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Imaging genetic analyses use heritability calculations to measure the fraction
of phenotypic variance attributable to additive genetic factors. We tested the
agreement between heritability estimates provided by four methods that are used
for heritability estimates in neuroimaging traits. SOLAR-Eclipse and OpenMx use
iterative maximum likelihood estimation (MLE) methods. Accelerated Permutation
inference for ACE (APACE) and fast permutation heritability inference (FPHI), employ
fast, non-iterative approximation-based methods. We performed this evaluation
in a simulated twin-sibling pedigree and phenotypes and in diffusion tensor
imaging (DTI) data from three twin-sibling cohorts, the human connectome project
(HCP), netherlands twin register (NTR) and BrainSCALE projects provided as a
part of the enhancing neuro imaging genetics analysis (ENIGMA) consortium.
We observed that heritability estimate may differ depending on the underlying
method and dataset. The heritability estimates from the two MLE approaches
provided excellent agreement in both simulated and imaging data. The heritability
estimates for two approximation approaches showed reduced heritability estimates
in datasets with deviations from data normality. We propose a data homogenization
approach (implemented in solar-eclipse; www.solar-eclipse-genetics.org) to improve the
convergence of heritability estimates across different methods. The homogenization
steps include consistent regression of any nuisance covariates and enforcing normality
on the trait data using inverse Gaussian transformation. Under these conditions,
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the heritability estimates for simulated and DTI phenotypes produced converging
heritability estimates regardless of the method. Thus, using these simple suggestions
may help new heritability studies to provide outcomes that are comparable regardless of
software package.

Keywords: DTI, heritability, imaging genetics, reproducability, genetics, population, computational methods

INTRODUCTION

Reproducibility is the cornerstone of scientific research.
Recent reports on low reproducibility in biomedical research
are raising concerns that have to be addressed within the
scientific community (Ioannidis, 2014). The emerging field
of imaging genetics is not immune to these challenges1.
Imaging genetics applies modern statistical genetics methods
to quantitative phenotypes extracted from high dimensional
neuroimaging modalities and has to address replication
challenges in both imaging and genetic domains (Thompson
et al., 2010). Challenges in replication include low statistical
power, complexity of analysis, large number of dependent
variables, statistical complexity, and differences in the analysis
approaches and software (Meyer-Lindenberg et al., 2008; Collins
and Tabak, 2014). All these challenges apply to imaging genetics
studies. Imaging genetic studies look for factors that typically
explain a small proportion of variance (<1%) and may require
a large sample sizes (N = 1,000–100,000) to be statistically
powerful (Thompson et al., 2014). Imaging genetic studies
employ complex analyses involving both imaging and genetic
specialized analysis software (Meyer-Lindenberg et al., 2008).
We tested the agreement between heritability estimates provided
by four methods that are used for heritability estimates in
neuroimaging traits. We demonstrated that the heritability
estimates may vary by method and sample and propose a way to
homogenize the outcomes.

The incomplete description of methods and low statistical
power are the two chief factors that are likely contributing to
the lack of reproducibility in imaging genetics studies (Collins
and Tabak, 2014). Imaging genetic studies combine methods
from both imaging and genetic disciplines. These studies require
software for extraction of imaging phenotypes and software
for genetic analyses of imaging traits, each having individual
operating characteristics. For example, the outputs of imaging
and genetic software may differ between versions of the same
analysis software and even with the same version of software on
different operating systems (Gronenschild et al., 2012). Imaging
genetic analyses may also suffer from low power because the
contribution from common variations in genome to phenotypic
variability is typically small (∼0.1%), thus requiring large samples
to achieve significance and obtain reproducible results (Flint and
Munafò, 2013). This further underscores the need for a careful
study of the potential biases among different software analysis
tools. These methodological biases may lead to challenges to
replicate imaging genetic findings if in-kind imaging or genetic
software is used during replication.

1http://www.biorxiv.org/content/early/2017/02/20/107987

To address method-related biases, large consortia such as
enhancing neuro imaging genetic meta analyses (ENIGMA)
have developed standardized multi-site phenotype extraction
and genetic analyses pipelines. In this manuscript, we consider
the impact of analysis method for the estimation of heritability.
We compared four approaches: two commonly used genetic
analysis packages (SOLAR-Eclipse and OpenMx), and two
recently developed accelerated heritability estimation methods
[accelerated permutation inference for ACE (APACE), and
fast permutation heritability inference (FPHI)]. These packages
use the same variance component model and definition of
heritability, but use different numerical methods and data
preprocessing steps to calculate the proportion of variance
attributed to additive genetic factors. We performed this study to
(A) analyze if heritability estimates derived by the four packages’
analyses are comparable to one another and; (B) develop a
homogenization approach that minimizes the variability in
heritability estimates across the four packages.

We performed these analyses using two datasets: a
simulated—with known additive genetic contribution and
an experimental—consisting of fractional anisotropy (FA)
measurements collected in twins and siblings by three
independent studies. FA is the most commonly analyzed
scalar parameter extracted from diffusion tensor imaging (DTI;
Basser et al., 1994; Basser and Pierpaoli, 1996) and is a sensitive
index of fiber coherence, myelination levels, and axonal integrity
(Thomason and Thompson, 2011). FA values are under a strong
genetic control (Geng et al., 2012; Jahanshad et al., 2013; Shen
et al., 2014). Individual differences in FA values are predictive
of cognitive performance (Kochunov et al., 2016, 2017) and
it is a promising phenotype for multiple neuropsychological
disorder including schizophrenia (Friedman et al., 2008; Perez-
Iglesias et al., 2010; Alba-Ferrara and de Erausquin, 2013;
Kochunov et al., 2013; Mandl et al., 2013; Nazeri et al., 2013).
All experimental data were processed using the harmonization
protocol previously developed by ENIGMA and provided on-line
at http://enigma.ini.usc.edu/ongoing/dti-working-group/). This
included the use of the ENIGMA protocol for following the
QA/QC steps for each site, registration to the ENIGMA-DTI
target, extraction of white matter skeleton, followed by extraction
of tract-average FA values.

MATERIALS AND METHODS

Heritability Estimation Methods
We evaluated the agreement in quantification of the Additive
genetic and Environmental, AE, components of the phenotypic
variance in simulated and imaging genetic datasets among
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four heritability calculation methods. SOLAR-Eclipse2 and
OpenMx3 use the iterative maximum likelihood estimation
(MLE) approach to fit quantitative genetics variance components
models. The iterative MLE approach is used to determine
the parameters that maximize the compatibility between the
fitted model and the data. It is a versatile computational
approach that produces estimates that are optimally precise
asymptotically (Almasy and Blangero, 1998; Blangero et al.,
2001). SOLAR-Eclipse is an extensive and flexible imaging
genetics analysis software package. SOLAR-Eclipse functions
include calculation of heritability, genetic correlation, linkage
and genome-wide association analysis (Almasy and Blangero,
1998; Blangero et al., 2001). SOLAR-Eclipse polygenic function
uses MLE to perform genetic analyses in the pedigrees of
arbitrary size and complexity, including twin-siblings and
complex multigenerational family designs. SOLAR-Eclipse is
frequently used in imaging genetic studies especially in the
multi-site analyses that aggregate measurements across multiple
datasets using meta and mega-analyses (Jahanshad et al., 2013;
Kochunov et al., 2014, 2015). OpenMx is an extensive and
flexible structural equation modeling and path analysis library
for [R] software (Boker et al., 2011). OpenMX is frequently
used by imaging genetic studies to calculate heritability
and genetic correlation in twin-siblings pedigrees (Jahanshad
et al., 2010; Bootsman et al., 2016). Like SOLAR-Eclipse,
OpenMx uses an iterative MLE method for calculation of
heritability parameters.

APACE model and FPHI use statistical approximations to
estimate heritability values. APACE uses a regression approach
based on the squared differences of twin pairs, a variant of
a U-statistic (Chen et al., 2013; Chen, 2014), while FPHI
starts with the same likelihood as used in SOLAR-Eclipse but
uses a single-step, rather than iterative, optimization (Ganjgahi
et al., 2015). This overcomes the main limitation of the
MLE-based software: long computational times. The iterative
MLE heritability calculations in SOLAR-Eclipse and OpenMx
can take ∼1 s per trait in a pedigree of 1,000 subjects.
Therefore,MLE-based heritability analyses require access to large
computational clusters to perform imaging genetic analyses that
involve 104–106 voxel-wise traits. The non-iterative estimates
from APACE and FPHI offer appreciable (∼103) gains in
computational efficiency. This allows performing voxel-wise
heritability analyses on a single workstation. While APACE is
only intended for twin or twin-plus-sibling designs, FPHI can use
any kinship structure, like SOLAR-Eclipse.

The four software packages were used to compare additive
genetic contribution (heritability) in simulated and experimental
data using twin family study designs. For experimental data
we used DTI acquisitions from three different studies. The
human connectome project (HCP; Van Essen et al., 2012), is
a large-scale international collaboration aimed at elucidating
the genetic and environmental sources of normal variability
within the structural and functional connections of the human
brain. The other two twin and sibling datasets were drawn

2www.solar-eclipse-genetics.org
3openmx.ssri.psu.edu

from the ENIGMA project, specifically from the ENIGMA-DTI
workgroup whose focus is the analysis of DTI data. The first
of these is the netherlands twin register (NTR) that collected
DTI data in normally developing adolescent twins and siblings.
And the other ENIGMA-DTI source is the Brain Structure and
Cognition: an Adolescent Longitudinal Twin Study into Genetic
Etiology (BrainSCALE). The BrainSCALE dataset collected DTI
data in young adult twins and siblings. Subjects for NTR and
BrainSCALE datasets were recruited from the same twin register
in Netherlands.

We compare heritability estimates for tract-wise average FA
values using ENIGMA-DTI, HCP, and simulated data. FA is a
widely used quantitative measure of white matter microstructure
(Basser et al., 1994; Basser and Pierpaoli, 1996) calculated
from the diffusion tensor model of water diffusion (Thomason
and Thompson, 2011). Studies suggest FA is an important
biomarker in clinical studies, since it is a sensitive index of
white matter integrity in Alzheimer’s disease (Clerx et al., 2012;
Teipel et al., 2012), general cognitive function (Penke et al.,
2010a,b), and several neurological and psychiatric disorders
(Sprooten et al., 2011; Barysheva et al., 2012; Carballedo et al.,
2012; Kochunov et al., 2013; Mandl et al., 2013). Overall,
our goal was to determine if additive genetic contribution
(heritability) is comparable between software packages regardless
of the variation in the twin-sibling cohort data. Our hypothesis
was that estimates of heritability would be consistent amongst
the cohorts, irrespective of the variability in cohort data and
software package.

Simulated Data
A simulated N = 1,000 person twin-sibling pedigree with
250 monozygotic (MZ) twins, 250 dizygotic (DZ) twins,
and 500 founders (not included in the phenotype file) was
created using SOLAR-Eclipse simulate function. SOLAR-Eclipse
simulation functionality was also used to produce a data set of
10,000 traits with heritability estimates varied uniformly between
0 and 100%. All simulated traits had normal distribution and did
not include effects of covariates.

Experimental Data
Human Connectome Project (HCP)
• Subjects: the cohort contained 481 (194/287 M/F; average age
29.1± 3.5) healthy participants of theHCP for whom the scans
and data were released in June 2014 (humanconnectome.org)
after passing the HCP quality control and assurance
standards (Marcus et al., 2013). The participants in the
HCP study were recruited from the Missouri Family and
Twin Registry, a large population-based study (Van Essen
et al., 2012). This release included 117 twin pairs (57 MZ
and 60 DZ pairs), and 246 of their siblings. The full set
of inclusion and exclusion criteria is detailed elsewhere
(Van Essen et al., 2012).
• Imaging: diffusion data was collected at Washington
University in St. Louis using a customized Siemens Magnetom
Connectome 3-Tesla scanner with a 100 mT/m maximum
gradient strength and a 32-channel head coil. Details on the
scanner, image acquisition and reconstruction are provided
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in Ugurbil et al. (2013)4. Diffusion data were collected
using a single-shot, single refocusing spin-echo, echo-planar
imaging sequence with 1.25 mm isotropic spatial resolution
(TE/TR = 89.5/5520 ms, FOV = 210 × 180 mm). Three
gradient tables of 90 diffusion-weighted directions and six
b = 0 images each, were collected with right-to-left and
left-to-right phase encoding polarities for each of the three
diffusion weightings (b = 1,000, 2,000, and 3,000 s/mm2).
The total imaging time for collection of diffusion data was
approximately 1 h.

Netherlands Twin Register (NTR)
• Subjects: the cohort consisted of 246 adults (93/153 M/F;
average age 33.9 ± 10.1, range 19–57), recruited from
the NTR and consisted of 72 MZ pairs, 48 DZ pairs,
and six siblings. Exclusion criteria consisted of having
any metal material in the head, having a pacemaker, a
history of any major medical conditions or psychiatric illness
(den Braber et al., 2008, 2011, 2012).
• Imaging: DTI data were collected on a 3-Tesla Philips
Intera MR scanner (32 diffusion-weighted volumes
with different non-collinear diffusion directions with b-
factor = 1,000 s/mm2 and one b-factor = 0 s/mm2 image,
flip angle = 90 degrees; 38 axial slices of 3.0 mm; no slice
gap; voxel size, 2.0 × 2.0 × 3.0 mm; FOV = 230 mm;
TE = 94 ms; TR = 4,863 ms; no cardiac gating; and total scan
duration = 185 s).

Brain Structure and Cognition: An Adolescent
Longitudinal Twin Study into Genetic Etiology
(BrainSCALE)
• Subjects: the sample comprised of 199 children (100M/99F;
average age 9.2 ± 0.1, range 9.0–9.6). It included 42 MZ
and 57 DZ twin pairs that were recruited from families
participating in the BrainSCALE cohort (van Soelen et al.,
2012) that were recruited from the NTR (van Beijsterveldt
et al., 2013). Exclusion criteria consisted of having any
metal material in the head, having a pacemaker, a known
history of any major medical condition or psychiatric illness.
Zygosity was determined based on DNA polymorphisms,
using 8–11 highly polymorphic di-, tri- and tetranucleotide
genetic markers and confirmed by genome-wide single
nucleotide polymorphism data.
• Imaging: DTI data were collected on a 1.5 Philips
Achieva MR scanner (32 diffusion-weighted volumes
with different non-collinear diffusion directions with b-
factor = 1,000 s/mm2 and eight diffusion-unweighted volumes
with b-factor = 0 s/mm2; parallel imaging SENSE factor = 2.5;
flip angle = 90 degrees; 60 slices of 2.5 mm; no slice gap;
96 × 96 acquisition matrix; reconstruction matrix 128 × 128;
FOV = 240 mm; TE = 88 ms; TR = 9,822 ms; two repetitions;
no cardiac gating; and total scan duration = 296 s). More
information may be found in Brouwer et al. (2010, 2012).

4https://www.humanconnectome.org/documentation/S500/HCP_S500_
Release_Reference_Manual.pdf

ENIGMA-DTI Processing
We used ENIGMA-DTI protocol to extract whole-brain and
tract-wise average FA values for experimental datasets. These
protocols are detailed elsewhere (Jahanshad et al., 2013) and
are available online at http://enigma.ini.usc.edu/protocols/dti-
protocols/. In brief, FA images from all subjects were
non-linearly registered to the ENIGMA-DTI target FA image
using FSL’s FNIRT (Smith et al., 2006). This target was created
as a minimal deformation target based on images from the
participating studies as previously described (Kochunov et al.,
2002; Jahanshad et al., 2013). The data were then processed using
FSL’s tract-based spatial statistics (TBSS) analytic method (Smith
et al., 2006) modified to project individual FA values onto the
ENIGMA-DTI skeleton mask. After extracting the skeletonized
white matter and the projection of individual FA values,
ENIGMA tract-wise regions of interest (ROIs), derived from the
Johns Hopkins University (JHU) white matter parcellation atlas
available as a part of FSL, were transferred to extract the mean
FA across the full skeleton and average FA values for major white
matter tracts. The protocol, target brain, ENIGMA-DTI skeleton
mask, source code and executables are all publicly available5. This
protocol was shown to provide highly replicable measurements
based on test-rest analyses in human subjects (Acheson et al.,
2017; McGuire et al., 2017).

Inverse Normal Transformation
Multivariate quantitative trait models are sensitive to
outliers, skewness, kurtosis and other deviations from normal
distribution. Therefore, we consider the use of a rank-based
inverse normal transformation to ensure the normal distribution
in quantitative traits. For each phenotype, rank values are
replaced with the expected ranked values of a standard normal
distribution with the same number of observations. While it
cannot ensure multivariate normality, it does ensure that each
univariate distribution is normal and thus reduces the impact
of outliers; for more discussion on this transformation see
(Beasley et al., 2009). We implemented inverse normalization
in SOLAR-Eclipse as the ‘‘polyclass_normalize’’ functions. This
function produces inverse normalized residuals for the trait after
regression of all covariates. The output from this function was
used for the secondary analyses of the imaging data where we
first analyze the raw data and then compare our results after
the application of the inverse normal transformation to the
residual data.

Heritability Analysis
Heritability analyses were performed in the simulated and FA
traits. Heritability (h2) is the proportion of the total phenotypic
variance (σ2P) that can be explained by the genetic effects of
genes (σ2g),

h2 = s2g/s
2
P (1)

MLE Based Analysis
SOLAR-Eclipse and OpenMX employ MLE based variance
decomposition approach that is an extension of the strategy

5https://www.nitrc.org/projects/enigma_dti
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developed by Amos (1994). The multivariate normal covariance
matrix� for a pedigree of individuals is given by

� = 2 ·8 · s2g + I · s2e (2)

where8 is the kinship matrix representing the pair-wise kinship
coefficients among related individuals, σ2e is the variance due
to individual-specific environmental effects, and I is an identity
matrix (under the assumption that all environmental effects are
uncorrelated among family members). Narrow sense heritability
is defined as the fraction of phenotypic variance σ2P attributable
to additive genetic factors. In twin designs a third variance
parameter is can be identified and may be added to the model,
σ2c , for the common environment shared by twins and siblings
growing up in the same family. This three-parameter model
is known as the ACE model, while the two-parameter model
(Equation 2) is referred to as the AE model.

The variance parameters are estimated by comparing the
observed phenotypic covariance matrix with the covariance
matrix predicted by kinship (Almasy and Blangero, 1998).
Significance of heritability is tested by comparing the likelihood
of the model in which σ2g is constrained to zero with that of a
model in which σ2g is estimated. Twice the difference between the
loge likelihoods of these models yields a test statistic, which is
asymptotically distributed as a 1/2:1/2 mixture of a X2 variable
with 1 degree-of-freedom and a point mass at zero.

The Accelerated Permutation for the ACE Model
(APACE)
APACE6 uses an approximation technique developed originally
for animal genetics studies (Grimes and Harvey, 1980) and
is based on the result that squared differences of pair’s
of subjects’ data reflect their covariance. Thus, the squared
differences among the DZ, MZ and unrelated subjects can be
entered into a linear regression model to estimate the variance
parameters (Grimes and Harvey, 1980). The speed advantage
of APACE over MLE approaches allows a permutation analysis
to compute familywise error corrected P-values for voxel-wise
imaging measures.

Fast Permutation Heritability Inference (FPHI)
SOLAR-Eclipse’s iterative MLE approach is accelerated by the
use of a data transformation based on the eigenvectors of the
kinship matrix 8 (Blangero et al., 2013). This transformation
converts the dependent data from related subjects into data that
is independent but has heterogeneous-variance. SOLAR-Eclipse
uses this simplifiedmodel to obtain iterativeMLE estimates using
linear regressions. The FPHI approach uses the same likelihood
and data transformation, but then performs just a single step
estimation to produce an asymptotically unbiased estimate
(Ganjgahi et al., 2015). The FPNI technique is implemented
SOLAR-Eclipse as the CPU and graphics processing unit (GPU)
functions. The CPU version of FPHI provides a significant
(103) computational acceleration relative to the iterative MLE
estimation in SOLAR-Eclipse, while the graphics processing unit
(GPU) version further improves this performance (∼106) vs.
iterative MLE approach.

6http://warwick.ac.uk/tenichols/software/APACE

All analyses with imaging data were conducted with age, sex,
age2, age× sex, and age2 × sex included as covariates.

RESULTS

Heritability Analyses—Simulated
Figure 1 shows the scatter plots of four methods using a
simulated dataset of heritability values distributed between 0 and
1. The two ML-based methods (SOLAR-Eclipse and OpenMX)
showed an excellent agreement (r = 0.999, slope = 1.000,
intercept = 0.000) with the expected heritability values and
with each other (Figure 1). We quantified bias as estimated h2

minus true h2 and ‘‘average spread’’ as the absolute bias divided
by true value (i.e., |estimated − true|/true). In the simulated
dataset, the two ML-based methods show zero bias (absolute
value bias<10−6) and the average spread in heritability estimates
of 1.2%. The APACE and FPHI methods showed excellent
overall agreement with expected values (APACE: absolute value
of bias = 10−5, r = 0.997, slope = 0.997, intercept = 0.005;
FPHI: absolute value of bias = 10−6, r = 0.998, slope = 0.999,
intercept = 0.001). APACE showed significantly higher average
spread than the FPHI method: 3.7 vs. 2.2% (p = 10−10).

Heritability Analyses—Diffusion Data
The heritability analyses were performed in FA data for
49 tracts in HCP, NTR and BrainScale cohorts using age,
sex, age2, age × sex, and age2 × sex as covariates. The two
ML-based method showed excellent agreement in all three
datasets (Figure 2). The best agreement was observed in
BrainScale data (r = 0.99, slope = 0.99, intercept = 0.001). The
least agreement (∼5% average spread) between two ML-based
approaches was observed in HCP (r = 0.95, slope = 1.05,
intercept = 0.121). Intermediate results were observed in the
NTR dataset (r = 0.98, slope = 0.98, intercept = 0.055). Hence,
we averaged the heritability values produced by the two ML
methods to create a ‘‘ground truth’’ reference for the two
approximation methods.

The heritability estimates provided by the approximation
approaches were more variable among three cohorts (Figure 2).
The FPHI showed better accuracy in variance in slopes
(β = 0.97–1.04) and intercepts (α = 0.01–0.26) vs. APACE
(β = 0.61–0.73 and intercepts α=−0.07–0.34; Figure 2). Both
FPNI and APACE showed a modest negative bias. The highest
bias was seen for the HCP cohort (−0.08 and −0.04 for APACE
and FPNI, respectively). The bias in NTR and BrainSCALE
cohorts was small (−0.01 and −0.02). The spread for FPHI
was about half that for APACE (6% vs. 12% for FPHI and
APACE, respectively).

Heritability Analyses—Normalized
Diffusion Data
Next, heritability estimates were calculated on the residual
data after inverse normal transformation (Figure 3). Trait
normalization improved agreement among the ML-based
methods (r = 0.96–0.99, slope = 0.99–1.00, intercept = 0.00–0.02;
Figure 3).
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FIGURE 1 | The scatter plot of heritability estimates for 10,000 simulated traits are shown for two ML-based approaches (left). Heritability estimates by two
approximation approaches: accelerated permutation inference for ACE (APACE; center) and fast permutation heritability inference (FPHI; right) were plotted vs. the
average maximum likelihood estimation (MLE) based values.

FIGURE 2 | The scatter plot of heritability estimates for 49-regional fractional anisotropy (FA) values calculated by the enhancing neuro imaging genetics analysis
(ENIGMA)-diffusion tensor imaging (DTI) pipeline. Heritability estimates for two approximation approaches were plotted vs. the average estimate obtained for two
ML-based methods: SOLAR-Eclipse and OpenMX. The lines represent linear regression fit vs. ML-based estimates with slope (β), intercept (α) and Pearson
correlation values (r).
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FIGURE 3 | The scatter plot of heritability estimates for 49-regional FA values calculated by ENIGMA-DTI pipeline and then normalized using the trait normalization
function in SOLAR-Eclipse. Heritability estimates for two approximation approaches were plotted vs. the average estimate obtained for two ML-based methods:
SOLAR-Eclipse and OpenMX. The lines represent linear regression fit vs. ML-based estimates with slope (β), intercept (α) and Pearson correlation values (r).

Trait normalization brought improvements in the agreement
between the estimates by two approximation approaches and
the average ML-based estimation (Figure 3). APACE method
showed improvements in slope (β = 0.75–1.01), intercept
(α = −0.05–0.23) and correlation coefficients (r = 0.76–0.95), in
all three cohorts. For FPHI, the improvements were more subtle
and were mainly observed as decrease in bias and spread. The
bias for APACE increased for NTR cohort (from −0.01 to 0.08).
Both approximation methods showed a 50% improvement in the
percentage spread vs. the average ML-based estimate, yet, the %
spread for FPHI remained about half that for APACE (4% vs.
7.6% for FPHI and APACE, respectively).

Analysis of the Disagreement
We tested the normality of the distribution of the neuroimaging
traits using the Shapiro–Wilk method, focusing on the HCP
dataset because it had the largest number of subjects. We
observed that four traits: the anterior limb of internal capsule-left
(ALIC-L), uncinate fasciculus-right (UNC-R), external capsule-
right (EC-R) and superior corona radiate-left (CR-L), failed the

null hypothesis for normal distribution (W > 0.94, p < 0.05;
Figure 2). However, there was no significant correlation between
the deviation from normality or the heritability values for any
of the four methods (all r < 0.20, all p > 0.4). Furthermore,
some traits that visibly contributed to dispersion of heritability
values, for example the inferior fronto-occipital tract-left (IFO-L)
and superior corona-radiata-right (SCR-L; Figure 2), passed
the Shapiro–Wilk test (p > 0.10). The histograms for SLF-L
and SCR-L showed only modest kurtosis (kurtosis = −0.2 and
0.15 for SLF-L and SCR-L), but visibly varied from the normal
distribution (Figure 4). The histograms for IFO-L varied visibly
from a normal distribution despite having low kurtosis (0.13),
while EC-R had high kurtosis (7.7; Figure 4).

DISCUSSION

We conducted a careful evaluation of four quantitative genetic
approaches used by imaging genetic studies to measure
heritability—the proportion of variance attributable to the
additive genetic factors. Two of the methods (SOLAR-Eclipse
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FIGURE 4 | Histograms for the dataset that showed reduced heritability
estimates for fast vs. MLE based heritability estimation approaches. APACE
showed reduced heritability estimates in superior corona-radiata-right
(SCR-L) and SLF-L tracts in the human connectome project (HCP) cohort
due to deviations from normal distribution (top panel). FPHI showed reduced
heritability estimates in the external capsule-right (EC-R) and inferior
fronto-occipital tract-left (IFO-L) tracts in the HCP cohort due to the high
kurtosis and non-Gaussian shape of the histograms for EC-R and IFO-L,
respectively.

and OpenMX) used an iterative MLE approach. Two methods
(APCE and FPNI) were developed specifically to accelerate
(by 103–6) voxel-wise imaging genetics analyses using fast
approximation approaches. We performed the evaluation in a
simulated dataset and imaging data from three independent
datasets. In the simulated data, we observed an excellent
agreement between all heritability estimate approaches. The two
MLE approaches accurately replicated the expected heritability
values, with the unity slope and near zero intercept and
measurement bias. The two approximation techniques likewise
showed excellent agreement in the simulated data, with only
slight spread (2.2% and 3.7% for FPNI and APACE, respectively).
In neuroimaging data, the two MLE approaches produced
consistent estimates of heritability for all cohorts. We used
the average MLE as the reference measures for approximation
techniques because the true additive genetic contribution is
unknown (Parisi et al., 2014). In the neuroimaging data, the
approximation methods showed deviations from MLE values
that varied by the dataset and method. The approximation
methods showed the best consistency for NTR and the lowest
consistency in the HCP data. Post hoc analyses attempted to
identify the sources of the dispersion based on the underlying
distribution in imaging data. The heritability values were not
significantly correlated with Shapiro-Wilk’s W-value for any

method or dataset (all r < 0.2). However, the traits with
high dispersion in heritability estimates did show deviations
from normality in the underlying dataset. The heritability
estimates produced by the FPHI approach were generally
closest to that produced by MLE estimates. The agreement
among all methods was significantly improved following data
normalization approach that ensured normality for quantitative
traits. This data normalization approach is now available as a part
of SOLAR-Eclipse distribution.

Imaging genetics is a field that combines imaging and
genetics—the two disciplines that have greatly advanced
neuroscience in recent years. The replication challenges are not
unique to this new field and require concerted efforts to address
them. The main replication challenges that imaging genetics
faces are the complexity of the methods and the low statistical
power (Meyer-Lindenberg et al., 2008; Collins and Tabak, 2014).
Genetic factors may explain a small proportion of variance
that require a sample sizes that are challenging to collect in
a single study (N = 1,000–100,000; Stein et al., 2010, 2012;
Thompson et al., 2014). Yet, imaging genetics approaches have
many advantages that should help in overcoming this challenge.
ModernMRI offers phenotypic measurements that provide more
detailed and quantitative descriptions than disorder diagnostic
status or clinical symptoms. Modern MRI phenotypes offer high
precision and reproducibility with the inter-session, scan-rescan
variability of many common imaging measurements in the range
of 1%–5% (Agartz et al., 2001; Kim et al., 2005; Lerch and Evans,
2005; Kochunov and Duff Davis, 2009; Acheson et al., 2017).
Therefore, the solution to statistical power is meta-analyses that
combine data across multiple studies.

ENIGMA, Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) and other multi-study
initiatives aim to overcome the challenge of limited power
by performing meta-analytical analyses. In these initiatives,
phenotypic and genetic analyses are performed by individual
sites and meta-analytical aggregation is used to derive the overall
estimates of genetic effects. The main challenge in this approach
is overcoming the diversity and complexity of analytical and
statistical approaches that may lead to variance in phenotype
extractions and estimation of effect sizes (Meyer-Lindenberg
et al., 2008; Collins and Tabak, 2014). This complexity exists
on both imaging and genetic sides where the difference in
analysis software and even versions of software may lead to
varying results (Gronenschild et al., 2012). On the phenotype
extraction side, ENIGMA provides the standardized pipeline for
extraction of homogenized neuroimaging phenotypes across the
sites (Jahanshad et al., 2013). Here, we demonstrate the need
of homogenized treatments of the traits to avoid erroneous
variances at the meta-analytical state.

In our evaluations, we observed excellent agreement between
estimates produced by the two MLE-based approaches that
were the corner stone of imaging genetic research in the
past. The main disadvantage of MLE approaches is the long
calculation times associated with the iterative maximization of
the likelihood. In imaging genetic studies, up to a million voxel-
based imaging traits may be analyzed (Stein et al., 2011), making
MLE approaches less practical. Voxel-wise analyses require a
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permutation-based correction for multiple comparisons because
standard multiple comparison approaches are deemed to be too
conservative for voxel-wise traits (Nichols and Hayasaka, 2003).
Therefore, there is a need for fast and accurate methods to
estimate genetic variance where the calculations can be repeated
with 105–6 permutations to derive cluster-based significance on
the voxel-wise levels. We measured the performance of two such
methods (APACE and FPNI) that use approximation to obtain
fast inference of genetic variance.

APACE and FPNI use data transformation and
approximation fits to accelerate the calculation of genetic
parameters. APACE uses a squared difference in phenotype
values between pairs of related and unrelated subjects to derive
the fraction of variance contributable to the additive genetic
variance. This approach is appropriate for twins and siblings
pedigree. FPNI uses the eigenvalue decomposition followed
by a single step approximation to calculate genetic variance in
pedigrees of any complexities. The approximation approaches
demonstrated an excellent performance in the simulated dataset
where the trait data was normally distributed. However, their
performance in the imaging data was less uniform, likely due to
sensitivity to noise and violations of the normality assumption.

The two MLE approaches appeared to provide more
stable estimates of heritability in datasets with noise and
the non-normally distributed traits, while these deviations
had a greater impact on the heritability estimates produced
by the approximation approaches. In the cases where the
trait’s distribution deviated from normality, the heritability
values calculated by the approximation techniques deviated
from those calculated by ML-based approaches. However,
the correlation between heritability values and the deviation
of normality (Shapiro-Wilk’s W) was not significant. We
explored four cases of visible outliers. Some traits (ALIC-L,
UNC-R, EC-R and CR-L) failed assumptions for normality,
but other outliers passed normality according to Shapiro-
Wilk’s test. We concluded that approximation approaches
may be more sensitive to the noise and deviation from
data normality and may produce biased heritability estimates
even in traits whose distributions pass the standard tests
for normality.

We found that the use of inverse normal transformation
improved the agreement between ML and approximation-
based approaches and resolved the outlier heritability
estimates observed in uncorrected data. The inverse normal
transformation did not alter the pattern of ML-based estimates:
high correlation (r > 0.95) was observed for averaged
ML-estimates before and after inverse normal transformation.
Enforcing normality upon data reduced the dispersion in h2

values and improved the average spread for the approximation
approaches. This was especially noticeable for FPNI approach
where the correlations withML-estimates became high (r> 0.97)
for all cohorts.

LIMITATION

The ML estimations were used as the reference to compare
the performance of approximation-based approaches

in the simulated and imaging data. The two ML
approaches produced convergent heritability estimates
in both simulated and imaging datasets. However, this
does not constitute the ‘‘ground truth’’ especially in
imaging datasets where ML approaches may be biased
despite convergence.

CONCLUSION

We have conducted a careful comparison of four heritability
estimation methods for imaging data. Based on ‘‘ground-
truth’’ simulations, four packages can produce low-
bias, low-variance heritability estimates, with ML-based
methods understandably performing slightly better than the
approximation methods. In real data, the approximation
methods exhibit more variability relative to the ML-based
methods, but this variability was reduced with the use of
a rank-based inverse normal transformation, suggesting
that this may be an important tool to maximize inter-
method reliability.
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