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The recent enhanced sophistication of non-invasive mapping of the human motor

cortex using MRI-guided Transcranial Magnetic Stimulation (TMS) techniques, has not

been matched by refinement of methods for generating maps from motor evoked

potential (MEP) data, or in quantifying map features. This is despite continued interest

in understanding cortical reorganization for natural adaptive processes such as skill

learning, or in the case of motor recovery, such as after lesion affecting the corticospinal

system. With the observation that TMS-MEP map calculation and quantification

methods vary, and that no readily available commercial or free software exists, we

sought to establish and make freely available a comprehensive software package that

advances existing methods, and could be helpful to scientists and clinician-researchers.

Therefore, we developedNeuroMeasure, an open source interactive software application

for the analysis of TMS motor cortex mapping data collected from Nexstim® and

BrainSight®, two commonly used neuronavigation platforms. NeuroMeasure features

four key innovations designed to improve motor mapping analysis: de-dimensionalization

of the mapping data, fitting a predictive model, reporting measurements to characterize

the motor map, and comparing those measurements between datasets. This software

provides a powerful and easy to use workflow for characterizing and comparing motor

maps generated with neuronavigated TMS. The software can be downloaded on our

github page: https://github.com/EdwardsLabNeuroSci/NeuroMeasure

AIM

This paper aims to describe a software platform for quantifying and comparing maps of

the human primarymotor cortex, using neuronavigated transcranial magnetic stimulation,

for the purpose of studying brain plasticity in health and disease.
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INTRODUCTION

There is ongoing interest in characterizing the cortical
representation of limb muscles in humans from the TMS-
motor evoked potential. Motor map reorganization is considered
to occur in relation to motor learning from practice, and with
recovery from brain lesion. These phenomena are supported
by increasing number of studies in animal models such as
the rodent, and non-human primates. Yet, animal models
typically have a stimulation specificity advantage, such as with
optogenetics in the rodent (Lim et al., 2013), or intracortical
microstimulation in the monkey (Nudo and Milliken, 1996).
Human invasive (electrical) stimulation is also possible, however
transcranial magnetic stimulation (TMS) has practical (non-
invasive) and physiological (no anesthesia required) advantages.
What remains contentious with TMS however, is that the
spatial specificity of the motor maps is ambiguous, and thus
interpretation of the data is limited. For example, a crude but
reasonable method to establish map area historically, is to sum
the scalp sites (typically 1 cm spacing) from where a response
following TMS was observed (Wassermann et al., 1992; Melgari
et al., 2008). Responsive sites are flanked by areas where TMS
was delivered, but a response was not observed. Note that
this is “scalp-representation,” not “cortical representation,”
since the stimulation sites were on the scalp. Others have
interpolated the mean MEP amplitude data such that smooth
continuous contours representing the spatial representation
of MEP amplitude change across sites (Borghetti et al., 2008),
then defined non-zero map edges. A limitation of this method
is that the validity of the map fitting has not been sufficiently
interrogated experimentally, and the map is confined to the
scalp rather than the cortex. TMS using neuronavigation has
allowed the electrical field to be projected onto the cortical
anatomy below the stimulation site, with greater consistency
and precision for coil position (and orientation, hence e-field
trajectory). Two commonly used and commercially available
systems for TMS neuronavigation are BrainsightTM and
NexstimTM. Both have been used for TMS motor mapping.
In the case of NexstimTM, the United States Food and Drug
Administration (FDA) has approved the device for motor
mapping to aid with neurosurgical planning (FDA Regulation
Number: 21 CFR 882.5805). In each of these systems, the
cortical target corresponding to the center of the projected
electric field is assigned the motor evoked potential amplitude
recorded using limb muscle surface electromyography (sEMG).
The potential spatial error is in the order of millimeters
(Wassermann et al., 1992; Kleim et al., 2007). This method can
establish the approximate boundary of muscle representations
of the cortex, and has useful application to examine the
relationship to cortical topography and structures/foci of
clinical relevance.

For assessing map change with time, the neuroscience field
has developed the practice of sampling the motor cortex and
representing motor evoked potentials over a grid space, where
the TMS pulses are applied (Kleim et al., 2007; Littmann
et al., 2014). Comparisons are then made between maps

by directly comparing the values of likewise points on the
grid. While effective, the standardization of the grid space
makes data comparison between maps that were not collected
under those standards impossible. Few attempts have been
made in the field to employ mathematical model fitting to
estimate values between the collected data points and generate
a function that can be sampled anywhere for a predicted value
(Wilson et al., 1993; Arya et al., 2010).

We developed a workflow based on model fitting for
motor map quantification, and comparison, and have
made this software available to facilitate research into its
applicability for investigational and clinical use. The models
lend themselves to computations of surface area and volume
integral. Furthermore, the particular model fitting algorithms
included in this package are non-parametric algorithms
developed for creating smooth interpolations with high
goodness-of-fit. This is convenient for motor mapping data,
as the underlying distribution of TMS-evoked responses
from the motor cortex are not fully understood, so a non-
parametric model without such assumptions is ideal. The
advantage of this approach is that comparisons between maps
is simpler, as the motor map function can be sampled at any
location and compared with its likewise point from another
motor map.

While there are many ways for a motor map to be constructed,
the most common methodology involves the stimulation of
sites on the motor cortex in a grid via TMS (Wassermann
et al., 1992; Kleim et al., 2007; Jonker et al., 2018). Electrodes
placed on the skin over a target muscle record MEPs during
the stimulation procedure and every position on the sampling
grid can then be assigned a value based on the excitability of
the corticospinal pathway to the target muscle. This value is
typically reported as the peak-to-peak amplitude of the EMG
response (measured in microvolts or millivolts), but can also
be latency between time of stimulation and time of response
(measured in milliseconds). In the present manuscript, we only
consider the peak-to-peakmagnitude, which is themost common
mapping parameter.

The sampling grid can be thought of as 2D coordinate system
conformed over the curvature of the scalp (Kohl et al., 2006). This
grid space is registered to a patient’s MRI and is often exported
from integrated motor mapping system as 3D coordinates with
respect to an anatomical landmark, or to the origin of the MRI’s
3D image array. In summary, every position in the grid space
has an X (left to right), Y (posterior to anterior), and Z (inferior
to superior) associated with a value that is the peak-to-peak
magnitude of a MEP elicited when stimulating that location. An
example of a typical motor map is illustrated in Figure 1, and
some examples of a motor map’s features, are listed briefly in
Table 1. The center of gravity (COG) in particular is commonly
used to make comparisons as it describes both shifts in position
and amplitude of the MEP field (Guerra et al., 2015). However,
motor evoked potential (MEP) amplitude at a given stimulation
site and intensity, is variable across stimuli (Thickbroom et al.,
1998), in part due to random, spontaneous fluctuations in
corticospinal and segmental motoneuron excitability levels (Kiers
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FIGURE 1 | Individual motor evoked potential amplitudes sampled three times per location in a 0.5 × 0.5cm grid. Color represents peak-to-peak MEP amplitude in

µV. Recorded from the FDI muscle with TMS. (a) First recording. (b) Second recording begun immediately after the conclusion of the first with the same parameters.

TABLE 1 | Summary of map features calculated by NeuroMeasure.

Measurement Summary Units

Center of Gravity (COG) Weighted average of measurement

positions where the weights are

the values of the measurements.

Distance (mm)

Peak Amplitude Position of the absolute maximum

measurement within the mapping

field.

Distance (mm)

Surface Area (SA) The summation of areal patches

along the map whose MEP value

are above a set threshold.

Distance2 (mm2)

Volume Integral (VI) The summation of volumetric

patches. A volumetric patch is the

product between an areal patch

and its corresponding MEP value.

Intensity*distance2

(µv*mm2 )

Root Mean Square

Error (RMSE)

The average difference between all

sets of likewise values between

two motor maps.

Intensity (µv)

Area Under the Curve

(AUC)

The performance of a predictive

model fitted onto dataset 1 in

predicting dataset 2.

Unitless

et al., 1993), and state-dependent fluctuations (Abbruzzese et al.,
1996) in corticospinal excitability, while the contribution from
unstable coil position and trajectory are controversial (Jung
et al., 2010). Various methods have been reported to reduce
MEP variance, yet variability in health and disease remains an
important consideration (Schambra et al., 2015). Using custom
mapping software, Thickbroom and colleagues accounted for
MEP variance and showed acceptable reproducibility in TMS-
generated MEP motor maps, with a 1–2mm variation in center
of gravity over 30 repetitions in a sample size of 5 healthy
subjects (Thickbroom et al., 1998). Contemporary methods of
data fitting for generating maps should suitably account for
MEP variability.

While TMS hardware has evolved significantly since its
debut to make it the versatile and robust stimulation method

it is today, with notable advancements in coil type, field
strength, spatial resolution and navigation, and stimulation
technique (e.g., repetitive TMS and paired-pulse TMS) (Rossini
et al., 2015), a platform for performing standardized and easily
accessible analysis of this data is still not available. Such a
platform would need to report map features and provide a
convenient workflow for comparing these map features between
datasets collected from the same patient. Thus, the purpose
of this design project was to create such a software platform,
offering researchers and clinicians an easy to use workflow
for quantifying and comparing motor maps generated with
neuronavigated TMS.

In the present paper, we present the NeuroMeasure software
platform for quantifying and comparing TMS-generated maps
of motor cortex that may be used in the study of motor
plasticity, such as in response to biological recovery or
therapeutic treatments after damage affecting the human
corticospinal system.

SOFTWARE DESIGN

The software is open source and can be downloaded on
our github page: https://github.com/EdwardsLabNeuroSci/
NeuroMeasure

The NeuroMeasure software comes with detailed
installation instructions and a user’s guide highlighting the
operation of the app is also downloadable on the github
linked above.

OVERVIEW

The need addressed by this software package is quantification and
temporal comparison of motor maps generated by the Nexstim
and BrainSight integrated motor mapping systems. The process
for achieving this involves three steps. First we convert the 3D
Cartesian coordinates of the exported motor map to 2D angular
coordinates in order to reduce the number of independent
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variables while losing minimal positional information. Then, we
fit a non-parametric 2D surface function to the 2D angular motor
map. Finally, we compute the center of gravity and maximum
value from the raw input data, and compute surface area and
volume integral of the fitted surface function. These metrics can
be compared between motor maps generated from the same
patient, along with a visual overlay of the value differences at
likewise positions in angular space, as long as the two datasets
were generated with respect to the same reference point (or
were aligned).

WORKFLOW

Here, we present a basic outline of the application’s workflow,
summarized in Figure 2. First, the MRI scan of the patient’s
head that has been registered to the TMS recording session
is uploaded to the app. The scan is reoriented to a standard
orientation used by Nexstim and BrainSight, and segmented
to generate a binary mask separating the head from the
background. The binary mask is used to slice the 3D image
to generate a globe-like topographic projection of the head
and its anatomical features. Now, the motor mapping data is
uploaded to the application and positional data is converted
from 3D Cartesian coordinates to 2D angular coordinates which
are readily mapped to the topographic display. A reference
point is also uploaded together with the dataset as a means
of standardizing coordinate systems between datasets. The data
points can be clustered to group repeated-measurements if
necessary, and they can be fitted to a 2D surface function from
one of several surface fitting algorithms. Computation of the
center of gravity and maximum value were possible prior to
surface fitting, but now surface area and volume integral of the
surface function can also be computed to further characterize the
motor map. Furthermore, the fitted surface function facilitates
the comparison of likewise points between datasets as any
coordinate on the 2D angular plane can be sampled for a
predictedMEP value that can be compared to its likewise position
on another dataset.

KEY INNOVATIONS

Data Dimensionality and Topographic
Display
The first major consideration of the software’s design was
about the dimensionality of motor mapping data. A TMS
coil applied to the brain produces a magnetic field with a

distribution that can be approximated with simulation. This
resultant distribution is paired with a close approximation of

the location and direction of the stimulus using a process called

“neuronavigation,” which is automatically performed in both
the BrainSight and Nexstim systems when registering MEP’s

to the 3D coordinates of a patient’s MRI scan (Lüdemann-
Podubecká and Nowak, 2016). Typically a figure eight coil is
used because the resultant electric field generated using a coil
of this geometry is much more focused directly underneath
the center of the coil as opposed to the wide dispersal pattern
seen in single ring coils. From the center of the figure eight
coil, field strength tapers off as distance from the center of
stimulation increases. The MEP value is then assigned to the
position of the peak magnetic field strength, but it is important
to understand that the region of the brain under influence of
the magnetic field is not a just that point, but includes the
region around that point. It would be errant to conclude that the
resultant MEP location is the location of a particular neuronal
strand responsible for innervation; rather, we assume in the
design of the software that the combination of induced neurons
surrounding the MEP location are responsible ultimately for
signaling muscle contraction.

Despite the values being mapped to 3D coordinates, for
our purposes of fitting a predictive model, the grid is
effectively 2D. The coil is always applied to the surface of
the scalp and the depth of the effective stimulus of the
magnetic field is fixed to 1–4 cm so the resulting data points
take the shape of a 2D sheet that conforms to the scalp.
Since data points don’t vary in depth, there is no need to
interpolate the values of MEP’s in 3D and we can simplify the
predictive modeling problem to 2D, which saves considerable

FIGURE 2 | Flowchart of the NeuroMeasure workflow.
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computational resources.

xo =

N
∑

i=1
xi

N
yo =

N
∑

i=1
yi

N
zo =

N
∑

i=1
zi

N

Equation 1: xo, yo, zo are the coordinates of the centroid.
xi, yi, zi are the indexed coordinates of the points in
the point cloud. N is the total number of points in the
point cloud.

The most desirable strategy for de-dimensionalizing the data
would be such that the Euclidean distance between any two
points in 3D Cartesian space and in the new 2D space would be
proportional. Loss of this proportionality leads to data distortion,
causing data at the extremes to appear shrunken compared to
their true distances and sizes. Since the data fits the scalp which
approximates the shape of a sphere we found that conversion to
spherical coordinates without an “r” dimension, such that all 3D
points are fit onto a spherical shell, produces less distortion than
z-squashing where the z dimension is effectively ignored in the
3DCartesian system.We refer to this spherical coordinate system
without an “r” dimension as angular coordinates. An important
consideration for the conversion between angular and Cartesian
coordinates is the origin, whichmust be at the center of curvature
of the data in order to minimize distortion. We approximate the
center of curvature of the data points to be the geometric centroid
of the head, which we compute using a segmented binary mask of
the head generated from the patient’s imported scan. We convert
this mask into a point cloud by sampling every 25th “white” voxel
in the binarized image volume shown in Figure 3. The centroid of
this point cloud is than computed via Equation 1. The data points
are then converted from 3D Cartesian coordinates into angular
coordinates from the centroid using Equation 2.

θi = cos−1(
(zi − zo)

√

(xi − xo)
2 + (yi − yo)

2 + (zi − zo)
2
)

φi = tan−1(
(yi − yo)

(xi − xo)
)

Equation 2: θ and φ are the azimuth and inclination angle,
respectively. xi,yi,zi are the coordinates of the point cloud and
xo, yo, zo are the coordinates of the centroid.

Now that our data points are converted to angular
coordinates, we would also like to map them to the anatomical
features obtained from the MRI scan and display the two
concurrently. To represent a 3D image volume in an angular
coordinate space, we must generate spherical image slices. We
found that the best topographic displays of the cortex were
generated from ellipsoid shapes fitted to approximate the shape of
the scalp instead of pure spheres. Thus, we fit an ellipsoid to the
head segmentation discussed previously and use that geometry
to section our 3D image volume and generate image slices that
display the motor cortex in a “globe-like” projection.

First, we manipulate the point cloud that we use for our
centroid calculation in the same way as our data and convert
it to angular coordinates via Equation 2. We now use a
least squares regression to fit a function that relates angular

coordinates, expressed as (θ,φ), to 3D Cartesian coordinates,
expressed as (x,y,z). The function was chosen to be that of
an ellipsoid with a radial term represented by a fourth order
polynomial, shown in Equation 3, converted into matrix format
in Equation 4, and the weights solved for in Equation 5.
We found experimentally that 10 parameters was the cutoff
range where further parameters no longer benefitted the
qualitative shape of the ellipsoid to approximate the shape of
the scalp.

x− xo = w1 + (w2 + w3θ + w4φ + w5θ
2 + w6φ

2 + w7θ
3

+ w8φ
3 + w9θ

4 + w10φ
4) cos(θ) sin(φ)

y− yo = w1 + (w2 + w3θ + w4φ + w5θ
2 + w6φ

2 + w7θ
3

+ w8φ
3 + w9θ

4 + w10φ
4) sin(θ) sin(φ)

z − zo = w1 + (w2 + w3θ + w4φ + w5θ
2 + w6φ

2 + w7θ
3

+ w8φ
3 + w9θ

4 + w10φ
4) cos(φ)

Equation 3: θ and φ are the azimuth and inclination
angle, respectively. xi,yi,zi are the coordinates of the
point cloud and xo, yo, zo are the coordinates of
the centroid.

The solved weights from Equation 5 can then be substituted
back into Equation 3 to compute the equivalent 3D Cartesian
coordinates from any set of angular coordinates. This establishes
a means by which 3D spatial position can be registered onto
a 2D gridspace and projected into an image. This process is
shown visually in Figure 3, where a point cloud (Figure 3A)
representing the segmentation of a head is fitted to an ellipsoid
(Figures 3B,C) whose surface is characterized by an angular
coordinate system (Figure 3D). The MRI scan can then be
sampled by reading the grayscale voxel position at every angular
position on the ellipsoid’s surface, which can then be represented
as a 2D topographic map shown in Figure 3E.

a
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
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


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



b





xi − xo
yi − yo
zi − zo



 =
[

wx wy wz
]





Ix
Iy
Iz





Equation 4: (a) The same equation from equation 3 substituted
for (xi,yi,zi) the 3D Cartesian coordinates of the point cloud
and their angular equivalents (θi,φi) and converted into
matrix format, (b) the same equation from (a) abbreviated
with substitutions.
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FIGURE 3 | (A) A point cloud generated from sampling the segmentation of the head every 25th voxel, (B) an ellipsoid fit to the point cloud via least squares

regression, (C) the ellipsoid shown without the point cloud surrounding it, (D,E) the elliptic surface position is described by an angular coordinate system that, when

projected onto an image, creates the topographic display.

The loss of proportionality between 3D Cartesian distance
and angular distance, or distortion, mentioned previously is
further evident in the topographic map at the poles where
the features appear “stretched.” To better understand how our
de-dimensionalization strategy leads to distortion, consider the
more simplified geometry of a sphere shown in Figure 4. The
gridlines show how angular coordinates describe every position
on the sphere’s surface. The longitude and latitude lines represent
increments of θ and φ, respectively. Note how as the latitude
increases toward the pole, the arc length between two longitude
lines gets smaller until they eventually converge onto a singularity
at the pole. At this singularity, the coordinates (π,0), (2π/3,0),
(π/4,0) all represent different positions on the 2D topographic
map, but the same 3D point on the ellipsoid’s surface. In
fact, this is true everywhere on the map to some extent; the
proportionality between angular dimensions and 3D arc length
is not conserved throughout the map and thus there will always
be some misrepresentation of distance depending on what
proportion is used as the reference (in our case, the equator).
This is the reason why the topographic map appears “distorted”
toward its extremes. Because surface fitting also relies on this
conversion, it has implications regarding the interpolated motor
map and measurements that rely on it like surface area and
volume integral. We correct for this distortion to the best of our
ability by snapping the center of gravity of the data points to the

“equator” of the topographic map to minimize the distortion at
the poles as much as possible, however better solutions to this
problem are a focus of future development.





wx

wy

wz



 =





(I′x
∗Ix)\(I

′
x
∗(xi − xo))

(I′y
∗Iy)\(I

′
y
∗(yi − yo))

(I′z
∗Iz)\(I

′
z
∗(zi − zo))





Equation 5: Solving for the parametric weights using the standard
form of the least squares regression formula. Note the slash
notation (\) represents a left to right matrix division.

Clustering and Surface Fitting
Since our software is intended to be a research tool for studying
neuroplasticity, an important consideration was its capability to
support a number of different experimental formats. Particularly,
we found that repeated measures experiments were prominent
in the literature (Freundlieb et al., 2015; Lüdemann-Podubecká
and Nowak, 2016; Potter-Baker et al., 2016) and added features
to cluster repeated measures into groups, consolidate the
clusters into single-point representations, and finally fit the
data representation onto a predictive model in the form of a
surface function. The clustering itself is done with a quality
threshold clustering algorithm that uses normalized distance
between points as a means of grouping (Danalis et al., 2012). The
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FIGURE 4 | A representation of how the angular coordinate system is mapped

onto the surface of a sphere. © 2009 Geek3 / GNU-FDL,

commons.wikimedia.org/wiki/File:Sphere_wireframe_10deg_10r.svg.

user selects a threshold in the range of 0–1 where 0 clusters no
points and thus each value is considered a separate measurement
event, and 1 clusters all the points into one group. The user
is expected to manually choose a threshold that groups the
points in a desired manner such that points that are intended
to be repeated measures at the same position are grouped, while
separate measurement events remain separate.

Cluster Consolidation
Now that repeated measurements have been clustered, the subset
can be consolidated to a singular, representative value.

There are five methods for cluster consolidation that can be
performed on each node to prepare the dataset for model fitting.
The current operations are averaging, maximum, minimum,
variance, and probability. By selecting the averaging operation,
for example, the cluster is consolidated to a single point whose
value is represented by the mean of the values in the cluster.
The maximum and minimum operations will similarly set the
value of the single point representative to the maximum or
the minimum of the grouped values, respectively. Notably, the
units of the data points generated from average, maximum, and
minimum clustering consolidation remains as the unit used in the
imported data (if imported values are in units ofµV, the resulting
units are in µV). Selecting the variance operation will use the
variance formula shown in equation 6 to compute the variance
of the grouped points. The units of variance are the units of the
imported values squared (if imported values are in units of µV,
the resulting units are in µV2).

s =

N
∑

i=1
(vi − µ)2

N

Equation 6: The variance formula, where s is the variance, N is
the total number of points in the cluster, vi is the i

th value of the
points in the cluster and µ is the mean of the cluster. Variance is
the average of squared differences between each individual value
of the grouped points and the overall mean.

Finally, the probability operation is a special case that is
different from the four other cluster consolidation methods.
Unlike the last four methods, which kept the data in its raw
and continuous numerical format, the probability operation will
binarize the values so that they are categorical. When selecting
probability, the software will request the input of a binarization
threshold, which is set to 40 µV by default. The raw dataset is
binarized with this threshold so that all values above it become
represented as 1, and all values below it become represented
as 0. Then, a “probability score” is computed for each cluster
depending on how many values within the group are above
or below the threshold. For example, if a cluster contains four
values, and two of those values are above the threshold (and
therefore calculated as 1), and two values are below the threshold
(and therefore calculated as 0), the overall probability value
assigned to the cluster is 50%, because two of the values have
exceeded the specified threshold. Further, if there are three
values in a cluster and two are 1’s and one is a 0, the overall
probability is 66.67%. In single measurement experiments where
there is only one value per cluster, the data points will always
be either 0 or 100% depending on whether they were above or
below the set threshold. The units of the resulting consolidated
data, when generated from the probability operation, are in
unitless percentage. The value of using the probability option
is in understanding general trends (as percentage indicates the
likelihood that a stimulus will successfully elicit a sufficient
response) or in comparison with other motor maps. The
chosen threshold will greatly affect the results of the model
fitting. Currently, there are no recommendations for setting
the binarization threshold, as the inclusion of this feature
into NeuroMeasure is experimental and is intended largely for
research rather than an absolute deterministic answer. Table 2
summarizes the different cluster consolidationmethods and their
resulting units.

Surface Fitting Algorithms
Surface fitting is the process of fitting a continuous function of
the form z = S(x,y), to a set of known data points (x,y,z), that
uses two independent variables x and y to predict the dependant
variable z. In our case, x and y are the two angular coordinates
θ and φ, and z is the value assigned to the clusters of a repeated
measures experiment (average MEP, minimum MEP, maximum
MEP, variance of MEPs, or probability of response) or a flat MEP
value in the case of single-measurement experiments.

The application currently supports four diverse non-
parametric surface fitting methods to yield a fitted surface
function from the post-clustered data points. The algorithms,
being non-parametric, mean they do not assume that the
underlying data is sampled from a normal distribution and they
only attempt to provide a high goodness-of-fit regardless of the
map’s “shape”; this was deemed ideal for motor mapping data
where the expected distribution is not well understood. Piecewise
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TABLE 2 | Summary of all available cluster consolidation methods and their

resulting units.

Operation Summary Output data

type

Average The representative value of the cluster is equal

to the mean of the clustered measurements.

µV

Maximum The representative value of the cluster is equal

to the absolute maximum of the clustered

measurements.

µV

Minimum The representative value of the cluster is equal

to the absolute minimum of the clustered

measurements.

µV

Variance The representative value of the cluster is equal

to the variance of the clustered measurements,

as computed via equation 6.

µV2

Probability The representative value of the cluster is equal

to the probability of evoking an action potential

higher than a pre-set binarization threshold.

This is computed by applying the binarization

threshold to the subset of clustered.

measurements and averaging the resulting

binary values.

Example: If there are three values in a cluster,

three 1’s averages to 1 (100%), two 1’s and

one 0 averages to 0.66 (66%), and one 1 and

two 0’s averages to 0.33 (33%).

Unitless (%)

Cubic uses a bi-cubic function as the basis of interpolation. The
cubic algorithm fits a different function between every three
data points and connects all the patches to produce a single
curve/surface. Piecewise Linear utilizes a similar algorithm but
uses a bi-linear function as opposed to bi-cubic. Biharmonic
(v4) is a fourth-order partial differential equation using the
bilaplacian (biharmonic) operator, which is the square of the
Laplacian operator. Unlike the piecewise cubic and piecewise
linear algorithms that can produce either curves or surfaces
depending on the data, biharmonic is only designed to yield a
surface. Locally weighted scatterplot smoothing (lowess) method
can smooth data through locally weighted linear regression. The
piecewise cubic algorithm is recommended for most cases as it
generates the best goodness of fit, however it is recommended
to see the operation manual on our Github for a delineation
of the pros and cons between different fit algorithms based on
experimentation. The surface fitting algorithms are summarized
in Table 3. Also, see the Mathworks website’s curve fitting
section for a detailed description of the different surface fitting
algorithms available in NeuroMeasure: https://www.mathworks.
com/help/curvefit/interpolation-methods.html#bsz6baz

Measurements
Measurements of the motor map features are the most important
part of the application and one of the end goals that our workflow
is designed to accomplish. Fundamentally, the system produces
four measurements from the dataset: the center of gravity (COG),
the peak value, the map’s surface area, and its volume integral.
COG is a classic means of representing motor mapping data,
typically used to compare motor maps before and after a stimulus

TABLE 3 | Summary of surface fitting algorithms available in NeuroMeasure.

Algorithm Summary

Piecewise cubic

spline

3rd order 2D polynomial fit to dataset in patches of 3 data

points each, fit in a piecewise fashion directly without least

squares. Edges between patches are smoothed by splines.

Local linear

Weighted scatter

Smoothing; a.k.a

Lowess

1st order 2D polynomial fit to dataset via least squares

regression combined with a ratio that splits the dataset into

local parts and the polynomial is fit in a piecewise fashion.

Ratio controls the degree of smoothing. Here, the ratio is

fixed to 0.25 (0 = least smooth, 1 = most smooth)

Biharmonic (v4) The same algorithm used in MATLAB’s griddata function. See

the comprehensive explanation on the Mathworks website

griddata documentation: https://www.mathworks.com/help/

matlab/ref/griddata

meant to initiate neuroplasticity (Wilson et al., 1993; Thickbroom
et al., 1998; Guerra et al., 2015; van de Ruit and Grey, 2017).
The peak value of the map is also relatively simple and similar
to COG, although it is not used as extensively. Neither peak
nor COG require the generation of a fitted surface function to
generate. The fitted surface function can, however, add to the
repertoire of available tools by supplying a surface area over
which themotor map elicits above a certainMEP value threshold,
or a volume integral computed similarly to surface area but with
the addition of the z-dimension. All are discussed in further
detail below.

Notably, COG and peak position are reported in x,y,z
dimensions of the original 3D Cartesian coordinate system in
which the data points were uploaded, as well as Euclidean
distance with respect to a reference point to facilitate comparison
with other motor maps.

Reference Point
All measurements of position in NeuroMeasure are reported
with respect to a reference point chosen by the user. This
allows for direct measurement comparisons from a standardized
anatomical reference point between maps generated at different
time points. The reference point can be imported along
with the dataset from Nexstim or BrainSight neuronavigation
systems. If the user does not enter a reference point, it
is set to the centroid of the head segmentation by default
(Figure 5). The reference point can also be changed interactively
within the app.

Center of Gravity
The center of gravity is a well-established point of interest
(Thickbroom et al., 1998) for characterizing amotormap because
of its convenient condensation of the values and positions of
many data points into one. Although referred to as center of
gravity in the neuroscience literature (Thickbroom et al., 1998), it
should be noted that the engineering and mathematics literature
refers to this measurement as center of mass due to it being
a feature of a scalar field as opposed to a vector field. Here,
we will continue to call it center of gravity in accordance with
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FIGURE 5 | A graphic display of the four position measurements reported in NeuroMeasure’s position table. The cyan arrow represents posterior->anterior distance,

red arrow represents right->left distance, green arrow represents inferior->superior distance and the purple arrow represents Euclidean distance. The 3D slice is

shown from different view angles: (A) isometric, (B) coronal, (C) sagittal, (D) transverse.

neuroscience convention.

XCOG =

N
∑

i=1
(xi • vi)

N
∑

i=1
vi

YCOG =

N
∑

i=1
(yi • vi)

N
∑

i=1
vi

ZCOG =

N
∑

i=1
(zi • vi)

N
∑

i=1
vi

Equation 7: Center of Gravity Formula for three dimensions
where xi are the x positions of the dataset, yi are the y positions of
the dataset, zi are the z positions of the dataset, vi are the values
of the dataset, and N is the total number of points in the dataset.

The position of the center of gravity is given by Equation 7.
The COG’s position is reported as distance, in units of the scan

resolution, from the reference point as mentioned in the preface
of this chapter.

Peak
The position of the peak, or absolute maximum, value of the
fitted data function is also reported. Although not as represented
in the neuroscience literature, its use as a measurement may
be of interest to some users. The peak position is given as the
point in 3D space at which the highest value of the fitted data
function occurs. Like the other measurements of position it is
reported as distance, in units of the scan resolution, from the
reference point.
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Surface Area
Surface area is computed using a discrete integration method
shown in equation 8. The surface area is dependent on a threshold
value that is set to 0 at default.

SA =

N
∑

i=1

∥

∥pi × qi
∥

∥

Equation 8: SA is the surface area value. pi and qi are the vectors
pointing in the θ and φ directions. N represents the total number
of positions whose values are above the threshold.

Consider one position on the motor map whose value
is above the threshold. This position is described by two
angular coordinates (θ ,φ). Now, we define three points: (θ ,φ),
(θ+s,φ), (θ ,φ+s) where s is the value of the pixel spacing
of the topographic map (in radians). These three points are
converted to 3D Cartesian coordinates using the fitted ellipsoid
discussed previously. Now, we define a vector p between two 3D
coordinates corresponding to (θ ,φ) and (θ+s,φ). Then, we define
a vector q between two 3D coordinates corresponding to (θ ,φ)
and (θ ,φ+s). The norm of the cross product between these two
vectors represents the surface area of the patch defined by that
position on the topographic map. This process is then repeated
for all positions on the topographic map whose values are above
the threshold.

The COG is a weighted average of the motor map’s position,
and represents the center of the target muscle representation.
This measure is biased by design toward the highest recorded
MEPs (which also are less variable; Pellegrini et al., 2018), and
is a historical and current standard reporting parameter (Wilson
et al., 1993; van de Ruit and Grey, 2015). Surface area, however,
has no bias and counts all area that is higher than the chosen
threshold equally.

Volume Integral
Volume integral is computed similarly to surface area as shown
in Equation 9.

Volume integral gives the volume under the curve of the
motor map function by summing the volumes of patches
whose intensity is higher than the threshold. Its units are (map
unit)∗(scan resolution unit)2.

VI =

N
∑

i=1

∥

∥pi × qi
∥

∥ • vi

Equation 9: VI is the volume integral value. pi and qi are the
vectors pointing in the θ and φ directions. vi represents the
intensity of the motor map. N represents the total number of
positions whose values are above the threshold.

This measurement can be described as the sum total of all µV
per area within the sampling field and thus is useful for estimating
the overall excitability of the cortex. It differs from surface area
in that it is weighted toward the higher value regions. Unlike
COG, it reports an intensity so its value will differ if the overall
excitability of the cortex decreases. For example, if one were to
consider two motor maps that were identical except that every

likewise point in the first was twice that of the other, the COG
of both would be the same, but the VI of one would be double
the other.

Comparing Motor Maps
A key feature of NeuroMeasure is the ability to compare values
between datasets. NeuroMeasure was designed to handle both
temporal and spatial analysis of maps within the same patient
only. There are two ways to compare motor maps within a
patient; the first is through direct comparison of numerical
values computed from continuous data type motor maps, and
the second is through predictive analysis with a motor map that
acts as a temporally predictive model of categorical data. The
second is much more limited in scope than the first, but both are
discussed below.

Continuous Data Comparison
For any continuous dataset NeuroMeasure will fit both data
with one selected fitting algorithm and display both maps
and their difference, illustrated in Figure 6. The Measurements
panel features not only single map information present in the
main GUI window, but also metrics related to the difference,
such as the change in center of gravity location, change in
peak MEP location, and surface area/volume integral difference.
Continuous motor map comparison is recommended for
comparing motor maps taken over time and between the left and
right hemisphere.

The root mean square error (RMSE) is also available
and displayed at the bottom of the Measurements panel in
Figure 6. The root mean square error is computed as shown
in Equation 10.

RMSE can be interpreted as the average difference between
every set of two likewise points on the two motor maps. Note
that RMSE is relevant only when the two maps being compared
are sampled in the same region of the brain, otherwise there are
no likewise points to compare.

RMSE =

√

√

√

√

√

N
∑

i=1
(Pi − Oi)

2

N

Equation 10: RMSE is the root mean square error value. n
represents the total number of data points. Oi represents the
ground truth value of one raw data point from data set 1. Pi
represents the predicted value from data set 2’s motor map
function at the same location as Oi.

Categorical Data Comparison
The categorical data comparison window is launched when the
clustering consolidation method is set to probability and has
only one specific usage: to quantify the stability of a motor map
reading over time. When set to probability, the Compare button
will compute the receiver operator curve (ROC) in a procedure
outlined below.

A probabilistic model is first generated by fitting data
clusters consolidated using the probability procedure discussed
previously, to a surface function. The resulting model predicts at
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FIGURE 6 | An example of the comparison window launched in continuous comparison mode. The reference point coordinates (in their respective coordinate system)

is displayed on top and all position measurements are reported as distance between combinations of two points.

every location a probability (from 0 to 100%) that a value above
the set binarization threshold will be elicited by the TMS pulse.
This leads to a motor map shown in in Figure 7. The dataset
used to generate this predictive model will be referred to as the
“training set.”

The predictions of the model are tested using a “testing set”
of data selected by the user. Consider one data point from the
testing set to be 250 µV and the model’s prediction for that
location is 75%. Now, assume that the binarization threshold
used to binarize our training data was 100 µV. Thus, 250 µV is
higher than 100 µV so this testing point has a value of 1. Now,
we define an arbitrary cutoff threshold in the range of 0–100%
that binarizes 75% to either a 0 or 1, and the model’s prediction is
checked with the testing point. There are four possible outcomes
illustrated in Figure 8: the model and testing point are both 1
(true positive), the model predicts 0 but the testing point is 1
(false negative), the model predicts 1 but the testing point is 0
(false positive), and both the model and testing point are 0 (true
negative). This is repeated for all points in the testing set. Now,
we can compute the true positive rate and the false positive rate
using Equation 11a/b.

Now, we compute the true positive rate (also known as
detection rate) and false positive rate for a sequence of arbitrary
cutoff thresholds varying from 0 to 100%. We can then plot the
false positive rate against the detection rate for each of the map
thresholds in the sequence to generate the curve shown in in

Figure 9. This is the ROC and the area underneath the curve
(AUC). This is a metric used for quantifying the performance
of the predictive model. A model that has an AUC of 1 always
predicts correctly with respect to the testing set (this is the best
score). A model with an AUC of 0 is one that always predicts the
opposite of the testing set (this is still perfect performance, just
inverted). A model with an AUC of 0.5 is randomly guessing with
respect to the testing set (this is the worst score).

TPR =
A

A+ C
FPR = 1−

D

D+ B

Equation 11a/b: Formula for true positive rate (TPR) and false
positive rate (FPR). A is the number of true positives, C is the
number of false negatives, B is the number of false positives, D is
the number of true negatives.

In the case of motor mapping, the AUC is a good way of
testing the stability of a motor map over time. By computing the
AUC, we test the following hypothesis: How well does a motor
map that predicts the likelihood of a TMS response above a
specified value threshold perform when evaluated on test data
collected at a different time point under different experimental
conditions? The more consistent the testing set is with the
training set, the closer the AUC will be to 1. Conversely, the more
inconsistent the measurements are, the closer the AUC will be to
0.5. Notably, the binarization threshold is an important part of
this analysis, and we do not currently have recommendations on
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FIGURE 7 | A visual aid for computing ROC between a predictive model and testing data, (a) a predictive model computed from a training set, (b) the testing set used

to evaluate the model’s predictions.

FIGURE 8 | Diagram of the four possible outcomes of a model’s prediction tested against a ground truth.

its use however this is an area of future work. This functionality
of NeuroMeasure at the time of publication is experimental
and has no precedence in the literature, unlike the continuous
comparison measurements.

Case Examples
Now, we use a case-based approach to highlight the advantages
and disadvantages of our software in interpreting the results
of some exampled motor mapping experiments. We encourage
readers to download the data used in these examples from our
Github and follow the workflow, if interested. An operation
manual is also available for download for clarification on the
settings used in the below examples.

First-Sampling vs. Second-Sampling Comparison
In this first case, we use the application to analyze the results of
an experiment testing the stability of MEP measurements. The

data was collected with the Nexstim neuronavigation platform on
a healthy subject with a 0.5 × 0.5 cm grid using an established
protocol (Kohl et al., 2006). Immediately afterwards, the same
region was sampled a second time with a new 0.5 × 0.5 cm grid
offset from the first by 0.25 cm so that each sample point was
roughly between the sampling of the first grid. Three samples
per location were collected. The highest recorded single MEP
was 671 µV peak-to-peak and the highest average of three
was 549 µV. The datasets used for this example are shown
in Figure 1.

After clustering the repeated measures with a QTC threshold
of 0.02 (found by trial and error), the clustered subsets are
averaged to single representative values and fitted to a surface
function using the Piecewise Cubic algorithm. A comparison is
than made between the first dataset and the second shown in
Supplemental Figure 1A. The results show that the COG has
shifted 2.5mm to the left posterior and the peak average of
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FIGURE 9 | An example of the comparison window launched in categorical comparison mode.

three measurements has shifted 13.9mm to the left posterior.
Being a weighted average, COG tends to fluctuate less than
the peak as is demonstrated here. The difference in the surface
area (computed with a threshold of 0 µV) is 39.98 mm∧2 and
the difference in volume integral is 3.349e+04 mm∧2∗µV. The
RMSE, or average error between any two given points in the field,
is 75.395 µV.

After applying the probability consolidation method
with a binarization threshold of 100 µV and relaunching
the comparison, we arrive at the window shown in
Supplemental Figure 1B. The system reports the receiver
operator curve generated from our model fit to dataset
1 attempting to predict the values in dataset 2. Since the
two maps under comparison are expected to be similar, we
expect the AUC to indicate good performance (close to 1).
At 0.93, that is the case. The ROC will be close to a square
curve because there are one or more thresholds that create
optimal performance. Of course, the AUC is highly contingent
on the binarization threshold used to compute the cluster
probabilities, which is a limitation of this analysis and a subject of
future work.

Pre-fatigue vs. Post-fatigue Comparison
This example is very similar to the previous example (First
Sampling vs. Second Sampling Comparison), with the exception

that we use data from a different experiment. In this experiment,
the motor cortex was sampled in a 1 × 1 cm grid using
the BrainSight system, prior to a hand fatigue exercise (pre),
then sampled again immediately afterwards (post), and then
sampled again 60min after that (post+60). Four samples
were collected per stimulation site. The data is displayed
in Supplemental Figure 2. Fatigue motor exercise is well
documented in the literature to change the excitability of the
motor cortex, and we expect that the pre vs. post-motor maps
will be less similar than the pre vs. post+60 motor maps (Chye
et al., 2010; Sidhu et al., 2018).

After uploading all three datasets to NeuroMeasure and
clustering the repeated measures with a QTC threshold of 0.02,
the data is consolidated using the averaging method and fitted
to a surface with the Piecewise Cubic algorithm. First, we
launch a comparison between the pre-fatigue and post-fatigue
data shown in Supplemental Figure 3A. We can see that the
COG has shifted 3.9mm to the right anterior, the peak has
shifted 9.9mm to the right posterior, the motor map’s surface
area above 0 µV has increased by 932 mm∧2 and the volume
integral representing overall cortex excitability has risen by
2.032e+05 mm∧2∗µV. Now we launch our comparison between
pre and post+60 datasets shown in Supplemental Figure 3B.
The COG has shifted 3.3mm to the right anterior, peak has
shifted 14.5mm to the right anterior, the surface area above
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0 µV has decreased by 132.77 mm∧2 and the volume integral
has decreased by 6.193e+04 mm∧2∗µV. These measurements
tells us that that the surface area of motor cortex involvement
rose post-fatigue by almost an order of magnitude and then
fell after 1 h back to baseline. The same can be said of overall
cortical excitability as evident by the VI. The RMSE of pre vs.
post, 1406.12 µV is more than double that of pre vs. post+60
at 602.55 µV.

If we relaunch the comparison of pre vs. post in categorical
mode using the probability consolidation method, the window
appears as in Supplemental Figure 3C. As we can see by the
AUC of 0.8, the model fit onto the pre dataset is a poor
predictor of the post-dataset. Now looking at the pre vs. post+60
comparison shown in Supplemental Figure 3D, the AUC is
now 0.99 meaning the model fitted to the pre dataset is very
good at predicting the post+60 measurements. As mentioned
previously, the binarization threshold used to calculate the
probabilities will vastly change the analysis, and the one used
for this example was arbitrarily chosen to be 3,000 µV. At a
binarization threshold of 1,000µV, the AUC’s for pre vs. post and
post+60 are both 0.9 further demonstrating that standardizing
the binarization threshold will be an important part of using
this analysis.

Left vs. Right Hemisphere Comparison
In this example we demonstrate NeuroMeasure’s capability of
comparingmotormaps collected on the right and left hemisphere
of the same subject and comparing the map features between
them. Notably the dataset presented in this example is fabricated
for the purpose of demonstration. Real measurements could not
be acquired so simulated data was used instead.

The resulting comparison window is shown in
Supplemental Figure 4. The right hemisphere COG is 5mm
more right from the midline than the left hemisphere COG is
to the left. The right hemisphere COG is also 2.65mm more
posterior than the left. The SA of the right hemisphere is 344
mm∧2 less than the SA on the left when 0 µV is used as the
inclusion threshold. The VI is 1.589e+05 mm∧2∗µV greater on
the left than on the right indicating that the right hemisphere is
more excitable. Notably, the RMSE is meaningless in this analysis
since the two maps are not spatially overlapping and therefore
have no measurements in common. The same can be said of
ROC analysis.

Cerebral Palsy Peak Discretization
Sometimes, motor mapping data from subjects with neurologic
conditions can yield uncharacteristic data like that shown
in Supplemental Figure 5A. This dataset is recorded from a
subject with cerebral palsy. Note that this dataset contains
many individual “hotspots,” or relative peaks surrounded by
lower MEP values. In some experimental protocols or data
analysis regimes, it may be useful to separate, or discretize the
motor map into individual peaks and calculate measurements
for those portions alone. With this in mind, NeuroMeasure
comes with an automated peak discretization feature capable of
doing so.

Supplemental Figure 5B shows the discretization feature
enabled. A hotspot has been singled out from the total motor
mapping field. Its COG, peak, SA, and VI are calculated with
only the data points within the marked white boundary. The
user has some control over the inclusion boundary so it can be
customized to include certain regions of the mapping field but
not others.

DISCUSSION

The advent of neuronavigation has ushered a new world
of possibilities in studying the neurophysiology of the brain
and its ever shifting architecture. Use of this technology has
already generated many findings (Lefaucheur and Picht, 2016;
Lüdemann-Podubecká and Nowak, 2016) and many more are
sure to come. Here, we present a software tool in an effort tomake
neuronavigation-based neuroscience research more accessible by
providing a set of graphical and statistical tools with which
to visualize and analyze data. The choice of tools and visuals
was informed by some notable challenges in the neuroscience
field concerning the non-stationary nature of MEP data, the
sampling limitations of TMS and the lack of standardization
in data collection. With this tool we seek to make motor
mapping data easier to characterize and compare longitudinally.
Through the use of model fitting, we hope to overcome TMS
sampling limitations and the lack of data standardization by
using interpolated values to be able to make pairwise coordinate
comparisons between motor maps when the sampling pattern
does not align. Furthermore, access to measurements like surface
area and volume integral, and comparative metrics like RMSE
and AUC, could have advantages over COG in understanding
the phenomenon of neuroplasticity. Finally, the software seeks
to build an intuitive framework for tracking changes in these
metrics within patients over time by reporting measurements of
position with respect to a standardized reference point selected
by the user, and being flexible to a range of experimental
protocols, including multiple stimulation vs. single stimulation
sampling arrangements by supplying tools for repeated measures
data clustering.

NeuroMeasure is not a comprehensive tool and it has
its limitations. The core of our approach in fitting TMS
data to surface functions that are then sampled to make
likewise positional comparisons in other data sets essentially
lacks validation. It is not known how changes in the TMS
sampling spacing change the integrity of interpolated values
nor if a sampling limit exists beyond which this approach
is no longer valid. Furthermore, while we provide a range
of surface fitting algorithms to choose from, which algorithm
is best suited for a particular purpose remains unexplored.
The de-dimensionalization procedure currently imposes some
distortion to the original positions of data points, as previously
mentioned, so a better procedure is a subject of future work.
Finally, while the structure of the workflow is suited for
making within-patient comparisons, it is not currently possible
to make comparisons between patients. Such a procedure
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would likely require a form of image registration between
head MRI’s in order to establish a shared coordinate space
in which distances can be reported normalized to inter-
patient anatomy.
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