
TECHNOLOGY REPORT
published: 05 April 2019

doi: 10.3389/fninf.2019.00020

Frontiers in Neuroinformatics | www.frontiersin.org 1 April 2019 | Volume 13 | Article 20

Edited by:

Arjen van Ooyen,

VU University Amsterdam,

Netherlands

Reviewed by:

Christos Papadelis,

Harvard Medical School,

United States

Stavros I. Dimitriadis,

Institute of Psychological Medicine

and Clinical Neurosciences, Cardiff

University School of Medicine,

United Kingdom

*Correspondence:

Yvonne Höller

yvonne@unak.is

Received: 07 July 2018

Accepted: 11 March 2019

Published: 05 April 2019

Citation:

Höller P, Trinka E and Höller Y (2019)

MEEGIPS—A Modular EEG

Investigation and Processing System

for Visual and Automated Detection of

High Frequency Oscillations.

Front. Neuroinform. 13:20.

doi: 10.3389/fninf.2019.00020

MEEGIPS—A Modular EEG
Investigation and Processing System
for Visual and Automated Detection
of High Frequency Oscillations

Peter Höller 1,2, Eugen Trinka 1,2 and Yvonne Höller 1,3*

1Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical

University, Salzburg, Austria, 2 Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg,

Austria, 3Department of Psychology, University of Akureyri, Akureyri, Iceland

High frequency oscillations (HFOs) are electroencephalographic correlates of brain

activity detectable in a frequency range above 80 Hz. They co-occur with physiological

processes such as saccades, movement execution, and memory formation, but are

also related to pathological processes in patients with epilepsy. Localization of the

seizure onset zone, and, more specifically, of the to-be resected area in patients

with refractory epilepsy seems to be supported by the detection of HFOs. The visual

identification of HFOs is very time consuming with approximately 8 h for 10 min and

20 channels. Therefore, automated detection of HFOs is highly warranted. So far, no

software for visual marking or automated detection of HFOs meets the needs of everyday

clinical practice and research. In the context of the currently available tools and for the

purpose of related local HFO study activities we aimed at converging the advantages

of clinical and experimental systems by designing and developing a comprehensive and

extensible software framework for HFO analysis that, on the one hand, focuses on the

requirements of clinical application and, on the other hand, facilitates the integration

of experimental code and algorithms. The development project included the definition

of use cases, specification of requirements, software design, implementation, and

integration. The work comprised the engineering of component-specific requirements,

component design, as well as component- and integration-tests. A functional and tested

software package is the deliverable of this activity. The project MEEGIPS, a Modular

EEG Investigation and Processing System for visual and automated detection of HFOs,

introduces a highly user friendly software that includes five of the most prominent

automated detection algorithms. Future evaluation of these, as well as implementation

of further algorithms is facilitated by the modular software architecture.
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1. INTRODUCTION

Pathological interictal high frequency oscillations (HFO) are activity in the electroencephalogram
(EEG) exceeding 80 Hz. They were found to delineate the seizure onset zone in patients
with epilepsy largely independently of their co-occurrence with epileptic spikes, and the
resulting localization was reported to be more specifically and accurately than epileptic spikes
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(Jacobs et al., 2008; Andrade-Valenca et al., 2011). HFOs are said
to point to the seizure onset zone more reliably than an
underlying, potentially non-congruent lesion (Jacobs et al., 2009).
This clinical potential was specifically emphasized for HFOs in
higher frequency bands (fast ripples, 250–500 Hz; as compared
to ripples, 80–250 Hz; Jacobs et al., 2008).

Apart from the considerable amount of time it takes even
an expert neurologist to identify and categorize HFOs, the
process is obviously prone to subjective perception and bias
(von Ellenrieder et al., 2012). During recent years a number
of studies elaborated on this topic and proposed concepts and
algorithms for automated detection of HFOs (Kobayashi et al.,
2009; Zelmann et al., 2009, 2010; Jacobs et al., 2010; Dümpelmann
et al., 2012). Due to important factors, such as cost or inherent
risk of invasive procedures, the question whether high-frequency
oscillations are detectable using scalp EEG has been steadily
moving into the focus of research. Detection of scalp HFOs
is much more time consuming, error-prone and difficult than
detection of HFOs in invasive recordings. Therefore, automated
detection is highly warranted (Höller et al., 2018). A number of
recent studies set out to detect fast oscillations non-invasively in
the magnetoencephalogram (MEG) (e.g., Papadelis et al., 2016;
Pellegrino et al., 2016; van Klink et al., 2016; von Ellenrieder
et al., 2016; Migliorelli et al., 2017; Tamilia et al., 2017). MEG is
associated with high costs and long-term or bed-side recordings
are not possible. High-density scalp EEG remains an open and
demanding field when it comes to analyzing actual patient data.
MEG is associated with high-costs and long-term or bed-side
recordings are not possible, but it offers a localization accuracy of
few mm (Leahy et al., 1998; Papadelis et al., 2009). The assumed
small size of cortical generators as well as the, relative to invasive
data, poor signal-to-noise ratio are frequently stated as reasons
for unsatisfactory HFO analysis results in scalp recordings. These
factors affect the success of visual identification as well as the set
of wide-spread analytical detection strategies.

AnalyzingHFOs in these different types of brain signals—EEG
and MEG—requires a level software support that is depending
on the analysis approach. Even visual assessment based on
raw waveform representation mandates as a minimum suitable
bandpass filter mechanisms as well as time- and amplitude-wise
scaling of data display.

So far, software support for HFO detection has been
emerging mainly from two opposed directions. A number of
commercial software systems are available for EEG review and
analysis in clinical settings. These systems are either part of a
complete EEG system from a particular manufacturer (such as
“SystemPLUS Evolution”1 or “NetStation”2) or are marketed as
manufacturer-independent third-party software solutions (e.g.,
“BESA Epilepsy”3 or “CURRY”4). The primary purpose of
these systems is to assist neurologists in visually reviewing
EEG recordings for pathological patterns. Most of them offer
supportive tools, such as configurable frequency filters, spectral

1Micromed S.p.A., 31021 Mogliano Veneto (TV) - ITALY
2Electrical Geodesics, Inc., Eugene, OR 97401, USA
3BESA GmbH, 82166 Gräfelfing, Germany
4Compumedics Germany GmbH, 78224 Singen, Germany

decomposition of the signal, time-frequency plots, or automated
detection of epileptic spikes. Advanced functions may include the
automated localization of signal sources on the basis of spikes
(EGI “GeoSource”), dipole representation of electrical potentials
on the scalp (“BESA”), or super-imposing implantation schemes
and electrode positions upon patient MRI images (“CURRY”).
Essentially, these commercial systems are tailored to integrate
well with the clinical environment. The set of functions as well
as the user interfaces are optimized to meet the requirements of
the day-to-day workflow. Presentations of commercial products
during the Freiburg-Workshop on High-frequency Oscillations
in March 2016 confirmed that support for HFO analysis in these
systems is typically limited to specific filter presets (e.g., band pass
80–500 Hz) and optimized data display settings. Comprehensive
HFO analysis support seemed out of reach at that time.

On the other side, numerous experimental HFO analysis
systems have been developed by different research and focus
groups. Virtually all of them are based on “Matlab”5 and are
frequently the results of individual or series of related studies.
Consequently, development of these systems concentrated on the
specific research questions, supporting the validation of concrete
hypotheses, rather than on providing universal HFO research
tools. Thus, the majority of these experimental approaches
cannot be considered integrated systems but are actually loosely
coupled sets of Matlab scripts, each of which implements a
specific algorithm. “RippleLab” (Navarrete et al., 2016) which
emerged into a framework that experiences a somewhat wider
distributionwithin the research community should bementioned
as an exception.

Accordingly, the user interfaces of these systems are typically
minimalistic and often reduced to the Matlab console. In order
to execute a complex, multi-stage process upon the data, small
programmes (scripts) have to be invoked in sequence or compiled
together by means of some additional top-level script. Use and
operation of these software packages is, thus, fundamentally
different from commercial systems for clinical use. Usage often
requires a certain level of expertise in the hosting run-time
environment. Usability aspects are not within the scope of
these experimental packages. Moreover, Matlab, as a domain-
specific high-level environment, provides a considerable level of
flexibility and a rich set of stable functional primitives at the
same time, which is clearly an asset for rapidly prototyping and
experimenting with new algorithms.

In view of the constant advances in understanding origin and
function of high-frequency oscillations (Menendez de la Prida
et al., 2015; Jacobs et al., 2016a,b; Bruder et al., 2017; Pail et al.,
2017; von Ellenrieder et al., 2017) and an increasing confidence
in their clinical value (Frauscher et al., 2017). It is foreseeable
that all major manufacturers will integrate HFO detection and
classification functionality within their commercial EEG software
systems. Nevertheless, Matlab-based experimental systems will
continue to play the main role in the research context, as
commercial systems are usually closed and are not meant to be
extended by own, experimental code and algorithms. At most
they offer a limited application programming interface (API),

5The Mathworks, Natick, MA 01760-2098, USA
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allowing external code to interact with certain parts of the system,
or data import/export functions.

In the context of the currently available tools and for
the purpose of related local HFO study activities we aimed
at proceeding along the path of convergence of clinical
and experimental systems. We designed and developed a
comprehensive and extensible software framework for HFO
analysis. This framework focuses on the requirements of clinical
application and facilitates the integration of experimental code
and algorithms. One specific requirement was that the software
is not limited to the analysis of invasive EEG, but could
be used for scalp recordings, as well. Thus, the software
framework should allow to analyse: (i) invasive EEG; (ii)
standard low-density scalp-EEG; and (iii) high-density scalp-
EEG recordings. Furthermore, a general flexibility to integrate
magnetoencephalographic (MEG) data should be given.

The development project included the definition of use cases,
specification of requirements, software design, implementation,
and integration. The work comprised the engineering of
component-specific requirements, component design, as well
as component- and integration-tests. A functional and tested
software package is the deliverable of this activity.

To this end, we reviewed the current literature on HFO
detection in general and implemented published algorithms as
modules that can be plugged into the software framework.

In the following sections we will delineate the software
project MEEGIPS, Modular EEG Investigation and Processing
System for visual and automated detection of HFOs. The
project resulted in a highly user friendly modular software
framework that is suited for both, visual and automated detection
of HFOs. To date, it integrates five of the most prominent
automated detection algorithms, and it can be easily extended
to include newly developed algorithms. Comparing algorithms
to each other was done previously (Salami et al., 2012; Zelmann
et al., 2012) and is beyond the scope of this manuscript.
Here, we rather focus on the framework to which algorithms
can be added. The software package can be obtained via
email request to meegips@pmu.ac.at. It is provided as binary
application package for Mac OS under GNU Lesser General
Public License v.3 (“LGPL”).

2. PRINCIPAL USE CASES

Elaborating on the primary aim of the software framework a
number of high-level use cases have been identified. In software
engineering terms, a “use case” represents a defined scenario of
interaction between an “actor” and the system in order to achieve
a particular goal. Figure S1 depicts the interaction scenarios
of our software framework by means of Unified Modeling
Language (UML, Object Management Group Inc., 2015) and
indicates that two “actors,” a “Neuroscientist” and a “clinical
EEG specialist,” are using the system in disjoint sets of use cases.
The neuroscientist and the clinical EEG specialist play specific
roles. In general, “Actors” in UML define the roles that are taken
on by persons or external systems when interacting with the
system. They do not refer to particular user, groups of users,
or professions.

While the primary intention of the EEG specialist is to
compile a comprehensive report about HFO occurrence and
characteristics within an EEG recording, the scientist is interested
in injecting, analyzing, and optimizing HFO detection and
classification strategies. Compiling an HFO report requires the
EEG recording to be analyzed for HFO events, either visually or
by means of automated detection mechanisms. Either approach,
in turn, requires to import the recording into the system.
Likewise, generating machine-learning based detection models
implies the definition of suitable feature sets and the systematic
analysis of detection performance during that process. Figure S1
indicates serialization of use cases as stereotyped (“include”)
dependencies. As all subordinate steps can also be executed
independently they are rendered as separate use cases.

Although not formalized, the use case diagram indicates
that the two actors, EEG specialist and neuroscientist, are not
only interacting with the system but are using the system to
interact with each other. The use cases of the neuroscientist
aim at establishing the most suitable system configuration
that allows the EEG specialist to generate an accurate and
detailed HFO report.

Summarizing the application scenarios reflected in Figure S1

we identify two actors, EEG specialist and neuroscientist, and
three principal use cases:

• UC.1 “Generate HFO report.” The EEG specialist imports
an EEG recording and analyses it for HFO events, either
visually or by means of analytical or machine-learning
based algorithms.

• UC.2 “Define analytical HFO detection process.” The
neuroscientist defines or re-implements, integrates, and
possibly optimizes an analytical HFO detection and
classification algorithm. The tuned and configured algorithm
is made available to the EEG specialist.

• UC.3 “Generate machine-learning model.” The neuroscientist
selects a machine-learning technique and defines an
appropriate feature set. Similar to UC.2, the resulting
HFO classification model is made available to the
EEG specialist.

3. DESIGN OBJECTIVES

While the scope of this work does not permit to reproduce the
full requirements engineering process, we elaborate on the set of
fundamental properties of the software framework which have
been defined in accordance with the use cases determined in
section 2. These design objectives serve as guidelines throughout
the system design and development process.

• Adaptability is one of the key drivers for the in-house
development. It mandates a modular architectural design,
ensuring the extensibility of the system by integrating
functional modules which implement particular algorithms or
individual steps of staged detection procedures without the
need to modify the core system. The system shall support
the aggregation of functional modules into complex HFO
detection and classification processes and shall allow their
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parameterization via store- and recallable configurations sets.
For the neuroscientist this is the foundation for experimenting
with and optimizing detection approaches.

• Interoperability. Most commercial EEG systems store EEG
data in their own, proprietary file formats. In order to
facilitate migration of data between systems we require that
our framework is able to import EEG data produced by the
locally used clinical EEG recording systems (i.e., invasive EEG,
scalp EEG, low- or high-density recordings.

• Usability is considered the further important design objective.
It refers to appropriateness of graphical user interface (GUI) as
well as to clarity and comprehensibleness of activities required
to trigger a particular process or achieve a certain goal. Both
aspects require a balance of specificity—functionality and
user interface should be tailored to the core purpose of the
system, HFO detection and classification—and intuitiveness
and cross-system consistency of user interfaces. The system
shall not require a radical reorientation with regard to usage
patterns in comparison to systems in day-to-day clinical use.
As little system-specific expert knowledge as possible shall be
required to efficiently use the software framework.

In order to achieve this goal, it is essential to closely
interact with the prospective user community, physicians
as well as scientific personnel, throughout the development
process. Incremental process models (details in section 4),
early prototypes, and user involvement generating qualified
feedback have proven indispensable for a system that is
perceived as appropriate and useful (Eckkrammer et al., 2010).

• Efficiency in terms of both, execution time and development
effort, is determined as a further objective. Execution time
is a critical issue as high-frequency oscillations in scalp
EEG reportedly occur at a very low rate (Andrade-Valenca
et al., 2011), requiring extended recording times. In addition,
high-density EEG supports up to 256 channels recorded
with a sampling rate of at least 1 kHz. Predictive models
produced by machine-learning techniques typically benefit
from a reasonably large training set. The accordingly large
number of patients contributes to the huge volumes of data
to be processed as an additional factor.

There are several measures to more or less accurately assess
the complexity of a software system and the effort required to
develop it (Sneed, 2010). Obviously, the considerable number
of data processing functions and the graphical user interface
are the main contributors in this case. Third party software
libraries provide mathematical or signal processing related
functions which are well tested and established throughout the
scientific community. In order to constrain the development
effort without sacrificing relevant functionality these libraries
shall be integrated.

• Platform independency. As a last and subordinate
requirement the software framework should be platform
independent and should not require to be executed on any
specific operating system.

In combination with the set of use cases these design
objectives are the basis for deriving the user and
system requirements.

4. INCREMENTAL DEVELOPMENT
PROCESS

Use case-driven high-level structuring has proven beneficial
particularly for planning and implementing larger scale and
more complex software development projects (Tiemeyer,
2010, own experience). A phased approach supports the
definition of intermediate milestones, early releases of
mature precursor products with limited functional scope,
and facilitates the familiarization and integration process with
the operational environment.

The considered use cases of the HFO detection software
framework suggest a partitioning of development activities into
three successive phases, each extending the software framework
by a set of related functions. Figure S1 illustrates the association
of principal use cases and development phases:

• Compiling a comprehensive report on the analysis of an
EEG recording with respect to HFO occurrences (UC.1)
is the key use case from the perspective of the EEG
specialist and, therefore, has to be supported as of phase

1 of the development. The means of generating the
essential information for the report are based on the
analysis and classification of visually identified data fragments
by human perception and interpretation in this phase.
Automation support is limited to transforming the data of
the selected fragment to time-frequency representation or
spectral decomposition.

Nevertheless, the outcome of this phase is essential for
subsequent phases. It already implements functions that
are fundamental also for advanced processing techniques
introduced in later phases, such as importing EEG recordings
created by EEG systems in clinical use, or extracting/filtering
specific frequency bands from the data. In addition, the
system resulting from phase 1 is needed to establish the
“ground truth,” i.e. a sufficiently large, representative, and
expert-validated set of HFO events within a diversified set of
recordings, which serve as a reference and basis for validation
of automated detection strategies.

• Phase 2 provides initial coverage of use cases from the
neuroscientist’s perspective. The software system resulting
from this phase allows the neuroscientist to implement and
test analytical, automatic HFO detection and classification
strategies (UC.2). These additional capabilities are a
precondition for the subordinate use case that focuses
on analysis and comparison of detection performance of
different detection algorithms. Moreover, phase 2 extends
UC.1, report generation, by making the tested and optimized
algorithms available to the EEG specialist for determining
HFO report data.

• The final phase 3 introduces automatic HFO detection and
classification based on machine learning techniques. It focuses
on generating validated machine learning models for the
various types of EEG data, invasively recorded, classical
scalp EEG, and scalp-HD-EEG, including the definition
and optimization of suitable feature sets. The required
infrastructure for assessing the detection performance is
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already put in place during phase 2. In terms of use cases, phase
3 covers use case UC.3, machine learning based detection
strategies from the neuroscientist’s point of view. Furthermore,
it extends UC.1, allowing the EEG specialist to utilize machine
learning models for generating HFO reports.

The development phases are basically executed sequentially.
Marginal overlaps, however, allow the inception of the
subsequent phase in parallel to deployment of and user
training for the previous one.

4.1. Development Process Model
Within each single phase of development, which extends from
requirements specification to deployment of the intermediate
product, an incremental development process model is applied.
In contrast to pure sequential models that follow a strictly
forward-oriented flow of activities, incremental approaches
cyclically iterate the sequence of development steps. The
overall functional scope of the system is divided into smaller
subsets of functions each of which is specified in detail,
implemented, verified and validated, and integrated with the
output of previous turns, within a single iteration. The
rationale of these types of process models allows to start
with the design and implementation already at an early
stage of the project. Even though some portions of the
expected functionality may be unclear or vaguely defined,
a first iteration can focus on those aspects that are agreed
upon and which are fully understood by all stake-holders.
In the meantime, requirements and expectations for other
functions can evolve and mature in order to be processed in
a subsequent iteration. Apart from being robust with regard
to late or changing requirements, incremental models allow
to flexibly include or exclude system functions throughout the
proceeding development.

Figure S2 details the steps of the incremental process: on the
basis of the applicable use cases, the subset of functions that shall
be implemented in the particular iteration (the “increment”) is
defined in the first step. Obviously, in the first iterations these are
the functions which are well understood a priori or that are, due
to technical risks, critical for the success of the entire project. The
subsequent step, specification, leads to the set of requirements,
which serve as the basis for the following design, implementation,
and validation steps.

Each iteration results in an incomplete but functional
prototype, which is made available also to the prospective
users of the system for testing and evaluation purposes.
These early and successively refined and extended prototypes
allow a strong involvement of the targeted user community.
Therefore, they allow a timely discovery of misunderstandings
of use cases or requirements. The outcome of the
evaluation and the resulting feedback is considered in the
subsequent iterations.

After all applicable use cases of the current development
phase have been covered to the agreed extent the iterative
process ends with the deployment of an intermediate release of
the system with a limited set of functions, integrable with the
operational environment.

5. TOP-LEVEL ARCHITECTURE

The system architecture denotes the basic structuring of the
system in terms of its subsystems, interfaces between subsystems,
as well as data structures that are exchanges using these interfaces.
A system’s architecture can be described on different levels of
detail and may comprise hardware as well as software building
blocks. In the scope of this project only software components
are relevant. Architectural decisions are influenced by a number
of parameters, such as properties of the underlying hardware
platform, the operational environment, and, most important,
the fundamental requirements it has to comply with. Among
the requirements for this HFO detection framework, outlined in
section 3, adaptability, interoperability, and usability are the key
drivers for the architectural design.

Figure 1 depicts the six primary constituents of the software
system from the architectural perspective. All subsystems rely on
the “Base” facility which provides fundamental data structures
representing concepts such as “sessions” or “data nodes”
(section 6.1). Like the “Core” subsystem which is the second
central unit of the framework, it is a fixed part of the main
component. The “Core” subsystem is responsible for subject and
session management and coordinates the interaction among all
further functional modules. As such it e.g., invokes and controls
data processing operations whenever requested by an operator
via the user interface subsystem.

All other subsystem are built upon modules that are loaded
into the software system at runtime during the system’s
initialization phase as required. Each module implements
a particular type of function in a module-specific way
(polymorphism) and pertains to one of the following subsystems:

• In compliance with the requirement of interoperability with
external EEG recording systems the software framework must
be capable of handling proprietary data formats. The “Data

I/O” subsystem consists of modules to import raw EEG data
or MRI image sets produced by external systems.

• The “Processing” subsystem provides EEG data processing
and manipulation functions. Modules of this subsystem
implement data filtering or segmentation functions as well
as all HFO-related processing, such as event-of-interest
detection or event classification according to the various
supported approaches.

• Usability is a crucial design criterion of the system and is
primarily depending on the means for an operator to interact
with the system. The “User Interface” subsystem enables to
comprehensively control the system via a GUI. While the
foundations for the user interface are built into the main
component of the system, specific views onto or representation
modes of the data are implemented in loadable modules.

• Functions to summarize and format information resulting
from data processing activities are provided by the
“Reporting” subsystem. The current system specification
supports a single type of report termed “HFO Report.”

The outlined subsystems are not one-to-one representing
separate software components, i.e., loadable modules or
executable programmes. Although it is reasonable for the
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FIGURE 1 | Top-level architecture in UML notation.

architectural approach to be reflected in the components
structuring, multiple components may constitute a particular
subsystem, such as in the systems’s activities and processes
concept (section 7.2). Similarly, several subsystem may reside
within the same software component, such as “Base” and “Core”
subsystems, both hosted in the main executable.

6. INTEROPERABILITY

Interoperability with EEG recording systems in local clinical
use is a critical aspect in order to facilitate the integration
of the software framework with the every-day work-flow. The
capability to import externally generated EEG recordings without
prior format conversion is therefore an essential requirement.
Moreover, direct access to clinical data considerably increases
the amount of data instantaneously available for the purpose of
testing and validating software functions.

Likewise, the software framework supports the importing of
structural patient MRI (magnetic resonance imaging) images
stored in NIfTI format (Neuroimaging Informatics Technology
Initiative6), which can be linked to EEG recordings in order to
define and visualize anatomic electrode coordinates.

6.1. Polymorphism and Inheritance
The provision of a unified interface to data structures
representing different types of data is referred to as “subtype

6https://nifti.nimh.nih.gov

polymorphism” and is a key concept in object-oriented software
engineering (Cardelli and Wegner, 1985; Gamma et al., 1995).
Our HFO software framework incorporates this technique e.g.,
to facilitate the implementation of interoperability in terms of
reading and interpreting externally generated data. Figure 2

depicts the hierarchical organization of interfaces with the
abstract class “Data Node” as the root. “Data Node” represents
the top-level and most generic interface to access any kind of
supported data structure, such as EEG recordings or MRI data
sets. It defines the methods (i.e., operations) that other parts of
the software, such as processing or visualization components,
have to use in order to access data, without implementing any
data-type specific mechanisms (thus the term “abstract”).

Subclasses of the abstract root class either specialize the
interface by defining additional methods more trimmed to the
type of data they represent, or implement (or “realize”) the
interface, i.e. provide the actual data manipulation mechanisms
and data-type specific code.

Figure 2 details the hierarchy on the example of externally
generated EEG recordings in EDF+ (European Data Format7)
format; the relevant dependencies are highlighted in red: A
set of specialized subclasses of “Data Node” represent the first
specialization step. The subclass “File Node” extends the generic
“Data Node” interface by methods that are more specialized
to access EEG data that is persistently stored in a file. “File
Node” allows users of this interface to access/read EEG data

7http://www.edfplus.info
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FIGURE 2 | Data Structures derived from abstract Class “Data Node.” Arrows between classes denote “generalization” in the arrow direction and “specialization” in

the opposite direction. The inheritance path for the “EDF+ File” class is highlighted in red.

without the need to know the details of how signal and meta
data are structured and arranged within the file. The next
level of specialization distinguishes between “Internal File,” a
“realization” implementing read and write access to EEG data
stored by the software framework in its internal data format, and
“External File”. “External File,” in turn, extends the “File Node”
interface by methods to read meta information that is not part
of internal data files, such as subject, epoch, trigger, or event
data associated with the recording. It defines the most specific
interface for accessing EEG data stored in external data formats.
Currently the following three realizations of the “External File”
interface are available (see also section 6.1):

• The EDF+ File class discussed in the example above
implements read-only access to EEG data stored in either type
(binary and textual) of EDF+ file.

• Long-term EEG recording in the local epilepsy monitoring
unit (EMU) is based on a system manufactured by Micromed,
Italy. The system stores EEG data and associated meta
information in files according to a proprietary format (TRC,
“TRaCe file”). Support for read-only access to TRC (version 4)
formatted data is provided via the TRC File class.

• Read-only access to MFF (“Meta File Format”) formatted EEG
data generated by EGI (Electrical Geodesics Inc.) high-density
EEG systems is implemented in theMFF File realization of the
“External File” interface.

The obvious advantage of the hierarchical data abstraction is
that software entities can access EEG data in a generic way
without needing to know the actual structure and format
of the file the data is stored in. This way it is possible
to add support for additional external data formats without
impacting portions of the software that access the data using the
generic interface.

6.2. Matrix-Based Representation of Data
A critical aspect with respect to interoperability is the
encapsulation of EEG data within constructs that are
independent of the format in which the data are physically
stored on the persistent medium (typically hard disk), while at
the same time accurately reflecting the logical structure of the
data, i.e., its partitioning into channels and epochs. Moreover,
in order to ensure efficient processing of the data, a direct
and random access to individual data elements (samples or
measurement values of a certain channel at a particular point in
time) has to be facilitated.

For that purpose the internal data storage concept of the
software framework is based on virtual matrices of arbitrary
dimension. Successive samples of a single channel are stored
as a matrix of dimension (or order) one, that is, a contiguous
vector or array of data values. In case of multiple simultaneously
recorded channels the dimension of the matrix is increased to
accommodate the set of channels. The typical representation of
a recording covering a single epoch therefore results in a matrix
of dimension two. A crucial precondition for the organization of
individual channels within a single matrix is that their samples
cover the same span of time. Whereas, the sampling rate and,
thus, the number of samples per channel may differ.

Recordings that consist of multiple epochs require the
extension of the matrix to an order of three, with the third
dimension covering the epochs. The order of the data matrices
can be set as required. For example a set of recordings of the same
subject, each consisting of multiple epochs and multiple channels
would be organized as a single four-dimensional matrix.

Figure 3 visualizes the concept. An instance of the template
class “Data Matrix” of dimension N holds a vector of instances of
the template class of dimension N − 1 and may or may not have
an association with an object of type “File Node” (indicated in the
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FIGURE 3 | Descendants of abstract Classes “Matrix Node” and “File Node.” Arrows between classes denote “generalization” and “specialization” relationships.

Inheritance Tree for EDF+ Data Vector Class in red.

figure as a containment or “part-of” relationship of multiplicity
0 or 1). Matrices of dimension one (i.e., vectors) require special
consideration since they are responsible for adapting the format-
dependent physical data storage to the uniform vector-based
structuring. Accordingly, these vectors are implemented by a
set of classes. They either represent an array of measurement
data that is available in the working memory of the computer,
denoted “Memory Vector” in Figure 3, or enable access to data
stored in internally or externally generated persistent data files
(“File-backed Vector”).

As outlined in Figure 3 a specific implementation of the
“File-backed Vector” interface manages read/write access to
data stored in internally generated EEG data files (“Internal
FbVec”). For data files in proprietary third-party formats, a more
specialized interface is derived from “File-backed Vector,” labeled
“External FbVec”. This interface is realized by three classes, each
of which transforms the vendor-specific layout of the EEG data
of the individual channels stored within EDF+ files, TRC files,
or MFF files, respectively, into a linear, contiguous data vector.
Figure 3 highlights in red the exemplary inheritance hierarchy
for the “EDF+ Data Vector” case.

In both cases, “Internal FbVec” implementation or
realizations of “External FbVec,” the data that are physically kept
in files on the hard disk are mapped into the logical address space
of the process executing the HFO software framework using the
computer’s Memory Management Unit (MMU). This technique,
called “memory-mapping,” allows a process to access the data as
if it were available in the computer’s main memory, regardless
whether the data are actually in memory or on disk. As a major
benefit memory-mapping enables direct access to data values at
arbitrary positions without prior allocation of buffer storage that
needs to be filled with the proper portion of data loaded from the

file. Buffer management and optimization is entirely left to the
operating system.

7. ADAPTABILITY

An aspect substantially driving the in-house development of
a software framework for HFO detection is the high level of
flexibility which is required for experimenting with, testing,
and validating novel HFO detection and classification strategies.
Tools that enable the definition, revision, and parameterization
of detection processes are an important requirement and
precondition for an adaptable framework. A comprehensive
concept of configurable processes aids in achieving this flexibility.

7.1. Process Structure and Data Flow
In general, HFO detection and classification strategies, regardless
whether following analytical approaches or utilizing machine-
learning techniques, can be broken up into sets of sequentially
executed processing steps (see also Zijlmans et al., 2017). The
data flow diagramme in Figure 4 illustrates the typical functional
decomposition that is followed by our software framework and
indicates the data items that are passed between consecutive
processing steps.

In the preprocessing stage the original EEG recording is
band-pass or high-pass filtered and potentially subject to artifact
detection and removal. If only particular portions of the EEG
data shall be further processed, preprocessing may include a
segmentation of data according to defined types of associated
events or specified time-ranges. The preprocessed data is passed
on the next step, “event of interest” (EOI) detection. Depending
on the algorithm, EOI detection may additionally rely on the
original (unfiltered) EEG signal, which is provided as auxiliary

Frontiers in Neuroinformatics | www.frontiersin.org 8 April 2019 | Volume 13 | Article 20

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Höller et al. MEEGIPS

FIGURE 4 | Data flow diagramme (DFD) covering steps of an HFO detection and classification process.

input data. Detection algorithms that are well-balanced in terms
of sensitivity and specificity may already yield an acceptable
fast oscillation detection performance. However, the purpose
of the EOI detection steps enclosed in the process definitions
of our software framework is to preselect potential HFO
occurrences by looking at morphological (time-domain) and
spectral (frequency-domain) properties of the preprocessed and
optionally raw signal data. The scope of subsequent processing
steps is reduced from the entire recording (or selected segments
thereof) to a set of time-bounded fragments of data. That
is, it is reduced from continuous data to discrete sections of
short duration, significantly decreasing the computational effort
required by feature extraction and classification operations.

The set of EOIs serves as a database of time/channel records
for the following steps. The feature extraction stage separately
analyses the referenced sections of data with respect to time-
domain or frequency-domain characteristics (features), using
preprocessed and/or the original signal data. The resulting
output, a map that associates each event of interest with the
extracted properties at the specified section of data, is forwarded
to the classification step. Classification evaluates the features
either analytically or utilizing machine-learning techniques and
classifies the events accordingly into fast oscillations or artifacts.

Although this theoretical concept considers detection
and classification as separate stages, process definition and
parameterization requires a sound understanding of the inter-
dependency of the implemented algorithms. The upper bound
for the sensitivity of the entire process, for instance, is obviously
predetermined by the detection step; the classifier has no
means to compensate for a high type II error (false negatives)
introduced by the detecting stage.

7.2. Configurable Processes
A process in terms of our software framework is composed
of a sequence of individual processing steps (“activities”) that

are executed upon the data in a well-defined order and which
incorporate each a specific algorithm or part thereof. Each
processing step is implemented as a loadable and exchangeable
software module and can be initialized with either pre-defined or
operator-defined parameters. In this manner complex processes
can be defined and parameterized based on an extensible set of
simple and combinable steps.

Figure 5 visualizes the concept. Each process is subject to a
process-lifecycle that is controlled by the process framework and
which is in charge of instantiating, parameterizing, invoking,
and removing processes. A process comprises at least a single
“Activity.” All activities of a process are executed in a defined
sequence and are provided with the applicable set of activity-
specific parameters, which has been previously loaded or defined
by the operator.

The primary data set that shall be processed by an activity as
well as possible auxiliary data elements required in support of the
operation to be performed are provided to the activity by means
of a list of input data items. These data items may be of any type
that is derived from the “Data Node” class (see also Figure 2),
i.e., raw or preprocessed EEG data, sets of events or markers, or
extracted features. The initial list of input data nodes is created by
the process framework upon process initialization and contains
data nodes which either reside in working memory or are stored
on the hard disk. In the latter case, the “Data I/O” subsystem,
one of the major architectural building blocks (ref. section 5), is
utilized to access the data.

New data that may be generated by the executed activity is
as well encapsulated in data structures subclassed from “Data
Node” and are returned to the invoking process as a list of
output data nodes. The process appends the list of output data
nodes received from the activity to the list of input data nodes
passed on to subsequent activities, enabling activities to use data
structures created by preceding activities. The general approach is
to not modify input data nodes in the course of activity execution
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FIGURE 5 | UML class diagramme of processes and activities concept.

but to create new (output) data nodes holding the modified
input data.

After the process has completed (i.e., all activities finished
successfully) the process framework adds all or a subset of the
newly generated data nodes to the list of sub-nodes of the primary
input data node—as per process definition. By means of the
Data I/O subsystem these new nodes are copied to persistent
data storage.

7.2.1. Process Definition
Processes are aggregations of activities that are executed strictly
in sequence. The set of activities and their order is statically
defined in the “process definition file.” At system startup
the process framework parses the process definition file and
instantiates the processes in accordance with their “building
plans.” Apart from a process’ structure this file also defines
the set of input data nodes each of its activities receives
upon execution. Figure 6 gives an overview of processes,
activities, and the defining structures residing in the system’s
“configuration repository.”

The process definition file is based on XML8 and internally
structured as detailed in Figure S3. The first section of the
file (“moduleList”) holds the list of activity-modules that
shall be dynamically loaded during the software framework’s
initialization phase. Each module is described by a textual
identifier (“moduleName”) via which it can be referenced from
within activity definitions and the module’s “path” (i.e., its storage
location on the hard disk). The subsequent section contains the
definitions of the individual processes. Apart from an element
that can be used to refer to literature the process is based
upon (“reference”), each process definition holds the sequence
of associated activities, identified by their names, as well as a
(possibly empty) list of “Data Node XML” items (“outputList”)

8Extensible Markup Language, https://www.w3.org/XML/

that shall be stored as the process’ final output. Each of these
data node items refers to a specific type of result of a particular
activity. In accordance with data node inheritance tree outlined
in section 6.1 data nodes can be classified as either signal data
nodes, markers or events nodes, or feature nodes.

Activities are defined by “Activity XML” elements. Such
element contains the activity’s textual identifier (“activityName”),
a reference to the software module that implements the activity,
and a list of “Data Node XML” items (“inputList”) that specify the
data nodes the activity receives as input.

7.2.2. Process Parameterization
Most activities of a process can be configured through an
arbitrarily large set of parameters that can be adjusted within
the respective ranges of values. Adjustment of parameters is
conducted by the user by means of the software framework’s
graphical user interface. For this purpose, each activity module
provides a custom dialogue page (“Activity Configuration
Widget,” see Figure 6) which lists the parameters of the
implemented processing step and their current values. The
dialogue pages of all activities of a process are aggregated
by the “user interface” subsystem (see section 5) into an
interactive dialogue (“Process Parameter Dialog”) in order to
provide a comprehensive overview of the parameter set and to
allow the user to modify the parameters’ values within their
respective boundaries.

So as to have a reasonable baseline for the parameterization
of processes, default parameter sets that are typically derived
from the values used in the literature are prepared for all defined
processes and are pre-stored in the Configuration Repository
of the Software Framework. In addition, a complete set of
modified parameters can be persistently stored and recalled
for subsequent use. After parameter adjustment or recall is
completed a “Parameter Set” object is generated from the current
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FIGURE 6 | Class diagramme: process definition and process parameters overview.

values, which is made available to the process and its activities
during execution.

7.3. Processes and Activities
Although modules implementing activities follow a unified
technical structure and are not differentiated by design, activities
can be classified according to their purpose, type of operation, or
stage within an embracing process. The type of output or result
that is generated by an activity can be considered as an additional
discriminating criterion. Figure 7 gives an overview of a logical
classification of activities with particular focus on HFO detection.

In accordance with Figure 4 activities can be classified
as follows:

• The class of preprocessing activities comprises all operations
that prepare or preprocess the input signal data in a way
required or suitable for the subsequent processing steps. This
class of activities includes e.g., filtering or data segmentation
operations. The generated output is typically a modified
version of the input signal data, thus, again a “Matrix Node.”

• Activities that analyse and scan the input data for events of
interest can be classified as event detection activities, with
a context-specific definition of EOI. In the scope of HFO
detection, EOIs are defined as signal data fragments that
possibly contain high-frequency oscillations. The result of a
detection activity is a data node that contains a list of event
markers (“Marker Node”), each identifying a detected event
of interest.

• Feature extraction denotes the class of activities that
analyse those fragments of the input signal data that
have previously been marked as events of interest. Feature

extraction operations explore the signal with respect to specific
properties, either based e.g., on a morphological analysis,
a spectral decomposition, or a time-frequency transform of
the signal. The analysis results in an arbitrarily large set
of properties or features per EOI. These feature sets are
encapsulated in an output element of type “Feature Node.”

• Event classification operations review events of interest
detected by an event detection activity and classify the events
according to a defined scheme. In the framework of HFO
detection, classification activities differentiate EOIs between
ripples, fast ripples, and artifacts.

As outlined in Figure 7 classification activities can be
further grouped into analytical methods and machine-

learning based approaches. Analytical algorithms analyse and
classify EOIs on an individual basis. The signal characteristics
considered depend on the implemented algorithms and may
include time-domain as well as frequency-domain aspects.
Classification is typically performed according to some
theoretically founded thresholds.

Machine-learning classifiers, in contrast, classify events
based on a previously generated “prediction model” in
combination with the set of properties extracted by preceding
feature extraction activities.

All activity modules have to implement the “Activity” interface
in order to provide to the process or process framework a generic
means of controlling the operational state of an activity and to
supply it with the required set of parameters.

This classification of activities is in line with the conceptual
process decomposition presented in Figure 4. Nevertheless,
separate processing steps are not necessarily contained
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FIGURE 7 | Logical classification of activities.

in dedicated modules. As implemented in the current
system, analytical classifiers combine their own feature
extraction operations and the actual classification steps in
integrated modules.

7.3.1. Implemented Activity Modules
Table 1 details a selection of available activity modules. These
modules have been implemented in course of reviewing
relevant publications on automated HFO detection strategies.
They either represent the building-blocks of algorithms that,
according to the respective authors, produced promising results
in comparison to an expert-validated ground truth, or are
the results of experimental optimizations and research into
complementary methods.

Further implemented activity modules not listed in the table
include test signal generators, event matching and reclassification
operations, or signal segmentation modules.

7.3.2. Predefined Processes
On the basis of the implemented activity modules, a set of
HFO detection and classification processes has been defined,
either in strict accordance with the reviewed publications or as
recombinations of processing steps suggested in the literature.
The selection of analytical detection algorithms is primarily
influenced by comparative benchmarks performed in Zelmann
et al. (2010); Chaibi et al. (2013), and Burnos et al. (2014).

Table 2 lists the predefined processes and their constituting
activities. These processes together with default sets of
parameters are ready to be applied to input EEG data in
one of the supported recording formats (see section 6.1).

7.4. Behavioral Model of Processes
Behavioral models describe the dynamic aspects of a software
system: its activities, communication via internal and external
interfaces, or state machines of the entire system and its
constituting components. UML provides a class of diagrams
supporting behavioral analysis and dynamic modeling as

observed from different perspectives and with focus on
particular facets.

The activity diagram in Figure S4 details the flows of control
and data during the execution of a defined process consisting of a
sequence of activities. It can be considered as complementary to
Figure 5, which elaborates on the structural aspects of a process
while the Figure S4 details the generic behavior of a process
being executed. The activity (“Process::execute”) commences
with checking whether the “Input Data Node” received from
the process framework is a valid data matrix and setting up of
the “Input Matrix Vector” with that initial element. In the case
of HFO detection the input data node is the recording to be
analyzed with respect to HFO occurrences.

The core of process execution is the iterative invocation
of its activities according to the defined sequence (“Chain of
Activities”). Before an activity is actually executed, it is attached
to the “Progress Monitor” which allows the software framework,
and the system’s user, to keep track of the status of the
activity. Each activity internally follows the classical IPO (input
– processing – output) model and generates output data by
processing its input data in a specific way. If the activity completes
successfully the produced output (“Output Data Node” in
Figure S4) is appended to the input matrix vector in order to
be used by subsequent activities. The loop ends either after the
last iteration, i.e., execution of the last activity in the sequence
completed, or as soon as an activity failed to successfully execute.
In the latter case an “Error Vector” is assembled that summarizes
the reasons for failure and provides respective feedback to the
user. If, in contrast, the entire process completed successfully
the resulting “Output Data Node” is handled according to the
process definition (“outputList” element in Figure S3). It may
be copied to persistent storage and is either registered as a new
sub-node of the input data node in case the output is of type
data matrix, or is associated to the input node as a set of event
markers, or both.

Additionally, the process framework allows to store
intermediate results of a process, i.e., output data nodes
created by other than the last activity in the sequence,

Frontiers in Neuroinformatics | www.frontiersin.org 12 April 2019 | Volume 13 | Article 20

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Höller et al. MEEGIPS

TABLE 1 | Selection of implemented activity modules.

Activity Type Technique References

FIR filter Preproc Finite Impulse Response (FIR) filter using Blackman-windowed Sinc-kernel. Smith, 1998

EMD filter Preproc High-pass filtering based on empirical mode decomposition (EMD), signal

recomposition based on a subset of lower-order intrinsic mode functions.

Flandrin et al., 2004

RMS Detector Root Mean Square (RMS) calculation within sliding window. RMS values > n times

standard deviation (SD) above mean, considering minimum duration, and minimum

number of peaks.

Staba et al., 2002

Hilbert envelope Detector Envelope of band-passed signal using Hilbert transform, SD of envelope > n times

SD above mean, considering minimum duration, and minimum number of peaks.

Burnos et al., 2014

Stockwell transform Classifier Analysis of blobs of high amplitude around max. amplitude of time-domain signal

within EOI in Stockwell transformed data. High-frequency peak between 60 and 500

Hz, low-frequency peak = closest local maximum below trough.

Stockwell et al., 1996; Burnos

et al., 2014

Bump modeling Classifier Z-score normalization of complex Morlet wavelet divided into set of time-frequency

windows. Parameterization of windows by half ellipsoid functions modeling the HFOs.

Vialatte et al., 2009; Doshi, 2011

SVM Classifier Support Vector Machine (SVM) classifier (“libsvm”) based on Gaussian radial basis

function kernel. Model generation using 3-stage cross-validation, optimization of

feature subset, cost and gamma.

Chang and Lin, 2011; Hsu et al.,

2016

Time-domain features Feature extraction Extracts various properties from the time-domain representation of the signal. Blanco et al., 2010; Pearce et al.,

2013; Amiri et al., 2016

Frequency-domain

features

Feature extraction Extracts various properties from the frequency-domain transformed signal. Blanco et al., 2010; Matsumoto

et al., 2013; Pearce et al., 2013

Preproc, preprocessing activity.

TABLE 2 | Predefined HFO detection and classification processes.

Process Activities sequence References

FIR, Hilbert

envelope, power

spectral density

analysis

[P] FIR filter

[D] Hilbert envelope EOI detection

[C] Stockwell-transform classifier

Burnos et al.,

2014

FIR, RMS, power

spectral density

analysis

[P] FIR filter

[D] Root mean square EOI detection

[C] Stockwell-transform classifier

Staba et al., 2002;

Burnos et al.,

2014

EMD, RMS, power

spectral density

analysis

[P] Empirical mode decomposition

[D] Root mean square EOI detection

[C] Stockwell-transform classifier

Staba et al., 2002;

Flandrin et al.,

2004; Burnos

et al., 2014

FIR, RMS, bump

modeling

[P] FIR filter

[D] Root mean square EOI detection

[C] Bump modeling classifier

Staba et al., 2002;

Vialatte et al.,

2009; Doshi, 2011

FIR, RMS, SVM [P] FIR filter

[D] Root mean square EOI detection

[F] Time-domain feature extraction

[F] Frequency-domain feature extraction

[C] Support vector machine (SVM)

classifier

Staba et al., 2002;

Chang and Lin,

2011

FIR, Hilbert

envelope, SVM

[P] FIR filter

[D] Hilbert envelope EOI detection

[F] Time-domain feature extraction

[F] Frequency-domain feature extraction

[C] Support vector machine (SVM)

classifier

Staba et al., 2002;

Chang and Lin,

2011; Burnos

et al., 2014

[P]: Preprocessing stage.

[D]: EOI detection stage.

[C]: Classification stage.

[F]: Feature extraction stage.

in order to make them accessible for display and review.
An option that can be configured by means of the
process definition.

7.5. Integration of Custom Modules
One of the key assets of the software framework is its support
for extending (HFO detection and classification) processes by
new activities and for defining entirely new processes and
activity sequences. Activities in terms of the software system are
implemented in dedicated software modules (dynamic libraries)
that are loaded on demand, i.e., in case the implemented activity
is referenced by any defined process, at system startup time.

Figure S5 illustrates the fundamental structure an activity
module has to comply with in order to be integrated with
the software framework. Primary constituent of the module is
its main activity class, denoted “Activity A” in this exemplary
outline, a concrete realization of the “Activity” interface. From
the set of methods that have to be backed by activity-specific
implementations, “execute” and “parameterTab” deserve a close
look. The “parameterTab” method instantiates and provides a
configuration object, derived from the “Activity Configuration
Widget,” that lists all parameters relevant to the implemented
algorithm for review and modification by the user. The methods
it provides are used to convert the activity-related section of a
“Parameter Set” (see Figure 6) to and from a set of Graphical User
Interface (GUI) elements.

The “execute” method is invoked by the hosting process. It
actually performs the implemented operation on the input data,
using the previously adjusted parameters. There is no interaction
between activity and process framework, and in particular no
concurrent access to the processed data from outside the activity,
until the “execute” method has completed and returns control
to the embracing process. Thus, the activity can autonomously
schedule and organize access to the data as best suited for the
applied algorithm. While, for instance, frequency-band filter
activities are likely to work on a per channel basis, some artifact
detection techniques may require to access data across channels.
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This opens up the possibility to delegate processing of defined
portions of the data, e.g., channels, to a pool of concurrent
threads (“Channel Processing” class in Figure S5). Depending on
the hosting hardware platform, this may lead to a considerable
reduction of execution time.

The classes stereotyped “Qt” are base classes provided by the
embedding cross-platform application framework and link the
elements of the activity module into the framework (see section 9
for more information). Modules are independently constructed
and compiled and represent separate binary components which
can bemodifiedwithout impact on other components of theHFO
detection software framework. Eventually, this enables interested
external institutions to extend the HFO detection framework by
their own algorithms and experiments.

8. INTEGRATION OF MACHINE-LEARNING
TECHNIQUES

In most general terms machine learning can be described as the
capability of a technical system (i.e., a computer programme
in this context) to adapt its behavior or decision making
according to a history of input data—it aims at generalizing on
the basis of provided examples or, less technically, it “learns”
from “experience.”Machine learning algorithms typically analyse
training data sets for intrinsic patterns or rules and construct
predictive models under the assumption that discovered patterns
are valid for the entire population.

Machine learning techniques can be a valid alternative to
direct, analytical programme design in case of ill-posed problems.
Ill-posed problems defy an exhaustive and precise description
by analytical algorithms and can be better explained by means
of representative examples. A frequent inherent characteristic
of such problems is a high level of complexity, a high number
of degrees of freedom, and an insufficient understanding of
their interrelationship. A further, related indication for machine
learning approaches is the analysis of data for structure-defining
features that are obscured by more prominent properties or the
sheer volume of data (see also Nilsson, 1998; Shalev-Shwartz and
Ben-David, 2014). Indeed, most of these factors apply to the
problem of HFO detection in invasive and particularly scalp EEG
recordings, not least reflected in the poor inter-rater agreement
rates reported e.g., by Blanco et al. (2010), rendering HFO
detection a candidate for the potentially successful utilization of
a machine learning-based approach.

Machine learning techniques can be typed based on a
number of aspects, among which the provision of the correct
function values or labels associated with the training data, i.e.,
supervised vs. unsupervised learning, is the most distinctive
one. Supervised learning aims at evaluating properties of the
training data in order to support the underlying hypothesis that
is represented in the association of provided training samples
and provided values or labels. The learning process establishes
a relation between given properties of the data and given labels.
Unsupervised learning, in contrast, analyses the training data
without any a-priori knowledge of the structure of the data. The
unsupervised learner is provided the (number of) labels only

without association to training data samples and autonomously
attempts to discover intrinsic structural characteristics in order
to partition the data into meaningful clusters.

A large class of applications of supervised machine learning is
the automatic classification of data instances. The classification
of EOIs into ripples, fast ripples, and artifacts in course of
HFO detection in EEG recordings is one such application.
Considering the data flow diagramme in Figure 4, classification
of detected events is the last stage of the conceptual detection and
classification process. Accordingly, in our software framework
machine learning-based classification can be configured as the
final step (“Event Classification”, see Figure 7), as a particular
type of classifier, of an HFO detection and classification process.

8.1. Support Vector Machines
The publications on machine learning in HFO detection
use four different techniques to approach the problem (see
Figure S6). Studies going for a supervised method apparently
favor support vector machines (SVM), while only a single
publication is using k-nearest-neighbor (k-NN) and logistic
regression models in addition.

Support vector machines have been preferred over k-NN as
a machine learning classifier model for integration with our
HFO detection software framework for mainly two reasons: As
detailed in Kim et al. (2012) and Kaushik and Singh (2013) k-
NN models are very sensitive to the choice of the parameter “k”
and the used measure of “distance” between any two samples.
In applications resulting in higher-dimensional feature spaces k-
NN performance deteriorates in terms of both, classification and
execution time. In addition, outliers tend to excessively influence
the classification accuracy as all data values contribute to the
result to the same extent. In particular, for a large number of
features even in combination with a small number of samples
SVM have proven to yield better classification results as long
as the margin (i.e., the geometric “distance”) between classes is
sufficiently large. The second reason for a decision in favor of
SVM is the availability of open-source SVM libraries (“LIBSVM”
and “LIBLINEAR,” see Chang and Lin, 2011) that can be easily
linked into a classification module/activity.

8.2. Construction of Feature Vector
Besides the decision for a suitable machine learning model,
the diligent construction of the feature vector is of critical
importance for the success of the learning algorithm. The careful
selection of those input data properties which are assumed to
have the most discriminative power with regard to the intended
classification considerably influences the quality of the resulting
predictive model. Not even the best type of learner is able
to compensate for poorly chosen features. Selecting reasonable
features requires a certain understanding of the nature and
characteristics of the input data. This type of a priori information,
also called “bias” or “prior knowledge,” is a vital prerequisite for
any useful learning process (Nilsson, 1998; Shalev-Shwartz and
Ben-David, 2014).

The events of interest to be classified in our application are
fragments of short duration of a digitized, that is, a quantized
and discretized EEG signal. Such signal can be analyzed with
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TABLE 3 | Implemented time domain signal features.

Feature description Acronym References

Average segment amplitude; mean

value of all samples of segment (a).

mAmp Blanco et al., 2010

Amplitude delta between segment

maximum and segment minimum;

peak-to-peak over segment.

dAmp Pearce et al., 2013; Amiri

et al., 2016

Average time (dtex ) between

consecutive local extrema.

dtEx —

Duration of event of interest. dur Matsumoto et al., 2013;

Amiri et al., 2016

Maximum positive gradient; steepest

transition from local minimum to local

maximum.

gdPos Amiri et al., 2016

Maximum negative gradient; steepest

transition from local maximum to local

minimum.

gdNeg Amiri et al., 2016

Maximum amplitude relative to mean

amplitude (amax − a).

rmaxA —

Minimum amplitude relative to mean

amplitude (amin − a).

rminA —

Total line length of segment

(
∑

T |at − at−1|).

linLen Gardner et al., 2007;

Blanco et al., 2010;

Pearce et al., 2013

Number of local extrema. numEx Pearce et al., 2013; Amiri

et al., 2016

Standard deviation of local amplitude

extrema relative to mean amplitude

(sd(aex − a)).

sdAEx —

Standard deviation of delta time between

consecutive local extrema (sd(dtex )).

sdDtEx —

regard to its morphological, time domain properties (observing
the signal as a function of amplitude over time), as well as
considering its spectral composition (in terms of proportional
contributions of oscillations of distinct frequencies to the original
signal). In addition to the review of features used in earlier studies
using machine learning, the in-depth assessment of published
analytical approaches is of particular advantage for the feature
vector definition. Analytical methods are basically considering
the same distinctive signal characteristics, only the processing
strategy is entirely different.

8.2.1. Time Domain Features
The HFO detection software framework implements the
extraction of time domain features within a dedicated module
(class “feature extraction” in Figure 7) that can be registered as
one step of a process’ sequence of activities. The time domain
feature extraction module receives a data matrix node, i.e., the
high- or band-pass filtered EEG signal, and a list of events of
interest to be processed as input data. Each event is analyzed with
respect to the signal characteristics detailed in Table 3.

The feature extraction module allows to selectively include
subsets of the listed features in the feature vector, depending
on the configuration of the extraction step within the hosting
process. In order to extract specific properties from the output
of distinct preprocessing stages, e.g., from high-pass filtered,

low-pass filtered, or unfiltered EEG data, it is possible to include
the same feature extraction step multiple times within a single
process, with each instance receiving a different input data set.

8.2.2. Frequency Domain Features
Events of interest can be analyzed with regard to their
characteristics in the spectral representation. Frequency domain
analysis in our software framework is currently limited to a static
spectral decomposition. We use Fast Fourier Transform with a
Tukey window and α = 0.5, the ratio of the cosine-tapered length
of the full window, applied upfront. The resulting magnitude
values are aggregated into frequency sub-bands (bins) of defined
width. Lower and upper frequency limits, as well as the sub-
band width can be specified. The calibrated magnitude of each
sub-band is added to the feature vector as a separate feature.
Optionally, the generated spectrum can be normalized to the
value range [0..1]. The computed scaling factor is considered as a
further feature in this case.

A more elaborate spectral analysis could generate further
potentially useful and distinctive features, such as the spectral
centroid (Blanco et al., 2010; Matsumoto et al., 2013; Pearce et al.,
2013) of the segment. In particular, a time-frequency analysis
could yield interesting details about the development of the
signal’s spectrum throughout the event. Systematic tests would be
necessary to assess the added value of these properties in addition
to the static spectrum.

8.2.3. Feature Subset Selection
Depending on the number of observed input data properties and
their numerical representations, feature extraction may result in
feature vectors of considerable length, i.e., in high-dimensional
feature spaces. Not all of these elements, particularly of high-
dimensional feature vectors, contribute equally to the quality of
the constructed predictive model. The longer a feature vector,
the higher the chance that some features convey redundant
information or are insignificant or even irrelevant with regard
to the targeted classification (Dash and Liu, 1997; Guyon
and Elisseeff, 2003). Obviously, this may significantly increase
computational cost in terms of both, memory usage and CPU
time, for no benefit.

The second aspect mandating dimensionality reduction is the
risk of poor generalizability of the resulting model in case the
extracted features are adapted too closely to the training data set.
This problem is known as “overfitting” (Shalev-Shwartz and Ben-
David, 2014). Generally, the training data samples are assumed
to be selected independently and identically distributed from
and, thus, to be representative for the underlying distribution
(universe). In that case the ideal strategy would be to minimize
the empirical error, i.e., the error in classifying the training
data set [“Empirical Risk Minimization,” see Shalev-Shwartz and
Ben-David (2014)]. Since EEG recordings differ from patient
to patient and are influenced by a number of factors, such as
circadian rhythm, received medication, activity, or exogenous
artifacts, this assumption is not valid for the HFO classification
case. The better the classifier performs on the training data set,
the higher the risk of overfitting and failing on previously unseen
recordings, i.e. the “true error” increases with a decreasing
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empirical error. Reducing the number of features according to
a suitable algorithm may also decrease the risk of overfitting
by reducing the susceptibility of the constructed model to
(potentially exceptional) peculiarities of the training data set
(Nilsson, 1998).

A third reason calling for a reduction of feature vector
length is an improved understandability of how characteristics
of the data are related to the classification outcome. Knowing
which properties are the most influential and discriminating
may be of interest also for the advancement of analytical HFO
detection algorithms.

Feature subset selection addresses the issue of finding the
smallest subset of features that yields the best classification
performance. This problem raises two questions: how to select
a particular subset? And how to assess its performance? The
conceptually simplest solution is to minimize the true error
using all possible combinations of features and to validate each
combination using samples not in the training data set (Guyon
and Elisseeff, 2003). Considering the exponential complexity
requiring 2|F| iterations, with |F| the dimension of the feature
space, this approach is computationally not feasible.

The algorithm implemented in our SVM classifier module
iteratively partitions the provided training data set into a training
and a validation subset (resampling with replacement) and
assesses the predictive power of selected feature subsets by
creating a newmodel in each iteration. Technically, this so-called
“wrapper” method is agnostic with respect to the particular type
of machine learner and could be encapsulated in a dedicated
module in order to reuse it with potential future classifiers. The
encapsulating procedure of the feature subset selector is depicted
in Figure S7. The procedure receives the full set of features and
the training data set as input items. In an outer loop the training
data set is randomly shuffled and partitioned into a training
subset and a validation subset (“hold-out” samples) using the
GSL implementation of the MT19937 random number generator
(Galassi et al., 2017).

Subsequently, ANOVA is performed separately on each
feature in order to reorder them according to their discriminative
power with regard to the classes to be distinguished (ripple, fast
ripple, artifact). ANOVA maintains the functional dependency
between data and labels and, thus, satisfies this requirement for
a suitable variable ranking function (see Song et al., 2012). To
avoid a bias by the validation subset, only the training subset is
considered in this step. The inner loop, detailed in Figure S8,
derives a (locally) optimized subset of features based on the
reordered set of features and the disjoint training and validation
data subsets. The resulting feature subsets of all iterations of this
procedure are aggregated into a feature frequency histogramme.
The number of iterations of this outer loop depends on the
configured ratio (r) of the validation subset size with respect to
the total training set size and is calculated as n = ⌊1/r⌋. The final
step of the procedure generates an optimized feature subset using
only those features that appeared in at least two locally optimized
feature subsets.

The inner loop (Figure S8) uses the “greedy forward
selection” algorithm, also referred to as “hill climbing” (Guyon
and Elisseeff, 2003), to create a locally optimized subset of

features on the basis of the provided training and validation
data subsets. The algorithm iteratively adds features, taken from
the ordered input feature vector, to the (initially empty) local
feature set. This local feature set is used for model generation,
using the training subset, and validation, using the validation
subset. After each iteration, the feature that resulted in the
highest improvement of classification accuracy is permanently
added to the local feature set. The loop terminates as soon as no
improvement can be made by adding further features. Adding
only features that improve the outcome also reduces redundancy.

As the input feature vector is ordered according to the
discriminative power of the features, the algorithm tends to
converge after a small number of iterations. A further speedup
is achieved by removing from the ordered feature set all features
that resulted in a classification accuracy af < a − sd(a) when
added, causing them to be ignored in subsequent iterations.

Here, we provide an example based on 19 invasive recordings
with macro electrodes (Montreal reference data set) and a
sampling rate of 2,000 samples/s. The total number of events was
11434 (avg. 600 events/recording), with a total duration of events
of 80,5426 ms (equivalent to 161,0852 samples). The average
event duration was 70.5 ms (141 samples), standard deviation of
43.9 ms and median 62 ms. The selection starts with 85 spectral
features (i.e., spectral bins). The algorithm proceeds as follows:

• Feature node 1: 11434 instances, 9 features (on high pass
filtered data)

• Feature node 2: 11434 instances, 6 features (on low pass filtered
data)

• MgpActClsSVM: concatenated 100 features from 3 feature
nodes for each of 11434 instances

• MgpActClsSVM: random number generator
• MgpActClsSVM: runs: 10, training set size: 10291, validation

set size: 1143, classes: 3
• MgpActClsSVM: Instance count: class[ [EOI] ] = 1379
• MgpActClsSVM: Instance count: class[ [F] ] = 688
• MgpActClsSVM: Instance count: class[ [R] ] = 9367
• [...]
• All features that occurred (i.e. were part of the computed

subset) at least in 2 of the performed 10 runs were selected for
the final subset:

• MgpActClsSVM: Feature vector: len: 6: [42 43 90 91 93 95 ]
• MgpActClsSVM: Avg accuracy: 0.973561

The execution time for feature subset selection from 100 to 6
features was in total 137 minutes on a Apple Mac Pro “Eight
Core” 2.66, 16 GB RAM, Solid-state disk.

8.2.4. Feature Scaling
Having large and varying ranges of values for different features
may negatively affect the classification performance, as those
features with the largest value ranges may govern the model
generation process and may be a source of overfitting the model
to the training set (Lin, 2015). This is of particular concern
in geometrical machine learning models. A commonly used
technique to mitigate this problem is to scale (or normalize)
the features to some common value range (Nilsson, 1998): x′ =
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m+ ((x− xmin)(M −m))/(xmax − xmin), with xmin and xmax the
minimum and maximum of the original range and m andM the
normalized minimum and maximum (settingm = 0 andM = 1
is termed “unity-based normalization”). The implemented SVM
classifier module allows to specifym andM.

During training, the SVM module derives the scaling factors
for each feature within each iteration of the outer feature subset
selection loop (Figure S7), considering the random training
data subset only. Feature scaling is then performed for all
samples using the calculated factors. Before concluding a learning
process and building the final prediction model, feature scaling
is re-performed using scaling factors calculation over the entire
training set.

8.2.5. Parameter Optimization
SVM technique partitions the instance (sample) space by a
hyperplane (the class or decision boundary) that is defined by
its support vectors (those samples of the training set that are
closest to the boundary) and the “margin” between hyperplane
and support vectors. Since HFO classification involves three
classes, ripples, fast ripples, and artifacts, the problem is
internally broken down in LIBSVM into a set of three models
(n(n − 1)/2 for n classes), each distinguishing between two
classes (Chang and Lin, 2011).

According to Cortes and Vapnik (1995), what they term “soft
margin hyperplane” can be found by minimizing the functional
1
2w

Tw + C
∑

l ξi, with wT the transpose of the (weight) vector w
defining the hyperplane and

∑
l ξi the sum of training errors. A

training error ξi is defined such that yi(wT · φ(xi) + b) ≥ 1 − ξi
with ξi > 0, xi an element of the training set, φ a feature
space mapping function (see below), yi the respective class label
(1 or −1), and b, bias, a scalar. (The optimal class-separating
hyperplane would imply ξi = 0 for all samples of the training
set, while 0 < ξi < 1 results in a margin violation and for ξi > 1
the corresponding sample xi is misclassified Zisserman, 2015.)

LIBSVM allows to adjust the regularization (or
misclassification penalty) parameter C which controls the
emphasis that is put on misclassifications during training, i.e.,
how hard the learner shall try to avoid misclassifications of
training samples. A smaller C results in a wider margin and a
reduced risk of overfitting the model to the training data, at the
cost of possibly misclassifying some training samples.

Support vector machines can transfer the feature vectors
into a higher-dimensional feature space in case the data is
not separable in the original feature space, enabling non-linear
decision boundaries in the original feature space. This process
requires the computation of the inner product of the mapping
function φ: 〈φ(xi),φ(x)〉 which can be efficiently calculated
(without knowing φ) using a suitable “kernel function” K(xi, x)
with xi a single vector of the training set and x the sample under
test (Jordan, 2004).

The implemented SVM classifier module configures LIBSVM
to use the Gaussian radial basis function (RBF) as a kernel
function. It is defined as K(xi, x) = e−γ ||xi−x||2 with γ ≥ 0
the weight associated with the distance ||xi − x||. K(xi, x), thus,
gives a weighted measure of distance or “closeness” of the values
xi and x and converges toward 0 for increasing values of γ and

toward 1 for decreasing values (Shalev-Shwartz and Ben-David,
2014). From a simplifying perspective, this metric can be seen as a
measure of complexity of the hyperplane or “peakedness” toward
its support vectors. A large γ trims the model more tightly to the
support vectors increasing the risk of overfitting, while a small γ
may not be able to reflect the complexity of the data (Keerthi and
Lin, 2003; Ansari and Ahmadi-Nedushan, 2016). LIBSVM allows
to adjust γ to tune the predictive model as required.

Since the parameters C and γ mutually influence each other
the SVM classifier module optimizes them in a grid (quadratic
loop) fashion. The configurable ranges for both parameters are
exhaustively probed, computing the accuracy via cross-validation
over the training set for each combination of values. A clear
disadvantage of this method is the quadratic complexity O(n2).
More elaborate parameter optimization algorithms, such as
proposed by Keerthi et al. (2007), could be considered in the
future in order to reduce the computational cost.

8.3. SVM-Based Detection and
Classification Process
The flow of data items, from the provision of raw EEG input data
to the output of classified HFO markers, and the life-cycles of
necessary temporary data nodes depend on the configuration of
the process. Figure S9 illustrates the movement of information
within a HFO detection process based on SVM classification.
The process comprises four stages, arranged horizontally from
left to right in the figure, which are traversed sequentially (see
also Figure 7).

• In the preprocessing stage a “FIR filter” activity creates a high-
pass and a low-pass filtered version of the raw EEG recording
it receives as input.

• The “RMS-based event detection” activity in the EOI

detection stage receives the high-pass filtered EEG and
analyses it for occurrences of potential high-frequency
oscillations which are compiled into a list of event markers.

• The feature extraction stage hosts two activities. The
“Frequency-domain feature extraction” step uses the EOI list
generated by the detector to create a feature vector from the
normalized spectral decomposition of the high-pass filtered
EEG data segment corresponding to each listed event. The
second activity, “Time domain feature extraction,” extracts
morphological properties from both, the low-pass and the
high-pass filtered versions of the EEG recording. Again, the
EOI list defines the data segments to be analyzed.

• The “classification” stage is the final stage of the process. It
hosts an instance of the SVM-based classifier which relabels
the events in the EOI list into “ripple,” “fast ripple,” and
optionally “artifact,” based on the aggregated feature vector
associated with each event. In validation mode (see below)
the activity generates a classification performance report,
informing about the achieved level of accuracy.

8.3.1. SVM Classifier Operational Modes
The implemented SVM classifier module can be operated in three
distinct modes that depend on the context in which the hosting
process is executed.
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1. In learning mode, the classifier uses the input EEG data
to generate a predictive model based on the labeled
(pre-classified) sample events, i.e., the training set, and
persistently stores the model for subsequent validation and
classification runs. The process of model generation includes
the feature subset selection and parameter optimization
activities discussed earlier.

2. The classifier’s validation mode is invoked in order to
assess the classification performance of a previously generated
predictive model. The classifier processes potential HFO
occurrences provided by the detector, classifies them, and
compares the classification results with the labeled events that
are contained in the original EEG input files. Classification
performance is expressed in terms of sensitivity or true
positive rate, precision, false negative rate, false discovery rate,
and F1 score.

3. In classification mode the classifier applies a previously
generated predictive model to classify the list of events
associated with the provided EEG input recording.

9. USABILITY

Whether a software system is considered useful and appropriate
not only depends on the set of implemented functions but is
largely related to intuitiveness and comprehensibility of the steps
and actions that have to be performed in order to execute a
particular function or to achieve a certain goal.

In the case of the implemented HFO detection framework
the two targeted groups of users, clinical EEG specialists
and neuroscientific staff, have to be considered, who use
the system for different purposes and with distinct sets of
requirements. While the primary interest of the EEG specialist
is to analyse and comprehensively report on HFO occurrence
and characteristics within an EEG recording, the neuroscientist
uses the system to analyse and evaluate existing approaches,
or to develop new HFO detection and classification strategies.
The operational concept shall accommodate both scenarios by
making the relevant operations available to the EEG specialist
in a straight-forward and familiar way, and at the same time
providing the required level of adaptability and extensibility to
the neuroscientist.

9.1. Visual Reviewing Tools
Visual review of raw or filtered EEG waveforms is still the
most important analysis technique in daily clinical routine.
The developed software framework adopts traditional EEG
viewer functions, supported by a comprehensive set of tools
that provide alternative views of the data, such as time-
frequency representation, with focus on visual recognition of
high-frequency oscillations. Even though the system is centered
around automated signal analysis, visual reviewing tools are
important in order to analyse and understand the morphological
and spectral characteristics of valid HFOs and their distinction
from artifacts, an essential precondition for the development and
optimization of well-performing automated detection strategies.
Moreover, the definition of an expert-validated “ground truth,”
i.e., assembling an ideally large set of HFO events that is agreed

upon after visual analysis of representative sample data, which is
the basis for assessing the performance of automated detection
algorithms, requires the availability of suitable visual tools. A
typical waveform display is shown in Figure 8 in compact form.
The screen is split into two synchronized display windows. The
left window reproduces the original zero-mean corrected EEG
signal in standard scaling with a time resolution of 60 mm/s and
an amplitude scaling of 25 mm/mV. The right window shows a
high-pass filtered copy of the same EEG recording, starting from
the same point in time but with increased temporal resolution
and amplified voltage scale (450 mm/s, 400 mm/mV). Mouse
or cursor keys can be used to scroll through the recording
with both display windows maintaining their synchronicity.
Temporal and amplitude scalings can be adjusted independently
for each active display window. A number of scaling presets
cover suitable adjustments for different levels of detail of
data display.

Whenever the user marks a potential HFO event in the right
window, a small overlay window reports the key parameters
(time offset, duration, and peak frequency) of the marked data
and a pop-up menu allows to tentatively classify the selected
segment. A later reclassification of segments is possible. The
display window on the left projects the selection in proper
time and amplitude scaling onto the original data. An overlay
“analysis” pane that contains a configurable set of alternative
representations of the selected segment can be enabled for
each of the display windows. The analysis pane depicted in
Figure 8 shows the first three intrinsic mode functions of an
empirical mode decomposition as well as the time-frequency
representation of the segment plus an equally-sized environment
before and after the selection. Red vertical lines demarcate the
selected segment (middle) and the surrounding environment
(left, right).

In addition, the system’s visual review tools currently
implement the following views that can be added to the
analysis pane:

• Spectral decompositions of the selected segment and the
selected segment including its environment. This view
allows to estimate which frequencies are more dominant
in the segment in comparison to its direct temporal
environment, and, thus, to identify specific distributions in
spectral power.

• The discrete wavelet packet decomposition (DWPD) extracts
the signal power over the segment’s duration using discrete
time and frequency steps. Similar to the continuous wavelet
transform it depicts the time/frequency distribution of
signal power.

• The short-term Fourier transform (Gabor transform)
decomposes the non-stationary signal into small segments
which are considered stationary. FFT (fast Fourier transform)
is separately applied to each segment. It is a faster alternative
to the continuous wavelet transform, however, its temporal
resolution needs to be traded off against its frequency
resolution by adjusting the partitioning window function.

Figure 9 illustrates these analysis views by example of a 100 ms
segment of a depth electrode signal.
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FIGURE 8 | Compacted view of synchronized waveform display. Left window: standard scaling (60 mm/s, 25 mm/mV). Display of empirical mode decomposition and

time-spectral analysis of marked segment (red). Right window: amplified waveform (450 mm/s, 400 mm/mV) with marked segment (red) matching the marking in the

left window.

9.2. Signal Preprocessing
Virtually all applications, including the visual detection of HFO
events, require the raw recordings to be preprocessed in order to
reduce the data to the relevant spectral or temporal components.
The following filtering and segmentation mechanisms are
implemented in our software system:

9.2.1. Filtering
A FIR (finite impulse response) filter allows to reduce the
bandwidth of a recorded signal and to extract particular
frequency bands. The filter is based on a windowed-Sinc function
(Smith, 1998) and uses forward/inverse FFT to reduce the
computational cost. The filter allows to optionally specify a lower
and/or upper frequency limit and, thus, is able to operate as
a low-pass, high-pass, and band-pass filter. As an additional
configurable option, the resulting filter kernel may be convolved
with itself which leads to a further improvement of its stop-band
attenuation (< −145dB typically).

In a study using simulated and real EEG data Bénar and
colleagues (Bénar et al., 2010) discussed the problem that FIR
filters may introduce “false ripples,” oscillatory artifacts that
could be mistaken for real HFO events, when filtering signals
that occupy a very wide or even the entire frequency spectrum
(band-unlimited signals). The less sinusoidal and the steeper a
signal transient the wider is typically its spectral coverage. In the
extreme case of a unit impulse the signal’s energy is equally spread

across the entire spectrum. Filtering a signal that has similar
properties, as may be the case with sharp epileptic spikes, may
result in an output signal closely resembling the impulse response
of the filter, which is, in the case of Sinc-based FIR filters, a
symmetric short-term oscillatory signal.

Empirical mode decomposition (EMD) is a technique that
can be used to extract a particular sub-band from a given
signal in replacement of classical filters (Flandrin et al., 2004).
Conceptually similar to the Fourier transform (FT), the EMD
approach decomposes a signal into its narrow-band constituent
functions or modes. In contrast to FT, which is based on a system
of sinusoidal basis functions, the EMD is a purely data-driven
technique that does not assume any specific inherent function
type or template.

The algorithm is executed iteratively and calculates in a first
step the envelope that connects the local minima of the signal
segment as well as the envelope connecting the local maxima.
Most frequently cubic splines are used to interpolate between
consecutive local minima or maxima. In a second step the
mean of the two envelopes m(t) = (envmin(t) + envmax(t))/2
is subtracted from the original signal resulting in a differential
sequence d(t) = s(t) − m(t). These steps are repeated with
d(t) replacing s(t) in each iteration until the mean of d over the
processed segment (1/T

∑
T d(t)) is smaller or equal some ǫ (the

“stop criterion”). The resulting sequence d(t) is the first “intrinsic
mode function” (IMF) and contains the “highest frequency”
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FIGURE 9 | Additional segment analysis views. (Left) Spectral

decompositions of selected segment (orange), selected segment plus

environment (blue). Purple bins represent the overlap. Bin width 10 Hz.

(Middle) Discrete wavelet packet decomposition, time vs. frequency. (Right)

Short-term Fourier transform (Gabor transform), time vs. frequency. (Middle,

Right) Power increases from dark blue to red. Red vertical lines demarcate the

selected segment and environment.

components of the input signal. The entire procedure is repeated
using m as the new input signal. The algorithm terminates
after the desired number of IMFs has been calculated or
m is linear.

The EMD implementation of the software framework allows
to generate a contiguous subset of intrinsic mode functions,
specified the first and the number of following IMFs to
be extracted from an input signal. The stop criterion (ǫ)
for a single IMF is defined as the minimum threshold of∑

T ((s(t)− d(t))2/s(t)2) in our case. Figure S10 depicts the
configuration panels for FIR filter and EMD. Utilizing the EMD
technique it is crucial to consider that, in contrast to conventional
filters, it is not possible to a-priori specify the exact frequency
sub-band to be extracted (see Rilling et al., 2003). Rather it is
an adaptive mechanism that partitions the input signal into high
and low frequency components. The IMF “sifted” from each

iteration’s input signal is defined as a waveform that has a zero
crossing in between each pair of consecutive extrema and a zero
(plus ǫ) mean. By definition, the spectrum of each IMF depends
on the local input signal and may vary over time.

9.2.2. Segmentation
Many use cases require the analysis of only certain segments of
a recording. These segments may be arranged around external
triggers or events, or may be defined as particular time windows
relative to the start of the recording.

Our software framework supports the extraction of time-
based segments from any raw or preprocessed recording. Based
on a list of time-window definitions (Figure S11, left) of arbitrary
length the segmentation process creates a new data node that
contains a single contiguous epoch per time-window (i.e., a third-
order matrix node). All data portions apart from the defined
segments are skipped.

The definition of segments anchored to external triggers or
events requires a hosting event track to be included in a recording
and is, thus, possible for supported external EEG data file types
only (see section 6.1). The event-based segmentation process
scans the input file for trigger or event definitions and presents
them in a selection dialog that allows to specify the event/trigger
types of interest along with the duration of the segment to be
extracted (Figure S11, right). A separate epoch for each event
that matches one of the selected types is created as a new two-
dimensional matrix which is stored as an element of a third-order
matrix node.

9.3. Process Configuration
Section 7.2 details the concept of configurable processes as
implemented in the software framework. Each process comprises
a sequence of activities (processing steps). Most of these
activities require a set of parameters that are either pre-
defined or need to be chosen by the operator. For that
purpose each activity provides a parameter configuration widget
(panel) which reports the relevant parameters and allows the
modification of their values. In course of process configuration
instances of these widgets are aggregated and displayed within a
configuration dialog, permitting the operator to navigate within
the sequence of activities and coordinate the parameterization
of the process (Figure S12, left). The process configuration
dialog includes an additional tab “References” which informs
about the literature that constitutes the theoretical foundation
for the implemented algorithm(s) and which may serve as
a directory of sources of detailed information (Figure S13,
right).

Once a well working set of parameters has been developed
for a particular process the values can be persistently stored.
Each stored parameter set is associated with a unique textual
identifier that allows to restore and use it in subsequent process
runs (Figure S14). An arbitrary number of parameter sets can be
stored for each defined process. Execution of a process on the
currently active data node is initiated using the current set of
parameters as soon as the operation selects the “Ok” button.
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9.4. SVM Model Generation and Validation
Processes may integrate machine learning techniques to classify
tentative HFO events (see section 8). Similar to purely
analytical processes, machine learning based processes may
require the adjustment of sets of parameters for each of
their preprocessing, event detection, feature extraction, and
classification steps.

As a major difference to analytical processes the classification
step ofmachine-learning based approaches is based on previously
generated and validated predictive models. Typically, these
model generation and validation processes are not executed
on a single (the currently active) data node, but on a subset
of available recordings. A dialog that is presented at the
beginning of the process configuration activity allows to define
the subset of data nodes to be considered as the training
or the validation set (Figure S14, listbox on left side of
dialog).

In addition it is necessary to specify the marker types
according to which detected events shall be differentiated
throughout the learning and validation processes. The listbox on
the right-hand side of the dialog depicted in Figure S14 presents
the respective selection. The listedmarker types are read from the
software framework’s static configuration file.

The further steps of the parameterization of a machine-
learning based process are analogous to analytical processes.
After suitably configured preprocessing steps the sequence of
activities contains an event detection module which identifies
the regions of interest that are subject to feature extraction and
analysis in the following steps. The same types of event detectors
as for analytical algorithms (e.g., Staba et al., 2002 or Burnos
et al., 2014) can be used. Subsequently, the subset of signal
properties (features) to be evaluated by the learner/classifier has
to be defined. Figure S15 depicts the parameter configuration
panels for time domain related (left) and spectrum derived
features (right).

Specifically for the model generation and validation processes
the correlation in terms of temporal overlap and channel between
the detected “events of interest” and the predefined markers
contained in the input data nodes is essential. During model
generation (learning) these markers are used to relabel the
matching events of interest, while in the validation process the
markers define the ground truth to validate the predicted labels
for the detected events against. The event types to be relabeled
and the labels of the reference markers need to be specified along
with the minimum amount of temporal overlap between any
two predefined and detected events that is required in order to
consider them as matching. The parameter configuration dialog
integrates a dedicated panel for this purpose (Figure S16, left).

As the final parameterization step of a machine-learning
process the parameters for the learner/classifier have to be
adjusted. Figure S16, right-hand side, shows the configuration
panel implemented by the SVM classifier module. The panel
reflects the settings required for feature scaling, feature
vector optimization, and regularization and distance weight
optimization, as described in detail in section 8. The predictive
model resulting from the learning process is stored persistently
using the “Model file” name specified in the dialog. Like for

analytical processes, parameter sets can be stored and restored
for future use.

9.4.1. Model Validation
The parameterization steps of the learning and the validation
processes are identical with the exception of the “Model file”
name which obviously must refer to an existing model in the
validation case. During the validation procedure the selected and
pre-marked (ripples, fast ripples) input data nodes are used to
assess the classification performance of the previously generated
model by

1. determining the subset of automatically detected events of
interest that overlap at least to the adjusted percentage of
temporal overlap (Figure S16, left) with pre-defined markers
contained in the input nodes,

2. and comparing the labels predicted for events in the
subset with the original labels attached to the matching
pre-defined markers.

Those automatically detected EOIs that are not matching any
pre-defined ripple or fast ripple events make up the set of
artifactual or “generic” EOIs.

For each detected event a “true positive” (PT) counter is
increased for the specific type of event if the prediction result
matches the original label. In case the prediction fails two further
counting variables are increased, a “false negative” (NF) counter
for the original type of event and a “false positive” (PF) counter
for predicted type of event. Based on these counters the following
basic statistical values are derived:

• Sensitivity or true positive rate (as PT/(PT + NF)),
• Precision or positive predictive value (PPV, as PT/(PT +

PF)), and
• False discovery rate (FDR, as PF/(PT + PF)).

The results of a machine-learning model validation process
including the calculated statistical indicators are summarized in
a validation report as illustrated in Figure S17. The report may
serve as a basis for regenerating and optimizing the predictive
model toward a particular target.

9.5. HFO Activity Reporting
The execution of an HFO detection and classification process
leads to the definition of a set of markers representing
ripple or fast ripple events of diverse duration which are
distributed over time and channels. These markers can be
individually reviewed and modified directly in the data node
by means of the visual waveform display. In addition, the
software generates reports that summarize the results of a
detection process. An “HFO Report” represents the collected and
statistically processed set of high-frequency events of a single data
node.

Figure 10 depicts the different modes in which the extracted
information is visualized in a report: the top window shows a
numerical, tabular report of the event types and their essential
properties per channel. It contains the number of events per
channel, the percentage of events of each type, as well as the
average duration and the average inter-event interval for each
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FIGURE 10 | HFO activity reporting modes (example data). (Top) Numerical report. (Middle) Event frequency per channel and event type. (Bottom) Event

distribution per channel over time.

event type and each channel. The middle window represents
the relative number of events of each type for each channel as
a bar chart, allowing quick conclusions on the event frequency
compared across channels. The bottom window reports on the
event occurrence as a two-dimensional distribution map over
time and channels. The map facilitates recognition of channels
of a high frequency of events as well as time periods of
event clusters.

9.5.1. Correlation Assessment
For the purpose of either optimizing the configuration
or parameters of a particular HFO detection process
or for comparing the results of different detection
strategies it is useful to systematically compare selected
subsets of HFO events with each other. In most cases,
visually identified and marked HFO events will serve as
a reference.
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As part of the HFO activity reporting the software framework
implements means to determine the types of events that are
present in the data node subject to analysis and to partition
these types into a reference and a test subset (Figure 11). The
results of the correlation assessment are presented in terms of
true positives, false positives, and false negatives (misses). Further
basic statistical data, i.e. sensitivity, precision, false discovery rate,
and balanced F-score are derived from these counters. Additional
information about temporal and channel-wise coverage of events
of the reference and test sets help to estimate the level of
agreement and overlap between the selected subsets.

9.6. MRI Integration
Associating detected and classified high-frequency events with
the coordinates of their occurrence, both, on the scalp in case
of scalp surface electrodes, and on the cortical surface or within
brain tissue for intracranial recordings, essentially contributes
to the value and usefulness of HFO analysis. Applications of
depth electrodes are based on highly individual implementation
schemes. The projection of electrode contacts showing high-
frequency activity into patient-specific brain MRI image sets
significantly enhances the conceivability of the extracted and
presented information.

The software framework allows to import and link anatomical
MRI image sets available in NIfTI format to any session-defining
EEG recording (see also section 6). Associated MRI images are
shown in the data nodes dock window at the level of the session’s
top level data node (Figure S19).

Selecting an imported MRI image from the data nodes list
opens the MRI data file in a new window which is partitioned
into three planar views, visualizing orthogonal perspectives of
the image data aligned with the body axes (longitudinal (z),
transversal (x), and sagittal (y) axes) in radiological orientation
(Figure S20). The operator can use the keyboard or mouse
to navigate through the image planes along any of the axes.
Red cross-hairs (cursors) indicate the current position on each
of the axes. The three planar views are synchronized so that
cursor movements in any of the views causes the others to be
updated automatically.

The fourth partition of the MRI visualization window hosts a
tabbed sub-window, one tab of which (“Information”) contains
informational data, such as file type, value format, or grid
scaling factor for each dimension. In addition, two “dial controls”
allow to adjust exposure and contrast of the image display
(Figure S21, left).

The tab “Volume View” renders a three-dimensional
perspective projection of the MRI data (Figure S21, right) using
“OpenGL,” a platform-independent high-level graphics library9.
The translucent image can be rotated and tilted at any angle. A
three-axes cross-hair indicates the orientation and position of the
viewing planes of the 2D planar images within the 3D projection.
By manipulating the observer distance in the translation matrix
or by scaling the vertical and horizontal clipping values of the
projection matrix the software allows to zoom into the projection
or to “step into” the data, projected slice by projected slice.

9Open Graphics Library, www.opengl.org

The 3D rendering and the planar 2D views of the MRI image
set are synchronized. Using the keyboard to move the cross-hair
in any of the visualizations causes all other views, including the
3D model, to be updated accordingly.

9.6.1. Electrodes Definition
Figures S20, S21 (right) show examples of implanted depth
electrodes projected into a patient MRI image. Correct
rendering of electrode contacts requires knowledge of electrode
types and coordinates. For high-density scalp and depth
macro electrode recordings the software framework supports
the definition of electrode sets. It derives heuristically the
number and types of used electrodes from patterns detected
in the contact or (unipolar) channel naming scheme. If
contacts are identified purely numerically, a high-density scalp
layout is assumed, whereas otherwise the type of electrode
is determined by matching identifier prefixes. In this case
the system presumes electrodes with equally spaced contacts
according the specifications of common electrode types of the
following manufacturers:

• DIXI Medical, 2A Route de Pouligney, 25640
Chaudefontaine, France

• Ad-Tech Medical Instrument Corporation, 1901 William
Street, Racine, WI 53404, USA

Since both manufacturers provide electrodes with the same
number of contacts but possibly different contact spacing, the
respective disambiguation is left to the operator. The electrodes
set definition procedure leads to the creation of a new data
node of type “Electrodes Set” associated with the currently active
session (see also section 6.1 and Figure 2).

Selection of the node opens a table of assumed types of
electrodes in the set, along with their specifications (length,
number of contacts, contacts spacing), identifier prefixes,
descriptions, and rendering colors (Figure S22). The table
permits the modification of electrode type, naming prefix, and
color. In the right-most column of the table an informative
description may be added to each electrode.

Defining the contacts’ coordinates or electrode trajectories is
a manual/visual process in the current implementation. Contact
coordinates are specified by their offsets from the origin on the
longitudinal, transversal, and sagittal axes.While the location and
orientation of a depth electrode is defined by two points, its tip
position and its point of ingress into the skull, the position of a
surface electrodes is specified by its surface coordinates only.

The “Electrodes Set” panel of the information sub-window,
shown in Figure S23, right-hand side, contains a table similar to
that of Figure S21, listing all defined electrodes, their prefixes,
colors, or descriptions. The columns “Surface Coords” and
“Tip Coords” report the pair coordinates associated with each
electrode and are initialized to (0; 0; 0). Coordinates are specified
by moving the cross-hair visible in the planar views to the
respective position and selecting the electrode tip/column point
that shall be associated with the current cross-hair position.
The planar as well as the 3D views (see Figure S20, right) are
updated immediately to reflect the repositioning or reorientation
of the electrode.
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FIGURE 11 | Example of statistical report on temporal and channel-wise correlation of selected types of events. Left column (green): reference subset; right column

(red): test subset.

9.6.2. Overlaying MRI With HFO Activity
The HFO activity report provides comprehensive information
about fast oscillatory events with respect to frequency of
occurrence of different types of events, temporal distribution, and
distribution across channels. In case the processed recording is
associated with a patient MRI image set it is further possible to
render the spatial distribution of events into theMRI (Figure 12).
A dialog box allows to select the types of events to be considered
in the visualization. The frequency of occurrence of selected event
types is projected onto the electrodes’ contacts using a colored
scale reaching from dark blue (lowest frequency of occurrence)
to bright red (highest frequency of occurrence).

While the system supports the adjustment of the scale to
balance frequency and coloring as well as spatial navigation
trough the Image set, the visualization does not convey any
information about the temporal distribution of events.

10. EFFICIENCY CONSIDERATIONS

In order to keep the software development effort manageable a
key design objective was to integrate available software libraries
wherever possible and appropriate. This led to the utilization
of the following third-party software packages that complement
each other in terms of covered functions:

• The “Qt” toolkit10 offers a wide range of functions to interact
with components of the underlying hardware/operating
system in addition to a comprehensive graphical widget set.
Qt is available for various operating systems and is a key
enabler for the targeted cross-platform interoperability of the
software framework.

• The GNU scientific library (gsl)11 is a collection of functions
for numerical calculations for a large set of areas in

10The Qt Company, Bertel Jungin aukio D3A, 02600 Espoo, Finland
11https://www.gnu.org/software/gsl/

mathematics and physics. Our software uses gsl function for
descriptive statistical, spline interpolation, random number
generation, and permutation functions.

• “FFTW”12 is a library that provides function to compute
discrete Fourier transforms on real and complex data.
All processes within our software that are based on DFT
transforms, such as FIR filter, spectral decomposition,
Stockwell transform, Hilbert transform, continuous wavelet
transform, etc. are based on this library.

• The Support Vector Machine implementation used by the
software framework is provided by LIBSVM (Chang and Lin,
2011; Hsu et al., 2016).

• To read and interpret binary MRI image sets in NIfTI format
the software makes use of the library “niftilib”13.

A different aspect of efficiency is the performance of the software
system in terms of computation time required to perform a
particular task. Wherever feasible it was attempted to take
advantage of current computer hardware architecture, typically
providing multiple CPU cores and large amounts of working
memory (RAM). Within most activity modules thread-pools are
used to process several channels of a recording in parallel, with
the number of simultaneously processed channels depending
on the number of available CPU cores. When reading large
data sets from persistent storage (hard disk, solid-state disk)
memory-mapping technique is used that projects the data that
physically resides on the storage device into the memory space
of the software process. This way, buffer management and
preloading of/disposing data are left to the operating system
which can optimize the strategy depending on storage type and
cumulative requirements of running processes. The use of open
source software allows to adapt third-party software to system
characteristics if necessary.

12Developed at MIT by M. Frigo and S. G. Johnson.
13http://niftilib.sourceforge.net
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FIGURE 12 | Planar and 3D visualization of spatial distribution of oscillatory events. Downscaled illustration based on example data.

Finally, it is of interest to know how sampling rates impact
computational time, as varying sources such as scalp vs.
microwire recordings use highly differing sampling rates, such
as 500 vs. 2 kHz. All of the algorithms analyse the data as a
series of samples. If the sampling rate is doubled, this implies
that the double amount of samples needs to be processed. This
is the same for the analytical algorithms as well as for the
feature-providing modules, which extract characteristics from
the signals. The extent to which the sampling rate affects
computing time depends however on the complexity of the
algorithm. In O-notation we could say, O(n) with n being
the number of samples or the sampling rate. Thus, if the
algorithm has a complexity of A=O(n), the time needed to
compute a result, e.g., a detection, doubles with doubling the
sampling rate. In contrast, algorithms with A = O(n2) would
have a four times higher computing time when the sampling
rate is doubled. Thus, it depends on the complexity of the
algorithm to what extent computing time increases with the
sampling rate.

11. DISCUSSION

MEEGIPS is a user-friendly software framework with a powerful
GUI that allows its use in research and possibly also in
clinical practice, given a future appropriate approval by relevant
authorities. If we compare MEEGIPS to other software, it
turns out that clinical software such as SystemPLUS Evolution,
BESA Epilepsy, or NetStation are focusing on the GUI, offering
only narrow applicability to research scenarios that demand
interoperability and extensibility. In contrast, the research-driven
and Matlab-based toolboxes are - except for RippleLab - lacking
a comprehensive GUI. Finally, the efficiency of Matlab-based
software is naturally lower, as Matlab-written code is between 9
to 11 times slower than the best C++ executable (Aruoba and
Fernández-Villaverde, 2015).

11.1. Further Algorithms
As stated in section 7.3.2 the list of predefined processes (Table 2)
is far from being exhaustive and could be easily extended.
A reconsideration of this list should take into account recent
studies. Specifically Roehri et al. (2017), have gained insights into
the advantages and disadvantages of algorithms, which might
influence future decisions on implementing algorithms.

We did not directly compare the algorithms in the present
manuscript, as the purpose was rather to present the software
framework and its intended use, not the comparison of the
algorithms. A direct comparison of the algorithms based on
different kinds of signals (see section 11.2) could give new
directions. For example, we implemented SVM as a classifier,
but recently deep neural networks become increasingly popular
and could advance the field in terms of greater gain in learning.
Nevertheless, we must keep in mind that deep neural networks
perform only well on huge amounts of training data, which
we do not have in terms of a gold standard ground truth of
manual markings of HFOs. Sophisticated engineering of data
augmentation or learning based on simulated data (Höller et al.,
2018) could be part of MEEGIPS in future releases.

It is furthermore of interest to re-think feature design for all
algorithms based on recent research achievements. Tamilia et al.
(2018) found considerable evidence pointing to spatiotemporal
aspects of HFO propagation patterns that could be turned into
meaningful features for classification. Especially on the surface
it is likely that HFOs occurring over multiple sites without
propagation represent rather artifacts, while those who propagate
and can be detected only over a small spatial extent could
be real HFOs. Another important aspect to be considered is
prior knowledge on the probability of occurrence of HFOs in
specific brain structures (Guragain et al., 2018). The necessity of
including prior knowledge into machine learning is laid down in
the well known theorem that there is “no free lunch” (Wolpert
andMacready, 1995). Including further information that narrows
down the area of search or that helps to appraise the likelihood of
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an event of being an HFO could be a valid approach for future
automated detection modules.

11.2. Signals From the Scalp
It is questionable whether the currently available algorithms for
automated detection perform equally well on scalp-EEG as on
invasive EEG data (Höller et al., 2018). Even though principal
methodological considerations on automation-supported HFO
detection likewise apply to invasive and scalp recordings, almost
all published activities are based on invasively collected data
(Höller et al., 2018). The comparatively low signal-to-noise ratio,
and a variety of artifacts that do not occur to the same extent
in invasive recordings represent particular challenges for scalp
EEG. In the MEG HFOs seem to occur quite rare, but they co-
localize with HFOs detected in invasive EEG (Papadelis et al.,
2016) and in scalp EEG (Pellegrino et al., 2016). Therefore, it is
highly warranted to implement an MEG module into MEEGIPS.
Recordings with large number of channels such as high-density
EEG recordings or MEG require additionally highly efficient
algorithms and an implementation that takes care of scalability.
MEEGIPS provides an ideal base for the inclusion of an MEG
module because of its efficiency considerations and because
of its modular architecture. It could be further considered to
implement a module into MEEGPIS that allows assessing and
visualizing the co-occurrence of HFOs in different signals, that
is, invasive EEG, scalp EEG, and MEG.

The potential benefits due to the non-invasiveness of scalp
EEG—lower risk, lower costs, the possibility to include larger
patient populations with different types of epilepsies as well as
to conduct longitudinal studies—are unquestioned. In contrast,
it was not examined so far whether the use of high-density EEG
or MEG instead of conventional (10–20) systems improves the
clinical value of scalp HFOs as biomarkers. The first step that
should be taken in order to address this research question is
to develop specifically adapted computer-supported detection
mechanisms. Moreover, future research needs carefully prepared
reference datasets with extensive ground truth in order to address
the question whether currently available algorithms or newly
developed algorithms performwell for automatedHFO detection
in scalp EEG. MEEGIPS provides the technical framework for
addressing these questions.

11.3. Limitations
While the choice of C++ reduces execution time by enabling
native execution of the code the determining factor for the
computational effort is the complexity of the algorithm. This
is beyond the problems that be can be addressed by the
software framework. This limitation is rather due to the selection
of algorithms, not due to the software per-se. Detection of
HFOs with certain algorithms might just take long because
the design of the algorithm does not scale well. For instance,
feature subset selection might take very long when the feature
vector is very long and the selection algorithm iterates over
many possible combinations of features with cross validation.
However, memorymanagement of C/C++ is very efficient, so that
MEEGIPS has in these terms advantages over MATLAB based
toolboxes. The modular design eases furthermore the future

change of the implemented algorithms such that new variants are
more efficient than previously published versions. For example,
computational time related to feature selection can be reduced
by sparse discriminant feature selection approach.

MEEGIPS does not include means for securing and protecting
the data, i.e. no built-in strategy for backup and encryption of
data is available, so far. However, also other clinical systems
typically do not include such modules, as backup is usually done
via internal mirroring systems within the networks of the clinics.
Likewise, data protection within clinical networks is guaranteed
by the firewall that applies to all clinical networks. MEEGIPS is,
however, compliant with the demands as it includes no module
that would transfer data to public storages, cloud systems, nor
does it include built-in reporting to the manufacturer in case
of crashes. So, there are no modules that would automatically
and/or covertly transfer potentially sensitive data. Moreover,
MEEGIPS offers no means of manipulating the raw data, that is,
no artificial waveforms can be inserted into the original signal.

12. CONCLUSIONS

The presented software framework MEEGIPS is the result
of a structured software development process. It provides a
comprehensive user interface with detailed signal analysis and
visualization components that support the visual identification
for HFOs. In addition to that, the software design allows the
flexible extension by additional components such as new HFO
detection algorithms. Processes are composed of processing steps
(activities), typically preprocessing (filtering, EMD), events of
interest detection, and events of interest classification. Variants
(i.e., specific algorithms) of these activities can be combined into
new processes by modifying the system’s process configuration
file. Finally, each activity requires a set of parameters. These
parameters can be adapted according to the experience or
knowledge of an expert.

The scientific development proceeds on a fast pace and
the adaptability to new developments of such a system is of
utmost importance.
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