (Chiang et al.,
2011; Shinomiya et al., 2011; Takemura et al., 2013). Therefore,
we suggest that the Drosophila is currently one of the best
model animals for developing a high-resolution full brain

computational model due to the availability of extensive neuron
databases and neuroinformatics tools (Chiang et al., 2011;
Shinomiya et al., 2011; Osumi-Sutherland et al., 2012; Parekh
and Ascoli, 2013; Givon et al., 2014; Givon and Lazar, 2016;
Ukani et al., 2016; Zheng et al., 2018). Although being relatively
small and simple, the fruit fly brain exhibits many high-level
functions, including learning, memory, pattern recognition,
decision making, and others. Hence, studying the neural
circuits of small animals (insects) is extremely useful for our
understanding of many essential brain functions (Wessnitzer and
Webb, 2006; Webb and Wystrach, 2016; Chang et al., 2017; Su
et al., 2017), and constructing a full brain model of the fruit fly
brain may enable us to investigate how different subsystems in
the brain integrate and how high-level behavior is carried out.

In this paper, we present our result from the first phase

(Figure 1) of the Flysim project, a long-term research project
aiming to develop a full-brain computational model of the
Drosophila brain at the cellular and synaptic levels. The most

distinct difference between the proposed model and other

large-scale brain models is that in the proposed model every
neuron was uniquely derived from a neuron image from the
FlyCircuit database(Chiang et al., 2011). The database currently
hosts 28573 and 22835 neuron images from female and male
Drosophila brains, respectively, and the amount of data is rapidly
increasing. The 22835 images account for 22.83–15.22% of the
estimated total neurons (100,000–150,000) in a Drosophila brain.
Although being a small percentage, these neurons fairly represent
the entire brain as they widely distributed throughout every
neuropil and cover more than 93% of the voxels (each voxel is
0.32× 0.32× 0.64µm in dimension) of the standard brain space
(Chiang et al., 2011).

Reconstructing a full-brain model based on a neuron image
database poses several challenges. In the first phase of the project
we developed mathematical and statistical tools that are required
for transforming the neuronal morphologies into computational
models and for deriving parameters that allow the modeled brain
to maintain a stable resting state. Specifically, we needed to (1)
predict the polarity of each neuron based on its morphology,
(2) infer the synaptic connections and their weight between any
two neurons, (3) derive membrane parameters for each neuron
based on its size, (4) design a neural network simulator that is
able to accommodate the simulations, and (5) find the balance
condition of the brainmodel that is active and stable in the resting
state. We also analyzed the network structure and the activity
of the reconstructed fruit fly brain and found that it exhibits
much higher diversity yet more stability than those observed
in a randomized brain network. Finally, we discuss the issues
in the current model, including identification of neuron type,
receptor type, and polarity, models for modulatory synapses,
image alignment, and choice of single neuron model. We further
suggest the technology and methodology that are required to
address these issues in the next phase of the model development.

MATERIALS AND METHODS

Data Preprocessing and Analysis
The FlyCircuit database provides detailed neuron images and
accurate tracing lines (skeletons) for each neuron. However,
to construct a computational model of the brain network, we
need the following additional information: (1) polarity of each
neuron arbor, (2) connections between neurons, and (3) their
physiological properties. Here we describe the methods we used
to estimate the parameters associated with these properties.

Synapse Polarity Prediction and Validation
The information regarding the polarity (axon and dendrite) of
each neuron was not available in the original neuron skeleton
data obtained from the FlyCircuit database. To infer the polarity,
we used the SPIN method (Lee et al., 2014), which is a machine-
learning algorithm designed for identifying the axonal and
dendritic domains of a neuron based on its skeleton. Although
this method is not 100% accurate [∼84–92% on the original
test dataset (Lee et al., 2014)], it is the only available automated
method that can be applied to a large-scale neuron image
database.

The original SPIN method was tested on a small subset
of neurons that innervate the protocerebral bridge (PB) and
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FIGURE 1 | The Flysim platform for Drosophila full-brain modeling. The platform imports neuron skeleton data from the FlyCircuit database. The data undergo several

processes before they are transformed into a computational model. The processes include polarity (axon or dendrite) identification, neuron connection prediction, and

membrane parameter estimation. These processes lead to a raw model that can be simulated by the Flysim simulator, developed in-house. The raw model requires

tuning and testing before it reaches a stable state.

modulus (MD). To apply this method to the entire brain, we
tweaked several parameters and re-trained the classifier. We first
randomly selected 90 neurons that cover diverse morphologies
from several neuropils including the PB, MD, antennal lobe
(AL), and mushroom body (MB). We chose these neuropils
because the polarity of their neurons is largely known. We
manually labeled the polarity of the neurons and used them as
the training data for SPIN. To identify the best combination of
the morphological features for polarity classification, we tested
all three feature selection methods provided by SPIN: sequential,
exhaustive, andmanual assignment.We found that the sequential
method provided the best result, which indicated that there are
11 morphological features correlated with the polarity (Table 1).
Among the 11 features, the top five are: path length to soma,
mean branch order, maximum path length, maximum branch
order, and number of branch points and volume of the convex
hull.

The training yielded a new polarity classifier. Next, SPIN
separated each test neuron into several domains and classified
the polarity of each domain. Because the data used in the present
study have a higher resolution, i.e., more terminal points, than
those used in the development of the SPIN method, SPIN tended
to separate some neurons into too many domains. This issue was
resolved by changing the parameter ThDP from 0.01 to 0.001. To
validate the performance of the new classifier, we selected the 442
neurons that were reported in Lin et al. (2013) as test neurons
because their polarity has been reported in detail by two studies
(Lin et al., 2013; Wolff et al., 2015). We removed the EIP neuron
class, which innervates the ellipsoid body, inferior dorsofrontal
protocerebrum, and protocerebral bridge, because the reported

TABLE 1 | Morphological features that are correlated with the neuronal polarity as

determined by the SPIN method.

Morphological features Weight

Path length to soma 0.599

Mean branch order −0.413

Maximum path length 0.402

Maximum branch order 0.303

Volume of the convex hull −0.291

Number of branch points −0.285

Mean path length 0.215

Summation of segment lengths 0.054

Mean volume of Voronoi pieces 0.023

Mean branch angle 0.012

Mean branch length −0.003

The weight represents the degree of correlation. Positive values indicate positive

correlation while negative values indicate negative correlation. The definition of each

feature is described in Cuntz et al. (2010).

polarity is inconsistent between the two studies. Our test result
indicated a 91.3% of terminal level accuracy, whichmeans that on
average, the polarity of 91.3% of the terminals in each neuron was
correctly classified. Finally, we used the new classifier to classify
the polarity of all the neurons in the FlyCircuit database.

Synapse Weight Prediction and Connection

Validation
Next, we estimated whether connections exist between any two
given neurons. In FlyCircuit, each neuron image was taken
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from one individual fly brain. Although each image has been
transformed (or warped) and registered in a standard brain
space, this process inevitably created warping error. Ideally,
the probability of synapse formation between two neurons is
correlated with the degree of contact between them (Peters
and Payne, 1993; Douglass and Strausfeld, 2003; Tanaka et al.,
2012). However, due to the warping error, if two neurons have
closely contacted branches in the standard brain space, this does
not necessarily indicate that they form synapses. Likewise, two
neurons that are not closely contacted in the standard brain space
may in fact form synapses (Figures 2A,B). Therefore, additional
procedures were required in order to infer the probability of
synaptic formation between neurons.

To this end, we designed a protocol that infers neuronal
connections based on two criteria: distance and contact point.
The distance criterion sets a maximum distance between an
axonal segment of one neuron and a dendritic segment of another
neuron that can be considered to be forming a contact point.
A segment is the straight line between two consecutive nodes
on a neuronal skeleton. For two selected neurons, we calculated
the distances for all pairs of segments (one from each neuron)
with different polarity. Next, we counted the number of contact
points for these two neurons. The contact point criterion sets
the minimum number of contact points between two neurons
that can be considered to be forming synapses (Figure 2C). We
used the relative number R, rather than the absolute number,
for the contact point criterion. Specifically, if Nik represents the
number of contact points between neuron i (axonal side) and
neuron k (dendritic side), then neuron i is considered as forming

synapses with neuron k if
Nik

∑

j Nji
> R. Intuitively, one would

place the number of all output contact points, i.e.,
∑

j Nij, in the

denominator, so that R represents the ratio between the contact
points of neuron i to neuron k and the contact points of neuron
i to all downstream neurons. However, such a ratio leads to
an undesired consequence, which limits the possible number of
downstream neurons. For example, if R is set to 0.01, neuron i
will have no more than 99 downstream neurons. This is because
if we rank the downstream neurons by their contact points with
neuron i, the 100th downstream neuron must have an R < 0.01.
This problem will have a strong impact on neurons that have a
large number of downstream neurons. Instead, using the number
of all input contact points, i.e.,

∑

j Nji, as the denominator solves

the problem. Although it seems odd to calculate the ratio based
on the number of input contact points, it is not because the
number is in fact roughly proportional to its total number of
output contact points (Figure S1).

The optimal values of D and R for the two criteria were
determined by the following procedure: (1) we started from a
small distance criterion (D = 1 µm) and contact point criterion
(R= 0.1%), (2) for every pair of neurons in the test neuron set, we
calculated the number of contact points and determined whether
the two neurons form synapses based on the criteria; (3) we
compared the result with data from a previous research (Lin et al.,
2013) and calculated the true positive rate and false positive rate,
and (4) we changed the distance and the contact point criteria
and repeated steps 2–3. Finally, we used the receiver operating

FIGURE 2 | Prediction of neuron connections based on distance and number

of contact points. (A–C) Schematics of neuron connections illustrate how the

prediction error can be reduced by the consideration of distance and contact

points. (A) The dendritic arbor of neuron 1 is far apart from the axonal arbor of

neuron 2 and they do not form any synapse. Neuron 2 and neuron 3, however,

form five synapses as indicated by the five contact points (red circles) between

them. (B) Warping error may occur when neurons are transformed and aligned

in the standard brain space. In this case, neurons 1 and 2 come in contact

while neurons 2 and 3 become separated. If the connection prediction is made

only based on the distance between neuron processes, errors would occur in

this case. (C) To address this issue, we set two criteria: contact point and

distance. Axonal and dendritic branches are counted as having a contact point

when their shortest distance falls within a preset distance. Two neurons are

considered to form synapses when their contact point number is larger than a

preset value. When proper values for the two criteria are set, neurons 1 and 2

are no longer connected but neurons 2 and 3 become connected. (D) Using

the receiver operating characteristic analysis with various contact point and

distance criteria, we identified the best criteria that lead to a high true positive

rate (x-axis) with a reasonably low false positive rate (y-axis). Each black line

represents a fixed distance criterion (dot: 1 µm, solid: 13 µm, dashed: 20 µm)

with varying contact point criteria. The gray line represents the result when

synaptic connections between neurons are randomly assigned. The cross

indicates the best criteria: the contact point number > 0.1% (of the total input

contact points of the presynaptic neuron, see text) and the distance < 13 µm.

characteristic (ROC) analysis (Lasko et al., 2005; Fawcett, 2006) to
determine the best criteria to be: distance = 13 µm with contact
points = 1% (Figure 2D). With these criteria, we achieved an
acceptable true positive rate of 0.71 and a very low false positive
rate of 0.058.

All procedures were performed with the 442 neurons reported
in Lin et al. (2013). Based on Lin et al. (2013) and Wolff et al.
(2015), who reported the anatomy of the same circuits, we were
able to derive the network connections of these neurons and
use them as a reference to optimize our connection estimation
protocol. Lin et al. (2013) and Wolff et al. (2015) reported the
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polarity and innervated subregions of each neuron. To construct
the reference connectivity of these neurons, we assumed that
a neuron that projects its axonal arbor to a glomerulus forms
synapses with another neuron that has its dendritic arbor in the
same glomerulus. Our assumption is reasonable considering that
each defined glomerulus takes a small spatial volume [on average
16µm in size (Chang et al., 2017)] and a neuron that innervates a
subregion typically fills up the volume with its arbors and highly
overlaps with other innervated neurons.

Estimate of Membrane Parameters
For each neuron, we estimated its membrane parameters in
order to create a LIF model for simulation. The LIF model
requires the following parameters: resting potential Vresting,
spike threshold V threshold, reset potential Vreset, refractory period
Trefract, membrane time constant τm, and membrane capacitance
Cm. To determine the first three parameters, we extensively
reviewed the literature and estimate the typical value for each
parameter (Table S1). In consequence, we set Vresting =−70mV,
V threshold = −45mV, Vreset = −55mV, and τm = 16ms for
every neuron. The refractory period was set to 2.0ms. The
membrane capacitance of each neuron was size-dependent and
was determined by the following procedures.

The membrane capacitance, Cm, depends on the total area
of the cell and hence roughly correlates with the size, or the
total branch length, of the cell. Therefore, at the current stage
we simply assumed that Cm of a cell linearly correlates with its
total skeleton length. Based on this assumption, we can easily
estimate the Cm for each neuron if we find the typical value of the
membrane capacitance per unit length of the skeleton, denoted
cm. Although this was a very rough estimate, it gave us a size-
dependent membrane capacitance and is certainly superior to
simply setting all neurons with an equal membrane capacitance.
We have found that cell membrane capacitance was 0.6 µF/cm2-
1.0 µF/cm2 from previous work (Gouwens and Wilson, 2009)
(Weir et al., 2014) and we considered the average value, 0.8
µF/cm2, as the membrane capacitance per unit area for our
neuron model. Because the information about the diameter of
each neuron branch is not available in the current database, we
were not able to directly calculate the membrane area of a neuron
but had to estimate the value indirectly based on other studies.
Wilson and Laurent (2005) measured the total length and area
of three antennal lobe projection neurons. By comparing the
skeleton length of the neurons in our database to that reported by
Wilson and Laurent (2005), we obtained an empirical equation
for the total area A of a neuron, A =

(

li × 2π × 0.147
)

×

2.38 + 5340, where li is the skeleton length of the neuron i.
By multiplying A by 0.8 µF/cm2, we obtained the estimated
membrane conductance of each neuron.

Model Network Construction
Based on the procedures describe above, we established a brain-
wide neural circuit model including an individual LIF model
(described below) for each neuron and the conductance-based
synapses formed by these neurons. We acquired neurons from
the female fruit flies in the FlyCircuit database, and excluded
the isolated neurons (those not connected to any other neurons

based on our connection estimation). We obtained a total of the
20,089 neurons that can be used in the brain-wide circuit model.
Next, we inferred the type, in terms of released transmitters, of
each neuron by the driver used to image the given neuron. The
driver type is indicated by the first part of a neuron’s name in
the database. For example, the neuron named VGlut-F-200532
is assumed to be a glutamatergic neuron. Specifically, there
were 3365 putative cholinergic (Cha) neurons, 5998 putative
glutamatergic (VGlut) neurons, and 7956 putative GABAergic
(Gad) neurons. At the current stage we only simulated synaptic
projections from these three types of neurons, which form a
total of 1,044,020 synapses. The other 2,770 neurons were likely
modulatory neurons, which release neurotransmitters such as
dopamine, octopamine, serotonin, and others. We argue that it
is safe to exclude their synapses at the current stage because their
slow effect does not significantly impact brain dynamics at the
millisecond to second time scales, as the present study focused
on. We will include the modulatory synapses in the future when
we simulate the fruit fly behavior at the minute to hour time
scales.

Neuron and Synapse Models
Each neuron was simulated by a compartment of the LIF
model with conductance-based synapses. The neuron model is
described by:

Cm,i
dVi

dt
= −gL,i

(

Vi − VL,i

)

−

∑

jIij (1)

where the subscripts i and j are the neuron indices, gL = Cm/τm
is the membrane conductance, VL (=Vresting) is the resting
potential, and Iij is the synaptic current, which is contributed
by glutamatergic (including AMPA and NMDA receptors),
cholinergic (Ach), and GABAergic (GABAA) synapses formed by
projections from the presynaptic neuron j. For AMPA receptors
in glutamatergic synapses as well as cholinergic and GABAergic
synapses, we have

Ii = gijsij (Vi − Vrev) (2)

and for NMDA receptors in glutamatergic synapses, we have

Ii =
gijsij (Vi − Vrev)

1+

[

M2+
g

]

3.57mM e−0.062Vi

(3)

where g and s are the synaptic conductance and the gating
variable, respectively, Vrev is the reversal potential, which is
0mV for the excitatory (including AMPA, NMDA, and Ach) and
−70mV for the inhibitory (GABAA) synapses, respectively, and
[Mg2+] (=1mM) is the extracellular magnesium concentration,
which is used to describe the effect of the magnesium block on
the NMDA channels. We would like to clarify the use of the
term “synapse.” In biology, a neuron can make multiple contacts
and form multiple synapses with another neuron. However, in
the single-compartmental model used in the present study, the
effect of multiple synapses between two neurons can be combined
and described by only one synaptic equation. Therefore, a model
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synapse between the presynaptic neuron i and the postsynaptic
neuron j can be treated as a collection of all biological synapses
formed between the two neurons, i and j. The gating variable sij
is given by:

dsij

dt
= −

sij

τ
+

∑

k
δ(t − tkj ) for AMPA and

GABAA receptors (4)

or

dxij

dt
= −

xij

τx
+

∑

k
δ(t − tkj ),

dsij

dt
= αxij

(

1− sij
)

−
sij

τs
for NMDA receptors. (5)

δ is the delta function, and tkj is the time of the k-th spike

from the presynaptic neuron j. The synaptic conductance g is an
unknown parameter that indicates the strength of the synapse.
The parameter α (=0.6332) is a scaling factor used to adjust the
increment of the NMDA gating variable, or the activation rate
of the NMDA receptors, following each spike input. We assume
that the synaptic strength between a presynaptic neuron i and
postsynaptic neuron j are proportional to the number of their
contact points, Nij:

gij = DBkNij (6)

The proportion constant is the multiplication of three variables:
D, B, and k. D is a variable for short-term depression described
below. Bwas different between excitatory and inhibitory synapses
and was used to adjust the balance between excitation and
inhibition of the system as described in the Results. k is a variable
used to balance the relative contribution between excitatory
synapses that contain AMPA, NMDA, or Ach receptors. k was
set to be 1/300 for AMPA receptors. Because the NMDA time
constant is 50 times larger than that of AMPA, we set k =

1/15000 for NMDA receptors, so that both NMDA and AMPA
contributed equally to the synaptic current in a glutamatergic
synapse. Likewise, k was set to be 1/3000 for an Ach synapse
because its time constant is 10 times larger than that of AMPA.
For GABAA synapses, k was set to be 1/300, which is equal to
that of AMPA. Note that for a given glutamatergic synapse, the
corresponding NMDA and AMPA components shared the same
D, Nij, and B.

We delivered to each neuron a small but fluctuating
membrane current as the background noise. Specifically, at each
time step and for each neuron, a value of membrane current
was drawn from a Gaussian distribution and was applied to the
neuron in order to generate membrane potential fluctuation.
The width of the Gaussian distribution is dependent on the size
of each neuron to ensure that the resulting mean membrane
potential (= −60mV) and its standard deviation (3mV) at the
resting state are the same for all neurons. The background noise
is so small that each neuron barely fires (with a mean firing rate
of∼0.004Hz) without external synaptic input.

Short-term Plasticity
We implemented the STD, a feature commonly observed in
various nervous systems including the Drosophila’s (Wilson and
Laurent, 2005; Root et al., 2007; Nagel et al., 2015). We adopted a
model which describes STD as a presynaptic calcium dependent
dynamic, in which the available vesicles decrease following each
presynaptic spike and exponentially return to the baseline with a
long time constant (Abbott et al., 1997; Varela et al., 1997; Hempel
et al., 2000). Specifically, the STD variable D is given by:

dD

dt
=

(1− D)

τD
− D

(

1− pv
)

δ (t) (7)

where τD is the time constant of STD, and pv is the synapse vesicle
release probability (Wang, 1999), δ(t) is a delta function that is
infinity at the time of every presynaptic spike and 0 elsewhere.
D is used to modulate the synaptic conductance as indicated in
Equation (6).

The Randomized Brain Network
To investigate the neural network dynamics of the reconstructed
fruit fly brain, it is useful to compare it to a randomized network
to assess the contribution of the brain network structure to the
network dynamics. To this end, we created a randomized fruit
fly brain network using the following procedure. We preserved
all neurons in the reconstructed fruit fly brain model as well as
all synaptic conductance gij’s. Next, we rewired all connections
by randomly assigning a new postsynaptic neuron i to every
gij, while keeping the presynaptic neuron j unchanged. The
randomized fruit fly brain network had the same number of
neurons, the same number of synapses, and the same synaptic
weight (gij) distribution with those in the reconstructed fruit
fly brain network. Because of the random rewiring, the isolated
neurons in the reconstructed brain network became connected
in the randomized brain network, which had a slightly larger
number of neurons (22,835).

Model Network Simulation
To perform simulations for the model fruit fly brain, we built
a neural network simulator, Flysim, in C++. Flysim includes
four major components: (1) two-pass network compilation, (2)
data managing and optimization, (3) computation, and (4) data
output.

Two-pass Network Compilation
The network building process requires a special design because
of the large size of the parameter file, which specifies unique
parameters for each of the 20,089 neurons and 1,044,020
synapses. In order to facilitate the computer memory access
and to shorten the network construction time in this large-scale
neuron network, we utilized the “two-pass compiler” concept
in network compilation. In the first pass (Figure 3A), Flysim
reads through the parameter file, calculates the number of total
neurons and synapses, and allocates the memory for each neuron
and synapse. In the second pass (Figure 3B), Flysim reads every
parameter and fill them into the pre-allocated memory. This
two-pass approach avoids the time needed for dynamic memory
allocation when building neuron data, and hence reduces the
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FIGURE 3 | The architecture of the Flysim simulator. In the fruit fly brain model, each neuron and synaptic connection are unique. Therefore, the entire model requires

a large amount of computer memory. The simulator is designed to address this challenge. (A) The simulator first goes through the network configuration file and

estimates the number of neurons and synapses. Next, the simulator pre-allocates memory. (B) The simulator goes through the network configuration file again, reads

all parameters, and then builds the whole network by filling each membrane-related and synapse-related datum into the pre-allocated memory. (C) The simulator

performs linear reduction for synapse-related data to reduce computation and archive threading level parallelism. (D) The simulator dispatches each thread with one

assembled neuron array and aligns each thread into a 5-stage pipeline for parallel processing. (E) Simulation results, including spike, membrane potential, average

firing rate, and other data are directly accessed from assembled neuron arrays to archive high throughput and low latency data output.

time for network construction from over 15min down to only
1.5min.

Data Managing and Optimization
We also adopted the compact data structure to reduce memory
access. Because in our network model each neuron has different
parameters and connections, the data are not linearly reducible.
To improve the memory access efficiently, we separated the
data into two categories: membrane-related and synapse-related
(Figure 3C). Flysim sorts the synapse-related data, which are
compiled in the previous process, and then reduces the fast-
responding gating variables of each neuron as follows. In our
network model, the dynamics of fast-responding receptors such
as AMPA, GABAA, and acetylcholine are described by a simple
exponential decay. This property makes it possible for us to
linearly combine all gating variables of the same receptor type
(AMPA, GABAA, or acetylcholine) in each post-synaptic neuron
i into one single variable, Si:

Si =
∑

j
gijsij (8)

where gij and sij are defined in equations (4) and (6), respectively.
The dynamics of Si are described by

dSi

dt
= −

1

τs
Si +

∑

jk
gijδ(t − tkj ) (9)

where tkj indicates the time of k-th spikes from the presynaptic

neuron j. Instead of calculating a large number of gating variables
for each connection for a given neuron, we only needed to
calculate one gating variable for each receptor type. In the
simulator, Equation (9) was used to replace Equation 4 for the
AMPA, GABAA, and cholinergic receptors. This reduction led
to program space and time localities, which greatly improved
memory fetch and storage through the high-speed buffering
mechanism in the modern computer memory hierarchy.

Computation
To further reduce the computation time, we entered the
calculations of membrane current and potential in the same
program block for spatial and temporal localities, which allowed
the C++ compiler to automatically optimize the operations and
improve the speed.

When performing threading level parallelism (TLP), load
balance greatly influences computing performance (Figure 3D).
Load balance can be easily achieved for neuron-related data
because each neuron is described by the same number of
neuronal parameters. However, this is not the case for synapse-
related data because the number of synapses varies greatly
between neurons. To address this issue, we assembled multiple
arrays, and each contained synapse-related data from randomly
selected neurons. Due to the nature of random selection, the
arrays were roughly of the same size, or balanced. Each array
was then loaded into one thread for computation. By performing
TLP with load balance, we could achieve a 1:35 simulation speed
(1 s of biological time requires 35 s of real time to simulate) using
four threads with the current network size (20,089 neurons and
1,044,020 synapses) (see Results).

We found that the synaptic strengths in the reconstructed
brain network have broad distributions. Therefore, some
neurons received an extremely large number of innervations
from GABAergic neurons, which produced excessive inhibitory
current input and brought the membrane potential of the
postsynaptic neuron to a level much lower than the reversal
potential, or Vi ≪ Vrev, in equation 2. When this occurred,
subsequent GABAergic input instead produced depolarized
current (Ii < 0, see equation 2). If the subsequent GABAergic
input is again very strong, the large depolarization current might
in fact bring the membrane potential above the firing threshold
and generate an action potential. To eliminate such artifacts,
we implemented a constrain on the maximum potential change
dVmax of a neuron in one simulation time step. The maximum
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value was set to be:

dVmax = Vth − Vrev (10)

For the numerical solver, we used the first order exponential
integrator method (Cox and Matthews, 2002) instead of the
commonly used 4th-order Runge-Kuta method. The reason is
that due to the nature of the LIF model, we only needed to
solve the equations for the sub-threshold membrane dynamics,
which evolve much slower than those of spike activity. Using
the exponential integrator can greatly improve the speed while
at the same time retain high precision (comparable to the look-
up table method). To speed up the generation of the Gaussian
noise, which is used for membrane noise, we used the ziggurat
(Marsaglia and Tsang, 2000) method to generate a Gaussian-
distributed random number. This approach further improved the
speed 3-fold compared to the standard C++ random number
generator.

Data Output
For the simulated data output module, we adopted a direct-access
approach in which neuron variables are written to files directly
rather than through a commonly used independent message
queue or message buffer (Figure 3E). Flysim uses clock-driven
simulation and it exports various data, including spike time,
firing rate, membrane potential, and others, in each time step.
The direct data-access approach provides a high output rate
with low latency, and therefore minimizes the time spent on
non-simulation processes.

RESULTS

Statistics of the Network Structure
We first examined several key statistics of the reconstructed fruit
fly brain network and found that it is highly diverse and exhibits
interesting patterns of local connectivity. The network contains
20,089 neurons and the average number of edges (connections) is
52. The neuron sizes, as represented by individual neuron’s total
skeleton length, cover two orders of magnitude. The distribution
of neuron size forms two peaks, suggesting two distinct neuron
types in the fruit fly brain (Figure 4A). Further analysis revealed
that one peak mainly corresponds to the projection neurons
(mean skeleton length = 1,753 µm) and the other corresponds
to the local neurons. Projection neurons are those innervating
more than one neuropils and are usually much larger than the
local neurons, which only innervate one neuropil. We further
found that the local neuron distribution also formed two peaks.
The peak that corresponds to the shorter mean length is mainly
contributed by the local neurons in the medulla (MED), while
the longer one is contributed by the rest of the local neurons
(Figure 4A, inset). The MED local neurons have a mean skeleton
length of 858 µm, while the non-MED local neurons have
a longer mean skeleton length of 1,206 µm, which is still
significantly shorter than that of the projection neurons (t-test,
p < 10−21). We noted that the MED local neurons account
for a significant number (1,455) of the total neurons in our
sample. However, considering that eachMED consists of roughly

eight hundred visual columns and each column contains a few
dozen local neurons (Morante and Desplan, 2008; Zhu, 2013),
the number of MED local neurons in our sample seems to be
reasonable.

We further examined the connectivity of the fruit fly brain
networks. The connectivity exhibited long tail distribution
and connectivity was 0.003, meaning that each neuron made
connections to ∼0.3% of neurons in the brain, on average.
The degree distribution, or the distribution of the number of
connections made by each neuron, formed a broad distribution
with the largest connection number up to 944 for in degree (input
connections) and 3,982 for out degree (output connections)
(Figure 4B). Both distributions roughly followed an exponential
form, at large degrees. If we consider the full brain (estimated
100,000–150,000 neurons in total), connectivity of 0.3% gives rise
to an average degree of 390 per neuron. Although the number
seems to be high, note that the degree distribution follows a long
distribution with a fat tail, suggesting that the average number
is strongly influenced by a small number of highly connected
neurons while the degrees of most neurons are <390.

Next, we examined the total input and output contact
points of each neuron (see Methods) and found that their
distribution also formed broad distributions, but with power-
law tails (Figure 4C). The broad degree and connection weight
distributions indicate that the connectivity of the fruit fly brain
network is multi-scaled.

We further investigated the local connectivity under the
consideration of neuron types, which influence the network
balance. The fruit fly brain network, just like any other
neural network, is characterized by strong recurrent/feedback
connections with both excitatory and inhibitory synapses. We
expect that the ratio between the excitatory and inhibitory input
has to remain balanced. Otherwise, slightly more excitation (or
less inhibition) could be quickly magnified through the recurrent
connections and destabilize the entire network. A balanced
network does not imply that it is lack of spontaneous activity
or is unresponsive to the input as one may imagine. Several
theoretical studies suggested that a balanced state can improve
functionality of a neural network compared to unbalanced one
(Chance et al., 2002; Vogels and Abbott, 2009; Wang et al., 2013;
Lo et al., 2015) and such a balanced state has been observed in
various nervous systems (Shu et al., 2003; Mariño et al., 2005;
Haider et al., 2006; Berg et al., 2007). We calculated the E-I index
for each neuron and plotted its distribution separately for each
neuron type (Figure 5). The E-I index of a neuron is defined as
(NE−NI )
(NE+NI )

, where NE is the total excitatory input (from VGlu and

Cha neurons) and NI is the total inhibitory input (from Gad
neurons) to the given neuron. The E-I index can be calculated
with unweighted or weighted input: the former only counts the
number of input neurons and the latter weights each input with
its contact point number.

As a comparison, we also plotted the distributions of the E-I
index for the randomized fruit fly brain network (see Methods).
We found that the distributions of weighted inputs for the
reconstructed fruit fly brain were much wider than those of the
randomized one, suggesting that the neural connections in the
fruit fly brain are organized in a way that leads to numerous
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FIGURE 4 | The neuron size and network connectivity of the fruit fly brain

network are highly diverse. (A) the distribution of neuron size as represented

by the total skeleton length. The probability density was calculated by dividing

the number of neurons in each bin by the total number of neurons and by the

bin size. The sizes for all neurons (thick black) exhibit a bi-modal distribution.

The left peak is mainly contributed by the local neurons (dotted curve), while

the right peak is mainly contributed by the projection neurons (dashed curve).

(Continued)

FIGURE 4 | The distribution of the local neurons also forms two peaks with

the shorter-length peak contributed by medulla (MED) local neurons and the

longer-length peak, by non-MED local neurons (inset). (B) The distribution of

degree (number of connections of each neuron) follows a broad distribution for

both in-degree (input connections) and out-degree (output connections). Inset:

a double-log plot of the same curves. (C) The distribution of the contact point

number of each neuron also exhibits a long tail distribution for both input and

output contact points. Inset: the same curves in a double-log plot.

neurons with high or low E-I index. This trend was much
more significant for the weighted than the unweighted inputs.
Specifically, we found that the putative cholinergic neurons (Cha)
in the reconstructed brain are characterized by a wider and
roughly symmetric distribution of the E-I index (Figures 5A,D).
In other words, this neuron population had equally large
percentages of neurons with very high or very low E-I indices.
In contrast, the putative GABArgic inhibitory neurons (Gad)
in the reconstructed brain were characterized by a wider but
asymmetric distribution of the E-I index (Figures 5B,E), which
indicates that there were many more Gad neurons receiving
strong inhibitory input in the fruit fly brain network than in a
randomized brain network. Moreover, the putative glutamatergic
neurons (VGlu) in the reconstructed brain were characterized
by a trend opposite to that of the inhibitory neurons: the
VGlu neurons tend to receive stronger excitatory input than
the inhibitory ones (Figures 5C,F). One may suspect that the
wide E-I index distributions of the reconstructed brain may had
been artifacts due to subsampling of the full brain network. To
address this question, we hypothesized that the full brain network
(estimated to possess 100,000–150,000 neurons) is random-
network like and exhibits narrow E-I index distributions, which
become significantly widened after subsampling. We tested this
hypothesis by constructing a randomnetwork of 130,000 neurons
with the percentage of each neuron type and their connectivity
(in percentage) following those in the reconstructed brain. Next,
we randomly selected ∼20,000 glutamatergic, cholinergic, and
GABAergic neurons and calculated their E-I indices. We found
that the subsampled random network exhibits much narrower
E-I index distributions than those of the reconstructed brain
(Figure S2). Therefore, the hypothesis of subsampling artifacts
was rejected.

The wide E-I index distributions of the reconstructed brain
indicate that it is potentially unstable due to mutually suppressed
inhibitory neurons and mutually facilitated excitatory neurons.
Next, we investigated the actual stability of the fruit fly brain
network by computer simulation.

Dynamical Properties of the Fruit Fly Brain
Model
We performed the neural network simulations for the fruit
fly brain model. At this early stage of whole-brain model
development, we focused on establishing a stable resting state
(see Methods) and on investigating its dynamical properties.
The stability of the network is determined by the network
structure and the overall strength of the excitatory and inhibitory
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FIGURE 5 | The normalized difference between the excitatory and inhibitory inputs (the E-I index) for different types of neurons in the fruit fly brain indicates the striking

diversity of the local circuits (A–C) The distributions of the E-I index of each neuron, plotted separately for the putative cholinergic, GABAergic, and glutamatergic

neurons, respectively. (D–F) Same with the panels (A–C), respectively, but the E-I index are calculated based on the connections weighted by the contact point

numbers. Solid curves: the reconstructed fruit fly brain. Dashed curves: the randomized fruit fly brain. The reconstructed brain exhibits much broader distributions than

the randomized brain does in all conditions. The putative GABAergic neurons receive more inhibitory inputs, while the putative glutamatergic neurons receive more

excitatory inputs in the reconstructed than in the randomized brain.

connections. While the network structure was derived and
determined by the connectomic data, the strength of the
excitatory and inhibitory connections can be tuned by adjusting

the variable B in Equation 6.We defined the I/E factor as the ratio
between B’s for the inhibitory and excitatory synapses. B was a
fixed value (= 2.2) for all excitatory synapses, and therefore the
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I/E factor was determined by setting B for inhibitory synapses.
For example, B is equal to 22 for the inhibitory synapses if the
I/E factor is 10. We found that if we set the I/E factor to be
one, the network was extremely unstable; the mean firing rate
of the whole network quickly arose to nearly 100Hz within 1 s.
Next, we tuned the I/E factor and examined whether the brain
network can be stabilized with a larger I/E factor (Figure 6). We
varied the factor in the range between 0.1 and 100, and found that
although the average firing rate of the whole network decreased
dramatically with the increase of the I/E factor (Figure 6A),
the network was still unstable. The instability was indicated by
seizure-like firing activity, or hyperactivity, which is defined as
a rapid surge of the mean firing rate of the whole brain to
more than 1.0Hz. Increasing I/E factor moderately prolonged the
onset of the seizure-like events, but did not completely eliminate
them (Figure 6B). We found that once the seizure-like activity
occurred, it never stopped (Figures 6C,D). We further checked
the distribution of the firing rate of individual neurons and
found that for the case of I/E factor = 1, there were numerous
neurons exhibiting extremely high firing rates (Figure 6E).While
for a large I/E factor (100, for example), although the number of
high firing rate neurons decreased, the distribution still exhibited
a long tail (Figure 6F). The inefficiency of the I/E factor in
stabilizing the network may be contributed by the following two
factors: (1) Some of excitatory neurons have a highly positive E-
I index, or less inhibitory input, making them less sensitive to
strong inhibitory synapses. (2) The negative mean E-I index in
the inhibitory neurons indicates strongly recurrent inhibition.
Therefore, these neurons tend to inhibit themselves and limit the
overall inhibitory output to the excitatory neurons.

Our simulations indicated that a strong inhibitory system, as
characterized by a large I/E factor, is unable to stabilize the brain
network. Therefore, we needed another neural mechanism that
can efficiently “cool down” the network when the overall activity
was high. To this end, we tested the short-term depression (STD),
which is commonly observed in many species, including the
Drosophila (Kazama andWilson, 2008).We implemented STD in
every synapse of the fruit fly brain network and set the I/E factor
equal to 10.We noted that the precise value of the I/E factor is not
crucial. Setting the value above 5 would lead to the same network
dynamics, qualitatively. We represented the degree of stability by
the prevalence of the hyperactivity, as defined by its total duration
in a 10-s simulation period, for different STD strengths, which is
indicated by the recovery time constant (τD) of STD. We found
that STD effectively stabilized the reconstructed brain network
and the prevalence dropped to 50% or lower when τD was
>125ms (Figure 7A). Moreover, while the seizure-like activity
ran continuously in the brain network without STD (Figure 7B;
Video S1), these hyperactivity events generally did not last for
more than a few seconds in the brain network with strong STD
(Figures 7B–G; Videos S2, S3). This is intriguing considering
that STD was not able to stabilize the randomized fly brain
with τD up to 1,000ms (Figure 7A). When the hyperactivity was
suppressed by a strong STD (τD = 600 ms) in a reconstructed fly
brain, it exhibited more diverse firing activity, as characterized
by intermittent low activity and bursts of spikes with various
durations (Figure 7D).

STD effectively stabilized the brain activity in terms of the
population (the whole brain) firing rate. Next, we examined the
activity of individual neurons by plotting the distribution of their
mean firing rates. We found that although both reconstructed
and randomized brain networks were characterized by broad
firing rate distributions and could be fitted by power-law
functions with exponential cut-off (y = Ax−αe−βx, or, truncated
power law), they exhibited distinct characteristics (Figure 8).
The firing rates distribution of the randomized brain network
could also be fitted by an exponential function (Figure 8A) with
small χ2 errors (∼10−3), comparable to those in the fitting
with a truncated power law (χ2

∼10−3). Moreover, the fitting
with the truncated power law gave rise to an extremely small
power-law exponent (α ∼ 0.012 − 0.058), indicating the
insignificance of the power-law component in the distributions.
Fitting the distributions with a power-law function alone yielded
larger χ2 errors (∼10−1-10−2). Therefore, we concluded that
the firing rate distributions of the randomized brain network
were better described by exponential functions. In contrast, the
firing rate distributions of the reconstructed brain were better
described by power-law than by exponential functions. Fitting
the distributions with an exponential function did not yield
any meaningful result (χ2 > 5.1) while fitting with a truncated
power law distribution led to much smaller χ2 errors (∼10−2-
10−3). Furthermore, the power-law component was much more
significant (α ∼ 1.48 − 0.84) in the reconstructed than in the
randomized brain network.

So far, we have examined the mean neuronal activity at the
population level (Figures 8, 9) and at the single neuron level
(Figure 8). In addition to the mean activity, the fluctuation
of neuronal activity also exhibited distinct differences between
the reconstructed brain network and the randomized one. We
calculated the Fano factor for each neuron (10 trials, each
lasting for 10 s) in the reconstructed and randomized networks
(Figure 9) and found that while the mean Fano Factor was
comparable between the two networks, the former had a much
wider distribution than the latter. The result indicates that
the reconstructed brain had highly diverse neural dynamics,
characterized by a large number (compared to the randomized
network) of neurons that fired randomly or with some non-
random patterns. Intriguingly, we discovered that some of the
high Fano factor neurons exhibited brief and high frequency
burst activity with relatively long quiescent duration. Since the
neurons were modeled with the simple leaky integrate-and-fire
(LIF) model, such patterned activities were the result of network
interactions.

Simulator Benchmark
We tested the performance of the Flysim simulator on a PC
equipped with an Intel CPU at 3.6 GHz (E3-1270v5) with 64
Gigabytes of RAM. The reconstructed brain network (20,098
neurons and 1,044,020 synapses) required only 35 Mbytes
of RAM and its simulation could be carried out in Flysim
with four parallel threads at the speed of 1/35 of the real
time. Next, we compared the Flysim simulator with NEST, a
popular neural network simulator, using a simple 2-population
random network. In the network, an excitatory population, E,
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FIGURE 6 | The seizure-like hyperactivity can be reduced but not completely eliminated by stronger weights for the inhibitory synapses, as represented by the I/E

factor (A) The mean firing rate as a function of the I/E factor for the reconstructed fruit fly brain and a randomized fruit fly brain. (B) The mean onset time of the

seizure-like activity as a function of the I/E factor. Larger I/E factors significantly delay the onset time for the reconstructed fruit fly brain, but not for the randomized fruit

fly brain. Furthermore, the reconstructed fruit fly brain is more stable than the randomized brain as indicated by the larger onset time for all I/E factors. Asterisks

indicate the statistical significance (Student-t test, p < 0.05) in the change of mean onset time between different I/E factor conditions for the reconstructed brain.

(C,D) The spike rastergrams (gray dots) and the firing rates (black curves) of the reconstructed fruit fly brain at the low (0.1, point I in B), and high (100, point II in B) I/E

factors, respectively. (E,F) The distributions of single neuron firing rates of the reconstructed fruit fly brain with the same I/E ratio as in (C,D), respectively.

of 16,000 neurons formed a recurrent circuit with an inhibitory
population, I, of 4,000 neurons. The in-degree was set to 50 for
each neuron. NEST provides a variety of neuron and synapse
models. However, because the available combination of the
neuron and synapse models do not exactly match those used
in the Flysim simulator, we tested NEST with two sets of
combinations, with one requiring more and the other requiring
less computational power than our simulator. We first tested
the HT model (Hill and Tononi, 2005) in NEST because this
model offers a synaptic dynamic that is comparable to that
used in Flysim. However, the HT model is endowed with soma

dynamics that are more complex than ours. Next, we also tested
the LIF model, which is endowed with a simpler synapse model
(iaf_psc_exp_multisynapse). The LIF model is comparable to
ours but the synapse model is much simpler than that used in
Flysim. Our result indicated that Flysim required less memory
and ran faster than NEST in all conditions we tested (Figure S3).

DISCUSSION

In the present study, we constructed the first brain-wide
computational model based on the cellular-level connectome
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FIGURE 7 | Short-term depression (STD) effectively stabilized the

reconstructed fruit fly brain network by suppressing hyperactivity. The I/E

factor is 10 in all panels. (A) The prevalence of hyperactivity, as defined by its

total duration in a 10-s simulation period, as a function of the time constant of

STD. A large time constant indicates stronger STD, which dramatically

reduces the prevalence of hyperactivity for the reconstructed brain, but not for

the randomized brain. (B–D) The spike rastergrams (gray dots) and the

averaged firing rates (black curves) of the reconstructed fly brain without STD,

with τD =125ms, and with τD =600ms, respectively. (E–G) Same as in

(B–D), but for the randomized brain. The activity displayed in panels (B–G)

corresponds to the data points labeled by the roman numerals I–VI in the

panel (A), respectively.

of the Drosophila. This model is the first of its kind for any
species, except for C. elegans (Palyanov et al., 2011; Szigeti et al.,
2014; Izquierdo and Beer, 2016; Sarma et al., 2018), which,
however, is not considered to possess a brain. The proposed fly
brain model, although still in its early stage of development,
already exhibits several intriguing dynamical properties when
compared to a randomized brain network. First, the E-I index
was more widely distributed in the reconstructed brain network

FIGURE 8 | The distributions of single neuron mean firing rate with different

short-term depression (STD) conditions. (A) The distributions for the

randomized brain network with or without STD (τD = 125 or 600ms) in

double-log plot. Inset, same data but in a semi-log plot. The solid lines indicate

exponential fits to the distributions and the characteristic time constant

decreases with τD. (B) Same as in (A), but for the reconstructed brain

network. The distributions had strong power-law components and could be

better fitted with a truncated power-law function (solid lines). Inset, same data

but in a semi-log plot. The result indicated distinct dynamics between the

randomized and reconstructed brain networks.

than in the randomized one, suggesting large populations of
neurons receiving strongly excitatory or inhibitory inputs in
the reconstructed brain. Second, despite the diversity in the
E-I index, the reconstructed brain network was more stable,
as measured by the prevalence of hyperactivity, than the
randomized brain network. Third, although being more stable,
the reconstructed fruit fly brain was characterized by diverse
firing patterns: some neurons exhibited clusters of bursting
activity while others fired more evenly.

The ultimate goal of our study is to develop a single-
neuron level computational model of the fruit fly brain that can
reproduce the detailed neuronal activity and behavior of fruit flies
and that can be used to elucidate the computational principles of
a fruit fly brain. Achieving such a goal requires a long-term effort
together with highly detailed connectome and physiological data
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FIGURE 9 | The reconstructed brain network exhibits firing patterns that are more diverse than those of the randomized brain network. (A) The distribution of the

Fano factors for the reconstructed (solid line) and randomized (dotted line) brain networks without short-term depression (STD) (τD = 0 ms). The arrows and the

numbers indicate the mean of each distribution. Although both networks have comparable mean Fano factors, the reconstructed brain is characterized by a much

wider distribution than the randomized one. (B) Sample spike trains with different Fano factors from the randomized and the reconstructed brain networks without

STD (τD = 0 ms). Neurons with high Fano factors in the reconstructed brain are characterized by clusters of bursting activity, while neurons with low Fano factors have

a more evenly distributed spike activity. (C) Same as in (A) but with strong STD (τD = 125 ms). (D) Same as in (B) but with strong STD (τD = 125 ms).

that are not yet available. Nevertheless, the purpose to present our
early effort toward this goal in this paper is (1) to demonstrate,
at the whole brain level, the unique dynamical features of a
brain model reconstructed from the single-cell level connectome,
and (2) by actually building one, to identify the technology and
methodology that are required to improve the accuracy of the
model, and (3) to draw attention to the issue regarding what
exactly an “accurate brainmodel” means.We discuss these points
as follows.

We demonstrated that both reconstructed and randomized
networks are unstable at any level of the I/E factor without
STD, and the reconstructed brain only becomes significantly
more stable and diverse than the randomized one when STD
is implemented. Therefore, the critical factor that leads to the
stability of the reconstructed brain should be a certain interaction
between the network structure and STD. It will be interesting to
investigate which aspects of the network structure, globally or
locally, may play roles in the STD-induced stability and study
whether such structure characteristics exist in the brains of all
species. Our study also delivered an important message: it is
crucial to use a network structure that resembles a real brain.
Using random networks, which are very popular among many
theoretical studies of neural network dynamics, may not reveal
the phenomena that actually occur in the brain.

Indeed, this idea is supported by several recent projects aiming

to build realistic brain network models. Among these projects,

Neurokernel and Fruit Fly Brain Observatory projects (Givon
et al., 2014; Givon and Lazar, 2016; Ukani et al., 2016) are
two that are most relevant to ours. The Neurokernel project

builds a simulation platform which emphasizes the concept of

local processing units (LPUs). LPUs largely correspond to the

neuropils in insect brains. On the other hand, the Fruit Fly Brain

Observatory project focuses on visualizing neuronal morphology

and network structures in the fruit fly brain. In contrast, our
Flysim project has invested a large amount of effort developing

tools and algorithms that translate the morphological data into

computer models. Specifically, the brain simulator developed in

this project emphasizes the detailed synaptic mechanisms and

the interactions between individual neurons rather than between

neuropils.
The proposed fly brain model can be improved in several

aspects:

1. Neuron type identification. Currently neuron types, including
glutamatergic, GABAergic, and cholinergic, are recognized by
the three GAL4 drivers, VGlut, GAD, and Cha, respectively.
This driver-type mapping is known to be <100% accurate.
Moreover, some neurons were found to release more than
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one types of neurotransmitters. Therefore, improved genetic
tools are required in order to obtain more accurate cell type
categorization (Diao et al., 2015).

2. Receptor type identification. Being a glutamatergic or
GABAergic neuron does not automatically imply that the
downstream neurons receive excitatory or inhibitory input,
respectively. For example, glutamate-gated chloride channels
have been observed in fruit flies. Since this type of channels
cause an opposite effect to the AMPA and NMDA channels,
it is important to conduct a systematic and high-resolution
mapping of the expression of the synaptic receptors in the fruit
fly brain so that the model can be updated accordingly.

3. Models of modulatory synapses. We currently only model
four types of synaptic receptors: AMPA, NMDA, GABAA, and
acetylcholine, which are fast-acting excitatory or inhibitory
receptors. Therefore, the proposed fly brain circuits can only
be used for model brain dynamics in short (sub-second)
time scales. We will implement other slow-acting modulatory
receptors, such as dopamine and serotonin, which will expect
to endow the brain model with long-term and more complex
behavior.

4. Polarity identification. The polarity of each neuron arbor is
identified by the SPINmethod. Although being highly efficient
and reasonably accurate, themethod still has room to improve.
In particular, due to the small sizes and irregular morphology
of local neurons, their polarity is more difficult to be correctly
identified. Moreover, some local neurons have been shown
to exhibit co-localized presynaptic and postsynaptic terminals
(Chou et al., 2010). Improved image segmentation and tracing
algorithms will provide more detailed morphological features
for SPIN and will greatly improve its accuracy.

5. Image alignment and warping. Due to the potential
deformation of the brain during the image acquisition process,
when warping each neuron image into the standard brain
space, it inevitably introduces errors that cause inaccuracy in
the connection prediction. This issue will be largely improved
by the in situ imaging method that will be adopted for the next
generation of the FlyCircuit database. In addition, GRASP and
related technology (Feinberg et al., 2008; Macpherson et al.,
2015) can be used to verify the synapses and their activity in
the selected circuits.

6. Single neuron model. Currently we use the single
compartmental leaky integrate-and-fire model, and the
membrane area is simply considered to be proportional to
a neuron’s total branch length. As the information about
the thickness of each branch will soon be available in the
database, we will be able to more accurately calculate the area
of the membrane and thus derive better estimates for related
parameters. Adopting a multi-compartmental model will also
help to improve the accuracy of the simulations (Günay et al.,
2015). Moreover, some neurons in the visual system conduct
signals by graded potentials or by mixed graded and action
potentials (Mu et al., 2012; Baden et al., 2013). Although in
the current study we only investigated the resting state activity
of the model brain without visual stimulus, it is important to
identify those non-spiking neurons in our sample and choose
models that correctly represent their response properties in
the future study which involves visual responses of the brain.

Finally, it is natural to ask how accurate the brain model is and
how it can be verified. We would like to stress that, the term
“accuracy” itself is not well-defined because of inter-individual
differences. In the FlyCircuit database, each neuron image was
taken from a different brain. Therefore, the reconstructed brain
based on the database can be treated as an “average brain”
sampled from a large number of individuals. In this sense, it is not
meaningful to verify our fly brain model against a connectome
reconstructed from a single brain. However, we argue that it is
more meaningful to verify our brain model at the functional
level; although each fruit fly may have slightly different brain
circuits, they all perform the same basic functions. Although
the connectome reconstructed based on electron microscopy
has the potential to accurately reflect the neural network of
one individual, it is not clear whether a model built upon
one individual brain has an advantage over that built upon
an average brain from the perspective of computer modeling.
Moreover, an important perspective came from the consideration
of neurodegenerative diseases, such as Alzheimer’s disease, which
is characterized by significant loss of neurons and synapses.
Unless in the advanced stages, patients with Alzheimer’s still
maintain basic motor and cognitive functions, suggesting that
these functions are robust against moderate alternation of neural
circuits. Therefore, even though it is not possible to know
whether the reconstructed fruit fly brain accurately reproduces
the brain of any individual, as long as we continuously update
the model with the availability of new data and improve the
algorithms for estimating the model parameters, we presume that
the reconstructed fruit fly brain will exhibit some basic brain
functions in the near future.

Among all the brain functions, response to sensory input is
the most suitable one for validating our brain model. In the
next phase of model development, we will start with some of
the most robust innate behaviors, such as the escape response,
in which fruit flies jump directly away from a looming threat
(von Reyn et al., 2017). A looming threat can be simulated
by presenting a booming visual stimulus on the small field
neurons in the unilateral medulla, while the initiation of the
escape behavior can be represented by the activation of the
giant fiber neurons (Tanouye and Wyman, 1980). On the
other hand, the olfactory-evoked zigzag movement, which is
associated with alternating activity between neurons in the left
and right lateral accessory lobe (LAL) and ventral protocerebrum
(VPC) (Iwano et al., 2010), serves as another response pattern
ideal for model validation. We believe that the fruit fly
brain model will eventually become an excellent platform for
studying the neural circuit mechanisms of brain functions and
behaviors.
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Figure S1 | The input (ordinate) and output (abscissa) contact points of each

neuron generally follow a linear relationship in a double-logarithmic plot. The solid

line represents the linear regression of the data: log(y) = 0.48 ∗ log(x) + 2.6.

Figure S2 | E-I index distributions for a subsampled network in comparison to the

reconstructed and randomized fruit fly brain networks. (A–C) To test whether the

broad E-I index distributions of the reconstructed brain network are artifacts due

to subsampling from the full brain network, we constructed a full-size (130,000

neurons) random network (see text), and subsampled it by randomly selecting

22,835 neurons from the full network. The subsampled network exhibits much

narrower E-I index distributions than those of the reconstructed brain network.

Figure S3 | Benchmark tests indicated the superior efficiency and performance of

the Flysim simulator compared to a similar simulator. (A) To perform the

comparison, we constructed a simple recurrent network with two populations.

The network has 20,000 neurons and each one receives input from 50 randomly

chosen neurons. Population E consists of 16,000 excitatory neurons while

population I contains 4,000 GABAergic neurons. (B) We recorded that memory

usage and the performance, as measured by the amount of CPU time required to

simulate 1 s of biological time, for the Flysim simulator and NEST v2.12.0. For

NEST, we tested the HT and leaky integrate-and-fire (LIF) models. In all conditions,

the Flysim simulator consumed less memory and performed faster than NEST.

Table S1 | Summary of membrane properties of neurons in Drosophila and the

source of the data. These values are used to determine the standard membrane

properties in the model (see text).

Video S1 | Activity of the reconstructed fruit fly brain without short-term

depression.

Video S2 | Activity of the reconstructed fruit fly brain with moderate short-term

depression (τD = 125 ms).

Video S3 | Activity of the reconstructed fruit fly brain with strong short-term

depression (τD = 600 ms).
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