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The preprocessing of functional magnetic resonance imaging (fMRI) data is necessary
to remove unwanted artifacts and transform the data into a standard format. There are
several neuroimaging data processing tools that are widely used, such as SPM, AFNI,
FSL, FreeSurfer, Workbench, and fMRIPrep. Different data preprocessing pipelines yield
differing results, which might reduce the reproducibility of neuroimaging studies. Here,
we developed a preprocessing pipeline for T1-weighted structural MRI and fMRI data
by combining components of well-known software packages to fully incorporate recent
developments in MRI preprocessing into a single coherent software package. The
developed software, called FuNP (Fusion of Neuroimaging Preprocessing) pipelines, is
fully automatic and provides both volume- and surface-based preprocessing pipelines
with a user-friendly graphical interface. The reliability of the software was assessed
by comparing resting-state networks (RSNs) obtained using FuNP with pre-defined
RSNs using open research data (n = 90). The obtained RSNs were well-matched with
the pre-defined RSNs, suggesting that the pipelines in FuNP are reliable. In addition,
image quality metrics (IQMs) were calculated from the results of three different software
packages (i.e., FuNP, FSL, and fMRIPrep) to compare the quality of the preprocessed
data. We found that our FuNP outperformed other software in terms of temporal
characteristics and artifacts removal. We validated our pipeline with independent local
data (n = 28) in terms of IQMs. The IQMs of our local data were similar to those
obtained from the open research data. The codes for FuNP are available online to
help researchers.

Keywords: functional magnetic resonance imaging, data preprocessing, volume- and surface-based
preprocessing, fully automated software, fusion of existing software

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a useful tool for exploring brain functions non-
invasively. The preprocessing of raw fMRI data is an essential step before performing further
analyses because of the following reasons. First, fMRI measures spontaneous fluctuations of blood
oxygen-level dependent (BOLD) signals that are related to neuronal activities. However, BOLD
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signals contain non-neuronal contributions, such as head
motion, physiological contributions, tissues outside the scope of
interest, and MRI-induced artifacts, as well as neuronal signals
(Murphy et al., 2013; Bright and Murphy, 2015; Caballero-
Gaudes and Reynolds, 2017). The non-neuronal components
in BOLD signals complicate the interpretation of fMRI signals.
Secondly, the quality of fMRI data largely depends on the
image acquisition parameters used. Different MRI data might
have a different range of intensity values, matrix sizes, and
orientations depending on the acquisition parameters used.
Thus, preprocessing steps for fMRI data are required to handle
these issues.

In previous studies, researchers have developed freely available
open-source neuroimaging data preprocessing tools, such as
statistical parametric mapping (SPM)1, analysis of functional
neuroimages (AFNI) (Cox, 1996), FMRIB software library (FSL)
(Jenkinson et al., 2012), FreeSurfer (Fischl, 2012), Workbench
(Marcus et al., 2013), and fMRIPrep (Esteban et al., 2019).
These are widely used software tools, but each one of them
employs a different strategy for data preprocessing. SPM and
FSL provide fully automated graphical user interface (GUI)-
based preprocessing pipelines and are suitable for volume data.
FreeSurfer is suitable for surface data and provides a fully
automated command line-based pipeline. AFNI and Workbench
process both volume and surface data, but they do not provide
a fully automated pipeline in a user-friendly interface. Users
need to rearrange different functions in these disparate software
tools if they seek to implement automatic data preprocessing.
Different data preprocessing strategies across different software
packages might yield differing results, which might reduce the
reproducibility of the neuroimaging studies. The fMRIPrep is a
recent development incorporating many of the state-of-the-art
MRI preprocessing steps.

There are many steps in a given preprocessing pipeline,
including field inhomogeneity correction, motion correction,
registration, and segmentation steps. Many of these steps are
standardized, but some of them are still being actively developed
and refined to better preprocess fMRI data. For example,
many researchers argue that cortical signals are better handled
via surface-based approaches, while sub-cortical signals are
better handled via volume-based approaches (Glasser et al.,
2013, 2016a,b). Data-driven approaches, such as independent
component analysis (ICA), to identify unwanted signals are being
increasingly adopted (Salimi-Khorshidi et al., 2014; Pruim et al.,
2015a,b). Time-series volume data with large head movements
are sometimes removed based on frame-wise displacement (FD)
(Power et al., 2012; Damaraju et al., 2014; Yeo et al., 2015). To
the best of our knowledge, no single software package has all
the recent developments fully incorporated. Thus, neuroimaging
researchers are forced to integrate different components of
various software packages if they seek to adopt all the recent
developments in fMRI preprocessing.

Here, we propose a novel software for fMRI data
preprocessing, named FuNP (Fusion of Neuroimaging
Processing) pipelines, a wrapper software that combines

1http://www.fil.ion.ucl.ac.uk/spm/

components of existing software tools (i.e., AFNI, FSL,
FreeSurfer, and Workbench) to fully incorporate recent
developments in MRI preprocessing. Such wrapper software
might be of practical impact for researchers with limited data
processing background. Our software consists of preprocessing
steps for structural (T1-weighted MRI) and functional (fMRI)
data. We assessed the reliability of our software by comparing
resting-state networks (RSNs) obtained using FuNP with pre-
defined RSNs because it is difficult to obtain the ground truth
of the preprocessing results. In addition, the quality of the
preprocessed data was assessed using the image quality metrics
(IQMs) proposed in the previous paper (Esteban et al., 2017).
The major advantages of our software are as follows. FuNP
can handle both volume- and surface-based preprocessing. The
software is fully automated and has a user-friendly GUI.

MATERIALS AND METHODS

FuNP provides two different types of fMRI preprocessing
steps: (1) volume-based and (2) surface-based preprocessing
pipelines. Both preprocessing pipelines include steps to process
structural (T1-weighted MRI) and functional (fMRI) data. In
the volume-based pipeline, data are preprocessed in 3D volume
space. Volume-based analysis has been widely adopted in many
neuroimaging studies. In the surface-based pipeline, data are
preprocessed both in volume and surface spaces. The surface-
based pipeline operates in 2D surface space but requires
intermediate outcomes from volume analyses. In this pipeline,
the cortical regions are represented as a 2D surface, while the
sub-cortical regions are represented as a 3D volume. This mixing
of surface and volume spaces is a recent development, and
some researchers have claimed that it can improve the sensitivity
of neuroimaging studies (Glasser et al., 2013, 2016a,b). Our
software provides flexibility to perform each of the preprocessing
steps. Users can select “Yes” or “No” options for every step
in our software to selectively perform the steps as required.
Furthermore, users can select user specified parameters for each
step. For example, the degrees of freedom (DOF) and cost
functions for registration could be specified in the GUI. Details
of each preprocessing steps can be found in following sections.

Volume-Based T1-Weighted MRI Data
Preprocessing
The volume-based preprocessing steps for T1-weighted
structural data are presented in Figure 1.

De-Oblique
During data acquisition, the scan angle is sometimes tilted from
the horizontal line (i.e., between the anterior and posterior
commissure) to cover the whole brain and to avoid MRI-induced
artifacts caused by air and water in the eyes and nose (Figure 2A).
Such a tilted scan is referred to as an oblique scan. Oblique
scans enable us to acquire data with less noise, but can make
the registration between two different images more difficult.
Thus, a de-oblique process needs to be performed. De-oblique is
performed using the “3drefit” function in AFNI (Cox, 1996).
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FIGURE 1 | Diagram of the preprocessing steps for volume-based
(A) T1-weighted structural MRI and (B) fMRI data.

Re-orientation
The orientation of data depends on the settings of the data
acquisition process (Figure 2B). Differences in orientation might
lead to mis-registration, and thus all data should be matched
to have the same orientation. Orientation is specified with a
three-element vector: (1) left or right, (2) anterior or posterior,
and (3) superior or inferior. For example, if the right, posterior,
and inferior directions are chosen, the orientation of the data is
called RPI. Orientation can be defined in any way but should
be the same for all data. Re-orientation is performed using the
“3dresample” function in AFNI (Cox, 1996).

Magnetic Field Inhomogeneity Correction
The brain consists of different tissues, namely gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF). The magnetic
field within the scanner should be constant but, in reality, it
decreases when it encounters brain tissue, and the decreasing
rate differs across different tissue types (Cheng et al., 2017).
This phenomenon is referred to as magnetic field inhomogeneity.
These differences in the magnitude of the magnetic field cause
abnormally bright and dark areas, which make it difficult to
detect tissue boundaries (Figure 2C). Thus, magnetic field
inhomogeneity correction should be performed before the non-
brain tissue removal and tissue segmentation steps. Magnetic field
inhomogeneity correction is performed using the “3dUnifize”
function in AFNI by making intensity values in WM more
homogeneous (Cox, 1996).

Non-brain Tissue Removal
The region of interest (ROI) of neuroimaging studies lies within
the brain. Non-brain tissues, such as those of the skull, neck,
eyes, nose, and mouth, are thus not important (Figure 2D). The
non-brain tissue removal step is performed by considering the
gradient of the intensity values across different types of tissues.

FIGURE 2 | Preprocessing steps for volume-based T1-weighted structural
MRI data. (A) De-oblique step. Example images of (left) tilted and (right)
non-tilted data are shown. (B) Matched data with different orientations to the
same orientation. (C) Magnetic field inhomogeneity correction. (D) Non-brain
tissue removal. (E) Registration onto the standard space. (F) Segmentation of
brain tissues into gray matter (GM; red), white matter (WM; yellow), and
cerebrospinal fluid (CSF) (blue).

Non-brain tissue removal is performed using the “3dSkullStrip”
function in AFNI (Cox, 1996).

Registration
Registration is the process of aligning images from different
geometric spaces to a common space (Figure 2E). There are
three main components of registration. First, a spatial geometric
transformation needs to be specified. The 3D transformation
parameters are translation, rotation, scaling, and shearing in the
x-, y-, and z-directions. Rigid-body transformation consists of six
DOF, involving three translations and three rotations, while affine
transformation consists of 12 DOFs involving three scaling and
three shearing factors in addition to the rigid-body parameters,
which we adopt in FuNP. Secondly, a cost function that measures
the goodness of alignment has to be specified. In FuNP, users can
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select either the correlation ratio or mutual information as the
cost function. The correlation ratio is useful when registering two
images of the same modality, while mutual information is useful
for images from different modalities. Finally, an interpolation
method has to be specified. In FuNP, the trilinear interpolation
technique is used. Registration is performed using the “flirt”
function in FSL (Jenkinson et al., 2012).

Segmentation
It has been shown that the fluctuations of time series in GM
are associated with neuronal signals, while those in WM and
CSF are related to artifacts (Salimi-Khorshidi et al., 2014). Thus,
distinguishing between GM, WM, and CSF tissues is important
for extracting signals of interest. The Gaussian mixture model
distribution is used for discriminating between GM, WM, and
CSF tissues (Figure 2F). Segmentation is performed using the
“fast” function in FSL (Jenkinson et al., 2012).

Volume-Based fMRI Data Preprocessing
The volume-based preprocessing steps for fMRI data are
presented in Figure 1.

Removal of the First N Volumes
The de-oblique and re-orientation steps are first performed on
fMRI data as described in Section “Volume-Based T1-Weighted
MRI Data Preprocessing.” The next step is to remove the
first few volumes. When a magnetic field is applied to the
brain, hydrogen molecules are aligned in the direction of the
magnetic field. It takes from 5 to 6 s for these molecules to
approach to the steady state, and thus the volumes acquired
during the first few seconds (typically 10 s) have to be removed
(Figure 3A) (Bright and Murphy, 2015; Bijsterbosch et al., 2017).
This process is performed using the “fslroi” function in FSL
(Jenkinson et al., 2012).

Slice Timing Correction
Slice timing correction is performed to correct the time
differences at which each slice was acquired. For example, as
shown in Figure 3B, the time of the signal evoked at slice 8
is shifted toward that of slice 4 to match the starting time.
The shifted signal is then interpolated. Because the slice timing
correction approach uses interpolation, it causes a temporal
smoothing effect, which might cause loss of information. Thus,
this step is not recommended if the repetition time (TR) of the
fMRI data is short (<1 s) (Bijsterbosch et al., 2017). Slice timing
correction is performed using the “slicetimer” function in FSL
(Jenkinson et al., 2012).

Motion Correction and Volume
Scrubbing
Participants are instructed not to move their heads during
an MRI scan. However, there are always unavoidable head
movements, and thus the data becomes corrupted with motion-
related artifacts. Thus, head motion correction should be
performed on all fMRI data. Motion correction is performed by
registering all volumes to a reference volume via a rigid-body
transformation (Figure 3C). The reference volume can be any

volume, but typically the first or middle volume of the whole
data is selected. The next step is to remove volumes with severe
head motion. This approach is referred to as volume scrubbing
(Power et al., 2012). As the rigid-body transformation is used,
three translation parameters (with their units in millimeters)
and three rotation parameters (with their units in degrees) are
calculated. These six motion parameters are used to calculate FD,
which measures the degree of head motion (Power et al., 2012).
Volumes whose FD exceed 0.5 mm are considered to have severe
head motions and are thus removed. Volumes with severe head
motion are detected using the “fsl_motion_outliers” function and
motion correction is performed using the “mcflirt” function in
FSL (Jenkinson et al., 2012).

Field Map Correction
After head motion correction, field inhomogeneity correction can
be performed. This step requires the collection of a dedicated
field map. However, many neuroimaging studies, especially older
ones, did not collect field map data and thus we make this step
optional. This was intentional so that our software could be
applied to many existing neuroimaging studies. If a certain study
has a field map-corrected EPI data (e.g., computed using FSL),
the user can supply this data as an optional input to our software
and the program will proceed with the rest of the pipeline using
the field map-corrected data.

Intensity Normalization
Because MRI data does not have a specific unit, different
MRI data might have different ranges of intensity values.
Intensity normalization is performed to standardize the range
of intensity values across all 4D volumes with a specific value
(Figure 3D). In FuNP, a value of 10,000 is used. Intensity
normalization is performed using the “fslmaths” function in FSL
(Jenkinson et al., 2012).

Registration
Unlike T1-weighted structural MRI data, the resolution of
fMRI data is lower and has lower inter-tissue contrast. Thus,
it is difficult to directly register fMRI data to the standard
space. In FuNP, two-stage registration is adopted (Figure 3E)
(Jenkinson et al., 2012; Glasser et al., 2013). Low-resolution
fMRI data is registered onto high-resolution preprocessed T1-
weighted structural MRI data of the same subject via a rigid-body
transformation. The T1-weighted structural MRI data is then
registered onto the standard space via an affine transformation.
The two transformation matrices are concatenated and then
applied to the fMRI data to register them onto the standard
space. Registration is performed using the “flirt” function in FSL
(Jenkinson et al., 2012).

Nuisance Variable Removal
The fMRI data contains both signal and noise components.
The noise components include head motion, WM, CSF, cardiac
pulsations, and arterial and large vein-related contributions. The
noise components can be removed via ICA-FIX (Figure 3F)
(Salimi-Khorshidi et al., 2014). ICA is a method for decomposing
fMRI signals into a set of spatially independent components
(ICs) (Beckmann and Smith, 2004; Beckmann et al., 2005).
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FIGURE 3 | Preprocessing steps for volume-based fMRI data. (A) Removal of the first few volumes. (B) Slice timing correction. (C) Head motion correction (left) and
volume scrubbing (right). (D) Intensity normalization. (E) Two-stage registration. (F) Nuisance variable removal via ICA-FIX. (G) Temporal filtering. (H) Spatial
smoothing.
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The computed ICs are further classified into signal and noise
components considering their temporal and spatial features
(Salimi-Khorshidi et al., 2014). This classification procedure is
performed using a hierarchical classification model described in
a previous study and it successfully removed artifacts (Salimi-
Khorshidi et al., 2014). There are automatic methods to classify
ICs, but their performance can be unreliable at times (Kelly
et al., 2010; Griffanti et al., 2017). Thus, a manual approach to
classify ICs is recommended. The following three major aspects
have to be considered to distinguish between signal and noise
components. First, spatial maps of signal components largely
overlap with GM, while those of noise components overlap
with WM, CSF, and blood vessels (Kelly et al., 2010; Griffanti
et al., 2017). Secondly, the time series of signal components are
relatively stable without sudden spikes (Kelly et al., 2010; Griffanti
et al., 2017). Components with sudden isolated spikes in their
time series are often classified as head motion-related artifacts.
Finally, the frequency spectrum of signal components usually
occupies the low-frequency range (<0.1 Hz), while that of noise
components occupies a variable band (Kelly et al., 2010; Griffanti
et al., 2017). Once the noise components are defined, they are
regressed out from the original fMRI data. Nuisance variable
removal is performed using the “fix” function in FSL (Jenkinson
et al., 2012). The FuNP uses the pre-trained datasets that were
trained using different image acquisition settings provided by the
FSL team2. Thus, the users do not need to manually train their
data but choose from one of the several choices that best suits the
input data.

Temporal Filtering
The signals of interest of fMRI data are known to exist in the low-
frequency range (<0.1 Hz) (Biswal et al., 1995; Boubela et al.,
2013). However, extremely low-frequency signals (<0.01 Hz)
are considered as slow drifts (i.e., non-neuronal signals) (Biswal
et al., 1995; Boubela et al., 2013). Thus, band-pass filtering
with a frequency range between 0.009 and 0.08 Hz is widely
used to capture the signals of interest (Figure 3G). The cut-
off frequencies are slightly different across studies, but filtering
ranges of 0.008–0.09 Hz and 0.01–0.1 Hz are typically considered
(Biswal et al., 1995; Margulies et al., 2010; Yeo et al., 2011; Boubela
et al., 2013). In FuNP, users can select either low-pass, high-pass,
or band-pass filters with user-set cut-off frequencies. Temporal
filtering is performed using the “3dFourier” function in AFNI
(Cox, 1996).

Spatial Smoothing
Spatial smoothing is achieved by calculating the weighted average
over neighboring voxels using a Gaussian kernel and yields
blurred data (Figure 3H). The full width at half maximum
(FWHM) of the kernel is usually set as two times the voxel size
(Worsley and Friston, 1995; Mikl et al., 2008). Spatial smoothing
offers the advantage of reducing noise, but it also can lower the
intensity of the signal. Therefore, researchers need to proceed
with caution when applying spatial smoothing. Spatial smoothing
is performed using the “3dmerge” function in AFNI (Cox, 1996).

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX/UserGuide

Surface-Based T1-Weighted MRI Data
Preprocessing
The surface-based preprocessing steps of MRI data contain both
volume and surface processing steps. This is because the surface
processing steps require output from the volume processing
steps. The required volume processing steps are largely the same
as those described in the previous sections. The surface-based
preprocessing steps for T1-weighted structural data is presented
in Figure 4. Initial surface-based preprocessing is performed
using the “recon-all” function in FreeSurfer (Fischl, 2012). For
volume processing, magnetic field inhomogeneity correction,
non-brain tissue removal, intensity normalization, segmentation,
and registration are performed. For surface processing, white
and pial surfaces are generated. The white surface is located
between WM and GM, while the pial surface is located between
GM and CSF. These white and pial surfaces are generated
by following the boundaries between different tissues. The
surfaces are then inflated to spheres, and spherical registration
between the T1-weighted structural data and the standard space
is performed. The surfaces constructed using FreeSurfer are
adjusted to obtain accurate surfaces using Workbench as follows
(Marcus et al., 2013). The T1-weighted volume data preprocessed
using FreeSurfer are registered onto the standard space via an
affine transformation. Afterward, the transformation matrix is
applied to the white and pial surfaces to register them onto the
standard space. These surfaces are then averaged to generate
a mid-thickness surface, which is in turn used to generate an
inflated surface. The spherical surface is finally registered onto a
164k vertex mesh and then down-sampled to a 32k vertex mesh.

Surface-Based fMRI Data Preprocessing
The surface-based preprocessing steps for fMRI data also contain
volume and surface processing steps. The volume preprocessing
steps are the same as those described in Section “Volume-
Based fMRI Data Preprocessing” except for spatial smoothing
(Figure 4). Spatial smoothing is only performed to subcortical
areas and not to cortical areas. The surface-based preprocessing

FIGURE 4 | Diagram of the preprocessing steps for surface-based
(A) T1-weighted structural MRI and (B) fMRI data.
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steps are performed using Workbench and FSL (Jenkinson et al.,
2012; Marcus et al., 2013). The preprocessed fMRI cortical
volume data are converted into surface data to define vertices
within the GM ribbon using a cortical ribbon-constrained
algorithm (Glasser et al., 2013). Voxels with high variation in
their time series (>0.5 standard deviation [SD] of the mean
variation of other voxels in a 5-mm neighborhood) are not
converted into a surface because they usually contain large blood
vessels (Glasser et al., 2013). Surface smoothing on the cortical
areas is applied with a FWHM value of twice the voxel size
(Worsley and Friston, 1995; Mikl et al., 2008).

Experiments
The reliability of the developed software was assessed by
constructing RSNs using preprocessed resting-state fMRI (rs-
fMRI) data obtained from the Human Connectome Project
(HCP) database (Van Essen et al., 2013). We hypothesized
that if the data were preprocessed properly, the obtained RSNs
should be consistent with existing known RSNs. To compare
the quality of the preprocessed data from FuNP and other
software, we compared our results with those from volume-
based preprocessing pipeline using FSL (Jenkinson et al., 2012)
and fMRIPrep (Esteban et al., 2019). The IQMs proposed in the
previous paper (Esteban et al., 2017) were calculated from the
preprocessed data of three different software packages (i.e., FuNP,
FSL, and fMRIPrep).

Participants and Imaging Data
The data used in this study came from two sources. The
first dataset was obtained from the HCP database. We used
all the data in the Q3 release version which had both T1-
weighted and rs-fMRI data, which led to 90 healthy subjects
(58% female) (Van Essen et al., 2013). The mean age was
28.74 with an SD of 3.42. The Institutional Review Board
(IRB) of Sungkyunkwan University approved this retrospective
study, and it was performed in full accordance with local IRB
guidelines. All participants provided written informed consent.
All imaging data were obtained using a Siemens Skyra 3T scanner
at Washington University. The imaging parameters of the T1-
weighted structural data were as follows: TR = 2,400 ms; echo
time (TE) = 2.14 ms; field of view (FOV) = 224 mm × 224 mm;
voxel size = 0.7 mm isotropic; and number of slices = 256. The
imaging parameters for rs-fMRI were as follows: TR = 720 ms;
TE = 33.1 ms; FOV = 208 mm × 180 mm; voxel size = 2 mm
isotropic; number of slices = 72; and number of volumes = 1,200.

An additional 28 T1-weighted structural MRI and rs-fMRI
data of healthy subjects (100% female) were recruited from
Sungkyunkwan University to assess the reproducibility of our
software. The mean age was 23 with an SD of 2.09. All
subjects provided written informed consent according to the
procedures approved by the IRB of Sungkyunkwan University.
The imaging data were obtained using a Siemens Skyra 3T
scanner at Sungkyunkwan University. The imaging parameters of
the T1-weighted structural data were as follows: TR = 2,400 ms;
TE = 2.34 ms; FOV = 224 mm × 224 mm; voxel size = 0.7 mm
isotropic; and number of slices = 224. The imaging parameters
for rs-fMRI were as follows: TR = 1,000 ms; TE = 39.8 ms;

FOV = 224 mm × 224 mm; voxel size = 2 mm isotropic; number
of slices = 72; and number of volumes = 360.

RSN Construction
RSNs were defined via an ICA approach (Minka, 2000; Himberg
and Hyvärinen, 2003; Beckmann and Smith, 2004; Beckmann
et al., 2005; Calhoun et al., 2009). Volume-based preprocessed
rs-fMRI data were temporally concatenated across all subjects
and fed into the “melodic” function in FSL (Beckmann and
Smith, 2004; Beckmann et al., 2005; Jenkinson et al., 2012).
The number of dimensions was automatically determined via
principal component analysis (PCA) (Minka, 2000; Beckmann
and Smith, 2004; Beckmann et al., 2005). The generated volume-
based ICs (VICs) were classified as signal and noise components
via visual inspection (Kelly et al., 2010; Griffanti et al., 2017).
The signal VICs were compared with known RSNs via cross-
correlation to see whether the generated VICs were similar to the
pre-defined RSNs (Smith et al., 2009).

Surface-based preprocessed rs-fMRI data were handled using
the ICASSO approach on the temporally concatenated voxel-wise
time series across all subjects3 (Himberg and Hyvärinen, 2003).
This was done because FSL cannot perform ICA on surface-
based preprocessed rs-fMRI data. The generated surface-based
ICs (SICs) were visually compared with the known RSNs because
there are no openly available RSN data in surface format.

Comparison With Other Software
We compared the results of FuNP with those from volume-
based preprocessing pipeline using FSL (Jenkinson et al., 2012)
and fMRIPrep (Esteban et al., 2019). The comparison was
limited to volume-based approaches as FSL did not provide
surface-based results. The preprocessing steps of FSL were
as follows: the first 10 s volumes were removed and head
motion was corrected. The non-brain tissue was removed
using the temporally averaged fMRI data. The noise reduction
process was performed using a non-linear filtering. The intensity
normalization, high-pass filtering, and spatial smoothing were
applied. The fMRI data were registered onto the T1-weighted
structural data and then consequently onto the MNI standard
space. The preprocessing steps of fMRIPrep were as follows: a
reference volume and its skull removed data were generated.
Head motion and susceptibility distortions were corrected.
The distortion corrected data were registered onto the T1-
weighted structural data and then consequently onto the MNI
standard space. The nuisance variables including head motion,
physiological regressors, and global signals of WM, CSF, and
the whole brain were removed. The ICA-based Automatic
Removal Of Motion Artifacts (ICA-AROMA) was performed to
remove the head motion-related artifacts (Pruim et al., 2015b).
High-pass filtering was applied and then volumetric resampling
configured with Lanczos interpolation was applied to minimize
the smoothing effect. The quality of the preprocessed data was
assessed using the IQMs proposed in the previous paper (Esteban
et al., 2017). The IQMs that assess the temporal information
were (1) SD of DVARS (D means temporal derivative of time

3https://research.ics.aalto.fi/ica/icasso/
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series, VARS means root mean square variance over voxels) that
measures the rate of BOLD signal changes and (2) temporal
signal-to-noise ratio (tSNR). The IQMs that assess the artifacts
were (1) mean FD that measures the amount of displacement
of the head motion, (2) percentage of the volumes with large
head motion over the whole volumes, (3) ghost-to-signal ratio
(GSR) in x- and (4) y-directions, (5) AFNI’s outlier ratio (AOR)
that calculates number of outliers across the time series, and
(6) AFNI’s quality index (AQI) that represents mean quality
index by measuring whether the intensity values of each volume
are not very different from norm of the whole volumes. We
also compared the computational performances among the
three software packages. The computational performances were
measured using running time and peak memory usage over a
subset of HCP data (n = 10). The software packages were allowed
access to a single-thread CPU resource. The size of the input
data (format of .nii.gz) was 1.67 GB on average. Our computation
node was equipped with Intel Xeon CPU E5-2637 v3 and 256 GB
of memory.

RESULTS

Developed Software
We developed a novel data preprocessing software, called FuNP
(Figure 5), for T1-weighted structural MRI and fMRI data. FuNP
consists of volume- and surface-based preprocessing approaches.
The volume-based approach requires AFNI and FSL (Cox,
1996; Jenkinson et al., 2012), and the surface-based approach
requires AFNI, FSL, FreeSurfer, and Workbench (Cox, 1996;
Fischl, 2012; Jenkinson et al., 2012; Marcus et al., 2013). Each
approach performs the preprocessing of T1-weighted structural
MRI and fMRI data separately. Our software, FuNP, is available
at in GitLab4.

Reliability of the Software
To assess the reliability of the output of FuNP, we constructed
volume- and surface-based RSNs using the HCP rs-fMRI data
preprocessed by FuNP. A total of 29 VICs were automatically
generated and classified as 24 signals and 5 noise components
(Figure 6). VICs 1–5 were the visual network (VN), consisting
of the superior-, middle-, and inferior-occipital gyri, cuneus, and
the lingual gyrus. VICs 6 and 7 were the default mode network
(DMN), consisting of the superior- and middle-frontal gyri, the
medial orbitofrontal gyrus, and the posterior cingulate cortex.
VICs 8–10 were the executive control network (ECN), consisting
of the middle- and medial-orbitofrontal gyri and anterior
cingulate cortex. VICs 11–17 were the frontoparietal network
(FPN), consisting of the middle- and inferior-orbitofrontal
gyri and the superior- and inferior-parietal lobule. VICs 18–
21 were the sensorimotor network (SMN), consisting of the
paracentral lobule and the postcentral gyrus. VICs 22 and 23
were the auditory network (AN), consisting of Heschl’s gyrus,
the superior temporal gyrus, and the supramarginal gyrus. VIC
24 was the cerebellum. These 24 functionally interpretable VICs

4https://gitlab.com/by9433/funp

FIGURE 5 | Screenshot of the developed software, called FuNP.

were compared with pre-defined RSNs by computing cross-
correlation (Smith et al., 2009). The mean cross-correlation
value was 0.38, with an SD of 0.17. The results obtained
with FuNP showed high similarities between the generated
VICs and the pre-defined RSNs, indicating that the data were
properly preprocessed.

In addition to the VICs, 20 SICs were generated and classified
as 16 signal and 4 noise components (Figure 7). SICs 1 and 2 were
the VN, consisting of the primary visual cortex (V1), the early
visual cortices (V2 and V3), and the extrastriate visual cortices
[V3A, V6, V6A, middle temporal (MT), and middle superior
temporal (MST)]. SICs 3 and 4 were the DMN, consisting of the
dorsolateral prefrontal cortex, the medial- and inferior-frontal
cortices, the anterior- and posterior-cingulate cortices, and the
insula. SICs 5–7 were the ECN, consisting of the dorsolateral
prefrontal cortex, the medial orbitofrontal cortex, the inferior
frontal cortex, and the anterior cingulate cortex. SICs 8–14 were
the FPN, consisting of the dorsolateral prefrontal cortex, the
medial- and inferior-frontal cortices, the superior- and inferior-
parietal lobules, and the paracentral lobule. SICs 15 and 16 were
the SMN, consisting of the somatosensory and motor cortices,
the premotor cortex, and the paracentral lobule. Regions of the
AN were partly included in the SICs of the FPN (SICs 10, 11,
12, and 14). The SICs showed similar patterns to those of known
RSNs, suggesting that the preprocessing pipeline was reliable.

Frontiers in Neuroinformatics | www.frontiersin.org 8 February 2019 | Volume 13 | Article 5

https://gitlab.com/by9433/funp
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00005 February 7, 2019 Time: 18:22 # 9

Park et al. Preprocessing Software for fMRI

FIGURE 6 | Generated VICs using the HCP data (labeled in a white font) along with pre-defined RSNs (labeled in a yellow font) (Smith et al., 2009). The
cross-correlation values of the spatial maps between the generated VICs and RSNs are presented.

FIGURE 7 | Generated SICs using the HCP data matched with known RSNs.

Comparison With Other Software
The quality of the volume-based preprocessed rs-fMRI data
from FuNP, FSL, and fMRIPrep was assessed using the IQMs
(Esteban et al., 2017). We found that FuNP yielded lower SD
of DVARS compared to other software. The mean FD and
percentage of volumes with large head motion of FuNP were
comparable to fMRIPrep and lower than FSL. The results suggest
the head motion-related artifacts were better removed using

FuNP (Figure 8). The tSNR and GSR showed higher values
in FuNP compared to other software indicating the processed
data using FuNP were robust to noise (Figure 8). In addition,
AOR and AQI showed smaller values for FuNP suggesting
there was a smaller number of outliers compared to other
software (Figure 8). Taken together, our FuNP outperformed
other software in terms of temporal characteristics and
artifacts removal.
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FIGURE 8 | The IQMs of the volume-based preprocessed rs-fMRI data using different software packages. The values were plotted using violin plots. The white circle
denotes the median value. The AOR and AQI were very small but the results of some software packages had high variability.

Comparison of Computational
Resources
We measured the computational performances among the three
software packages using running time and peak memory usage.
On average, the running time was approximately 3 h for
FuNP, 11 h for fMRIPrep, and 11 h and 30 min for FSL
(Table 1). Possible reasons behind the longer computation
time for fMRIPrep could be different head motion correction
and registration methods compared to ours. The FuNP took
6 min, while fMRIPrep took 86 min on average for the motion
correction (Table 1). The FuNP was faster (12 min) than
fMRIprep (4 h and 52 min) for the registration procedure on
average (Table 1). During the 4D data registration, fMRIPrep
splits the 4D data into 3D volumes and performs registration
onto the reference space. The results of the registration were
stored on a disk for all 3D volumes and later concatenated
to form the 4D registered data. The operations involve many
disk input/output operations and thus could be slow. Our
FuNP performs the entire procedure all within the memory
and thus does involve fewer disk input/output operations than
fMRIPrep. This could lead to faster computation for FuNP. For
both fMRIPrep and FSL, the longer computation time might
be due to the use of different noise removal strategies. The
FuNP was faster (1 h and 29 min) than the two approaches
(fMRIPrep; 9 h and 25 min, FSL; 11 h) (Table 1). The
fMRIPrep performs nuisance variable removal by calculating
various kinds of confounds of mean global signal, mean tissue
class signal, PCA-based noise areas defined by anatomy or
temporal variance, FD, DVARS, six head motion parameters,

respectively (Esteban et al., 2019). In addition, ICA-AROMA
for head motion-related artifact removal is performed if the
option is set. In contrast, FuNP only uses ICA-FIX that
showed good performance of noise removal (Salimi-Khorshidi
et al., 2014). In addition, the use of complex non-linear
noise filtering algorithm, smallest univalue segment assimilating
nucleus (SUSAN), across the whole time series might affect
the computation time (Smith and Brady, 1997). In contrast,
FuNP only does temporal filtering using a conventional Fourier
transform and spatial smoothing for noise removal. Although
simple approaches were adopted in FuNP, it exhibited lower
outlier ratio compared to other software packages (Figure 8).
In terms of peak memory usage, FuNP used 12.5 GB on
average, fMRIPrep used 33.1 GB, and FSL used 9.5 GB. Note
that the peak memory usage was dependent on the size of
the input data. In summary, the running time for the whole
preprocessing was fastest when the FuNP was adopted compared
to fMRIPrep and FSL.

Reproducibility of the Software
To assess the reproducibility of our software, FuNP, we
performed additional data preprocessing using local data
(n = 28). The quality of the results was assessed using
IQMs. Figure 8 shows that the IQMs of the preprocessed
local and HCP data using FuNP were similar. In addition
to the IQMs, we performed volume- and surface-based ICA
and found results (from local data) that were similar to the
main results (HCP data) (Figures 6, 7 and Supplementary
Figures S1, S2). Taken together, we believe our pipeline
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TABLE 1 | Computation time of each preprocessing step for three software packages.

fMRIPrep FSL FuNP

First N volumes removal N/A 7.4 m(0.5 m) 7.4 m(0.5 m)

Slice timing correction N/A N/A N/A

Volume scrubbing N/A N/A 26.8 m(0.4 m)

Motion correction 1 h 26.6 m(6.3 m) 2.2 m(0.4 m) 6.2 m(0.8 m)

Non-brain tissue removal 6.4 m(5.0 m) 4.2 m(0.4 m) 4.6 m(0.5 m)

Intensity normalization N/A 1.2 m(0.4 m) 1.2 m(0.4 m)

Registration 4 h 52.0 m(1 h 3.2 m) 1.1 m(0.3 m) 12.0 m(2.0 m)

Nuisance variable removal 9 h 25.0 m(1 h 45.2 m) 11 h 0.2 m(1 h 8.8 m) 1 h 29.2 m(10.5 m)

Temporal filtering 1.1 m(0.3 m) 3.2 m(0.4 m) 3.2 m(0.4 m)

Spatial smoothing N/A 1.8 m(0.4 m) 1.8 m(0.4 m)

Total 11 h 6.6 m(12.9 m) 11 h 35.0 m(52.6 m) 2 h 55.0 m(11.2 m)

Means and SDs are reported. SD values are reported in parentheses.
h, hour; m, minute; N/A, not available.

could yield reproducible results based on the analyses of two
independent data sets.

DISCUSSION

In this study, we developed a preprocessing pipeline for
T1-weighted structural MRI and fMRI data by combining
components of well-known software packages, namely AFNI,
FSL, FreeSurfer, and Workbench, to fully incorporate recent
developments in MRI preprocessing into a single software
package (Cox, 1996; Fischl, 2012; Jenkinson et al., 2012;
Marcus et al., 2013). The developed software, FuNP, is not the
first wrapper software that incorporates recent developments
in MRI preprocessing. The fMRIPrep is a notable software
package that incorporates many of the state-of-the-art MRI
preprocessing steps from existing software tools of AFNI, FSL,
FreeSurfer, and ANTs (Esteban et al., 2019). They reported
that the pipeline is robust to the acquisition parameters
of the input data, easy to use as it requires a minimum
number of user specified parameters for each step, and
provides a summary in results of segmentation, registration,
global signals, and motion-related artifacts (Esteban et al.,
2019). Our software, FuNP, has the following advantages. First,
FuNP contains both volume- and surface-based preprocessing
pipelines. Using the surface-based pipeline, researchers can
handle cortical and sub-cortical data better and more consistently
with recent developments (Glasser et al., 2013, 2016a,b).
Secondly, FuNP provides a fully automated preprocessing
framework. Thirdly, FuNP is user-friendly owing to its
graphical interface, which is intuitive and easy to manipulate.
Fourthly, we designed our software so that the pipeline
could be applied to fMRI data without field map data.
This might be important because, in old neuroimaging
studies, researchers often did not collect field map data.
In such cases, modern researchers cannot use up-to-date
preprocessing pipelines that require field map data. The
reliability of FuNP was assessed by constructing RSNs using
rs-fMRI data from the HCP database (Van Essen et al.,
2013). Both the volume- and surface-based brain networks

were well-defined and were consistent with pre-defined brain
networks (Figures 6, 7). In addition to RSNs, the IQMs
of temporal characteristics and artifacts were calculated to
assess the quality of the preprocessed data. We found that
FuNP outperformed FSL and fMRIPrep in terms of the
IQMs (Figure 8). These results indicate that the developed
preprocessing pipelines for T1-weighted structural MRI and
fMRI data are of high-quality and reliable. Our software
can be used as robust and easy-to-use neuroimaging data
preprocessing framework.

There are several options to choose from to perform
a given preprocessing step. Following statements are the
justifications of the choices we made for each preprocessing
step. Some choices (e.g., skull stripping) could be considered
as optimal (Iglesias et al., 2011; Puccio et al., 2016), still,
some could be suboptimal due to on-going controversies
(e.g., nuisance removal) (Ciric et al., 2017). To remove the
non-brain tissues, we selected “3dSkullStrip” function in AFNI
rather than “bet” function in FSL, “antsBrainExtraction”
function in ANTs, and “HWA” function in FreeSurfer.
Previous studies reported that the function in AFNI
outperformed equivalent functions in FSL and FreeSurfer
for non-brain tissue removal (Iglesias et al., 2011; Puccio
et al., 2016). A previous study reported ANTs showed
better skull stripping results than other conventional
approaches by visual inspection suggesting that our choice
might be suboptimal (Esteban et al., 2019). For the step
of magnetic field inhomogeneity correction, we chose
“3dUnifize” function in AFNI out of coincidence. There are
alternatives of “N4BiasFieldCorrection” function in ANTs
and “fast” function in FSL. When performing registration,
we chose “flirt” function in FSL. One study reported that
neuroimaging registration could be better performed using
“antsRegistration” function in ANTs compared to FSL and
SPM (Dadar et al., 2018). Thus, we built two versions
of FuNP. The new version adopted “antsRegistration”
function and is referred to as FuNP v.2.0. We decided to
keep the old version, referred to as FuNP v.1.0, because
“flirt” requires fewer computation resources (i.e., runs
fasters) compared to ANTs. For fMRI data registration,
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the FuNP used the two-stage registration that aligns the
fMRI data to the T1-weighted structural data and then
subsequently onto the MNI standard space. However, a
previous study demonstrated that registration of fMRI data
using echo planar imaging template improved the statistical
power and reduced variability across subjects compared to the
two-stage registration approach (Calhoun et al., 2017). Thus,
our strategy for fMRI data registration might be suboptimal.
In the tissue segmentation step, “fast” function in FSL was
adopted that showed good performance compared to other
algorithms (Eggert et al., 2012; Kazemi and Noorizadeh, 2014;
Valverde et al., 2015). For slice timing correction, we chose
“slicetimer” function in FSL and there are alternatives of
“3dTshift” function in AFNI and “spm_slice_timing” function
in SPM. For head motion correction, “mcflirt” function in
FSL was adopted. It was shown that there was no single
package that outperformed others for head motion correction
(Oakes et al., 2005). There are many approaches to remove
the nuisance variables in fMRI data such as head motion,
cardiac, respiratory, WM, and CSF, but there is no single
approach that can eliminate the artifacts completely (Ciric
et al., 2017). A previous study reported that there were
trade-offs among different strategies for nuisance variables
removal and thus users need to select appropriate strategies
in the context of their scientific goals (Ciric et al., 2017).
In FuNP, “fix” function in FSL, the state-of-the-art approach,
was adopted to remove nuisance variables of head motion,
WM, CSF, cardiac pulsations, and arterial and large vein-
related contributions (Salimi-Khorshidi et al., 2014). This
approach requires the pre-trained datasets to classify between
the signal and noise components (Parkes et al., 2018).
The FuNP uses the pre-trained datasets that were trained
using different image acquisition settings provided by the
FSL team2. The users of FuNP need to choose which pre-
trained data best suits their data being processed. Thus, the
users do not need to manually train their data but choose
from one of the several choices. However, if the input data
were scanned with a very different image acquisition setting
compared to existing choices, then “fix” function of FSL might
not work well.

We compared the computational performances among three
different software packages. We found that FuNP outperformed
other software packages in terms of running time. This
computational efficiency might be practical beneficial for
preprocessing large-scale data which are likely to become more
pervasive. A previous study reported that the total processing
speed for registration accelerated two to three times when
graphics processing unit (GPU) was adopted (Luo et al., 2015).
The processing speed of recon-all, which was used for surface-
based T1-weighted MRI data preprocessing in FuNP, could
be improved 10 to 150 times with the help of GPU based
computations according to the FreeSurfer official website6. We
plan to update FuNP with GPU capabilities in the future.

6 https://surfer.nmr.mgh.harvard.edu/fswiki/CUDADevelopersGuide

CONCLUSION

In this study, we incorporated existing software packages of
AFNI, FSL, FreeSurfer, and Workbench to build a preprocessing
pipeline for T1-weighted structural MRI and fMRI data. The
developed software, FuNP, provides a fully automated and
user-friendly GUI volume- and surface-based preprocessing
pipelines. The FuNP showed good performance in terms
of temporal characteristics and artifacts removal. We believe
our pipeline might help researchers who need MRI data
preprocessing.
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