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Closed-loop technologies provide novel ways of online observation, control and
bidirectional interaction with the nervous system, which help to study complex non-linear
and partially observable neural dynamics. These protocols are often difficult to implement
due to the temporal precision required when interacting with biological components,
which in many cases can only be achieved using real-time technology. In this paper
we introduce RTHybrid (www.github.com/GNB-UAM/RTHybrid), a free and open-source
software that includes a neuron and synapse model library to build hybrid circuits with
living neurons in a wide variety of experimental contexts. In an effort to encourage
the standardization of real-time software technology in neuroscience research, we
compared different open-source real-time operating system patches, RTAI, Xenomai
3 and Preempt-RT, according to their performance and usability. RTHybrid has been
developed to run over Linux operating systems supporting both Xenomai 3 and
Preempt-RT real-time patches, and thus allowing an easy implementation in any
laboratory. We report a set of validation tests and latency benchmarks for the construction
of hybrid circuits using this library. With this work we want to promote the dissemination
of standardized, user-friendly and open-source software tools developed for open- and
closed-loop experimental neuroscience.

Keywords: closed-loop technologies, hybrid circuits, hard real-time, dynamic-clamp, activity-dependent
stimulation

1. INTRODUCTION

The study of neural systems dynamics is hindered by various factors. The first one is their intrinsic
non-linearity, since they process information in several interacting spatial and temporal scales and
are affected by multiple transient adaptation and learning mechanisms. Also, from all magnitudes
involved in these dynamics, just a few can be accessed simultaneously, making the system partially
observable. The third factor is related to the use of the traditional stimulus-response paradigm
in most experimental neuroscience research, which only allows to record the behavior of the
system under different stimuli and then to analyze the collected data offline. Thus, highly complex
non-stationary neural activity, which has influence from the context and previous events’ feedback,
can not be completely assessed. Closed-loop techniques provide an efficient way to overcome
such difficulties by interacting online with the system, producing precise stimulus according to
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the recorded information and presenting valuable insights on
transient neural processes. This paradigm allows more flexibility
in the experiment and favors its automation, as well as the control
of neural dynamics (Chamorro et al.,, 2012; Potter et al., 2014;
Roth et al., 2014; Varona et al., 2016).

While closed-loop technology allows researchers to conduct
online observation, control and goal-driven interaction with
neural elements, it also presents some drawbacks in its
implementation. Some of these difficulties are related to the
complexity of the associated experimental design, but also to
the accomplishment of precise temporal restrictions, in the scale
of milliseconds or lower, which are often required during data
acquisition and stimulation in biological experiments (Christini
et al,, 1999; Muiiz et al., 2005, 2008, 2009). The capacity of a
system to perform periodic tasks and respond to asynchronous
external events in an strict time slot (neither sooner nor later)
is known as real-time (Furht et al., 1991). Therefore, to ensure
the compliance of the previously mentioned temporal margins
in an experimental setup, real-time technology is needed. It is
also important to mention that the term “real-time” may as well
be used in neuroscience literature referred to online recording,
feedback or control (Siegle et al., 2017). In this paper we always
refer to strict temporal precision in the millisecond range.

Electronic components easily fulfill the speed and precision
requirements needed for most real-time scenarios, so hardware-
based implementations are one possible solution (Robinson
and Kawai, 1993; Le Masson et al, 1995; Broccard et al,
2017). Current development of inexpensive microcontrollers
with large computational power allows efficient implementations
(Desai et al, 2017). On the other hand, software-based
solutions are usually more programmable and manageable,
offering maximum flexibility and a wide range of user-friendly
frameworks. Moreover, nowadays personal computers have
enough hardware capacity to comply with standard real-time
restrictions and benefit from large memory for complex closed-
loop protocol implementations. However, modern general
purpose operating systems (GPOS), such as Windows, MacOS
or GNU/Linux, are multitask environments with internal
schedulers, which assign computer resources to different
running tasks following specific policies (Stallings, 2012).
These schedulers can not be controlled by the users, hence
it can not be ensured that a given task will run without
interruptions and, therefore, real-time can not be assured.
In order to run protocols accomplishing a set of established
temporal boundaries with software-based real-time, another
system framework, known as real-time operating system (RTOS),
is needed.

Numerous real-time tools for experimental neuroscience are
already available. Some of them are hardware-based (Franke
et al,, 2012; Tessadori et al., 2012; Miiller et al., 2013; Desai et al.,
2017). Several software tools have been designed, particularly for
dynamic-clamp electrophysiology experiments, both following
soft- (Pinto et al, 2001; Nowotny et al., 2006; Linaro et al,
2014; Ciliberti and Kloosterman, 2017; Hazan and Ziv, 2017) and
hard real-time (Christini et al., 1999; Dorval et al., 2001; Muniz
et al., 2005, 2009; Bir6é and Giugliano, 2015; Patel et al., 2017)
approaches, using distinct platforms and RTOS, which have

diverse purposes and architectures, hence presenting different
advantages and disadvantages.

A highly relevant example of closed-loop interactions can be
found in hybrid circuits, which are networks built by connecting
model neurons and synapses to living cells. They are a powerful
tool to explore and characterize neural system dynamics, as well
as a means to assess the role of specific circuit components (e.g.,
see Yarom, 1991; Pinto et al., 2000; Sziics et al., 2000; Varona
et al.,, 2001; Le Masson et al., 2002; Nowotny et al., 2003; Oprisan
et al., 2004; Arsiero et al., 2007; Chamorro et al., 2009; Grashow
et al,, 2010; Brochini et al., 2011; Kispersky et al.,, 2011; Wang
etal,, 2012; Thounaojam et al., 2014; Hooper et al., 2015; Norman
etal.,, 2016; Broccard etal., 2017). The most common paradigm to
build hybrid circuits consists in using dynamic-clamp to read the
membrane potential of a cell and, after computing a model using
this voltage, inject the resulting current into the same or into a
different cell (Robinson and Kawai, 1993; Sharp et al., 1993; Prinz
et al., 2004; Destexhe and Bal, 2009; Nowotny and Varona, 2014).
Neuron models range from simple mathematical approximations
to more complex conductance-based implementations, which
reproduce biophysical behaviors with high accuracy. The same
thing occurs for synapse models, which can cover from simple
gap junctions using Ohm’s law to chemical connections described
by non-linear differential equations (Torres and Varona, 2012).

Beyond dynamical-clamp protocols, other stimulation and
detection techniques that can improve their performance by
using real-time technology are fMRI (Rana et al, 2016),
optogenetics (Krook-Magnuson et al.,, 2013; Prsa et al,, 2017),
EEG setups (Arrouét et al, 2005; Sitaram et al, 2016),
neuroprostheses (Levi et al,, 2018), or any kind of activity-
dependent stimulation experiment, such as the ones that use
simultaneous electrophysiological and video tracking (Muiiz
et al., 2011), acute mechanical stimulation (Muniz et al., 2008),
electric signaling during behavior (Forlim et al., 2015; Lareo et al.,
2016) or drug microinjection (Chamorro et al., 2009, 2012).

Due to the lack of flexibility in hardware real-time solutions, as
well as RTOS heterogeneity and intrinsic difficulties in their use,
many neuroscience researchers overlook this technology when
designing closed-loop experiments. In this paper we introduce
RTHybrid, a novel, multiplatform, real-time software neuron and
synapse model library to build hybrid circuits. With this tool
we aim to promote the use of standardized and user-friendly
real-time software technology, available in different platforms,
to favor the implementation of closed-loop experimentation in
neuroscience research. We provide validation examples of this
tool in the context of hybrid circuit implementations using
dynamic-clamp, including detailed analysis and benchmarking of
temporal precision in different RTOS.

2. MATERIALS AND METHODS

2.1. Real-Time Software

Real-time performance is often wrongly considered as a matter
of speed, which is of course important, when it actually relies
on temporal precision: actions must be delivered within a pre-
established interval, neither sooner nor later. Many neurons
follow precisely a similar behavioral pattern: slow activity (less
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than 1 kHz) but precise subcellular sequential dynamics or
spiking coding.

When a computer performs a given task, there is always some
latency between the moment when this task is expected to be
accomplished and when it is actually done, as well as some
jitter of these latency values, due to the performance of the
operating system scheduler. Moreover, not all tasks are equally
sensitive to high latency values or data loss, hence real-time
software can be classified in two types: soft real-time, when some
deadlines can be missed without performance degradation as
long as some threshold is not exceeded (for example, an online
music streaming service can lose some data packages and users
will not notice it), and hard real-time, when all deadlines must be
met or the system fails critically (computers controlling a nuclear
plant or a satellite, for example) (Shin and Ramanathan, 1994). In
this paper, the term real-time always refers to hard real-time.

Despite how differently a RTOS can be designed, the
functioning of all of them rely on two elements: their scheduling
algorithms, which are usually preemptive, meaning that they are
able to interrupt a running process without its permission; and
how they manage hardware interruptions (Abbott, 2006). Some
of them are implemented from scratch, while others are based in
existing GPOS’ kernels (Hambarde et al., 2014). Among the later,
dual-kernel (a real-time microkernel is used along the standard
one) and single-kernel solutions (the standard kernel is modified
to support real-time) are common (Yaghmour, 2003; Dietrich
and Walker, 2005).

There exist several commercial RTOS implementations,
mainly designed for embedded systems, such as QNX Neutrino,
VxWorks and Windows Compact Embedded, among others.
Other proprietary real-time software solutions are MATLAB’s
toolbox xPC and National Instruments’ LabVIEW Real-Time,
which can achieve hard real-time precision if external hardware
is used for the computation but otherwise are soft real-time, and
Simulink Desktop Real-Time, which provides a hard real-time
kernel (up to 1kHz sample rate) for executing Simulink models
running Windows or Mac OS X. The main drawback of these
tools is their high economic cost, which may be unaffordable
for many research groups and laboratories. There are also open-
source and free solutions to obtain an RTOS from Linux, an
open-source GPOS, which avoid the stated inconveniences of
commercial options and provide similar usability, or even better,
in terms of performance (Aroca and Caurin, 2009; Hambarde
etal,, 2014). In this paper, three of these patches were studied, and
their performance and characteristics were compared in relation
to the task of building hybrid circuits with living and model
neurons: RTAI Xenomai and Preempt-RT.

RTAI (Real-Time Application Interface) (Mantegazza et al.,
2000) was first developed in 1996, becoming one of the first and
most widely used open-source real-time environments. It is based
in a dual-kernel approach, using a real-time microkernel with
a preemptive scheduler, which controls the interrupt requests
(IRQ) and treats the standard Linux kernel as a low priority
task. Another dual-kernel solution is Xenomai (Gerum, 2004),
a project which was part of the RTAI project until 2005, when
it become a fully independent tool. Other RTOS follow a single
kernel approach, meaning that no auxiliary microkernel is used

and that the standard one is modified instead to work in real-
time. All changes made to Linux standard kernel for this purpose
throughout the past decade are included in Preempt-RT (Dietrich
and Walker, 2005).

2.2. Experimental Setup

2.2.1. Benchmarking Tests

Performance on the three RTOS described in the previous
section, RTAI, Xenomai and Preempt-RT, was measured and
compared among them and also to a GPOS with no real-time
capabilities. Specifications of the computers used for these tests
can be found in Table 1. Most modern computers currently
have multicore processors, i.e., one component with several
independent processing units. Linux also allows to isolate specific
cores, so the scheduler will not assign them any task, and to
manually bound a specific task to this empty core. We have also
analyzed how this core isolation affected the performance in both
real-time and non real-time implementations.

The benchmarking procedure consisted in a latency test,
measuring the time difference between when an action was
expected and when it really happened (see Figurel). The
benchmarking program! consisted in a periodic loop with a
frequency of 20 kHz that sent a digital 0 or 1 to a digital
acquisition (DAQ) device alternately on each iteration, thus
producing a 100 ps square-wave signal. After sending the
corresponding value the program slept until the next interval
arrived: the time interval between the real and the expected
awaking time was the measured latency. An Agilent MSO7104A
oscilloscope was used as an external temporal reference and
stress®, a workload generator software, was utilized to create
a worst case scenario, with all processor cores and the file
Input/Output system running at full capacity. To send the signal
to the oscilloscope a National Instruments PCI-6251 board and a
BNC-2090A DAQ device were used.

2.2.2. RTHybrid Validation Tests

In order to validate the proper functioning of RTHybrid, it
has been tested in a real experimental environment. Hybrid
circuits were built by bidirectionally connecting a neuron model
simulated by the software and a living neuron, using chemical
graded model synapses. For these tests, a computer with a 4-
core Intel Core i7-6700 3.40 GHz processor and 16 GB RAM
memory, as well as a National Instruments PCI-6251 board
with a NI BNC-2090A DAQ device, were used. Measures of
the time taken by each task in the interaction cycle were
also conducted to evaluate their contribution to minimum
and maximum computational cost for each of the real-time
platforms analyzed.

The membrane potential of the biological component of
the experiment was recorded using in vitro electrophysiology
in neurons of the pyloric central pattern generator (CPG)
of adult Carcinus maenas, bought in a local fish store and
kept in artificial sea water. Before the dissection, the crab was
anesthetized by introducing it in the freezer for 20/30 min.

ISource code of the latency test: www.github.com/RoyVII/Latency_tests.git
Zstress software website: www.people.seas.harvard.edu/~apw/stress/
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TABLE 1 | Software and hardware specifications of the computers used on the benchmarking tests for each operating system and RTOS used in this study.

Operating system Kernel version RAM Processor Cores
Non real-time Debian 9 4.9.0-4 16 GB Intel Core i7-4790 3.6 GHz 4
Preempt-RT Debian 9 4.9.0-4 16 GB Intel Core i7-4790 3.6 GHz 4
Xenomai 3.0.5 Ubuntu 16.04 4.9.90 16 GB Intel Core i7-4790 3.6 GHz 4
RTAI 3.4 Ubuntu 10.04 2.6.34.5 4GB Intel Core i7-2600 3.4 GHz 4

Note that the computer used for non-real-time, Preempt-RT and Xenomai 3 tests was the same (we will call it Computer 1 hereafter) and the one for RTAl was different (Computer 2).

T1 T2 T3

Process closed-
loop interaction

Wait until next interval

} } [l } >
r g

real-time does not tolerate any failure.

0 100 200 300 400 500

FIGURE 1 | Representation of a typical real-time process, consisting on a succession of fixed and equal duration time intervals that are repeated on each iteration of a
periodic loop. For any of these intervals, T1 is the time when it should start, but, due to the system capacity or to its resource management algorithms, the beginning
can be delayed until T2. The difference between the real start time (T2) and the expected one (T1) is known as latency. After T2, the process computes its iterative
task, which finishes at T3. If T3 happens before the next interval start time, the process waits until that moment. On the other hand, if T3 occurs later than the
expected start time of the next interval, as a result of a high latency value, a long computational time or both, it would cause a failure on the real-time system.
Real-time tasks can be classified according to their tolerance of such events: soft real-time means that some deadlines can be missed under a certain limit, while hard

T T T T
600 700 800 900 Hs

The stomatogastric ganglion, dissected following the standard
procedure, was attached to a Petri with Sylgard cold saline
dissolution (13-15°C kept by a microcontroller and always
perfused) using pins. The saline had the following composition
(in mM): 433 NaCl, 12 KCI, 12 CaCl, - 2 H,0, 20 MgCL, - 6
H,0, 10 HEPES, adjusted to pH 7.60 with 4M NaOH. Neurons
were identified after desheathing the ganglion by their membrane
potential waveforms and their corresponding spike times in
nerves. Intracellular recordings were performed using 3 M KCl
filled microelectrodes (50 M) and a DC amplifier (ELC-03M,
NPI Electronic, Hauptstrasse, Tamm, Germany). For details on
the preparation see (Elices et al., 2018).

3. RESULTS

3.1. Real-Time Benchmarking and

Comparison

3.1.1. Computers Internal Clock Validation

Tests were conducted to certify that the internal clocks of
the systems specified in Table1 were capable of working
with the required microsecond precision. These consisted in
three 10 second tests on each platform, generating a square-
wave signal of period 100us, which was recorded with an
external oscilloscope. When compared to the signal period
measured by the computers, the oscilloscope registered a £10ps
inaccuracy in the precision of the computers’ clocks (see Table 2).
This is an acceptable margin for our purposes with sampling
rates for the hybrid circuit electrophysiology ranging from
10 to 20 kHz.

3.1.2. RTOS Usability Comparison

RTAI Xenomai and Preempt-RT were studied and compared
in terms of installation requirements, usability and user-
friendliness. This analysis is summarized in Table 3.

3.1.2.1. RTAI

Installation requires to patch a vanilla Linux kernel with the
RTAI patch and then compile it, which is a long and tricky
operation, even for experimented users. The last version of the
official installation guide dates from 2008 (Monteiro, 2008).
Utilization of the real-time functions provided by the platform is
done through its own API, which is very powerful and complete,
but documentation and examples are scarce. The safest way to
achieve real-time is implementing the programs as kernel space
modules, which carries many impediments. User space real-
time can be reached using the LXRT library, although its use
is discouraged for non-senior RTAI programmers (Racciu and
Mantegazza, 2006). Currently, this tool is still maintained, but
not regularly: version 4 last maintenance was in 2013 and in
May 2017 version 5 was released, followed by the 5.1 patch in
February 2018.

3.1.2.2. Xenomai

Patching and compiling a Linux vanilla kernel is the only way
of installing Xenomai and its developers provide an up-to-
date guide. Since Xenomai’s main purpose is to offer an open-
source alternative to proprietary RTOS, it includes different
APIs, intended to emulate other environments and libraries,
such as VxWorks, pSOS+ and even POSIX. All of them, as
well as their own API, are accessible from user space. Complete
and updated documentation is available for all APIs. Although
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TABLE 2 | Results of the internal clock precision tests for the computers described in Table 1, in microseconds.

Computer 1 Computer 2
ns Min Max Mean =+ Std Max Mean =+ Std
Measured by computer 99.5 100.5 100.0 + 0.1 100.1 100+ 0
Measured by oscilloscope 90.0 110.0 100+ 3 110.0 100 £ 3

A 100us signal, generated by the computers, was recorded with each computer and an external oscilloscope. Minimum, maximum, mean and standard deviation values of the
recorded signal period are displayed at the table. When compared to the signal period measured by the computers, the oscilloscope registered a £10us inaccuracy in the precision of

the computers clocks.

TABLE 3 | Usability and accessibility characteristics for each real-time solution explored in this study.

RTAI

Xenomai

Preempt-RT

Installation Kernel patching

Kernel patching

- Kernel patching
- Pengutronix Debian repositories

Programming API for C language

Various APIs emulators,
including POSIX

Standard POSIX code
(works also without real-time)

Documentation Scarce and old

- Up-to-date
- Few examples but
active mailing-list

Plenty: standard POSIX
documentation

Support and maintenance Discontinued

Currently active

Currently active

(Linux Foundation project)

the user community is not very large and there are not many
examples to be found, there is a mailing-list where questions can
be asked. The project is currently active (Xenomai 3 was released
in October 2015) and it is maintained and updated frequently. An
Ubuntu 16.04 distribution already patched with Xenomai 3.0.5
can be downloaded from our website>.

3.1.2.3. Preempt-RT

Similarly to the dual-kernel implementations, the typical way to
install Preempt-RT is by patching and compiling a vanilla kernel,
following the instructions that can be found at the official website,
these being significantly simpler than the ones for RTAI and
Xenomai. An alternative possibility for Debian distributions is to
install it from its repositories as any other package. Despite the
real-time patch, the system is still a normal Linux, so the standard
POSIX library can be used and all its documentation is valid.
In 2015 the project was transferred to The Linux Foundation,
becoming the “official” Linux real-time solution.

3.1.3. RTOS Benchmark Analysis
RTAI Xenomai and Preempt-RT were tested using the method
described in 2.2.1. Each trial consisted in a 5 min run of the
test program under stress, with a frequency of 20kHz, and was
repeated twice on every platform. We measured the maximum,
minimum and mean latency values, as well as the jitter, and the
results can be seen in Figure 2. Distribution of latency values
during these tests is shown in Figure 3.

RTAI obtained the best performance scores, getting 3.65is as
maximum latency, even running on an older machine. Xenomai

3Ubuntu 16.04 with Xenomai 3.0.5 Live CD/USB: http://arantxa.ii.uam.es/~gnb/
rtubuntu- 16.04.4- 1.0- desktop-amd64.iso

was not far from this performance, with a maximum latency
of 5.66us. Preempt-RT had slightly worse results, reaching
a maximum latency of 15.94us, but still acceptable for our
purposes. The system without real-time is not reliable when
millisecond precision or below is required, as it goes over the
millisecond barrier in these tests (indicated in red in Figure 3).
Nevertheless, as mentioned in section 2.2.1, Linux operating
systems allow to isolate a processing core and bind a specific task
to it. In this scenario, the task running over the isolated core
will never be interrupted by any other users tasks, but system
processes can still use this core. When this is done in RTAI or
Xenomai it has little impact on their already good latency values,
but we observe a remarkable improvement of latency values with
both non real-time and Preempt-RT operating systems. Without
an RTOS, it can be an useful tool in soft real-time environments.

Unfortunately, regarding the analyzed RTOS, the better their
performance is, the worse their usability and user-friendliness.
As summarized in Table 3, RTAI is quite difficult to install and
use, even for experimented users, while Preempt-RT is the most
accessible, since there are not many differences with a normal
GPOS. Due to this results, RTHybrid was developed to run over
both Xenomai and Preempt-RT to balance performance and
user-friendliness.

3.2. RTHybrid

3.2.1. Software Design and Implementation

RTHybrid is designed to be an user-friendly and accessible
real-time tool for any researcher, regardless of their budget or
computer science and programming knowledge. It is an open-
source project that can be downloaded for free from its Github
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Latency values for each OS

2990.19 2990.87

103

102

42.76 43.47

Time (us)

10!
5.50

10°

NRT NRT lIsol

RTAI

case by the OS with neither real-time capabilities nor an isolated core.

3.65

FIGURE 2 | Summarized results of the real-time benchmarking tests for each OS: No real-time (NRT), No real-time with an isolated core (NRT Isol), RTAI, Xenomai 3,
Preempt-RT, and Preempt-RT with an isolated core (Preempt-RT Isol). Time axis is represented in log-scale. Blue bar represents the jitter, calculated as the difference
between the maximum and minimum latency. Orange bar represents the maximum latency. Red bar is the mean latency, error bars indicate the standard deviation.
Numbers on top of each bar correspond to the largest jitter and latency, respectively. For 20 kHz trials the real-time constrain is 50us, which is only exceeded in this

Bl jitter (max - min)
Max latency
B Mean latency

15.04 15.94

Xenomai 3 Preempt-RT Preempt-RT Isol

repository?. Any Linux distribution is supported, including those
running Xenomai 3 and Preempt-RT real-time patches. The code
is written using C/C++ language and compiled with GCC 6.3 and
QMake 3.0. Relevant information regarding the hybrid circuit
experiment, such as neuron (both living and model) and synapse
types employed, parameters and latency values is registered in log
files. Detailed instructions on how to download, configure and
install both RTHybrid and all its dependencies are provided in its
user manual >

Three processing threads have been used to build the
program’s architecture in order to address an optimized real-
time software implementation (see Figure4). Two execution
modes are available: graphical user interface (GUI) mode or
script mode. In the former, an intuitive GUI (see Figure 5) is
displayed when the application is launched, where the user can
select the desired models and modify all their parameters as well
as set the experiment configuration (duration, DAQ channels,
sampling rate, etc). This GUI has been designed using the Qt
5.10 framework®. The second option allows to automatically
load all experimental parameters from an XML text file’ and
then sequentially execute various experimental protocols using
scripts. Instructions on how to use the program and examples of
XML configuration files can be found in RTHybrid user manual.
Whatever option is chosen, the first and main process is in charge

4Source code for RTHybrid: www.github.com/GNB-UAM/RTHybrid

SRTHybrid User Manual: www.github.com/GNB-UAM/RTHybrid/blob/master/
docs/RTHybrid_User_Manual.pdf

6Qt5 website: www.qt.io/

7libxml2 library website: http://xmlsoft.org/

of gathering the information from either source and starting two
new threads with it.

The second thread performs all tasks that need to be
completed with real-time precision in a periodic loop. Within
each interval of this loop, key operations are fulfilled: interaction
with the DAQ device, synapse and neuron models computation,
automatic calibration, drift adaptation, etc. (see Figure 6).
Communication with DAQ devices is achieved through Comedi
open-source drivers for National Instruments’ and several other
manufacturers’ hardware (or Analogy drivers in the case of
Xenomai) (Schleef et al., 2012). Automatic calibration and
experiment automation algorithms are included to deal with
the differences between models and living neurons in terms of
temporal scale and amplitude (Reyes-Sanchez et al.,, 2018). They
also cover other possible experimental complications such as the
presence of signal drift.

Some tasks are computationally too expensive to be carried
out within the temporal restrictions established in a real-time
interval, including essential ones as writing data to a file or
printing it on screen. A third thread is used to write experiment
data to files without disturbing the real-time performance. An
inter-process message queue is utilized to send information from
one thread to the other. Since it is not a real-time process, it will
wait until there are enough computer resources available, and
only then reads from the queue and stores the data into the files.

3.2.2. Model Library

RTHybrid includes a customizable library of neuron and synapse
models to build a wide variety of hybrid circuits. Table 4
shows the currently included neuron models, which have been
selected due to their rich intrinsic dynamics and suitability to
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exceeded the 50us limit established for 20 kHz trials, which is the case for the “No real-time” scenario. Vertical axes are in log-scale. This analysis was performed on
the same data than Figure 2.

build hybrid circuits. All of them have different characteristics
and require also specific adaptations to work in real-time,
which are handled automatically by auto-calibration algorithms
(Reyes-Sanchez et al, 2018). Several numerical integration
methods can be chosen by the user, including Euler, Heun,
Order 4 Runge-Kutta (Press et al, 1988) and (6)5 Runge-
Kutta (Hull et al., 1972). Table5 lists the types of synapse
models included in the library at the moment and the different
input parameters that they require to work in a hybrid
circuit implementation.

Models described with differential equations require
minimum integration steps and specific adaptations to match
the duration of events such as spikes or bursts in a given
living neuron. This is the case of models such as Izhikevich
(2003), Hindmarsh and Rose (1984), Ghigliazza and Holmes
(2004), and Wang (1993). Other neuron models, such as
the Rulkov map (Rulkov, 2002), generate activity events
such as bursts using a little number of points. In this case,
interpolation of the values produced by the model is required
to match the living neuron’s event resolution at the chosen
sampling rate. Synapse models also present differences in their
implementation, both in the input parameters required and the

computational cost. A simple linear electrical synapse model
is included along with more complex non-graded and graded
chemical synapse paradigms (Destexhe et al., 1994; Golowasch
et al,, 1999). New models can be easily added to the library
using C language.

Figure 6 illustrates the average time consumed by each task at
each iteration of the loop executed by RTHybrid real-time thread.
This study was performed for several models of the RTHybrid
library. The models were run at a 10 kHz frequency for 5min
(300s), i.e., each model test contained 3 million intervals of
100 s duration. Neuron models were bidirectionally connected
through a graded chemical synapse model to a hardware-
implemented Hindmarsh-Rose model that generated bursting
activity at the same characteristic rate of a pyloric CPG cell (Pinto
et al,, 2000). Synaptic conductances were set to g = 0.02uS and
all other parameters from neuron and synapse models were fixed
to produce bursting behavior. Burst duration for the models was
set at 1s per burst. The computer used for these tests was the one
referred as Computer 1 in Table 1, with both Preempt-RT and
Xenomai 3 and the same DAQ device and board described in
section 2.2.2. Models selected for this analysis included one low-
cost differential equation implementation (Hindmarsh and Rose,
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thread to the queue and sleeps until the expected beginning of the next interval. Middle and bottom panels show the time consumed, on average, by each of the
previously described operations within a 100us interval when different neuron models are computed, on Preempt-RT and Xenomai 3, respectively.

TABLE 4 | Currently available neuron models in RTHybrid.

TABLE 5 | Currently available synapse models in RTHybrid.

Neuron model Computational cost Adaptation to RT method

Synapse model Input parameters

Rulkov@ Interpolation
Low
Izhikevich®
Select best integration ste
Hindmarsh-Rose® 9 P
Conductance-basedd-® Expensive

Tabulation (in some cases)

Different models have different computational costs and need to be adapted to real-time
performance using distinct methods. 2Rulkov (2002), Plzhikevich (2003), °Hindmarsh and
Rose (1984), 4Ghigliazza and Holmes (2004), ©Wang (1993).

1984), a fast map model (Rulkov, 2002) and two conductance-
based models with exponential non-linearities (Wang, 1993;
Ghigliazza and Holmes, 2004).

Variability of the time consumed by the operations performed
inside each interval (see Table 6) is constrained by the use
of RTOS, being Xenomai 3 more effective in this task than
Preempt-RT. Xenomai 3 achieved much lower latency values,
but the use of the Analogy framework, instead of Comedi,
translated into a higher cost when interacting with the DAQ
device. Some models have on average low computation times

Electrical V post and V pre
Chemical? Presynaptic spike time and V post
GradedP V post and V pre

Different kinds of model may require different input parameters to work in a hybrid circuit
configuration. V refers to membrane potential of a living or model neuron. @Destexhe et al.
(1994), bGolowasch et al. (1999) .

which may increase occasionally due to their nonlinearities or
to a non stable regime for the chosen integration method. This
is the case for the Hodgkin-Huxley type model from Wang
(1993), which on <10 occasions on every trial, out of the three
million iterations described previously for Figure 6, had an
abnormally high computation time. Other models can always
be computationally expensive because of different reasons such
as their high dimensionality or multi-compartmental nature.
One way to reduce their integration time and make them more
efficient and suitable for real-time environments is to tabulate
their nonlinearities with high resolution taking advantage or
the large memory capacity of modern computers. When the
operations within an interval exceed the temporal margin
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TABLE 6 | Duration analysis for each operation performed inside the real-time
cycle described in Figure 6 on every iteration.

Preempt-RT Xenomai 3

Mean =+ Std(us) Max (us) Mean + Std(us) Max (us)

Wake latency 1.3 £ 0.1 64.649 0.18 + 0.05 19.844
DAQ read/write 20.8 £ 0.3 55.807 445 + 0.3 49.973
Drift compensation  0.022 + 0.006 8.654 0.022 + 0.007 0.711
Synapse models 0.35 £ 0.04 12.486 0.4 £ 0.1 12.740
Send to queue 1.77 £ 0.09 37.449 1.88 &+ 0.08 5.599
NEURON MODELS

Hindmarsh-Rose 0.10 £ 0.01 5.810 0.099 + 0.005 0.832
Rulkov 0.08 + 0.01 9.319 0.021 £ 0.008 0.709
Ghigliazza-Holmes 0.49 + 0.04 4.937 0.51 + 0.05 6.159
Wang 24 +02 136.114 3+1 122.707

Mean and maximum times are shown in microseconds. The use of RTOS constrains the
variability of these times, with Xenomai 3 being more efficient at this than Preempt-RT.
Duration of each model computation differs greatly from the others due to their distinct
mathematical descriptions.

established, RTHybrid tries to minimize the negative impact on
the system by taking time from the next interval and reducing
the sleeping period, as can be seen in Figure 7. The presence of
latency values above the real-time threshold can be detected from
the log file.

3.2.3. Validation With Hybrid Circuits

Proper performance of RTHybrid neuron and synapse models
was tested building hybrid circuits as detailed in section 2.2.2.
Living neurons from the pyloric CPG were bidirectionally
connected through chemical graded synapse models with neuron
models. Four trials per model were conducted, each of them 5
min long, with one a minute long control period before and after
the hybrid circuit interaction. The first two trials were performed
with a sampling frequency of 10 kHz, thus cycle interval duration
was 100us. The remaining two trials were run at 20 kHz, and
the interval was 50us long. Any latency value exceeding that
limit was considered a real-time failure. All four trials per model
were repeated both in Preempt-RT and Xenomai 3, without
core isolation.

Connections in these hybrid circuits mimicked graded
chemical synapses with fast and slow dynamics (Golowasch et al.,
1999). The connection from the model to the living neuron
was built with a slow synapse. A fast graded synapse was used
for the connection from the living neuron to the model. Our
target was to achieve rhythmic antiphase behavior between the
neurons so we set inhibitory synapses in both directions. The
slow synapse had a conductance of ¢ = 0.2uS, Vi, = 15% and
s = 1% of the maximum amplitude range and kinetic parameters
ki1 = 14.0 and k; = 4.0, except when using Hindmarsh-Rose
model that the conductance was ¢ = 0.1uS. The fast synapse had
Vi, = 50% and s = 5% of the maximum amplitude range and
different conductances depending on the neuron model at use:
for Izhikevich and Ghigliazza-Holmes models the conductance
was ¢ = 0.8uS, for Hindmarsh-Rose model it was ¢ = 1.0uS
and for Rulkov was g 0.214S. Input voltage scaling factor
was set to 100 and output current/voltage conversion factor to

10nA/V. Neuron model parameters were set to produce bursting
behavior and the duration of each burst was set to automatically
match the living neuron activity. Signal amplitude and temporal
scaling was automatically performed by RTHybrid calibration
algorithms (Reyes-Sanchez et al., 2018). Validation tests are
shown in Figures 8, 9.

Figure 8 shows the results of the validation tests for the Rulkov
and Izhikevich models, and Figure 9 displays the results with
the Hindmarsh-Rose and Ghigliazza-Holmes models. For each
model, sorted by increasing complexity, there are four panels
displaying different information about the hybrid interaction.
The worst performance trials for each model, understood as
those with higher latency values, were selected for the analysis.
Recorded membrane potential when both living and model
neurons are uncoupled is displayed in (Figures 8A, 9A). Voltage
is scaled to the living neuron range, showing the independent
behavior of each neuron’s bursting activity when there is no
interaction. Membrane potential during the hybrid interaction
along with the synaptic current injected in both directions is
shown in (Figures 8B, 9B), portraying the robust antiphase
rhythm achieved due to the bidirectional inhibitory graded
chemical connectivity. (Figures 8C, 9C) represents Preempt-RT
test latency values, showing that in all cases the 100us limit
established for 10 kHz trials, represented by the right-most red
vertical line, was fulfilled. However, this RTOS was not able to
keep 20 kHz constrains, indicated by the left-most red vertical
line, during these experiments. This was not the case for Xenomai
3, portrayed at (Figures 8D, 9D), whose latency values were far
under the 50us barrier set during 20 kHz trials. Due to this
outcome, the results displayed correspond to Preempt-RT 10 kHz
and Xenomai 20 kHz trials.

4. DISCUSSION

Characterization and control of neural systems dynamics, as
well as experimental protocol automation can largely benefit
from the use of closed-loop techniques, and specifically from
hybrid circuits built by connecting model neurons and synapses
to living cells. RTHybrid provides a neuron and synapse model
library aimed to build hybrid circuits in an easy and user-
friendly manner with large flexibility provided by a real-time
software approach that takes advantage of the computational
and memory capacity of modern computers. Developed for
Linux, this program is open-source and can be downloaded
for free from www.github.com/GNB-UAM/RTHybrid, where
installation guide, user manuals and examples can also be found.
RTHybrid has a simple GUI to design and configure the hybrid
experiments. This tool also incorporates a command-line mode
where configuration XML files can be loaded, a useful feature
for experiment automation and scripting for activity-dependent
exploration of neural dynamics. Beyond a standard Comedi
compatible DAQ board, no additional hardware requirements
are needed. Thus, standard computers used for data acquisition
in any lab can run this software, for example in a dual-boot
configuration with another hard-drive with a GPOS setup, e.g.,
Windows, to keep existing protocol configurations.
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RTHybrid handles this kind of situation by taking time from iteration N + 1 to finish the pending operations from iteration N, and reducing or skipping the waiting time,
s0 on iteration N 4 2 the proper behavior of the system is restored.
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Temporal precision requirements for closed-loop interactions  their balance between performance and accessibility. RTHybrid

in RTHybrid are fulfilled by using hard real-time software
technology. An extensive analysis of available RTOS was
conducted to select the most suitable platforms to implement
RTHybrid. The software has been developed to run over
Preempt-RT and Xenomai 3 frameworks for Linux due to

model library includes a wide variety of neuron models:
from computationally-unexpensive paradigms, such as Rulkov
(2002), Izhikevich (2003), and Hindmarsh and Rose (1984), to
realistic conductance-based Hodgkin-Huxley type (Wang, 1993;
Ghigliazza and Holmes, 2004). The library also contains several
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synapse models: from simple gap junctions implementations to
configurable chemical synapses (Destexhe et al., 1994; Golowasch
et al., 1999). All of them are adapted to work under hard real-
time restrictions and additional neuron, network and synapse
models can be easily added using C language. Moreover,
calibration algorithms are integrated in the library to automate
the adaptation of model amplitude and time scales to the living
neuron behavioral range (Reyes-Sanchez et al, 2018). Core
isolation can also be employed as validated in the tests reported
in this paper.

Models currently included in the RTHybrid library are
suitable for a wide variety of hybrid circuit experiments
implemented using dynamic clamp. Beyond electrophysiological
protocols, RTHybrid can also be easily generalized to drive
open- and closed-loop interactions in optogenetic and drug
microinjection paradigms. Future development in parallelization
and GPU computing will be considered to implement large scale
network or highly-realistic biophysical models.

Many researchers and laboratories overlook closed-
loop techniques despite their advantages due to the
difficulties in the installation and use of the required
technology. With RTHybrid, we aim to encourage the use

of open-source, standardized and user-friendly real-time
software tools, available in different platforms, to facilitate
the implementation of closed-loop experimentation in
neuroscience research.
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