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Brain imaging with diffusion-weighted MRI (dMRI) is sensitive to microstructural white
matter (WM) changes associated with brain aging and neurodegeneration. In its
third phase, the Alzheimer’s Disease Neuroimaging Initiative (ADNI3) is collecting data
across multiple sites and scanners using different dMRI acquisition protocols, to better
understand disease effects. It is vital to understand when data can be pooled across
scanners, and how the choice of dMRI protocol affects the sensitivity of extracted
measures to differences in clinical impairment. Here, we analyzed ADNI3 data from
317 participants (mean age: 75.4 ± 7.9 years; 143 men/174 women), who were each
scanned at one of 47 sites with one of six dMRI protocols using scanners from three
different manufacturers. We computed four standard diffusion tensor imaging (DTI)
indices including fractional anisotropy (FADTI) and mean, radial, and axial diffusivity,
and one FA index based on the tensor distribution function (FATDF), in 24 bilaterally
averaged WM regions of interest. We found that protocol differences significantly affected
dMRI indices, in particular FADTI. We ranked the diffusion indices for their strength
of association with four clinical assessments. In addition to diagnosis, we evaluated
cognitive impairment as indexed by three commonly used screening tools for detecting
dementia and AD: the AD Assessment Scale (ADAS-cog), the Mini-Mental State
Examination (MMSE), and the Clinical Dementia Rating scale sum-of-boxes (CDR-sob).
Using a nested random-effects regression model to account for protocol and site, we
found that across all dMRI indices and clinical measures, the hippocampal-cingulum and
fornix (crus)/stria terminalis regions most consistently showed strong associations with
clinical impairment. Overall, the greatest effect sizes were detected in the hippocampal-
cingulum (CGH) and uncinate fasciculus (UNC) for associations between axial or
mean diffusivity and CDR-sob. FATDF detected robust widespread associations with
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clinical measures, while FADTI was the weakest of the five indices for detecting
associations. Ultimately, we were able to successfully pool dMRI data from multiple
acquisition protocols from ADNI3 and detect consistent and robust associations with
clinical impairment and age.

Keywords: Alzheimer’s disease, ADNI3, white matter, DTI, multi-site, harmonization, TDF, ComBat

INTRODUCTION

Alzheimer’s disease (AD) is the most common type of dementia,
affecting approximately 10% of the population over age 65
(Alzheimer’s Association, 2018). As life expectancy increases,
there is an ever-increasing need for sensitive biomarkers of
AD—to better understand the disease, and to serve as surrogate
markers of disease burden for use in treatment and prevention
trials. The Alzheimer’s Disease Neuroimaging Initiatve (ADNI)
is an ongoing large-scale, multi-center, longitudinal study
designed to improve methods for clinical trials by identifying
brain imaging, clinical, cognitive, and molecular biomarkers
of AD and aging. Now in its third phase (ADNI3), ADNI
continues to incorporate newer technologies as they become
established (Jack et al., 2015); data from ADNI, collected at
participating sites across the U.S. and Canada, is publicly
available and has been used in a diverse range of publications
(Veitch et al., 2019).

ADNI’s second phase (ADNI2) introduced to the initiative
the use of diffusion-weighted MRI (dMRI) as an additional
approach for tracking AD progression (Jack et al., 2015). dMRI
has since been used in numerous studies to understand the
effects of AD on white matter (WM) microstructure and brain
connectivity (Daianu et al., 2013a,b; Nir et al., 2013; Prasad
et al., 2013). Some of these approaches use scalar dMRI measures
to evaluate microstructural WM changes not detectable with
anatomical T1-weighted images (Giulietti et al., 2018), while
others use tractography and graph-theory analysis to study
abnormalities in structural brain networks (Nir et al., 2015;
Hu et al., 2016; Maggipinto et al., 2017; Sulaimany et al.,
2017; Powell et al., 2018; Sanchez-Rodriguez et al., 2018). In
aggregate, these studies point to WM abnormalities in AD,
which may play a key role in early pathogenesis and diagnosis
(Sachdev et al., 2013).

ADNI2 acquired dMRI data with one acquisition protocol
from approximately one third of enrolled participants at the
subset of ADNI sites that used 3 tesla General Electric (GE)
scanners. To ensure that dMRI could be collected from all
enrolled participants, ADNI3 developed new dMRI protocols
for all GE, Siemens and Philips scanners used across ADNI
sites. Now, data is being acquired with seven different dMRI
acquisition protocols (see ‘‘Materials and Methods’’ section
for details1). ADNI3 began in October 2016, and has already
acquired data from over 300 participants. dMRI spatial resolution
was improved between ADNI2 and ADNI3 by reducing the
voxel size from 2.7 × 2.7 × 2.7 mm to 2.0 × 2.0 × 2.0 mm.

1http://adni.loni.usc.edu/methods/documents/mri-protocols/

While voxel size (i.e., spatial resolution) remains consistent
across all seven ADNI3 protocols, angular resolution (the
number of gradient directions) varies across protocols to
accommodate scanner restrictions and to ensure that the multi-
modal scanning session is completed in under 60 min. Although
many large-scale multi-site DTI studies have obtained consistent
results even when acquisition protocols across sites are not
harmonized in advance (Jahanshad et al., 2013; Kochunov et al.,
2014; Acheson et al., 2017; Kelly et al., 2018), differences in
dMRI acquisition parameters, including vendor, voxel size, and
angular resolution, are known to affect derived dMRI measures
(Alexander et al., 2001; Cercignani et al., 2003; Zhan et al.,
2010; Zhu et al., 2011). As a result, improved harmonization
of multi-site diffusion data is of great interest (Grech-Sollars
et al., 2015; Pohl et al., 2016; Palacios et al., 2017). For
example, ComBat—originally developed to model and remove
batch effects from genomic microarray data (Johnson et al.,
2007)—was one of the most effective methods for harmonizing
DTI measures in a recent comparison of such techniques
(Fortin et al., 2017).

Here, we tested whether standard diffusion tensor imaging
(DTI)-derived anisotropy and diffusivity indices, calculated
from multiple imaging protocols in ADNI3, can be pooled
and harmonized to show robust associations with age
and four clinical assessments. In addition to diagnosis,
cognitive impairment was assessed with three commonly
used screening tools for detecting dementia and AD: the
Alzheimer’s Disease Assessment Scale (ADAS-cog; Rosen
et al., 1984), the Mini-Mental State Examination (MMSE;
Folstein et al., 1975), and the Clinical Dementia Rating
scale sum-of-boxes (CDR-sob; Berg, 1988). For the rest of
the article we refer to these tools as ‘‘cognitive measures’’.
In addition to standard DTI indices—fractional anisotropy
(FADTI), mean diffusivity (MDDTI), radial diffusivity (RDDTI),
and axial diffusivity (AxDDTI)—we also evaluated a modified
measure of FA, derived from the tensor distribution function
(FATDF; Leow et al., 2009) which can be more sensitive to
neurodegenerative disease-related WM abnormalities than
FADTI across high- and low-angular resolution dMRI (Nir
et al., 2017). The TDF model addresses well-established
limitations of the standard single-tensor diffusion model—which
cannot resolve complex profiles of WM architecture such
as crossing or mixing fibers, present in up to 90% of WM
voxels (Tournier et al., 2004; Descoteaux et al., 2007, 2009;
Jeurissen et al., 2013).

In 24 WM regions of interest (ROIs), we ranked these five
anisotropy and diffusivity indices, in terms of their strength
of association with key clinical measures, to identify dMRI
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indices that may help understand and track AD progression.
We hypothesized that the diffusion indices from ADNI2 (Nir
et al., 2013, 2017) would still be associated with clinical
measures of disease burden in ADNI3—despite the variation in
protocols. We hypothesized that when data were pooled across
ADNI3 protocols: (1) higher diffusivity and lower anisotropy
in the temporal lobe WM would be most sensitive to cognitive
impairment, with highest effect sizes for associations with CDR-
sob; and (2) FATDF would detect associations with clinical
impairment with larger effect sizes than FADTI.

MATERIALS AND METHODS

ADNI Participants
Baseline MRI, DTI, diagnosis, demographics, and cognitive
measures were downloaded from the ADNI database2. This
analysis was performed when data collection for ADNI3 was
still ongoing (May 2018), and reflects the data available on
April 30, 2018. Of the 381 participants scanned to date, 55 were
excluded after quality assurance: this included ensuring complete
clinical and demographic information, and image-level quality
control (removing scans with severe motion, missing volumes,
or corrupt files). To ensure sufficient statistical power to
assess differences in data collected with different protocols, we
evaluated only those protocols with complete available data for
at least 10 participants at the time of download; we did not assess
protocol GE36, for which scans from 9 of 12 participants passed
quality assurance. Details on excluded participants are outlined
in Supplementary Table S1.

Three-hundred and seventeen remaining participants—from
47 scanning sites—were included in the analysis (mean age:
75.4± 7.9 years; 143 men, 174 women; Table 1): 211 were elderly
cognitively normal (CN) controls (mean age: 74.5 ± 7.3 years;
84 men, 127 women), 84 were diagnosed with mild cognitive
impairment (MCI); mean age: 76.3 ± 8.1 years; 48 men,
36 women), and 22 were diagnosed with AD (mean age:
80.6 ± 10.5 years; 11 men, 11 women). We note that two of
the ADNI2 diagnostic categories—CN and significant memory
concern (SMC)—are combined and identified as CN in ADNI3.

2https://ida.loni.usc.edu/

ADNI2’s early and late MCI categories are combined and
identified as MCI in ADNI3.

Clinical Assessments
In addition to diagnosis, we indexed cognitive impairment using
total scores from commonly used screening tools for detecting
dementia and AD (Table 1): the Alzheimer’s Disease Assessment
Scale 13 (ADAS-cog), the Mini-Mental Status Examination
(MMSE), and the Clinical Dementia Rating scale sum-of-boxes
(CDR-sob). We refer to these tools as ‘‘cognitive measures’’,
but recognize the limitations of these assessments as proxy
measures of specific cognitive abilities (Balsis et al., 2015). The
ADAS-cog is frequently used in pharmaceutical trials, with scores
ranging from 0 to 70; higher scores represent more severe
cognitive dysfunction (Rosen et al., 1984). MMSE is more often
used by clinicians and researchers in assessing cognitive aging.
Scores for MMSE range from 0 to 30; lower scores typically
indicate greater cognitive dysfunction (Folstein et al., 1975).
CDR-sob is used primarily in clinical trials and in clinical
practice for evaluating disease severity including the mild and
early symptomatic stages of dementia. It is calculated based on
the sum of severity ratings in six domains (‘‘boxes’’)—memory,
orientation, judgment and problem solving, community affairs,
home and hobbies, and personal care. Scores range from
0 (no dementia) to 3 (severe dementia; Berg, 1988). These
evaluations are among the measures used in diagnosing ADNI
participants. Not all cognitive measures were available for
every participant (MMSE, N = 315; CDR-sob, N = 316, and
ADAS-cog, N = 278; Supplementary Table S2 lists these
by protocol).

Diffusion MRI Acquisition Protocols
ADNI3 incorporated dMRI protocols for 3 tesla Siemens,
Philips, and GE scanners. ADNI2, the first phase of ADNI
to include diffusion MRI, only prescribed dMRI protocols
for GE scanners. The available scanners span a wide range
of software capabilities, such as support (or the lack of
it) for custom diffusion gradient tables and/or simultaneous
multi-slice acceleration. Including additional scanners while
staying in a 7–10-min scan duration resulted in data acquired
with seven different acquisition protocols—of which six had

TABLE 1 | Demographic and clinical measures for participants in Alzheimer’s Disease Neuroimaging Initiative (ADNI3), subdivided by diffusion-weighted MRI (dMRI)
protocol.

Protocols Demographics Clinical assessments

Diagnosis Cognitive measures+

Name Total N Sites Age (years) Male CN MCI AD MMSE∗ CDR-sob∗ ADAS-cog∗

GE54 65 8 76.7 ± 7.3 32 (49.2%) 45 16 4 28.50 ± 3.26 0.78 ± 1.81 11.75 ± 6.81
P33 24 3 78.1 ± 7.1 13 (54.2%) 17 4 3 28.75 ± 2.03 1.31 ± 2.84 13.32 ± 6.76
P36 19 4 75.3 ± 6.6 7 (36.8%) 12 7 0 28.21 ± 2.39 0.76 ± 1.35 12.63 ± 5.12
S31 36 9 72.8 ± 8.6 15 (41.7%) 21 10 5 28.31 ± 2.77 0.79 ± 1.35 11.54 ± 5.25
S55 153 18 75.0 ± 8.4 66 (43.1%) 100 43 10 27.94 ± 3.28 0.95 ± 2.05 11.96 ± 5.65
S127 20 5 75.3 ± 5.4 10 (50.0%) 16 4 0 28.80 ± 1.70 0.33 ± 0.75 10.27 ± 2.83
TOTAL 317 47 75.4 ± 7.9 143 (45.1%) 211 84 22 28.23 ± 3.01 0.87 ± 1.91 11.89 ± 5.78

We report the average age, Mini-Mental State Examination (MMSE), Clinical Dementia Rating scale sum-of-boxes (CDR-sob), and AD Assessment scale 13 (ADAS-cog) measures,
and their standard deviations. ∗Data not available for all participants: MMSE N = 315; CDR-sob N = 316 and ADAS-cog N = 278. +We recognize the limitations of these assessments
as proxy measures of specific cognitive abilities (Balsis et al., 2015).
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TABLE 2 | ADNI diffusion MRI acquisition protocols.

Name Scanner Protocol b0 volumes DWI volumes Total
volumes

Time (min) Total N

ADNI3 GE36 GE Basic Widebore 25x 4 b = 0 s/mm2 32 b = 1,000 s/mm2 36 9:52 −

GE54 GE Basic 25x 6 b = 0 s/mm2 48 b = 1,000 s/mm2 54 7:09 65
P33 Philips Basic Widebore 1 b = 0 s/mm2 32 b = 1,000 s/mm2 33 7:32 24
P36 Philips Basic Widebore R3 1 b = 0 s/mm2

3 b = 2 s/mm2
32 b = 1,000 s/mm2 36 6:54 19

P54 Philips Basic R5 1 b = 0 s/mm2

5 b = 2 s/mm2
48 b = 1,000 s/mm2 54 8:05 −

S31 Siemens Basic VB17 1 b = 0 s/mm2 30 b = 1,000 s/mm2 31 7:02 36
S55 Siemens Basic Skyra E11 and Prisma D13 7 b = 0 s/mm2 48 b = 1,000 s/mm2 55 9:18 153
S127 Siemens Advanced Prisma VE11C 13 b = 0 s/mm2 48 b = 1,000 s/mm2 61 7:25∗ 20

ADNI2 G46 GE Discovery MR750 and MR750w, Signa HDx and HDxt 5 b = 0 s/mm2 41 b = 1,000 s/mm2 46 7:00–10:00 59

∗Reflects the time to acquire the full multi-shell protocol (127 volumes), not the single-shell subset.

sufficient sample sizes to be evaluated here. Protocols varied
in the number of diffusion weighted imaging (DWI) directions
(i.e., angular resolution), and the number of non-diffusion
sensitized gradients (b0 images), which serve as a reference
to assess diffusion-related decay of the MR signal. Voxel size
across all ADNI3 protocols was 2.0 × 2.0 × 2.0 mm and
2.7 × 2.7 × 2.7 mm in ADNI2. Table 2 summarizes the
different protocols.

There is currently one multi-shell multiband protocol for
Siemens Advanced Prisma scanners (S127). As ADNI3 is still
in its early stages, GE and Philips protocols for multi-shell
acquisition have not yet been finalized, so only 20 multi-shell
scans were available for analysis at the time of writing. Here our
goal was to evaluate single-shell dMRI indices across protocols,
so we used a subsample of the 127 DWI volumes from the
S127 multi-shell protocol to include only 13 b = 0 and 48
b = 1,000 s/mm2 DWI volumes (removing 6 b = 500 s/mm2 and
60 b = 2,000 s/mm2 volumes).

The Philips Basic Widebore R3 protocol (P36) included three
b = 2 s/mm2 volumes and one b = 0 s/mm2, because Philips
scanners cannot acquire more than one b = 0 s/mm2. The Philips
Basic Widebore (P33) was not a prescribed protocol, but rather
acquired from Philips sites with a software version less than
5.0 that could not acquire the b = 2 s/mm2 volumes.

dMRI Preprocessing and Scalar Indices
All DWI were preprocessed using the ADNI2 DTI analysis
protocol as in Nir et al. (2013). Briefly, we corrected for head
motion and eddy current distortion, removed extra-cerebral
tissue, and registered each participant’s DWI to the respective
T1-weighted brain to correct for echo planar imaging (EPI)
distortion. Details of the preprocessing steps may be found here3.
All DWI and T1-weighted images were visually checked for
quality assurance.

Scalar dMRI indices were derived from two reconstruction
models: the single-tensor model (DTI; Basser et al., 1994) and the
tensor distribution function (TDF; Leow et al., 2009). From the
single-tensor model, FADTI, AxDDTI, MDDTI, and RDDTI scalar
maps were generated. In contrast to DTI, the TDF represents

3https://adni.bitbucket.io/reference/docs/DTIROI/DTI-ADNI_Methods-
Thompson-Oct2012.pdf

the diffusion profile as a probabilistic mixture of tensors that
optimally explain the observed diffusion data, allowing for the
reconstruction of multiple underlying fibers per voxel, together
with a distribution of weights, from which the TDF-derived form
of FA (FATDF) was calculated (Nir et al., 2017).

White Matter Tract Atlas ROI Summary
Measures
ROI measures were generated as reported previously (Nir et al.,
2013). Briefly, the FA image from the Johns Hopkins University
single-subject Eve atlas (JHU-DTI-SS4) was registered to each
participant’s corrected FA image using an inverse consistent
mutual information based registration (Leow et al., 2007); the
transformation was then applied to the atlas WM parcellation
map (WMPM) ROI labels (Mori et al., 2008) using nearest
neighbor interpolation. Mean anisotropy and diffusivity indices
were extracted from 24 WM ROIs total (Table 3): 22 ROIs
averaged bilaterally, the full corpus callosum, and a summary
across all ROIs (full WM).

Comparing the ADNI2 and
ADNI3 Protocols in Cognitively Normal
Participants
Sample Sizes for the ADNI2 and ADNI3 Cognitively
Normal Participants
We evaluated the six ADNI3 protocols and the ADNI2 protocol
using scans from CN participants only. Of 85 CN participants
in ADNI2 with dMRI, 30 rolled over to ADNI3. To avoid
duplication, and boost the number of scans available for each
protocol, we did not include all these roll-over participants in
the ADNI3 group. Twenty-six CN roll-over participants were
included in the ADNI3 group. Four CN roll-over participants
were scanned with the S55 protocol, and due to the larger
sample size already available for that protocol (N = 156), we
included these four in the ADNI2 group. In total, 59 out of
85 ADNI2 CN participants were included in the ADNI2 group
and the remaining 26 were kept in the ADNI3 group for a total
of 207 ADNI3 CN participants (see Supplementary Table S3 for
CN demographics by ADNI phase and protocol).

4http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/AtlasExplanation2.htm
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TABLE 3 | The following 24 regions of interest (ROIs) from the Johns Hopkins University (JHU) atlas (Mori et al., 2008) were analyzed.

CST Corticospinal tract SLF Superior longitudinal fasciculus
CP Cerebral peduncle SFO Superior fronto-occipital fasciculus
ALIC Anterior limb of internal capsule IFO Inferior fronto-occipital fasciculus
PLIC Posterior limb of internal capsule SS Sagittal stratum
RLIC Retrolenticular part of internal capsule EC External capsule
PTR Posterior thalamic radiation UNC Uncinate fasciculus
ACR Anterior corona radiata GCC Genu of corpus callosum
SCR Superior corona radiata BCC Body of corpus callosum
PCR Posterior corona radiata SCC Splenium of corpus callosum
CGC Cingulum (cingulate gyrus) CC Full corpus callosum
CGH Cingulum (hippocampal bundle) TAP Tapetum
Fx/ST Fornix (crus) / stria terminalis Full WM Full white matter

Assessing Age Effects
In CN participants, multivariate random-effects linear
regressions were used to assess whether dMRI indices from
each ADNI protocol individually were associated with age,
controlling for sex and age∗sex interactions as fixed variables,
and acquisition site as a random variable. dMRI indices for the
CN group were subsequently pooled across ADNI3 protocols
(N = 207), or ADNI3 and ADNI2 protocols (N = 266) and tested
for associations with age using an analogous model, but with
protocol and acquisition site as nested random variables (e.g.,
eight sites used protocol GE54, and three sites used protocol
P33, so the acquisition site grouping variable is nested within
the protocol grouping variable). We used the false discovery rate
(FDR) procedure to correct for multiple comparisons (q = 0.05;
Benjamini and Hochberg, 1995) across the 24 ROIs assessed
for each dMRI index. Regions that survive a more stringent
Bonferroni correction at an alpha of 0.05 (p ≤ 0.05/24 = 0.0021)
are also shown in the Supplements.

Effect of Protocol on dMRI Indices
In CN participants, we tested for significant differences in dMRI
indices between the seven ADNI protocols using analyses of
covariance (ANCOVAs), adjusting for age, sex, and age∗sex
interactions as fixed variables, and acquisition site as a random
variable. For each dMRI index, we used FDR to correct for
multiple comparisons across the 24 ROIs assessed. Pairwise tests
were performed to directly compare protocols. In total, there
were 504 tests per dMRI index: 24 ROIs ∗ 21 pairs of protocol
comparisons (protocol 1 vs. 2, protocol 1 vs. 3, etc). As before, we
used FDR to account for multiple comparisons.

dMRI Harmonization With ComBat
ComBat uses an empirical Bayes framework to reduce unwanted
variation in multi-site data due to differences in acquisition
protocol, while preserving the desired biological variation in the
data (Fortin et al., 2017). In the CN participants fromADNI2 and
ADNI3, we ran ComBat on each of the dMRI indices, including
age, sex, age∗sex, and information from all 24 ROIs to inform
the statistical properties of the protocol effects. Random-effects
regressions tested for dMRI microstructural associations with
age, covarying for sex and age∗sex as fixed variables and site
as a random variable; ANCOVAs and pairwise tests of dMRI
differences between protocols were repeated for the harmonized
ROI data.

Clinical Assessments and Their Relation to
Pooled ADNI3 Diffusion Indices
Multivariate random-effects linear regressions were used to test
associations between five dMRI indices in each of the 24 WM
ROIs and the three cognitive measures (ADAS, MMSE, CDR-
sob), and with diagnosis. Due to the limited available sample size
of AD participants (N = 22), and their uneven distribution across
the acquisition protocols tested here, we compared only groups
of people with CN and MCI diagnoses. Age, sex, and age∗sex
interactions were controlled for as fixed effects, and the protocol
and acquisition site were modeled as nested random variables.
FDR was again used to correct for 24 ROI tests (q = 0.05;
Benjamini and Hochberg, 1995). Bonferroni corrections (p ≤
0.05/24 = 0.0021) are available in the Supplements. Effect sizes
for associations were determined using the d-value standardized
coefficient (Rosenthal and Rosnow, 1991).

d =
(2 ∗ Tvalue)√

Degrees of Freedom

RESULTS

ADNI2 and ADNI3 Protocols in Cognitively
Normal Participants
Age Effects in Cognitively Normal Participants From
ADNI2 and ADNI3 Protocols
When data were pooled across ADNI2 and ADNI3, significant
associations with age were detected throughout the WM.
Figure 1A shows effect sizes for ROIs significantly associated
with age after FDR multiple comparisons correction (tabulated
results and more stringent Bonferroni thresholds are shown in
Supplementary Table S4). Lower FATDF and higher diffusivity
indices were significantly associated with older age in all 24 ROIs.
For FADTI, 22 ROIs were significantly associated with age.
The largest effect size was detected with FATDF in the fornix
(crus)/stria terminalis (Fx/ST; d = −1.459; p = 5.07 × 10−21).
The Fx/ST, genu of corpus callosum (GCC) and full WM
consistently showed one of the 10 largest effect sizes across
dMRI indices.

The mean ages of the CN participants assessed in the
two phases of ADNI were significantly different (p = 0.049;
ADNI2 mean age: 72.4 ± 6.6 years; ADNI3 mean age:
74.5 ± 7.4 years; demographics in Supplementary Table S3).
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FIGURE 1 | (A) For each diffusion-weighted MRI (dMRI) index, the absolute values of effect sizes (d-value) are plotted for regional white matter (WM) microstructural
associations with age when all ADNI3 dMRI data are pooled, adjusting for any site or protocol effects. For each test, we note the number of significant regions of
interest (ROIs), as indicated by filled shapes, and the corresponding false discovery rate (FDR) significance p-value threshold (q = 0.05). See Supplementary Table
S4 for complete tabulated results. (B) Here, we plot the residuals of diffusivity and anisotropy indices in the full WM (y-axis) against age (x-axis) after regressing out
the effects of sex in cognitively normal (CN) participants from each protocol separately. Individual level residuals from each protocol are plotted with a different color.
Despite protocol differences, age effects are evident across protocols.

Pairwise tests comparing the mean age of CN participants
scanned with each protocol also showed significant differences
between those scanned with S31 and two other protocols:
GE54 and S31 (p = 0.026); P33 and S31 (p = 0.0037). Due
to differences in age and sample size between protocols and
phases, effect sizes could not be directly compared (Button
et al., 2013), but the directions of associations with age were
largely consistent for ADNI2 and ADNI3 phases separately,
and each ADNI3 protocol (Figures 1, 2). Each ADNI protocol
showed directionally consistent associations in more than 89%

of tests (24 ROIs ∗ 5 dMRI indices), except for P36 which
was consistent in 81%, but had the smallest sample size
(N = 12; Figure 2B; Supplementary Tables S5–S11). FATDF

and all three diffusivity indices were consistent in ≥96% of
tests (24 ROIs ∗ 8 protocols/phases), while FADTI was only
consistent in 88% of tests. Most of the associations detected
in the unexpected direction for each protocol were driven by
FADTI. None of the associations in the unexpected direction
were significant after multiple comparisons correction, and only
two had a p ≤ 0.05.

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2019 | Volume 13 | Article 2

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Zavaliangos-Petropulu et al. Diffusion MRI in ADNI3

FIGURE 2 | (A) Effect sizes (d-value) for each ADNI protocol and phase show the direction of dMRI associations with age in the full WM are consistent. Due to
differences in age and sample size between protocols and phases, effect sizes could not be directly compared. (B) For each protocol and phase, the number of
ROIs (out of 24), that show the expected association direction, regardless of significance, are reported for each dMRI index; consistent associations were detected
across tests, except for protocol P36 which had the smallest sample size, and FADTI, which showed the smallest effect sizes and fewest significant associations
across protocols when pooled.

Figure 2 shows consistent associations in the full WM by
protocol. As demographic and sample size variability between
protocols affect detected effect sizes, we also evaluated full
WM dMRI associations with age in an age- and sex-matched
subset of 12 participants from each protocol (total N = 84;
demographics in Supplementary Table S3). A comparison of the
effect sizes between protocols suggests that the protocols with
greatest total number of diffusion-weighted (b = 1,000 s/mm2)
and non-diffusion sensitized (b0) gradients may detect larger
effects (S127 followed by S55; Supplementary Figure S1).

Effect of Protocol on dMRI Indices From Cognitively
Normal Controls
The influence of dMRI acquisition protocol on mean values of
the diffusion indices is evident in boxplots of dMRI indices in
the full WM for each protocol (Figure 3). When modeling the
mean full WM values for each diffusion index, the residuals of
the statistical model become closer to 0 after fitting the effect
of protocol and site (nested as a random variable with age, sex,

and age∗sex interactions as fixed effects) than when we plot the
residuals of just age, sex, and age∗sex interactions (Figure 3).

ANCOVAs and pairwise tests for each ROI suggest there are
significant differences between protocols for all 5 dMRI indices
across most ROIs (Figure 4). ANCOVAs revealed significant
protocol differences for 22 ROIs for FADTI and FATDF, with
the highest overall effect size detected in the anterior limb of
the internal capsule (ALIC) and the external capsule (EC) for
FADTI (ALIC: d = 0.648; EC: d = 0.652). AxDDTI had the smallest
effect size, overall, in the splenium of the corpus callosum
(SCC; d = 0.106), and only 13 ROIs showed significant AxDDTI

differences between protocols.
In pairwise analyses, AxDDTI was the most stable index across

protocols, as significant protocol differences were detected in
only 20.6% of pairwise tests (24 ROIs ∗ 21 pairwise tests),
compared to FADTI, the most variable index, which showed
significant protocol differences in 81.9% of tests (Figure 4B).
ADNI2 was the most divergent protocol across dMRI indices,
showing differences in 36.3% of tests.
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FIGURE 3 | Full WM mean (A) AxDDTI, MDDTI, and RDDTI and (B) FADTI and FATDF residuals for each protocol, after fitting effects of age, sex, and age∗sex
interactions, are plotted here in the top rows (red). Protocol has an effect on anisotropy and diffusivity measures. The lower panels (blue) show residuals after
additionally fitting protocol and site as nested random-effects, after which the residuals across protocols are closer to 0.

Diffusion MRI Harmonization With ComBat
After using ComBat to harmonize dMRI indices across
protocols, ANCOVAs revealed that significant protocol
differences in dMRI indices were all but eliminated across
ROIs (Supplementary Figure S2A); significant protocol
differences were detected only in the CST, for each of the dMRI
indices. The number of pairwise tests for which each protocol
showed significant differences in dMRI indices decreased by
93.8% with ComBat (Supplementary Figure S2B).

After harmonization, we still detected significant associations
between age and dMRI indices from ADNI2 and ADNI3 pooled
in the same number of ROIs (Supplementary Table S12).
ComBat correction did not significantly change effect sizes, while
correcting for effects of protocol (Supplementary Figure S3). In

Figure 5 we show effect sizes before and after harmonization
with ComBat in the full WM, Fx/ST, and GCC, the three
ROIs that consistently showed one of the 10 largest effect
sizes for associations with age across all five diffusion
indices (for changes by protocol see Supplementary Figures
S4–S6). As harmonization with ComBat did not improve or
change results found with random-effect linear regressions, we
proceeded to test clinical associations without applying the
ComBat transformation.

Cognitive Measure Associations With
Pooled ADNI3 dMRI Indices
Pooling data across ADNI3, we detected significant associations
between all three cognitive measures and regional dMRI
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FIGURE 4 | (A) d-values from the analyses of covariance (ANCOVAs) assessing differences in dMRI indices between protocols, for each of the 24 ROIs; FADTI

showed the greatest significant differences (largest d-values; dark red) between protocols and AxDDTI the fewest (dark green). (B) We report the number of times
each protocol and each dMRI index showed significant differences in pairwise tests between protocols (out of 504 tests per index and 720 tests per protocol);
AxDDTI was the most stable dMRI index across protocols, while FADTI was the least stable.

indices throughout the WM. Greater cognitive impairment
was associated with lower anisotropy and higher diffusivity.
Figures 6A–C shows effect sizes for ROIs significantly associated
with each cognitive measure after FDR multiple comparisons
correction (for tabulated results and more stringent Bonferroni
corrections, please see Supplementary Tables S13–S15). Across
tests (5 dMRI indices ∗ 3 cognitive measures), the hippocampal-
cingulum (CGH), fornix (crus)/stria terminalis region (Fx/ST),
and the full WM consistently showed one of the 10 largest
effect sizes (see Supplementary Figures S7–S9 for associations
with indices in the CGH, Fx/ST, and full WM, by protocol).

In 14 of 15 tests, the CGH consistently showed one of the top
two largest effect sizes (CGH FADTI association with CDR-sob
was the third largest), along with the uncinate fasciculus (UNC),
which was top two in 12 of 15 tests (while significant, cognitive
associations with UNC FADTI never showed one of the largest
effect sizes).

FADTI showed significant associations in the fewest ROIs:
55 out of 72 tests (76.4%; 24 ROIs ∗ 3 cognitive measures)
were significant. FATDF showed more widespread associations
with cognitive measures throughout WM ROIs: 69 out of
72 tests (94.4%) were significant. Effect sizes were consistently
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FIGURE 5 | Beta-values and error bars representing standard error from the association between each diffusion index and age in CN participants, before and after
ComBat harmonization. We show the three ROIs that consistently showed one of the 10 largest effect sizes for associations with age across all five diffusion indices
(see Supplementary Figure S3 for all ROIs). Compared to pre-ComBat analyses, effect sizes are marginally different across indices, but still within the standard
error.

lower for FADTI than for the other dMRI indices, across all
three cognitive measures; the largest FADTI effect sizes were most
consistently found in the Fx/ST, followed by the CGH or the
GCC. The strongest FADTI association overall was in the Fx/ST
with CDR-sob (d = −0.681, p = 7.01 × 10−8). Compared to
FADTI, FATDF showed larger effect sizes; across cognitive tests,
the strongest FATDF associations were detected in the UNC with
CDR-sob (d = −1.244; p = 1.39 × 10−20), followed by the CGH
(d = −1.213; p = 8.86 × 10−20). CDR-sob effect sizes for FADTI

and FATDF in the CGH, UNC, Fx/ST, and full WM are depicted
by protocol in Supplementary Figure S10, revealing consistently
larger effect sizes for FATDF across protocols.

Cognitive associations with all of the diffusivity indices were
widespread: significant associations were detected in 207 out of
216 tests (95.8%; 24 ROIs ∗ 3 cognitive measures ∗ 3 diffusivity
indices). Regional measures of AxDDTI consistently showed the

largest effect sizes across all cognitive measures (CDR-sob and
the UNC: d = 1.344, p = 3.13 × 10−23; MMSE and the CGH:
d =−1.178, p = 7.87× 10−19; ADAS-cog and the UNC: d = 1.048,
p = 1.09× 10−13).

Of the three cognitive measures, CDR-sob associations
showed the largest effect sizes across dMRI indices (in the UNC
followed by the CGH for all indices except FADTI); the largest
effect sizes across all tests were detected with AxDDTI (UNC:
d = 1.344) and MDDTI (UNC: d = 1.342, p = 3.47 × 10−23).
Figure 7 shows the distribution of the effect sizes for CDR-sob
throughout the brain. Temporal lobe regions (UNC, CGH,
IFO, SS) frequently showed greatest effect sizes (for ADAS-cog
and MMSE figures, see Supplementary Figures S11, S12).
Effect size was not correlated with ROI size (Supplementary
Figure S13), consistent with prior studies of other disorders
(Kelly et al., 2018).
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FIGURE 6 | For each dMRI index, the absolute values of effect sizes (d-value) are plotted for regional WM microstructural associations with clinical measures. Lower
anisotropy and higher diffusivity were significantly associated with (A) higher CDR-sob, (B) lower MMSE, (C) higher ADAS-cog, and (D) an MCI diagnosis, when all
ADNI3 dMRI data are pooled, adjusting for any site or protocol effects. For each test, we note the number of significant ROIs, as indicated by filled shapes, and the
corresponding FDR significance p-value threshold (q = 0.05). See Supplementary Tables S13–S16 for complete tabulated results.

CN vs. MCI Diagnosis Associations With
Pooled ADNI3 dMRI Indices
For each diffusion index, Figure 6D shows the significant
regional effect sizes for differences between CN and MCI
participants. Widespread diffusivity differences were detected,
with significantly higher diffusivity in MCI participants in 21 out
of 24 ROIs (Supplementary Table S16 and Supplementary
Figure S14). Only three regions showed significantly
lower FADTI in MCI participants—Fx/ST (d = −0.460;
p = 3.89 × 10−4), CGH (d = −0.410; p = 1.53 × 10−3), and the
posterior thalamic radiation (PTR; d = 0.367; p = 4.55 × 10−3).
On the other hand, FATDF was significant in 20 out of 24 ROIs,
similar to diffusivity indices. FATDF and diffusivity indices in the
CGH showed the largest effect sizes overall (AxDDTI d = 0.681;
p = 2.26 × 10−7, MDDTI d = 0.700; p = 1.15 × 10−7; RDDTI

d = 0.679; p = 2.41× 10−7; FATDF d =−0.622; p = 2.00× 10−6).
For all three cognitive measures, and in the comparison

between CN and MCI participants, the CGH and Fx/ST were
the only regions that survived multiple comparisons correction

across all dMRI indices. The Fx/ST always had the largest
effect size in FADTI tests. The UNC showed either the first
or second largest effect size (alternating with CGH) across
diffusivity indices and FATDF tests, but was significant only for
cognitive measure associations with FADTI (i.e., three of four
clinical tests).

DISCUSSION

This study has three main findings: (1) when data were pooled
from the six available diffusion MRI protocols used in ADNI3,
anisotropy and diffusivity indices showed robust associations
withMCI diagnosis, and with three common cognitive measures:
MMSE, ADAS-cog, and CDR-sob; (2) when using a higher-order
diffusion model, the derived measure of anisotropy (FATDF)
showed stronger and more widespread associations with clinical
impairment than the standard DTI anisotropy measure (FADTI);
and (3) despite significant differences in protocols, for each
dMRI index, we were able to detect consistent associations with
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FIGURE 7 | Effect size (absolute d-value) maps of WM regions that show significant associations with CDR-sob—the cognitive measure with the largest effect
sizes—reveal widespread associations throughout the WM, with particularly strong associations in the temporal lobes (SS, IFO, UNC, and CGH; light green regions
show the largest effect sizes). As expected, positive associations were detected between CDR-sob and (A) AxDDTI (FDR critical threshold p = 1.78 × 10−4; B) MDDTI

(FDR critical threshold p = 3.64 × 10−4) and (C) RDDTI (FDR critical threshold p = 6.92 × 10−3); higher diffusivity was associated with greater cognitive impairment.
Lower (D) FADTI (FDR critical threshold p = 0.025) and (E) FATDF (FDR critical threshold p = 7.73 × 10−3) were also associated with greater impairment, but FADTI

associations were detected in fewer regions with weaker effect sizes compared to FATDF.

clinical measures in ADNI3 participants, and age in ADNI2 and
ADNI3 CN participants.

Accumulation of amyloid plaques and neurofibrillary tangles
(NFTs) in the brain (Braak and Braak, 1991, 1996; Frank
et al., 2003; Shaw et al., 2007) can directly impact WM (Lee
et al., 2004; Roth et al., 2005), promoting myelin degeneration
and axonal loss (Braak and Braak, 1996; Kneynsberg et al.,
2017). While many factors drive anisotropy and diffusivity
measures from DTI, higher anisotropy values may indicate,
in part, more coherent intact axons, while lower anisotropy
and higher diffusivity may reflect factors such as axonal injury
and demyelination, among other factors (Beaulieu, 2002; Song
et al., 2003, 2005; Harsan et al., 2006; Le Bihan and Johansen-
Berg, 2012; Kantarci et al., 2017; Moore et al., 2018). In this
article, lower anisotropy values and higher diffusivity values
were correlated with clinical impairment most strongly in the
hippocampal-cingulum and uncinate. Along with the full WM,
reflecting global WM effects, the largest effect sizes were most
frequently detected in the hippocampal-cingulum and fornix
(crus)/stria terminalis, WM bundles connecting hippocampal
and parahippocampal regions to the rest of the brain, consistent
with patterns of AD pathology. The histopathological validity
of these findings has been supported, specifically in a recent
study that compared NFT stages in ante-mortem MRI and post-
mortem tissue; elevated MDDTI and lower FADTI significantly
correlated with higher postmortem NFT stage, particularly in the

crus of the fornix, the ventral cingulum tracts, the precuneus, and
entorhinal WM (Kantarci et al., 2017).

The participants recruited for ADNI3 tend to be younger
and healthier, on average, than those in ADNI2, as they were
recruited with the intention of studying the transition from CN
to AD (Jack et al., 2015). With few AD patients enrolled so far
in ADNI3, the primary focus of this article was to assess three
cognitive assessments (ADAS-cog, CDR-sob, and MMSE), and
to compare CN to MCI participants. MCI is now the focus of
intense research; it is essential to find ways to clinically categorize
the transitional stages between normal aging and AD to evaluate
targeted treatments, as pathophysiological mechanisms may
differ or change throughout the course of AD (Mueller et al.,
2005). As in our prior analysis of ADNI2 (Nir et al., 2013), FADTI

was the least sensitive DTI measure. In ADNI3, AxDDTI and
MDDTI showed the largest effect sizes. Lower FADTI and higher
MDDTI are most frequently reported in studies of AD (Kavcic
et al., 2008; Clerx et al., 2012; Nir et al., 2013; Maggipinto et al.,
2017; Mayo et al., 2017), but AxDDTI may be more sensitive
to unspecific microscopic cellular loss earlier in the disease
(O’Dwyer et al., 2011), perhaps making it more sensitive in the
healthier participants of the ADNI3 dataset. Similarly, in ADNI2,
AxDDTI was the most sensitive to differences between CN and
MCI diagnosis (Nir et al., 2013).

Among the three cognitive assessments, CDR-sob showed
the strongest correlations with dMRI indices, in line with prior
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ADNI brain imaging studies (Hua et al., 2009; Nir et al., 2013).
The largest of these effects were found in temporal WM tracts
including the hippocampal-cingulum, uncinate, sagittal stratum,
and inferior fronto-occipital fasciculus. These are all regions
that show early degenerative changes in MCI and AD (Mielke
et al., 2009; Nir et al., 2013; Maggipinto et al., 2017; Powell
et al., 2018). While associations with clinical impairment were
detected throughout the WM, the region that most frequently
showed the lowest effect sizes and was significant in only 3 of
the 20 clinical tests, was the corticospinal tract (CST). However,
the CST ROI from the JHU WMPM atlas is limited to a small
region in the inferior portion of the brain and has been shown
to be the least reliable and reproducible ROI (Jahanshad et al.,
2013; Acheson et al., 2017), suggesting alternate approaches,
such as tractography-based evaluations (Jin et al., 2017), or the
use of the probabilistic JHU atlas (Hua et al., 2008), may be
more appropriate for studying the CST. Our analysis focused on
WM microstructure, but future work assessing tract geometry
and properties of anatomical brain networks using tractography
may reveal more detailed information. The validation and
harmonization of tractography methods and derived network
metrics is a vast field of research with active ongoing work
(Maier-Hein et al., 2017).

DTI is widely recognized as a useful tool for studying
neurodegenerative disorders such as AD (Oishi et al., 2011;
Müller and Kassubek, 2013; Abhinav et al., 2014; Acosta-
Cabronero and Nestor, 2014; Maggipinto et al., 2017). However,
at the spatial resolutions now used, a single voxel typically
captures partial volumes of different tissue compartments–e.g.,
the intra- and extra-cellular compartments, the vascular
compartment, the CSF and myelin; each affects water diffusion
and the MR signal. The DTI model cannot differentiate these
components or even crossing fibers (Tuch et al., 2002; Jbabdi
et al., 2010), which are estimated to occur in up to 90% of WM
voxels at the typical dMRI resolution (Descoteaux et al., 2009;
Jeurissen et al., 2013). In healthy tissue with crossing fibers,
the DTI model may show low FA. FADTI may paradoxically
appear to increase in regions where crossing fibers deteriorate
in neurodegenerative diseases such as AD (Douaud et al.,
2011). FATDF addresses this limitation even in low angular
resolution data (Nir et al., 2017). Here, compared to FADTI,
FATDF showed more widespread associations with cognitive
measures and diagnosis throughout WM ROIs: FATDF was
significant in 89 of the 96 tests (92.7%; 24 ROIs ∗ 4 clinical tests),
while FADTI was only significant in 58 (60.4%). The greatest
difference was seen for diagnostic associations (CN vs. MCI):
FATDF was significant in 20 out of 24 ROIs while FADTI was
only significant in three. FATDF also showed stronger effect
sizes across the protocols, suggesting that tensor limitations
have likely confounded previous diffusion studies of cognitive
decline that have found little or no effects with FA (Acosta-
Cabronero et al., 2010). Recently proposed biophysical models
of brain tissue may help to relate diffusion signals directly to
underlying microstructure and different tissue compartments
(Harms et al., 2017). We may be able to further disentangle
questions of orientation coherence (dispersing and ‘‘kissing’’
fibers), fiber diameter, fiber density, membrane permeability, and

myelination, which all influence classic anisotropy and diffusivity
measures derived from DTI. Several AD studies have already
used multi-shell protocols to compute diffusion indices from
models that do not assume mono-exponential decay, such as
diffusion kurtosis imaging (DKI; Jensen et al., 2005; Chen et al.,
2017; Cheng et al., 2018; Wang M.-L. et al., 2018), and multi-
compartment models such as neurite orientation dispersion and
density imaging (NODDI; Zhang et al., 2012; Colgan et al., 2016;
Slattery et al., 2017; Parker et al., 2018). To date, approximately
20 participants in ADNI have been scanned with multi-shell
diffusion protocols; in a future report, we will relate multi-shell
measures to those examined here.

Large-scale, multi-site neuroimaging studies can increase the
power of statistical analyses and establish greater confidence
and generalizability for findings. Most multi-site neuroimaging
studies are susceptible to variability across sites. Variability in
dMRI studies is due in part to heterogeneity in acquisition
protocols, scanning parameters, and scanner manufacturers
(Zhu et al., 2009, 2011, 2018). Anisotropy and diffusivity maps
are affected by angular and spatial resolution (Alexander et al.,
2001; Kim et al., 2006; Zhan et al., 2010), the number of DWI
directions (Giannelli et al., 2009), and the number of acquired
b-values (Correia et al., 2009). All five dMRI indices were
significantly different between protocols; AxDDTI was the most
stable index, while FADTI was the least stable, reflective of their
performance in detecting associations with cognitive measures.
ADNI2 was the most divergent protocol across dMRI indices,
perhaps due to the larger voxel size in ADNI2 (2.7 mm3 vs.
2.0 mm3 isotropic voxels used in ADNI3). This is consistent with
the notion that DTI measures vary with voxel size due to partial
voluming (Zhan et al., 2013). Despite differences in protocols, the
directions of associations were consistent across protocols.

ADNI3 extends dMRI acquisitions across scanner
manufacturers and platforms to maximize the number of
participants scanned with dMRI; this makes it necessary
to account for site-related heterogeneities and confounds
in analytical models where data are pooled. Multi-site
dMRI studies are becoming increasingly common, and
new data harmonization methods to adjust for site and
acquisition protocol are being developed and tested. A thorough
investigation of dMRI harmonization methods is now possible
with ADNI3, one of the few publicly available multi-site datasets
acquired with multiple protocols. As regional dMRI measures
are available for download as part of the ADNI database, we
highlight two ways that the data may be pooled across sites:
(1) performing statistical analyses with nested random-effects
models to account for site and acquisition protocol differences;
and (2) harmonizing the derived regional measures before
aggregating the data across sites. In a preliminary analysis, we
showed that one harmonization method performed on these
regional measures, ComBat, reduced cross-site differences in
dMRI indices, while preserving biological relationships with age
in CN controls. The only region where differences remained after
ComBat, was the CST, the ROI with the weakest associations
with clinical measures, and previously identified as least reliable
(Acheson et al., 2017). In Fortin et al. (2017), compared to
other harmonization methods, ComBat increased the number
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of voxels where significant associations between age and FADTI

or MDDTI were detected. Here, the number of significant ROIs
and the magnitude of effect sizes were comparable for ComBat
and nested random-effects model approaches. This discrepancy
between our findings and that of Fortin et al. (2017), may be
due to several differences between studies: (1) ADNI3 includes
more sites and protocols; (2) in contrast to the number of
voxels, the number of ROIs is far less than the number of
participants; and (3) the age effects in the elderly populations
tested here are stronger than the effects tested in adolescents
in Fortin et al. (2017). When effects are more readily detected,
one harmonization approach may not be more advantageous
than others. In addition to exploring additional harmonization
techniques, future work should evaluate voxel-wise ComBat
approaches and the effects of harmonization beyond CN
participants (i.e., across the entire ADNI cohort).

In addition to ComBat, a number of harmonization
approaches have recently been proposed at various stages of
analysis (Tax et al., 2018; Zhu et al., 2018). Site differences can
be accounted for at the time of overall group inference, such as
with the random-effects regression level correction used here,
or by using a meta-analysis approach in lieu of pooling data
(Thompson et al., 2014). The data may also be transformed
prior to multi-site group-level statistics. Some methods, such as
ComBat and RAVEL, use the distribution of derived features,
such as diffusivity and anisotropy measures (Fortin et al., 2016,
2017). Alternatively, several proposed methods use information
from the raw image to adjust for acquisition variability (Zhu
et al., 2018). For example, Kochunov et al. (2018) calculated
the signal to noise ratio for each protocol and include it in
their regression models. Mirzaalian et al. (2018) use voxel-wise
spherical harmonic residual networks to derive local correction
parameters. Finding the best method to harmonize dMRI data
is an active topic at ‘‘hackathons’’ and technical challenges; in
2017 and 2018, the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI)
hosted a computational diffusion MRI challenge to explore
approaches for data harmonization. With so many available
approaches, the preliminary random-effects regression and
ComBat results from this article serve as a first step towards
future work establishing robust approaches for combining data
in ADNI3 and other multi-site studies.

The current study is limited in that the sample sizes
and sample demographics available for each protocol vary,
complicating direct comparison of the protocols (Button et al.,
2013). A matched comparison might be possible if a group of
participants or a phantom were scanned using every protocol.
Even so, separating protocol differences from differences in
scanner manufacturer is difficult. We also could not directly
compare all diagnostic groups in ADNI3, as few participants with
AD were scanned.

A more complete picture of brain changes in aging and
AD would include imaging metrics from other modalities,
such as perfusion imaging, resting state functional MRI
(Wang et al., 2017), and radiotracer methods such as FDG-PET
(Popuri et al., 2018), or amyloid- and tau-sensitive PET (Grothe
et al., 2017; Phillips et al., 2018). Genetic and other ‘‘omics’’

data could be analyzed as well, and may help to predict
diagnostic classification and brain aging, when combined with
other neuroimaging markers (Ding et al., 2018; Kauppi et al.,
2018). While these data are all being collected as part of
ADNI3 and other studies of brain aging, our focus here was
on the variety of available dMRI measures, calculated using
different protocols. With this in mind, the optimal dMRI indices
to include in a multimodal study may be those that contribute
the greatest independent information beyond that available
from anatomical MRI and other standard imaging modalities.
Multivariate methods—such as machine learning (Zhou et al.,
2017; Wang X. et al., 2018) and even deep learning (Liu et al.,
2017)—may also help to extract and capitalize on features that
predict clinical decline beyond those studied here.

In addition to providing a roadmap for the new ADNI3 dMRI
data, these preliminary analyses show that despite differences
in the updated dMRI protocols, diffusion indices can be pooled
to detect WM microstructural differences associated with aging
and AD.
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