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When properly implemented and processed, anatomic T1-weighted magnetic resonance

imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM)

and gray matter (GM) in the living human brain. Although MRI is more suitable

for distinguishing GM from WM than computed tomography (CT), the growing

clinical use of the latter technique has renewed interest in head CT segmentation.

Such interest is particularly strong in settings where MRI is unavailable, logistically

unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a

sophisticated and technically-mature research field, the task of automatically classifying

soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation

methods for MRI hold considerable potential for adaptation and application to CT

image processing. Here we demonstrate this by combining probabilistic, atlas-based

classification with topologically-constrained tissue boundary refinement to delineate WM,

GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this

approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric

concussion victims with both MRI and CT scans. Comparison of the two segmentations

yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and

91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM),

3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that

the segmentation approach is sensitive enough to yield WM, GM and CSF volume

estimates within ∼5%, ∼4%, and ∼3% of their MRI-based estimates, respectively. To

our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous

within-subject comparison with high-resolution MRI. Results suggest that (1) standard-

quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the

task of soft brain tissue classification from CT merits further attention from neuroimaging

researchers.
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INTRODUCTION

The clinical use of computed tomography (CT) for patient
diagnosis and treatment has been increasing steadily throughout
the past few decades, particularly in relation to stroke and
traumatic brain injury (TBI) (Haydel et al., 2000; Pelc, 2014). In
developed countries, the number of CT scanners greatly exceeds
that of magnetic resonance imaging (MRI) machines, and CT
may be preferable to MRI in emergency radiology settings due
to the former modality’s convenience, wide availability and speed
(Seo et al., 2008). Nevertheless, the task of classifying soft brain
tissues based on CT images has long been disregarded because
white matter (WM) and gray matter (GM) have relatively poor
contrast in CT compared to T1- or T2-weighted MRI. The
primary reason for this is that soft brain tissues have relatively
similar radiodensities, which means that conventional CT images
acquired at standard radiation doses typically differentiate GM
from WM rather poorly. This frequently makes the CT-based
delineation of WM/GM boundaries difficult and inaccurate; if
hard thresholds of image intensity are used as primary criteria
for delineation, poor GM/WM contrast can lead to substantial
error during tissue segmentation. For similar reasons, models
involving seed-based region-growing techniques can also lead to
misleading results.

Whereas the automatic segmentation of brain MRI volumes is
relatively routine compared to CT segmentation (Friston, 2007;
Jenkinson et al., 2012; Velasco-Annis et al., 2017), there are very
few software solutions for CT-based brain tissue classification.
Nevertheless, recent progress in CT scanner technology and
the accompanying improvement in CT image quality both
suggest that the ability to distinguish soft tissue types using
CT is becoming increasingly feasible (Li et al., 2014). As of
the date of this study, only a handful of automatic methods
for CT brain tissue segmentation exist, none of which have
been applied to or validated on neurotrauma patients. Gupta
et al. (2010), for example, proposed a heuristic segmentation
method which leverages intensity thresholding to distinguish
WM from GM and from CSF. The efficacy of this method,
however, was only postulated based on manually-contoured,
high-confidence fiducial brain regions and in the absence of
independent confirmation by other imaging techniques. By
contrast, Kemmling et al. (2012) introduced a probabilistic
atlas based on previously-segmented MRI volumes which was
co-registered to CT images to perform tissue classification,
but no validation or quantitative evaluation of this approach
was implemented in their study. More recently, Manniesing
et al. (2017) proposed a method for CT-based segmentation
which requires manual corrections using dedicated software and
which also relies on the averaging of CT volumes acquired
longitudinally from the same subject after the administration
of a contrast agent to improve SNR. The accuracy of these
authors’ approach is unknown in the scenario where no more
than one CT scan is available, as in our case. Furthermore,
averaging of longitudinally-acquired CT volumes may produce
undesirable results in cases where pathology evolution between
time points modifies brain shape and structure, such as in TBI or

stroke. Additionally, the method of Manniesing et al. involves the
segmentation of GM, WM and CSF from contrast CT.

The premise of the present study is that brain segmentation
methods for MRI hold considerable potential for adaptation
to CT image processing. Specifically, our purpose here is to
illustrate how two standard MRI analysis methods—namely
(A) probabilistic, atlas-based classification and (B) topologically-
constrained tissue boundary refinement—can be combined to
delineate WM, GM and cerebrospinal fluid (CSF) from head
CT images. In MRI analysis, voxel intensities are often modeled
using a mixture of Gaussian random variables and tissue
classification can be performed within a Bayesian framework.
The probability that each voxel belongs to a certain tissue class is
then calculated based on anatomic priors, and class membership
is assigned based on this probability. In CT, however, where
GM/WM contrast is typically quite poorer than in MRI,
this approach can frequently result in spurious, anatomically-
implausible class membership assignments for voxels near
tissue boundaries. We propose to address this shortcoming by
applying a standard approach to the neuroanatomy-constrained
correction of tissue boundaries based on the local topological
properties of the GM/WM interface. Because this method was
previously applied only to MRI, part of our study’s novelty
involves its application to CT.

The feasibility and utility of the segmentation approach
illustrated here are revealed by direct comparison of MRI
vs. CT segmentations in a group of concussion victims from
whom both standard-quality CT and T1-weighted MRI were
acquired. Here and throughout, “standard-quality CT” refers to
CT images acquired at radiation dosages which are typical of
routine clinical scans in the United States (∼2 mSv). Because
radiation dosage is intimately related to CT signal quality and
to the signal-to-noise ratio (SNR) of CT images, the utility of
contrast-based approaches to brain segmentation is substantially
dependent upon radiation dosage. In this context, applying
our method to CT scans acquired at a standard radiation
dosage is critical for highlighting the broad applicability of the
segmentation approach.

To our knowledge, this is the only CT segmentation method
to undergo rigorous within-subject comparisonwith high-fidelity
MRI. Furthermore, none of the existing CT methods has been
used to segment the brains of older adults or of concussion
victims. Both qualitative and quantitative comparison of CT-
vs. MRI-based segmentations of WM, GM, and CSF indicate
noteworthy agreement between the two, as well as superior
segmentation quality compared to the very few other methods
currently available. On the other hand, our findings also
suggest that—although the reliable CT-based calculation of
WM/GM/CSF volumetrics is feasible at standard radiation
dosages—the accuracy of CT-derived metrics is unlikely to ever
surpass that of MRI-derived ones as the “gold standard” in
the field. Scientists who wish to use CT-based volumetrics to
make scientific inferences should be mindful that CT-based
volumetrics are likely associated with greater error than MRI-
based measures. Awareness of this is necessary to prevent
future CT-based segmentation studies from conveying an overly
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optimistic impression regarding the ability of CT segmentations
to furnish reliable estimates of brain volumetrics.

MATERIALS AND METHODS

Participants
This study was carried out in accordance with the
recommendations of the Institutional Review Board of the
University of Southern California with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Institutional Review Board at the University
of Southern California. Study participants were selected from
two volunteer pools, namely (i) concussion victims who had
participated in an unrelated study, and (ii) individuals who had
been scanned using MRI/CT for clinical treatment unrelated to
this study. To be included, patients had to (A) have had both
MRI and CT volumes acquired and available, (B) be 50 years
of age or older at the time of their initial brain scan, and (C)
exhibit no gross head pathology detectable using CT or MRI at
scan time. The exclusion criteria were (A) unavailability of MRI
and/or CT data; (B) patient age under 50 years; (C) the existence
of substantial, gross head pathology at scan time, as detected via
CT and/or MRI and (D) poor CT/MRI data quality (e.g., visually
detectable artifacts of any kind). The concussed group included
10 participants (5 males; age: mean µ = 65 years; standard
deviation σ = 7 years; range: 54–75 years). The non-concussed
group included 25 participants (12 males; age: µ = 61 years;
σ = 9 years; range: 52–83 years). Volunteers under the age of 50
were excluded because of our desire to test our method on brains
with variable degrees of atrophy. The most important difference
between the two groups pertains to the spatial resolution of
CT/MRI data. Specifically, in the concussed volunteer group,
CT slice thickness was 1.25mm and MRI slice thickness was
1mm; in the non-concussed volunteer group, slice thickness was
3.75mm for CT and 5mm for MRI. This selection of data was
intentional, as the difference in spatial resolution allowed us to
explore segmentation reliability as a function of slice thickness
and to illustrate the necessity of evaluating CT segmentation
approaches like ours using MRI of research-grade resolution.

Data Acquisition
All data were deidentified and delinked prior to analysis.
CT volumes were acquired using a 16-slice General Electric
scanner. In the concussed volunteer group, images were acquired
clockwise, in helical mode, with a standard convolution kernel
and the following parameters: matrix size = 512 × 512;
voxel size = 1.5mm × 1.5mm × 1.25mm; kilovoltage peak
(kVp) = 120 kV; data collection diameter = 500mm; exposure
time = 600ms; X-ray tube current = 100mA; exposure = 100
mA·s; focal spot = 1.2mm. MRI volumes were acquired at
3 T using a Prisma MAGNETOM Trio TIM scanner (Siemens
Corp., Erlangen, Germany). Images were acquired using a
magnetization-prepared rapid acquisition gradient echo (MP-
RAGE) sequence with the following parameters: repetition
time (TR) = 1,950ms; echo time (TE) = 3ms; inversion
time (TI) = 900ms; flip angle (FA) = 9 degrees; percentage

sampling = 100; pixel bandwidth (BW) = 240 Hz/pixel; matrix
size = 256 × 256; voxel size = 1mm × 1mm × 1mm. In
the non-concussed volunteer group, CT volumes were acquired
clockwise, in helical mode, with a standard convolution kernel
and the following parameters: matrix size = 512 × 512; voxel
size = 1.5mm × 1.5mm × 3.75mm; kVp = 120 kV; data
collection diameter = 250mm; exposure time = 750ms; X-
ray tube current = 220mA; exposure = 130 mA·s; focal
spot = 1.2mm. MRIs were acquired at 3 T using a Signa
HDxt scanner (General Electric Corp., Boston, USA). Images
were acquired using a fast spin-echo (FSE) sequence with the
following parameters:TR = 567ms; TE = 18ms; FA= 90 degrees;
percentage sampling = 100; pixel BW = 81 Hz/pixel; matrix
size= 512× 512; voxel size= 0.5mm× 0.5mm× 5mm.

MRI Segmentation
MRI volumes were segmented using the widely-utilized
FreeSurfer 6.0 software as detailed elsewhere (Dale et al., 1999;
Fischl et al., 1999), with default execution parameters. Very
briefly, this process includes (1) the removal of non-brain tissue
using a hybrid watershed/surface deformation procedure, (2)
automated Talairach space transformation, (3) volume intensity
normalization, (4) segmentation of cortical and subcortical GM,
(5) tessellation of the GM/WM boundary, and (6) automated
surface topology correction. The reader is referred to references
(Dale et al., 1999; Fischl et al., 1999) for comprehensive details on
each of these steps involved in the MRI segmentation procedure.

CT Segmentation
As previously stated, an important goal of this study is to
illustrate how MRI-tailored approaches can be combined and
adapted for CT. Because of this, our segmentation strategy is
inspired by MRI-tailored approaches to template-based tissue
classification, including pioneering approaches by Ashburner
and Friston (1997, 2000, 2005, 2007) and by Dale et al.
(1999) and Fischl et al. (1999). The starting point for our
implementation was the probabilistic classification method of
Ashburner and Friston (2005), as available in SPM 12.0; this was
adapted, modified and augmented in MATLAB to incorporate
topology-constrained segmentation (Dale et al., 1999; Fischl
et al., 1999). An overview of the entire tissue classification
procedure is provided in this section, and details specific to each
step are described in subsequent sections. Briefly, to perform
tissue classification, voxel intensity values are used to assign
their probabilities of belonging to one of several tissue classes
by estimating the parameters of the intensity distributions of
each class. This is accomplished by first defining an objective
function derived from a mixture of Gaussian random variable
models, and by then minimizing the value of this function
using a parameter optimization process. A set of a priori
tissue probability maps specified in a standard space (atlas)
are used to assist the classification. The objective function can
assist this process by weighing the probability maps of the
standard space according to Bayesian inference principles and
then deforming them so that they match the volumes being
segmented. Specifically, the template is warped to each subject’s
brain volume (Collins et al., 1995), after which the latter can
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be segmented and the ensuing spatial classifications can be
smoothed (Evans et al., 1994). When combined with a priori
information specified by the template, Bayesian inference can be
used to calculate posterior probabilities, based on each subject’s
voxel intensity values. The interface between the resulting
GM and WM volumes is smoothed according to principles
inspired from nonlinear filter theory, subject to topological
constraints dictated by the structural neuroanatomy of the
human brain (Dale et al., 1999; Fischl et al., 1999).

Gaussian Mixture Model
The distribution of image intensities in a neuroimaging volume
is modeled here by a mixture of K clusters, each consisting
of Gaussian random variables (Bishop, 1995). Each Gaussian
variable is parameterized by its mean µk, variance σ 2

k
and mixing

coefficient γk, subject to the constraint that the sum of all mixing
coefficients must be equal to 1. Fitting this Gaussian mixture
model to the image intensity data vector y of length I involves
maximizing the probability of observing the data given the model
parameterization. The probability that a voxel has intensity yi
given that it belongs to the k-th Gaussian random variable (i.e.,
given that ci = k) parameterized by µk and σ 2

k
is

P
(

yi|ci = k,µk, σ
2
k

)

=
1

(

2πσ 2
k

)1/2
exp

[

−

(

yi − µk

)2

2σ 2
k

]

. (1)

Because the probability that yi belongs to the k-th Gaussian
random variable given the proportion γk of voxels which belong
to that random variable is P

(

ci = k|γk
)

, Bayes’ rule indicates that

P
(

yi, ci = k|µk, σ
2
k , γk

)

= P
(

yi|ci = k,µk, σ
2
k

)

P
(

ci = k|γk
)

, (2)

and the total probability of observing yi becomes

P
(

yi|µ, σ , γ
)

=

K
∑

k=1

P
(

yi, ci = k|µk, σ
2
k , γk

)

, (3)

whilst the probability

P
(

y|µ, σ , γ
)

=

I
∏

i=1

P
(

yi|µ, σ , γ
)

(4)

that all I intensities in y are observed given µ, σ , and γ can be
maximized by varying the latter parameters in the cost function

E = − log P
(

y|µ, σ , γ
)

. (5)

Spatial Priors, Deformation, and
Regularization
A probabilistic atlas is used to specify the prior probability
that each voxel belongs to any tissue class in the Gaussian
mixture model. This is done without assuming that any intensity
distribution for each class is Gaussian, such that the prior

probability of voxel i being drawn from the k-th Gaussian
distribution is

P
(

ci = k|γ
)

=
γkPik

∑K
j=1 γjPij

, (6)

where Pik is the tissue probability for class k at voxel i.
For voxels located at the boundary between tissues (e.g., the
GM/WM boundary), this model accommodates the difficulty of
ascertaining the class to which voxel i belongs. The atlas used
here is a modified version of the MNI152 atlas (Grabner et al.,
2006), which is based on an average of T2-weightedMRI volumes
acquired from 152 healthy control subjects. The original atlas has
a resolution of 1mm × 1mm × 1mm and its image intensities
range from 0 to 90 in increments of 1.3 × 10−3. For the present
study, the atlas in question was modified to reflect the intensity
profile of CT brain scans, where CSF is hypointense.

Let α be a vector of diffeomorphic deformation parameters
which allow the co-registration of the spatial template and a
subject volume. Here, spatial priors are deformed according to
α, to allow co-registration according to

P
(

ci = k|γ , α
)

=
γkPik(α)

∑K
j=1 γjPij(α)

. (7)

With this adjustment, one obtains

E = −

I
∑

i=1

log P
(

y|µ, σ , γ ,α
)

(8)

or, more explicitly,

E = −

I
∑

i=1

log

K
∑

k=1

P
(

ci = k|γ , α
)

P
(

yi|ci = k,µk, σ
2
k

)

. (9)

The parameterization of the deformation is implemented using
a linear combination of sinusoidal transform bases (Christensen
et al., 1994) subject to spatial regularization by maximizing
P

(

y, α|µ, σ , γ
)

. Only the lowest frequencies of a discrete sine
transform were used, resulting in 392 (7 × 3 × 8) parameters
to describe deformations along each spatial dimension. Three
additional parameters were used to model linear scaling and
one parameter was used to model linear image intensity
inhomogeneities (Ashburner and Friston, 1999). The probability
densities of the spatial parameters α are modeled by multivariate
Gaussian random variables with mean 0 and covariance matrices
Cα . The spatial regularization involving these covariance
matrices and deformations prevents undesirable interactions
between parameter estimates (Evans et al., 1994). Initially,
parameter value estimates are assigned randomly, and nonlinear
deformation coefficients are set to zero. Model parameters
are then optimized using an expectation maximization (EM)
algorithm (Bishop, 1995), where the Gaussian mixture and
deformations are re-calculated by iteratively updating exactly one
while the others are held constant. Deformations are optimized
using a Gauss-Newton scheme (Wedderburn, 1974).
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Topology-Constrained Refinement
After probabilistic assignment of voxels to one of three classes
(WM, GM or CSF), the segmentation is refined iteratively using
a priori information concerning the local properties of the cortex
(Dale et al., 1999). Specifically, because the surface defined by
the WM/GM interface is smooth and its curvature is both
defined and finite everywhere on it, the local topology of the
brain can be used to correct the probabilistic tissue classification.
This process is analogous to the application of a nonlinear,
anisotropic filter whose nonlinearity is high near the WM/GM
boundary. As the distance from some given voxel to theWM/GM
boundary increases, the filter becomes more linear; because the
true boundary is topologically smooth, the filter shape must
be planar at this interface. In our approach, the segmentation
is corrected in two steps. First, we identify the plane crossing
the boundary which is intersected by voxels whose intensity
variance is minimal. Once this is done, the voxels within this
plane are examined to determine whether (A) a substantial
proportion of them have ambiguous classifications based on their
intensity or whether (B) they are surrounded by voxels whose
class memberships vary greatly. If changing the class assignment
of these voxels decreases the in-plane intensity variance, the
voxels in question are re-assigned to their more appropriate class
(Dale et al., 1999).

Qualitative Segmentation Comparison
CT segmentations were compared to MRI-based segmentations
within each participant. Prior to this comparison, the skull-
stripped MRI and CT volumes were co-registered using a 12-
parameter, affine registration. MRI- and CT-based segmentations
were compared by plotting both and inspecting the ability of
the CT segmentation to reproduce cortical folding patterns
and to identify landmarks of interest, including the thalamus,
ventricular system, and various gyri. To visually inspect the
effect of slice thickness upon segmentation, the CT volume
of a representative concussion victim was first down-sampled
using trilinear interpolation to change the voxel size from
1mm × 1mm × 1.25mm to 1mm × 1mm × 3.75mm. The
lower-resolution volume was then segmented, and the results
were compared.

Quantitative Segmentation Comparison
In addition to comparing the CT- and MRI-based GM, WM and
CSF classifications qualitatively, four measures were calculated:
(1) the Sørensen-Dice coefficient (which conveys the extent
of overlap between CT and MRI tissue label maps), (2) the
Hausdorff distance (which measures, in this case, how far the
CT- and MR-based boundaries are between two tissues), (3) the
intraclass correlation coefficient (a measure of how reproducible
measurements are when made using distinct techniques) and
(4) the stretching distance (a measure of average spatial prior
deformations).

For two tissue classes X and Y , the Sørensen-Dice coefficient
CSD is defined as

CSD = 2
|X ∩ Y|

|X| + |Y|
. (10)

If there is perfect overlap between the two tissue classes, CSD is
equal to 1; no overlap results in CSD being equal to 0. The original
Hausdorff distance dH is defined as

dH(X,Y) = max
{

supxǫX infyǫY d
(

x, y
)

, supyǫY infxǫX d(x, y)
}

(11)

where X and Y are non-empty sets of a metric space (M, d), sup
is the supremum and inf is the infimum. This measure involves
the distance between points located along the edges of two
surfaces and conveys how well the two surfaces overlap. In the
present study, X and Y are MRI- and CT-derived segmentation
volume surfaces, respectively, and d is a Euclidian distance. Here,
the modified Hausdorff distance is used, as defined formally
elsewhere (Dubuisson and Jain, 1994).

The intraclass correlation coefficient rIC is a measure of
within-subject measurement variability relative to between-
subject variability (Iscan et al., 2015). In the present case, these
measurements are volumes of the GM, WM, or CSF computed
from eitherMRI or CT, and their rIC value can be used to quantify
the reliability of the CT segmentation. As reported elsewhere,
the calculation of rIC is predicated upon experimental design
and statistical model assumptions (Shrout and Fleiss, 1979). In
cases like ours, the one-way random effect model is appropriate
(McGraw andWong, 1996), such that rIC ≃ (MSb −MSw) /MSb,
whereMSb andMSw are between- and within-group mean sums
of squared measurements, respectively. These quantities were
computed like in an analysis of variance (Shou et al., 2013).
Bootstrapping was used to calculate the average amount by which
CT volume estimates can be expected to deviate from their
MRI-derived values.

To assess the relationship between segmentation quality and
the amount of deformation applied to the spatial priors, one
can calculate the mean absolute stretching distance dS between
two volumes (Ewert et al., 2019). Intuitively, this distance can be
conceptualized as the average amount by which volume elements
within a moving volume must move to match the shape of a
target volume. Themapping between volume elements in the two
volumes (template and subject) is specified by the deformation
field of the transformation. In other words, dS is the average
amount by which voxels in the atlas must move to optimize
the atlas-subject deformation. The larger the deformation, the
greater dS.

To determine whether outliers as well as any bias existed
in favor of any of the segmentation classes, the MRI- and CT-
derived volumes of WM, GM, and CSF were plotted against each
other. The relationships between dH and CSD, and between dH
and dS were explored visually in a similar way, i.e., by plotting
one against the other. In this study, all GM and WM measures
were calculated based on all neuroanatomical structures in the
cranial cavity. By contrast, only ventricular CSF volumes and
Sørensen-Dice coefficients were compared because T1-weighted
MRI is insufficiently suited—compared toT2-weightedMRI—for
quantifying water content in the CSF layer around the cerebrum,
as well as in locations surrounding the cerebellum, brainstem,
etc. However, T2-weighted MRI scans were unavailable to us;
to alleviate this drawback, only ventricular CSF measures were
compared across modalities.
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In implementations like ours, there is a risk that segmentation
results could be dominated by the nonlinear deformation of
the template to each individual case. In other words, the
radiodensities of distinct tissue classes (e.g., GM, WM) may
have relatively little influence upon the segmentation. To test
this hypothesis, the following analysis was implemented for each
CT volume: (A) The mean µ and standard deviation σ were
calculated across all brain CT voxels. (B). All brain voxels were
assigned radiodensity values sampled at random from a Gaussian
distribution with parameters µ and σ. This operation effectively
removed the contrast between GM and WM. (C) The modified
brain CT volume was segmented. (D) CSD and dH values were
computed based on the segmentation of the modified brain CT
volume and then compared to the values of these metrics as
obtained by segmenting the original CT volume. We argue that,
if tissue class radiodensities had no effect upon segmentations,
there would be no statistically-significant difference between CSD

values calculated based on original CT volumes vs. based on
modified CT volumes.

RESULTS

Qualitative Assessment
The conclusions of our qualitative assessment are reflected by
the results conveyed in Figure 1, where both MRI and CT
segmentations are displayed for a representative subject. When
performing this comparison, the MRI-based segmentation is
treated as the gold standard. Overall, the agreement between
MRI- and CT-derived classifications is quite reasonable, with our
method being able to capture the most prominent features of
cerebral neuroanatomy appropriately. In what follows we discuss
specific findings, as reflected by the sagittal, coronal and axial
views of the brain, respectively.

The sagittal slice of the brain displayed in Figure 1 is
approximately co-planar with the longitudinal fissure. This
depiction indicates visually-acceptable agreement between the
segmentations, with good coverage of cerebral GM, callosal
WM and of the brainstem. Ventricular CSF classifications also
appear to be satisfactory. There is even agreement between
segmentations pertaining to cerebral areas where only little GM
is visible in the selected slice, such as the medial parietal lobe and
occipital lobes. The most notable difference in the sagittal view
pertains to the frontal lobe, where the CT algorithm appears to
have classified more tissue along the longitudinal fissure as GM
than the MRI method. This, however, is to be expected due to
the relatively low SNR of CT compared to MRI as well as to the
excellent ability of FreeSurfer software to delineate the natural
boundary between hemispheres.

The coronal slice displays a view of the parietal lobe, with
a substantial portion of the cerebellum and lateral ventricles
being visible as well. This view is particularly useful because
it conveys the substantial similarities in gyrification patterns
between the two segmentations. Visual assessment confirms that
local structural variations are captured relatively well in the CT
segmentation. Though the basal ganglia are poorly delineated
by CT, our segmentation appears to be able to capture them
well. The axial slice is at the level of the inferior temporal

lobe, with some frontal lobe structures—such as the orbital
gyri/sulci—being visible as well. As in the coronal slice, the
overall local shape of the GM/WM boundary is reflected well in
the CT segmentation.

Figure 2 displays MRI- and CT-based three-dimensional
reconstructions of the ventricular CSF, brain, bones and skin for
the volunteer in Figure 1. The second row displays segmentation
results based on the original-resolution volume (1mm × 1mm
× 1.25mm). Although the MRI-based segmentation is superior
in its ability to resolve the gyrification of the cortex, the CT
segmentation does reproduce the overall shape of the brain and
ventricular system. The reconstruction of the lateral ventricles,
third ventricle and inter-thalamic adhesion appears to be within
reasonable limits for the purposes of neuroanatomic reference
and delineation. Results in the third row are based on the same
volume after down-sampling to the resolution of the volumes
acquired from non-concussed volunteers (1mm × 1mm ×

3.75mm). Here, the method is seen to over-estimate GM volume
and to lose some ability to capture cortical folding details;
overall, there is some perceived loss of tissue classification fidelity
compared to MRI.

Quantitative Assessment of Concussion
Group
Across all concussion cases considered, the mean and standard
deviation of the Sørensen-Dice coefficient were found to be
86.7 ± 5.6% for WM, 86.0 ± 2.0% for GM, and 92.2 ± 0.7%
for ventricular CSF. The means and standard deviations of
the coefficient are more similar for WM and GM, presumably
because these tissues’ similar radiodensities translates into similar
abilities to classify them. On the other hand, ventricular CSF
has a somewhat greater coefficient presumably because its
lower radiodensity compared to GM/WM makes CSF easier
to distinguish from soft brain tissue. The average modified
Hausdorff distance was found to be 3.4 ± 1.5mm (WM), 3.7
± 1.8mm (GM), and 2.5 ± 1.3mm (CSF), which confirms that
CSF classification is likely best, followed by WM and then GM.
This view is recapitulated by the fact that dS was found to have
means of 3.4 ± 2.3mm (WM), 3.5 ± 1.9mm (GM), and 1.8 ±

0.6mm (CSF).
In the concussion sample, the intraclass correlation coefficient

was found to be 0.64 for WM, 0.68 for GM, and 0.74 for CSF.
Bootstrapping results suggested, based on this sample, that the
segmentation method is sensitive enough, to yield WM, GM,
and CSF volume estimates within ∼5.4%, ∼4.3%, and ∼3.2%
of their MRI-based estimates, respectively. As percentages of the
MRI-derived mean volume, the 2σ confidence intervals (CIs) for
these error estimates were [2.9, 7.9]% for GM, [2.2, 6.4]% for
WM, and [1.4, 5.0]% for CSF. In other words, for a randomly
selected volunteer, there was a ∼95% estimated probability that
the discrepancy between her/his CT-derived and her/his MRI-
derived GM volume was between 2.9% and 7.9% of the latter.

The results of the quantitative assessment for concussion
victims are summarized in Figure 3. In particular, Figure 3A
suggests that, in the case of volume measurements, no outlier
or bias in favor of any tissue class are present in our cohort of
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FIGURE 1 | MRI and CT segmentations and their corresponding imaging slices for a representative subject. Colored voxel label maps are translucent to ease

inspection of the underlying neuroanatomy. (A) T1-weighted MRI slices show GM (green). The WM is left uncolored to facilitate identifying occasional differences

between the true GM/WM boundary and the FreeSurfer-identified boundary. (B) CT slices display labeled GM (red), WM (yellow) and CSF (light blue) based on

segmentation at the original CT volume resolution (1 × 1 × 1.25mm). (C) Like (B), based on segmentation at a down-sampled CT volume resolution (1 × 1 ×

3.75mm).

concussion victims. Figure 3B suggests that, as expected, there
is a direct relationship between dH and CSD. Comparison of the
plots for WM, GM and CSF illustrates how both metrics have a
smaller range and variance for CSF than for the other two classes.
This can be explained by the fact that CSF is easier to segment
from both CT and MRI due to the relatively large difference
in radiodensity between CSF and either GM or WM. This is
confirmed by Figure 3C, where the relationship between dH and
dS is explored. As expected, these quantities are also directly
proportional to each other because they both trend higher as the
quality of the segmentation decreases.

When testing the hypothesis that tissue class intensities had
no effect upon segmentations, the Sørensen-Dice coefficients
computed based on CT volumes with modified radiodensities

were found to be 64.2 ± 8.9% for WM and 69.4 ± 7.3% for
GM across all concussion cases. The average modified Hausdorff
distance was found to be 5.21 ± 1.61mm (WM) and 4.87
± 1.95mm (GM) in this group. These values are significantly
different (p < 0.001) from those obtained based on the original
CT volumes, which suggests that tissue class radiodensities do
have a significant effect upon segmentations.

Quantitative Assessment of Volunteers
Without Concussions
Across non-concussed participants (whose MRI volumes had
thicker slices), the mean and standard deviation of the Sørensen-
Dice coefficient were found to be 63.7 ± 7.2% for WM, 59.4
± 8.9% for GM, and 73.5 ± 6.6% for ventricular CSF. In this
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FIGURE 2 | Reconstructions of the brain (light red), ventricular CSF (blue), bones (white), and skin (translucent) for a representative participant. The brain and

ventricular CSF are based on MRI (left) and on CT (right). Bones and the skin surface were reconstructed from CT.

group, the average modified Hausdorff distance was found to
be 6.18 ± 2.34mm (WM), 6.75 ± 2.87mm (GM), and 4.89 ±

1.86mm (CSF). Presumably, the results are substantially inferior
to those obtained in the concussed patient sample because the
MRI slice thickness in the non-concussed group was 3.75mm.
The intraclass correlation coefficient was found to be 0.51 for
WM, 0.56 for GM, and 0.61 for CSF. In this lower-resolution
sample, the segmentation method was estimated to be sensitive
enough to detect percentage volume differences between MRI
and CT which amounted to an average of ∼7.1% (CI: [3.9,
10.3]%) for WM, ∼6.2% (CI: [3.5, 8.9]%) for GM, and ∼5.4%
(CI: [3.1, 7.7]%) for CSF. The dS metric was found to be 7.1
± 4.12mm (WM), 6.7 ± 3.9mm (GM), and 3.4 ± 1.6mm
(CSF). Although the means and standard deviations of these
quantities differ from those observed in the concussion group,
the relationships between quantities recapitulate the findings
illustrated in Figure 3 to indicate that dH and dS are directly
proportional. Overall, these results thus confirm the necessity
of validating CT-based soft tissue segmentations using MRI of
standard, research-grade thickness (e.g., 1mm) rather than MRI
with slices of relatively large thickness (e.g., 3.75mm).

DISCUSSION

Feasibility
The ability to segment soft brain tissues from CT is largely
dependent upon image contrast-to-noise ratio (CNR). In CT,
the CNR itself depends on tube settings, iterative reconstruction
method, radiation dosage and other factors; at standard dosages,
the average radio-densities of GM andWMhave been reported as
38.7± 2.2 Hounsfield units (HU) and 31.8± 2.3 HU, respectively
(Craddock et al., 2006), resulting in an average X-ray attenuation
of ∼5 HU. Bier et al. (2016) similarly report radio-densities
of 40.2 ± 3.3 HU (GM) and 28.48 ± 3.6 HU (WM) in their

CT images, with the GM-WM radio-intensity difference being
significantly different (p < 0.0001). The GM-WM CNR is
reported as∼3 (Rapalino et al., 2012; Bier et al., 2016), but image
filtering techniques have been reported to enhance the CNR by
a factor as large as ∼10 (Diwakar and Kumar, 2014; Bier et al.,
2016). This allows the CT GM-WM CNR to compare favorably
with the GM-WM CNR obtained from T1-weighted MRI at 3 T,
where a meta-analysis found that single-slice and multi-slice
MR images yield CNRs of ∼18 and ∼9, respectively (Fushimi
et al., 2007). Together, these findings suggest that the delineation
of the GM/WM boundary from CT is feasible using available
CT technology. Nevertheless, it should be reiterated that, when
available and of enough quality, MRI is by far preferable to CT
for the purpose of brain soft tissue segmentation.

Applications
Despite very limited previous research on CT brain tissue
segmentation, there are numerous potential applications for this
technology, including (1) the detection of brain pathology, (2)
the measurement of brain volumetrics to assist studies of aging
in health and disease, and (3) the quantitation of neuroanatomy
in settings where MRI is undesirably expensive, unavailable or
inaccessible. For example, the US Centers for Disease Control
(CDC) report that the number of CT scanners exceeds that
of MRI scanners by a factor which ranges between ∼1.5
(developed countries) and ∼5 (developing countries) (CDC,
2010). Furthermore, CT is more affordable than MRI and
additionally constitutes the method of choice in certain clinical
settings where image acquisition time is of the essence, such as
neurocritical care (Williamson et al., 2017). For the latter reason,
the availability of CT segmentation tools could be beneficial for
TBI studies.

In stroke, TBI and other conditions which frequently involve
CT, segmentation of images acquired with this modality could
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FIGURE 3 | Results of quantitative analysis for concussion victims. For all quantities plotted, the regression line of best fit (blue) and residuals (red) are shown on plots

with identical ranges along both x and y, to facilitate comparison. (A) MRI- vs. CT-derived volumes. (B) The Hausdorff distance dH vs. the Sørensen-Dice coefficient

CSD. (C) The Hausdorff distance dH vs. the stretching distance dS. Quantities pertaining to WM, GM, and CSF are displayed in the first, second, and third rows,

respectively.

also be used to analyze perfusion imaging to study blood flow in
the brain and to distinguish between the cores and penumbrae
of cerebral lesions. CT-based volumetrics could also be useful
in quantitative studies of brain atrophy associated with healthy
aging, TBI or neurodegenerative diseases. Specifically, because
the rate of brain atrophy in health differs from that observed in
many diseases of the central nervous system, brain volumetrics
can be used in conjunction with other anatomic and functional
measures to estimate mortality risk and other parameters which
are of substantial interest to clinicians, biomedical scientists,
demographers, and epidemiologists.

Given that MRI availability in developing countries is
relatively limited, software for CT-based brain segmentation
could substantially extend the scope of certain large-scale
epidemiological studies being carried out there. One such
study is the Tsimané Health & Life History Project now
underway in a region of rural Bolivia where MRI is logistically
unfeasible yet where CT is available (Kaplan et al., 2017).
Furthermore, because some patients cannot undergo MRI
scanning due to claustrophobia, pacemaker implantation
or other contraindications, techniques such as ours could
facilitate the enrollment of these individuals in imaging
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studies. Given how transformative the research field of
brain MRI processing has been over the past 30 years,
the potential applicability of CT-based segmentation is
thus clear.

Comparison to Other Methods
There are very few other methods to which our approach can
be compared quantitatively. One study which reports metrics
like ours is that of Manniesing et al. (2017), where averages and
standard deviations for CSD, dH , and dC are reported for CT-
only segmentations of WM and GM. In all cases, our results
compare very favorably to theirs; for example, Manniesing et al.
report 〈CSD〉 = 0.79± 0.05 and

〈

dH
〉

= 0.74± 0.26mm for WM,
where 〈〉 denotes the mean. In all three cases, our Sorensen-
Dice coefficients are greater and the two distances quoted are
smaller than theirs, as desirable; this statement also applies to the
comparison of GM segmentations. By contrast, as expected,MRI-
based segmentations clearly remain preferable. For example,
Iscan et al. (2015) report that, for FreeSurfer-segmented GM,
〈rIC〉 = 0.88 ± 0.15 in a dataset of repeated MRI measurements.
Furthermore, whereas our approach can—at its best— yield GM
volume measurements which are within an average of ∼5.4%
of their MRI-derived values, the latter typically fall within <1%
of their true values, on average (Eggert et al., 2012). Similarly,
a comparison of the MRI- and CT-derived surfaces in Figure 1

easily indicates that only MRI-based segmentation can capture
fine local variations in cortical shape, such as those due to gyri
and sulci. In conclusion, our method could clearly benefit from
refinement and from technology improvements to improve CT
image SNR and CNR.

LIMITATIONS

For clarity, our study’s limitations can be divided into two groups,
i.e., extrinsic or intrinsic. Extrinsic limitations involve factors
pertaining to the imaging data themselves and which affect the
efficacy of the method independently of it; such factors include
radiation dose, the number of scans available, and the presence
of metal objects inside the head. Since there is a direct—albeit
nonlinear—relationship between radiation dose and SNR (Yu
et al., 2009), we expect our algorithm to perform better if the
data are acquired at higher radiation doses. Similarly, if repeated
measurements are obtained, within-subject co-registration and
averaging of CT volumes can improve SNR. If, on the other hand,
metal objects (e.g., deep brain stimulation electrodes) are present
inside the head, resulting artifacts may substantially compromise
segmentation efficacy. One intrinsic limitation of our approach
is the fact that, as Figure 1 illustrates, its ability to identify tissue
boundaries correctly is suboptimal at brain locations where thin,
long slabs of WM protrude into GM. Because the ability of our
method to capture the geometric variability of the GM/WM
interface is dependent upon GM/WM contrast, it results that the
algorithm may not perform well in locations where the structure
of the boundary is particularly complex. Improvements in the
SNR and CNR between GM andWM can alleviate this drawback.
A second limitation of this study involves the fact that T2-
weighted MRI is preferable to T1-weighted MRI for quantifying

water concentration in the brain. For this reason, the validation
of CT-based CSF segmentations should be performed, if possible,
based on the former MRI technique. Here, to circumvent this
problem in the absence of T2-weighted MRI, we opted to
compare ventricular CSF segmentations because brain ventricles
are typically much larger than the CSF layer around the brain,
especially in older adults. Nevertheless, future studies should
strive to include T2-weighted MRI when undertaking validation
of CT segmentations.

CONCLUSION

The ability to segment soft brain tissues accurately from CT
can substantially extend the utility of this important and
cost-effective neuroimaging technique. Despite the limitations
pertaining to the approach proposed here, our preliminary results
indicate that reasonable segmentations of WM, GM and CSF can
be obtained based on standard CT volumes of the human head.
The methodological contributions described in this study can
also be used as a foundation for the development of additional,
more complex segmentation procedures for tasks such as the
automated labeling of brain lobes and/or the identification of
smaller structures such as gyri and sulci. Such refinements of
our method, if feasible, would likely increase the utility of
CT segmentation for brain imaging studies. Nevertheless, the
accurate labeling of GM within thin gyri and of CSF within
narrow sulci based on CT is likely to remain quite limited
without substantial progress on CT technology to allow major
improvements of image quality. When undertaking population-
based studies of brain volumetrics calculated from CT data,
researchers should duly account for the uncertainty of these
measurements, especially in their statistical analyses. Such
uncertainties are recapitulated by the magnitude of the variance
in our Dice coefficients andHausdorff distances, and this suggests
that our ability to further refine our segmentation approach is
largely predicated on the availability of CT head volumes with
improved CNRs between WM and GM. MRI+CT data acquired
from larger human samples are also required to improve the
statistical estimates of our CT-based volume measurement errors
relative to MRI.
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