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Neurons which fire in a fixed temporal pattern (i.e., “cell assemblies”) are hypothesized

to be a fundamental unit of neural information processing. Several methods are available

for the detection of cell assemblies without a time structure. However, the systematic

detection of cell assemblies with time structure has been challenging, especially in

large datasets, due to the lack of efficient methods for handling the time structure.

Here, we show a method to detect a variety of cell-assembly activity patterns, recurring

in noisy neural population activities at multiple timescales. The key innovation is the

use of a computer science method to comparing strings (“edit similarity”), to group

spikes into assemblies. We validated the method using artificial data and experimental

data, which were previously recorded from the hippocampus of male Long-Evans

rats and the prefrontal cortex of male Brown Norway/Fisher hybrid rats. From the

hippocampus, we could simultaneously extract place-cell sequences occurring on

different timescales during navigation and awake replay. From the prefrontal cortex, we

could discover multiple spike sequences of neurons encoding different segments of a

goal-directed task. Unlike conventional event-driven statistical approaches, our method

detects cell assemblies without creating event-locked averages. Thus, the method offers

a novel analytical tool for deciphering the neural code during arbitrary behavioral and

mental processes.

Keywords: neural ensemble, neural code, behavioral information, multi-neuron recordings, data mining, place

cells, prefrontal neurons

1. INTRODUCTION

Uncovering neural codes is of fundamental importance in neuroscience. Several experimental
results suggest that synchronous or sequential firing of cortical neurons play active roles in primates
(Abeles et al., 1993; Hatsopoulos et al., 1998; Steinmetz et al., 2000). In the rat somatosensory
and auditory cortices, spontaneous and stimulus-evoked activities exhibit repeating sequences of
neuronal firing (Luczak et al., 2007, 2009). In a rodent hippocampus, place cells exhibit precisely
timed, repeating firing sequences representing the rat’s trajectory, subsections of which repeat
during each theta cycle (O’Keefe, 1976; Mehta et al., 2002; Villette et al., 2015). These sequences are
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FIGURE 1 | Edit similarity calculation between strings. We can calculate edit

similarity score between “ATCGTAC” and “ATGTTAT” by using a dynamic

programing table (top). Denoting the characters appearing after diagonal-up

moves in the table gives a maximally coincident string (bottom).

replayed at compressed temporal scales during awake immobile
and sleep states (Lee and Wilson, 2002; Foster and Wilson,
2006; Carr et al., 2011; Buzsáki and Moser, 2013) presumably
for memory consolidation (Girardeau et al., 2009; Jadhav et al.,
2012). Similar replay events have also been observed in the rodent
prefrontal cortex (Euston et al., 2007).

The rapid development of techniques for large-scale
recordings of neuronal activity provide fertile ground for
the analysis of spike sequences. Calcium imaging enables
simultaneous measurement of spike rates from hundreds to
thousands of neurons (Kerr et al., 2005; Sasaki et al., 2007;
Vogelstein et al., 2010; Deneux et al., 2016; Pnevmatikakis et al.,
2016), and imaging by voltage indicators may further overcome
the poor temporal resolution in imaging (Emiliani et al., 2015;
Grinvald and Petersen, 2015; Knöpfel et al., 2015). Extracellular
recording of neural activity with multi-electrodes has also
evolved, allowing access to spike trains from large numbers of
neurons (Buzsáki, 2004; Einevoll et al., 2012; Buzsáki et al., 2015).

Despite this progress in experimental techniques, methods
for analyzing the spatiotemporal structure of cell assemblies are
still limited (Chen and Wilson, 2017). Template matching is a
standard technique for the detection of repeated activity patterns
(Abeles et al., 1993; Kerr et al., 2005; Tatsuno et al., 2006; Euston
et al., 2007; Luczak et al., 2007, 2009; Sasaki et al., 2008; Vogelstein
et al., 2010). However, the method requires reference events, such
as sensory cues and motor responses, and is easily disrupted by
biological noise, such as jitters in spike timing and variations
in sequence length. On the other hand, only a few studies have
attempted the blind detection of cell-assembly sequences without
relying on reference events (Shimazaki et al., 2012; Picado-Muiño

et al., 2013; Torre et al., 2016; Quaglio et al., 2017; Russo et al.,
2017), and such data analysis remains a challenge.

Here, we develop a method to detect self-similar firing
patterns within cell assemblies using the edit similarity score.
Edit similarity is a metric originally introduced in computer
science to measure the distance between arbitrary strings and
has been utilized for analyzing various types of sequences in
computer science and biology (Navarro, 2001). Edit similarity
measuresmatching between two sequences with flexible temporal
alignment, which is an essential feature for detecting noisy
spatiotemporal patterns embedded in neural activity. We extend
the edit similarity score to a form applicable to neural activity
data and develop a clustering method for blind cell-assembly
detection. We evaluated the performance of the method with
artificial data and found that our method is more robust
against background noise than conventional clustering methods.
Furthermore, we applied our method to experimental data
recorded from the rat hippocampus (Mizuseki et al., 2009)
and prefrontal cortex (Euston et al., 2007), and the algorithm
detected several multi-cell sequences linked with behavior in an
unsupervised manner. Robustness to noise and computational
efficiency of our method will help the exhaustive search of
repeated spatiotemporal patterns in large-scale neural data,
which may lead to the elucidation of hidden neural codes.

2. MATERIALS AND METHODS

We explain three major steps of the proposed method, i.e.,
edit similarity score with an exponentially growing gap penalty,
clustering algorithms and profile generation algorithm.

2.1. Edit Similarity Calculation by N-W
Algorithm
We explain the fundamentals of edit similarity score without gap
penalty since this metric is not commonly used in neuroscience.
Edit similarity score, or edit distance, quantifies the similarity
between two strings with the minimum number of operations
required to transform one string into the other. We can define
arbitrary scoring schemes for each manipulation on strings, that
is, insertion of a gap, deletion of a character, and comparison of
two characters for coincidence. Needleman and Wunsch (1970)
proposed one of the most widely used evaluation algorithms of
this metric (N-W algorithm).

The original N-W algorithm uses Dynamic Programming
(DP) algorithm, which essentially partitions given problem into
subsequent small subproblems to compose a solution of the
original problem from those of the subproblems. As an example,
we evaluate the score between two strings, W(1) = ATCGTAC
and W(2) = ATGTTAT. As shown in Figure 1, we prepare a
grid (DP table) and arrange the two strings along the abscissa and
ordinate of the DP table. We add a null character “#” to the heads
of the two strings and fill the leftmost column and the bottom
row with zeros to initialize the following iterative operation.

We assign an appropriate score to each operation (insertion,
deletion and coincidence). For the sake of simplicity, in this
example without gap penalty we assign +1 to a coincidence, 0
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to an insertion and a deletion. Let ǫij be the number of partial

coincidences obtained up to the i-th element ofW(1) and the j-th
element ofW(2). Then, we determine the value ǫij of the cell (i, j)

of DP table using the following recursive equation:

ǫij = max











ǫi−1
j

ǫij−1

ǫi−1
j−1 + δ(W(1)[j],W(2)[i])

, (1)

where δ(x, y) is the Kronecker’s delta: δ
(

x, y
)

= 1 if x = y and
0 if x 6= y. We can fill the grid from the lower left cell to the
top right cell with the scores calculated by the above equation
(Figure 1). We note that δ(x, #) = 0 for any character x including
a null character itself. Then, we obtain the similarity score of
two strings W(1) and W(2), which is five in this case, at the top
right cell ǫ88 . Note that the operation ǫij = ǫi−1

j corresponds to a

deletion ofW(2)[i], or equivalently, a gap insertion afterW(1)[j].
Likewise, ǫij = ǫij−1 corresponds to a deletion ofW(1)[j] or a gap

insertion afterW(2)[i], and ǫij = ǫi−1
j−1 + 1 corresponds to taking

a coincidence.
The DP table enables us to obtain the substring that provides

the maximum number of coincidences. For this purpose, we
usually use the “β table” that stores the procedural dependency
among the cells in the DP table (Needleman and Wunsch, 1970):
from the top to the bottom of the rules shown above, we assign
“start,” “upward” (↑), “rightward” (→), and “diagonal up” (ր)
to the corresponding element of the β table. We can obtain
a maximally coincident substring (ATGTA in the example) by
back-tracking allowing in the β table from the top right cell to
the left bottom cell and aligning the characters that appear after
every “diagonal up” move. This procedure is illustrated with gray
arrows in Figure 1, and the resultant alignments of W(1) and
W(2) are shown at the bottom.

2.2. Extended N-W Algorithm for Neural
Activity
In this section, we explain how we extended the original scoring
method and algorithm for neural activity. We segmented spike
data with a sliding time window of width Tw, and divided each
time window into L bins with size b (thus, L = Tw/b). If we
consider the activity pattern of the neural ensemble in each bin
(i.e., the rate vector r of coincidently firing neurons in Figure 2A)
as a “letter,” we obtain a string of letters in each time window.
Note that each neuron may fire multiple spikes in a bin, so each
component of the activity vector represents the number of spikes
generated by the corresponding neuron in the bin. The window
size and bin size are manually determined from the temporal
features of the neural data. Unless otherwise stated, we used the
values of Tw ranging from 100 to 500 ms and those of b from 1 or
10 ms. Our task is to find all time windows that contain similar
activity vectors in the same temporal order (Figures 2Ci–iv).

Tomake the N-W algorithm applicable to spike data, wemake
three extensions: scoring with the inner product, exponential
gap penalty, and the local alignment of starting points. First,
we define the degree of similarity between activity vectors
observed in different time windows. In the comparison of two

FIGURE 2 | Detection of repetitive cell-assembly sequences. (A) Sliding time

windows W(tk ) are divided into L bins with an identical size, where tk refers to

the start time of the k-th time window. Population rate vector consists of the

spike counts of individual neurons in each bin. (B) A temporal pattern in a

sliding time window is schematically illustrated. Such a pattern may contain

neurons belonging to a cell assembly as well as non-member neurons.

Member neurons may fire at different rates with different temporal precision.

Similarity between cell assembly sequences will increase when they share

more member neurons and when they fire in a more similar temporal order at

similar firing rates with higher temporal precision. Note that each member

neuron may appear multiple times at different temporal positions in a time

window. (C) Difficulties in detecting repetitive cell-assembly sequences are

schematically illustrated. Blue and red bars show spikes of member neurons,

while gray bars represent noisy spikes of non-member neurons: (i) temporal

structure of target sequence; (ii) contamination by spikes of non-member

neurons; (iii) missing spikes of member neurons; (iv) jitters in spike timing of

member neurons; (v) arbitrary scaling of sequence length; (vi) member

overlaps between different sequences.

gene sequences, how to count the number of coincident letters
(i.e., nucleotide bases) between the two sequences was naturally
defined. However, the same scoring scheme is not applicable to
neural activity data because neural population in vivo will hardly
repeat exactly the same patterns due to various noise sources.
In the extended N-W algorithm, we replaced delta function
δ(W(1)[j],W(2)[i]) in the N-W algorithmwith the inner product
of activity vectors. Let matrices W(tk) and W(tk′ ) be spiking
activities of N neurons in the windows starting at time tk and
tk′ , and ri(tk) and ri(tk′ ) be the column vectors in the i-th bin of
W(tk) andW(tk′ ), respectively (see Figure 2A):

W (tk) = (r1 (tk) , r2 (tk) , . . . , rL (tk)) , (2)

W (tk′) = (r1 (tk′) , r2 (tk′) , . . . , rL (tk′)) . (3)

Regarding W(tk) and ri(tk) (similarly for W(tk′ ) and ri(tk′ )) as
a string and a character in N-W algorithm, respectively, we
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measured the similarity between activity patterns at tk and tk′ by
the inner product ri (tk) · rj (tk′).

Second, we developed a scoring scheme with exponential
gap penalty, which penalizes edit similarity scores with an
exponential discount factor when consecutive matches occur
with different time lags in the two sequences compared, which
is in spirit similar to the well-known linear gap penalty scheme
(Gotoh, 1982). Below, two symbols υ i

j and ρi
j represent the

optimal numbers of vertical gap insertion and horizontal gap
insertion required for partial comparison up to the i-th element
ofW(tk) and the j-th element ofW(tk), respectively. By inserting
an additional gap, we may earn another coincidence at the cost
of an additional discount factor in the similarity. Whether one
should stop or continue the insertion of a gap is determined by
the comparison of the cost and benefit of the two operations. To
optimize the cost-benefit balance, we should insert a maximal
number of gaps that do not cost more than the benefit. We set
the initial conditions υ1 : L+1

1 = υ1
1 : L+1 = ρ1 : L+1

1 = ρ1
1 : L+1 = 0

at the bottom row and the leftmost column of the table, where
the notation υ1 : L+1

1 = 0 means υ1
1 , υ2

1 , · · · , υL+1
1 = 0 and

similarly υ1
1 : L+1 = 0 means υ1

1 , υ1
2 , · · · , υ1

L+1 = 0, and so on.

Then, we calculate the values of υ i
j and ρi

j using the following

recursive formula

υ i
j =







1 ǫi−1
j − exp (α) ≥ ǫ

i−1−υ i−1
j

j − exp
(

αυ i−1
j

)

υ i−1
j + 1 otherwise

,

(4)

ρi
j =







1 ǫij−1 − exp (α) ≥ ǫi
j−1−ρi

j−1

− exp
(

αρi
j−1

)

ρi
j−1 + 1 otherwise

,

(5)

where α is a free parameter to set the weight for the gap penalty,
more specifically, the value of α determines the tolerance for the
time lag between consecutive matches in the two-time windows.
If α = 0.1, the penalty on the similarity score is –1 for a time
lag of about 7.5. For the bin size of 1 ms, this value corresponds
to a 7.5 ms-time difference between consecutive matches in the
two windows. For instance, in the analysis of hippocampal data,
which may contain relatively large jitters in spike times, the
value of α was determined such that the time lag of 10 ms
approximately yields the penalty of –1. The conditions to have
υ i
j = 1 and ρi

j = 1 in the above equations are satisfied if the

cost exceeds the benefit, and then we stop insertion of a gap. The
values of υ i

j and ρi
j are calculated before ǫij in each cell.

Third, we solved the local alignment problem by applying the
previously proposed algorithm (Smith and Waterman, 1981). In
the case of strings (Figure 1), the heads of strings from which
we start the comparison are obvious. However, the heads of
cell assembly sequences are not given a priori in neural data.
In our scheme, when no significant coincidences are found up
to cell (i, j) and the score in that cell is below 0, we restart the
recursive evaluation by setting ǫij to 0. In other words, we can

jump from the bottom left cell to an arbitrary cell. This scheme

results in the automatic search of the optimal starting points of
the comparison.

In sum, recursive equation in N-W algorithm is changed into
the following rule:

ǫij = max



























0

ǫ
i−υ i−1

j

j − exp(αυ i−1
j )

ǫi
j−ρi

j−1

− exp(αρi
j−1)

ǫi−1
j−1 + ri(tk) · rj(tk′ )

, (6)

which is evaluated along with υ i
j and ρi

j . Initial conditions are
given as

ǫ11 , ǫ12 , · · · ǫ
1
L = 0, ǫ11 , ǫ21 , · · · ǫ

L
1 = 0, (7)

and ǫL+1
L+1 gives the maximum coincidence between the activity

sequences, that is, the edit similarity score as in the standard N-W
algorithm.

2.3. Metric Space and Two Algorithms for
Clustering of Neural Data
Neural activity data segmented into different time windows
form a high dimensional metric space in which edit similarity
score defines a metric among data points. Namely, from edit
similarity scores E(k, k′) between pairs of time windows W(tk)
and W(tk′ ), we can calculate a distance matrix as D(k, k′) =

max(E(k, k′)) − E(k, k′), where the maximum is taken over all
possible pairs of segments. In the high-dimensional feature space,
time windows containing similar activity patterns are distributed
at neighboring locations. Therefore, we can extract similar cell-
assemblies through the clustering of data points. While similar
activity patterns give a dense cluster, time windows containing no
repeated patterns are scattered over the feature space as outliers.
To remove these “noisy” components, we sequentially applied
two qualitatively different types of clustering algorithms.

The first algorithm is called “OPTICS” and is a density-based
clustering method. This algorithm aims to find dense clusters of
data points (Ankerst et al., 1999). However, the algorithm cannot
discriminate two clusters if they share a non-negligible number
of data points. To overcome this weak point, we subsequently
applied a second algorithm “COPRA,” which performs clustering
based on a community detection scheme (Gregory, 2010). In
short, the data points connected with relatively short distances
(large edit similarities) are distinguished from other data points
as a community in the feature space. In this study, we first applied
OPTICS to remove noise from the data. The algorithm returns
data indices for tentative clusters containing more than MinPts
similar data points. Secondly, we applied COPRA to the extracted
data points to fix their clustering labels.

2.4. Dimensionality Reduction by t-SNE
In Figure 7A, we visualized the results of clustering in a
two-dimensional space using t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Maaten and Hinton, 2008). t-SNE is
an algorithm that maps high-dimensional data into a low
dimensional space, typically a two or three-dimensional space,
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while maintaining the original data structure in the high-
dimensional manifold. In t-SNE, the similarity values are
converted to the following conditional probability

pi|j =
exp (−D(i, j)/σi)

∑

k 6=i exp (−D(i, k)/σi)
(8)

and the joint probability is calculated by

pij =
pi|j + pj|i

2n
(9)

where n is the number of data points. In Equation (8), the
parameter σi is modified to tune the visualization effect. We
also modeled the joint probability of points yi and yj in a low-
dimensional embedding space by using a Student t-distribution
with one degree of freedom (also known as Cauchy distribution):

qij =
(1+ ||yi − yj||

2)−1

∑

k 6=l(1+ ||yk − yl||2)−1
(10)

Note that we set pi|i and qi|i to zero as we are only interested in
pair wise similarity. The algorithm accomplishes a mapping by
reducing the Kullback-Leibler divergence between pij and qij

KL(P||Q) =
∑

i6=j

pij log

(

pij

qij

)

, (11)

by using the gradient descent.

2.5. Tricks for Reducing the Computational
Cost
The proposed method, in its original form, requires extensive
computational resources when used on neural data. The major
difficulty comes from the calculation of a similarity matrix that
has a computational complexity of O(M2), where M is the
number of time windows and grows with the data length T.
The number of window pairs easily becomes astronomically
large even for relatively short data. For instance, if T = 20
min and the size of non-overlapping time windows is 100 ms,
the number of window pairs is 1.44 × 108. Because we cannot
practically calculate similarity scores for all possible window
pairs, we accelerated the calculation of edit similarity drastically
by employing an approximation algorithm based on the Jaccard
similarity (Cohen et al., 2001). For instance, with this algorithm
we needed to calculate the similarity scores for 3 percent of
window pairs in the hippocampal data analyzed later, meaning
that the method reduced the computation time by approximately
97%. Note that an exact computation without using the
Jaccard similarity was not attempted due to unrealistically long
computation time.

In this procedure, we reduce the calculation of edit similarity
for pairs of time windows that do not share active neurons. Let
(

wi(tk)
)

be a Boolean matrix in which the element (i, k) is 1 if
neuron i fires at least once in the time window at tk or otherwise 0:

wi (tk) =

{

1
∑L

b=0(W
i
b
(tk)) ≥ 1

0 otherwise
, (12)

where Wi
b
(tk) is the (i, b) element of W(tk). We measure

the similarity between w(tk) and w(tk′ ) by Jaccard similarity
defined as

Jaccard (w (tk) ,w (tk′ )) =
|w (tk) ∩ w (tk′ )|

|w (tk) ∪ w (tk′ )|
, (k, k′ = 1, · · · ,Nw)

(13)

where |x ∩ y| denotes the inner product of given two vectors,
|x ∪ y| counts number of non-zero elements of the sum of them.
The value of Jaccard similarity is between 0 and 1, and is close to
unity if the column vectors at time tk and tk′ are similar.

Because the calculation of Jaccard similarity for every possible
pair of vectors is also O(M2), we wish to find out pairs that
are likely to give highly similar w(tk) without direct calculation.
For this purpose, we can make use of the statistical properties

of Jaccard similarity. Now a trick is to use hash function h̃(x)
which assigns a different integer to a given integer x without
collision: the hash function should not return the same integer
to different values of x. Throughout this study, we used a built-in
hash function of programming language Julia (https://julialang.
org/). For a vector of integers, we defined the function h(x) =

min h̃
(

x′i
)

, x′i ∈ x, x′i 6= 0, which returns the minimum of the
hashed numbers assigned to non-zero elements of x. The value
is called the minimum hash (min-hash) value. Importantly, the
following relationship holds (Cohen et al., 2001):

Prob
[

h(w (tk)) = h (w (tk′))
]

=
|w (tk) ∩ w (tk′)|

|w (tk) ∪ w (tk′)|

= Jaccard (w (tk) ,w (tk′))

(14)

With this relationship, we can obtain Jaccard similarity without
pair-wise comparisons of column vectors:

Jaccard(w̃(tk), w̃(tk′ )) ≈

∣

∣

{

q|1 ≤ q ≤ n and S̃
q

k
= S̃

q

k′

}∣

∣

n
(15)

where S̃ is called a signature matrix that contains the min-hash
values over different random permutations of w̃(tk), i.e., S̃

q

k
=

hq(w̃(tk)) with hq being the q-th min-hash function. The total
number n of random permutations is dynamically adjusted as
explained in the next section. In thismatrix, elements in a column
are min-hash values of a time window generated with different
hash functions, and elements in a row are min-hash values of all
time windows generated with a hash function.

To further reduce computation, we used the following
banding technique in the evaluation of Jaccard similarity (Cohen
et al., 2001) (Example can be found in Figure 3). We divided S̃
into b bands of l rows each, thus n = bl. Suppose that two vectors
w̃(tk) and w̃(tk′ ) have Jaccard similarity s, then the probability that
the min-hash signatures of two columns coincide at least in one
row of the matrix is s. Then, the probability that the signatures
of two columns are identical in all rows of at least one band
is p(s) = 1 − (1 − sl)b, which is an S-shaped function of s
and can hence be used for determining a threshold value of the
similarity. We hash all the bands, and search bands in which
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FIGURE 3 | Minhashing procedure illustrated.

two columns have the same hash value. The only pairs of time
windows that have the same hash value inmore than one band are
used for similarity matrix calculation. For instance, p(0) = 0.000,
p(0.3) = 0.007, p(0.5) = 0.091, p(0.7) = 0.424, p(0.8) = 0.696,
p(0.9) = 0.931, and p(1.0) = 1.000 when b = 5 and l = 2. In the
present analysis, the values of b and l were dynamically adjusted
by data itself. We explain the method for the adjustment in the
next section.

2.6. A Policy for Division of Signature
Matrix
To apply the above algorithm to neural data, we employed a
heuristic method to determine the two parameters b and l for
Jaccard similarity from neural data. The aim of this method is
to reduce the load of heavy computation for large neural data
without losing candidate sequences. We calculated the average
firing rates of individual neurons over the entire length of
data, and we determined b and l assuming independent Poisson
spiking neurons having the same firing rates. The parameters
(b and l) for a smaller threshold (Jaccard1) gives the similarity
expected under the assumption of independent Poisson spiking,
whereas a parameter for a larger threshold (Jaccard2) represents
the similarity expected when the two time windows contain
sequences with a certain length. Let #i be the total number of
spikes of neurons i during the interval [0,T]. From #i, we can
calculate the probability that a neuron i has at least one spike
in the segment W(tk) as pi = 1 − (1 − (#i/T)1)(L/1), where
1 is the size of a bin. Then, the index N1 =

∑N
i=1 pi is the

expected number of active neurons within the time window.
Then, the expected number of coincidently active neurons in an
arbitrary pair of time windows is N2 =

∑N
i=1 (pi)

2, and Jaccard1
is calculated as N2/(2N1 − N2).

Now, suppose that two time windows contain additional N3

coincidently active neurons. In this case, the expected Jaccard

similarity, or Jaccard2, is given as (N2 + N3)/(2N1 − N2 − N3).
In this study, we searched values such as b and l that keep the
probability 1 − (1 − sl)b sufficiently high (e.g., 0.8) for Jaccard1
and sufficiently low (e.g., 0.1) for Jaccard2. The parameters b and l
were searched in a brute-force manner. In this paper, b and l were
searched in [1, 50].

2.7. Validity of Our Method for Similarity
Matrix Calculation
We examined whether the method Cohen et al. (2001) facilitates
faster computation by selecting high-similarity window pairs.

We prepared synthetic data (Figure 4A). The data consists
of three sequences of different cell assemblies, each of which
appeared ten times in the data (each type of sequences
appear consecutively for clear visualization). Random noise was
generated by a 1 Hz Poisson process and was superimposed on
the sequences. The parameter values used are described in 2.13.

Figure 4B shows the probability p(s) = 1 − (1 − sl)b, where
the dashed line refers to the Jaccard1 and the thick black line to
the Jaccard2. As we can see, only the parameter set l = 20, b = 3
provides the appropriate condition, that is, high probability in
Jaccard1 and low probability in Jaccard2.

Figure 4C shows four similarity matrices with and without the
method. If you prepare too many hash functions and put all of
them into a single band (the second from the left. l = 30, b = 1
which corresponds to the green line in panel B) the algorithm
ignores almost all pairs. Also, too much banding causes another
problem; the algorithm cannot ignore less similar pairs. That is
the case described in the third from the left (l = 1, b = 30 which
corresponds to the blue line in panel B). With the appropriate
parameter set (l = 20, b = 3, the orange line in panel B), our
method successfully detected three embedded clusters although
only about 8% of elements were calculated (the rightmost case).
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FIGURE 4 | Parameter-dependence of sequence detection. (A) Synthetic data used for the evaluation which contain three different sequence patterns ten times

each. (B) The similarity matrices were compared between three different parameter sets for Cohen et al. (2001). The dotted line and thick black line show Jaccard1
and Jaccard2, respectively. When the number of bands is small and the size of the band is small (l = 30,b = 1, shown in green), similarity of all candidates was

calculated. In contrast, with the large number of bands and the small band size (l = 1,b = 30) the algorithm discarded all the pairs. A parameter set should be chosen

such that the algorithm can discard pairs corresponds to Jaccard1 and holds pairs of Jaccard2. The parameter was searched in a brute-force manner. (C) Similarity

matrix was calculated without using the method in Cohen et al. (2001). With (l = 20,b = 3), only 8% of the (row, col)-pairs calculated (shown as R.R., reduced rate)

yet three clusters embedded in the data successfully detected.

2.8. Construction of Profiles for Clustered
Sequences
Because activity patterns belonging to a cluster in general
exhibit a large variation in the temporal structure, a method
was necessary to identify the core temporal structure of
the cell assembly sequences belonging to each cluster. Here,
we explain our iterative multiple alignment algorithm for
constructing profiles of clusters. It is based on the algorithm
by Barton and Sternberg (1987). In the original algorithm,
we initialize the algorithm with a tentative profile, which is
obtained by taking the longest common subsequence between
the two time windows in a cluster that show the highest
match in edit similarity. After the initialization, we search
the next time window that gives the most similar profile to
the tentative one, and update the tentative profile using edit
similarity. We repeat this procedure until the tentative profile
converges.

In our method, we made two major modifications to the

original algorithm. First, we chose two arbitrary time windows
in the initiation step to reduce the computational cost. The

final results did not significantly differ between our approach
and the original one. As shown in (Figure 11A), both original
and simplified methods generated similar profiles for the data
used in section 3.3. Second, in generating a profile, we used
the instantaneous value of z-score of spike count in each time
window. Namely, for each neuron, we calculated the average
and variance of spike count per bin over the entire data,
and then subtracted the average from spike count in each bin

and normalized the difference by the variance. The use of
z-score suppresses the influences of highly active neurons on
the detection of ensemble firing sequences. Finally, in each step,
a Gaussian filter with mean 0 and variance σ was applied to
the tentative profile. Variance σ was initially as large as the
window size and gradually reduced to the bin size as iterations
proceeded. This filtering prevented a profile from containing
more than one similar sequence, thus enabled a robust detection
of minimal sequences.

2.9. FS-Score for Supervised Clustering
Performance of supervised cell-assembly detection from artificial
data was scored in terms of FS-score, which is given as the
harmonic mean of Precision and Recall:

FS = 2

(

1

Precision
+

1

Recall

)−1

. (16)

where Precision and Recall are defined as

Precision =
TP

TP+ FP
, (17)

Recall =
TP

TP+ FN
, (18)

in terms of true positives (TP), false positives (FP) and false
negatives (FN). We also used Specificity, which is defined as

Specificity =
TN

TN+ FP
, (19)
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to evaluate the portion of negatives that are correctly classified
as such.

2.10. FUS-Score for Unsupervised
Clustering
Performance of unsupervised cell-assembly detection of artificial
data was scored in terms of FUS-score, which is widely used
for unsupervised clustering in the field of machine learning (c.f.
Artiles et al., 2007). The score is given as the harmonic mean of
Purity and Inverse Purity as

FUS = 2

(

1

Purity
+

1

Inverse Purity

)−1

. (20)

We note that this score is different from FS-score for supervised
clustering. Purity is a weighted average of the fractions of true
members in detected clusters,

Purity =

m
∑

i=1

|Ci|

T

Ci ∩ Lj

Ci
, (21)

and Inverse Purity is a weighted average of correctly classified
portions of true clusters,

Inverse Purity =

n
∑

i=1

|Li|

T

Ci ∩ Lj

Lj
, (22)

where m is the number of detected clusters C =

{C1, C2, . . . , Cm}, n is the number of true clusters plus a
noise cluster in the artificial data L = {L1, L2, . . . , Ln}, and
T is the total number of data points (i.e., time windows). The
noise cluster consists of spurious cell assemblies. (Ci ∩ Lj/Ci)
represents the fraction of members of the j-th true cluster in the i-
th detected cluster. j-th true cluster is selected by argmaxkCi∩Lk.
In the above expressions, weights are determined such that
a larger cluster contributes more strongly to the weighted
sums. We note that Purity and Inverse Purity take their values
within the interval [0, 1]. If a classification is perfect, both
Purity and Inverse Purity take the maximal value of unity. The
harmonic mean of Purity and Inverse Purity penalizes two trivial
solutions. In one such solution each data point constitutes an
independent cluster (i.e., m = T), and in the other solution
all data points are classified into a large cluster. In these trivial
cases, Purity, but not Inverse Purity, takes the maximum value
of unity.

2.11. Cluster Labels for PCA/ICA-Based
Analyses
To compare our method with the PCA/ICA-based methods
for detecting synchronously firing ensembles (Lopes-dos Santos
et al., 2013), we have to assign a cluster label to each component
detected by these methods. To this end, we calculated overlaps
between the population activity vector and the principal (or
independent) components for all time windows. Then, in each
time window, the component having the highest overlap with
the instantaneous population activity was assigned to the time

window as the corresponding cluster label. If the highest overlap
in a time window did not reach a certain threshold, no
PCA/ICA components were assigned to the window and this
time window was treated as noise in the calculation of FUS-
score. The above procedure was repeated until all time windows
were labeled with some PCA/ICA components or classified as
noise. For a fair comparison with our method, an optimal
threshold value that maximizes the FUS-score was searched in
brute-force manner.

2.12. Behavioral Labels for Clusters
We introduced three behavioral labels (Go, Back, Stop) in the
analysis of clusters of hippocampal neurons. First, individual
members (time windows) of each cluster were labeled with “Go,”
“Back,” or “Stop” according to the directions and average speed
of animal’s movement in the corresponding time window. A
member was labeled as “Stop” if the average speed was less than
3 cm/s, and Go refers to the movement direction from start to
goal and Back refers to the opposite direction. Then, in each
cluster we constructed gaussian kernel density functions (KDF)
to fit the spatial distributions of cluster members labeled with
the different behavioral labels and measured the peak heights of
these KDFs. Now, for each behavioral label we selected the top
20 clusters yielding the highest peaks of the corresponding KDF.
We called thus-obtained three sets of 20 clusters as “Go cluster,”
“Back cluster,” and “Stop cluster” in Figure 9A. We note that this
categorization scheme allows a cluster of time windows to obtain
multiple behavioral labels.

2.13. Parameter Choices
Here we list the values of parameters in our algorithm.

In our approximate calculations of similarity matrix (Cohen
et al., 2001) in section 2.7, we used the following parameters:
the length of sliding time window Tw = 200, the penalty
parameter α = 0.1.

We searched the set of parameter values that maximizes the
detection performance in Figure 6A. Each parameter was tested
within the following range: the number of points for a minimal
cluster in OPTICS MinPts from 2 to 20 (Ankerst et al., 1999);
parameter for COPRA v from 2 to 20 (Gregory, 2010); the
parameter α = 1.0; MinPts= 5 and v= 5 in Figures 6F,G.

For the hippocampal data, the following parameter values
were used: the parameter α = 0.1; the length of sliding time
window Tw = 100ms, which is close to the period of one cycle of
theta oscillation; parameter for Jaccard2 N3 = 10; the number of
points for a minimal cluster in OPTICS MinPts = 20; parameter
for COPRA v = 4.

The prefrontal data were analyzed using sliding time windows
with a wider variety of lengths ranging from 250 ms to 2.5 s
because the characteristic time scale of sequences was not known.
However, all the results shown in this study were obtained for the
length of 250 ms. The temporal discount factor was set as α =

0.03. Other parameters were as follows: parameter for Jaccard2
N3 =10; the number of points for a minimal cluster in OPTICS
MinPts = 400; parameter for COPRA v = 30.
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2.14. Bayesian Modeling for Edit Similarity
Difference
In the analysis of hippocampal activity, we searched locations
in a linear maze at which the recorded neural activity coincides
with a detected cell assembly in a statistically meaningful
manner. We divided the linear maze (its total length ranged
from 60 to 300 cm) into 30 different locations which we may
term position bins. In each position bin (denoted as x), we
computed an edit similarity score EDraw

x between the profile
of the given cell assembly and neural activity. Similarly, we
calculated an edit similarity score ED

sge
x for surrogate data in

which spikes of each neuron were randomly shuffled across time
bins (this corresponds to the null model of homogeneous Poisson
processes). Then, we used Bayesian modeling for estimating the
significance of similarity score at each position bin compared
with the null model. Let µx be the baseline score at the position
bin x. We assumed that the value of µx smoothly changes across
positions until the score exhibits a sudden jump at some position
bins. To be specific, we assumed that EDraw

x and ED
sge
x obey the

following Gaussian distributions:

EDraw
x ∼ Normal(µx, σ

raw), ED
sge
x ∼ Normal(µx + δx, σ

sge).

Then, we assumed that the change µx−µx−1 obeys the Gaussian
distribution with the mean µx−1−µx−2 and the variance σµ and
that a jump δx obeys the Cauchy distribution with the mean δx−1

and the variance σδ :

µx ∼ Normal(2µx−1−µx−2, σµ), δx ∼ Cauchy(δx−1, σδ).

For the statistical modeling, we used STAN library (http://
mc-stan.org/) with default uniform prior distributions for the
variances σµ, σδ , σ

raw and σ sge.

2.15. Code Accessibility
Data analysis was done by Python 3.6, Julia 0.6, and Bash. The
implementation of the algorithm in Python 3.6 is available at
(https://github.com/KeitaW/spikesim, RRID: SCR_016351).
Only part of the algorithms related to calculating the spike
similarity is provided in the source code on the repository. We
used the original implementation of COPRA (Gregory, 2010)
and OPTICS (Zhang et al., 2013) We also used GNU parallel
(Tange, 2011) for data processing.

2.16. Experimental Data
The data of hippocampal neurons is available at the data
sharing website of Collaborative Research in Computational
Neuroscience (CRCNS.org., http://dx.doi.org/10.6080/
K09G5JRZ)(Mizuseki et al., 2009). The data used in this
study contains the activity of 108 neurons recorded from the
hippocampal CA1 region of a male Long-Evans rat during
voluntary exploration of a linear maze. The total duration of
recordings is 1928 s. The multi-neuron spike trains of prefronal
neurons used in this study were recorded previously from the
medial prefrontal cortex of a male Brown Norway/Fisher hybrid
rat with a chronically implanted hyper drive consisting of 12
tetrodes (Euston et al., 2007). The data contains the activity of 76
neurons and the total duration of recordings is 11, 010 s.

3. RESULTS

We developed a method for robust sequence detection based on
the edit similarity score known in computer science (Levenshtein,
1966). The basic concept of edit similarity is simple. Suppose that
we evaluate similarity between two strings of genes, “ATCGTAC”
and “ATGTTAT.” We may naively count the number of
coincident bases at the corresponding positions in the two
strings. In the above example, the first two bases “AT” coincide, so
the similarity is two. However, if we count the maximal number
of coincidences preserving the serial orders of bases but allowing
the insertion of blanks “-,” we may compare “ATCGT-A-C” and
“AT-GTTAT-” to obtain the maximal number of five (i.e., A,
T, G, T and A coincide in this order). The N-W algorithm
(Needleman and Wunsch, 1970) provides a rigorous method for
scoring edit similarity between arbitrary strings. In this study,
we extended this algorithm such that it is applicable to neural
data (section 2).

3.1. Density- and Community-Based
Algorithms for Sequence Clustering
In our method, neural data are segmented into time windows
and those containing similar sequential activity patterns are
searched (see Figure 2A). These time windows form a high
dimensional space with a metric defined by edit similarity score,
and similar activity patterns form a cluster of neighboring data
points (i.e., a candidate of cell assembly) in this feature space.
To identify these clusters, we used a density-based clustering
algorithm “OPTICS” (Ankerst et al., 1999) and a community-
based clustering algorithm “COPRA” (Gregory, 2010)
(see section 2).

We tested these methods using an artificial dataset. As shown
in Figure 5A, OPTICS identified a single dense cluster from
noisy data points, but it did not separate the cluster into two
parts. On the other hand, “COPRA” identified two separate
clusters but each cluster contained a considerable number of
noisy data points: an outlier may be invited to a community if
its distance from any member of the community is short enough
(Figure 5B). In this study, we sequentially applied OPTICS
and COPRA to take advantage of each method (Figure 5C).
The combined use of the two algorithms compensated for
the weakness of others to improve clustering performance.
As studied in Figure 5D, the combined use was especially
advantageous when the mean distance between data points was
small. To our knowledge, such advantage has not previously been
pointed out.

3.2. Performance Evaluation With Artificial
Data
We compared the performance of our method with that of PCA-
(Peyrache et al., 2009; Lopes-dos Santos et al., 2011) and ICA-
based method (Lopes-dos Santos et al., 2013) by using synthetic
population activity data. We embedded 5 non-overlapping
cell assemblies into background activity of 100 simulated
neurons firing independently at a rate of 2 [Hz] (Figure 6A,
top panel). PCA and ICA do not take the time structure
of cell assemblies into account, but these methods should
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FIGURE 5 | Comparison between different clustering algorithms. A density-based clustering algorithm (OPTICS) and a community detection algorithm (COPRA) were

separately or sequentially applied to a dataset. Data points were generated by a mixture of two Gaussian distributions with different centers and the same variance of

1.3. These points were further mixed with uniformly distributed background data points. (A) OPTICS could remove background noise but failed to discriminate the two

clusters. (B) COPRA could separate these clusters but failed to remove background noise. (C) The combined application of OPTICS and COPRA successfully

separated the two clusters and removed background noise. (D) Performance of identifying two clusters was compared between the different algorithms, that is,

OPTICS only (magenta), COPRA only (yellow) and their combination (cyan). The abscissa represents the distance between the centers of the two clusters. Shaded

areas show standard errors.

be good at detecting the assemblies of synchronously firing
neurons. On the other hand, our method treats synchronously
firing as a special case of sequential firing with zero time
lags between spikes. In fact, we generally expect slightly better
performance for synchronous firing than for sequential firing
because the probability that the complete cell-assembly pattern
falls within a time window will be higher for the former
than for the latter. Therefore, we constructed synthetic data
of length 300 s in which each cell assembly consisted of 20
synchronously firing neurons with certain timing jitters and
appeared 50 times at randomly determined positions. The same
size of time window (200 ms) was used in all the methods
and no spikes of each cell assembly occurred across different
time windows.

For performance evaluation, we searched the set of parameter
values that maximizes the detection performance. Each
parameter was tested within the following range the number
of points for a minimal cluster in OPTICS MinPts 2 to 20
(Ankerst et al., 1999); parameter for COPRA v 2 to 20 (Gregory,
2010). We evaluated the performance of each method in
terms of FUS-score (section 2). We generated 40 artificial
data with different background activity. We then analyzed
each data by the three methods (i.e., PCA-based, ICA-based
and the proposed methods) and calculated FUS-score for
each trial. The resultant score was significantly larger in the
proposal method (mean ± s.d., 0.89 ± 0.09) than in the PCA-
based (0.61 ± 0.07) and ICA-based (0.59 ± 0.11) methods
(Figure 6B). In fact, our method correctly detected all target
cell assemblies.

In Figure 6B, the value of timing jitters is relatively small
(±10 ms) and cell assemblies may be regarded as groups of
synchronously firing neurons. For shorter timing jitters, the
results would not change significantly. However, for longer jitters
our method will exhibit degraded FUS-score because the method
is sensitive to the serial order of firing. In contrast, PCA/ICA-
based methods do not take the order of firing into account
and therefore will exhibit no significant differences, as far as
neurons belonging to each cell assembly fire within the same
time windows. We studied this large-jitter case by using timing
jitters of ±50ms without changing the discount factor (i.e., α =

0.1) in Figure 6C. As expected, PCA/ICA-based methods show
seemingly better performance compared to our method. These
results indicate that our method is more sensitive to timing jitters
than PCA-/ICA-based method. However, as we discuss in the
next paragraph, sensitivity of our model can be controlled by
changing α.

We then investigated if our method is able to extract spike
sequences in noisy artificial data. Sequential firing of three non-
overlapping cell assemblies each consisting of 20 neurons was
embedded into background activity of 60 neurons (including
the twenty) at a rate of 1Hz in both forward, synchronous and
reverse orders with ±10 ms jitter (Figure 6D). Each sequence
appeared 20 times. The time window was 200ms and bin size was
10ms. Ourmethod detected the groups of cells firing sequentially
as well as synchronously, but the way our method categorized
these cells depended on the values of parameters used and noise
level in input data. In the left panels of Figure 6E, the same group
of neurons firing in different temporal orders were categorized
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FIGURE 6 | Comparison with PCA-/ICA-based methods. (A) An example of the embedded artificial cell assemblies used for the comparison. In the raster plot, each

dot is a spike. Each color indicates a cell assembly. For clarity, noisy spikes are not shown. (B) Timing jitters were within ±10 ms and cell assemblies represented

synchronously firing neuron ensembles. FUS -score was significantly higher for the proposed method than for PCA- and ICA-based algorithms (p-values were less than

2.2e-16 for both cases: Wilcoxon rank sum test). The time window used was 200 ms. (C) Timing jitters were within ±50 ms and cell assemblies may not be regarded

as synchronously firing neuron ensembles. Our method is sensitive to the serial order of firing and hence the score is lowered (p-values were less than 2.9e-11 for

both cases: Wilcoxon rank sum test). (D) Nine artificial spike sequences (middle and bottom) were embedded into noisy spike trains. Noise spikes are not shown here.

(E) Sequences detected by our method from the artificial data shown in D are presented in two intervals together with noisy spikes (gray). The nine embedded

sequences were successfully detected. The results are shown for different values of parameters: α = 2.0, MinPts = 20, v = 2 in left panels; α = 0.5, MinPts = 10,

v = 12 in right panels. (F) Robustness of cell-assembly detection against background noise. Two scores, Specificity (left) and FS (right), in the detection of a single

cell-assembly are shown against the number of background Poisson spike trains: our method (orange), PCA (green), and ICA (blue). Shaded areas indicate standard

errors. (G) Effect on different α for cluster formation. Different shrinkage rates tested: 10 (orange), 5 (green), and 3 (blue). Shaded areas indicate standard errors.

as separate clusters (e.g., green and purple clusters). Namely, we
can see three separate groups of cells that fire with an upward
ramp, a downward ramp, or all simultaneously. In contrast, such
a group of cells was classified into a single cluster in the right
panels of Figure 6E. Although some spikes were misidentified,
the following scores quantify the performance of our algorithm
in detecting the three clusters: Precision = 0.75, Recall = 0.85,
and the FS-score = 0.8 in Figure 6, left; Precision = 0.63, Recall
= 0.89 and the FS-score = 0.73 in Figure 6E, right. The scores
used are explained in section 2.

We further investigated the robustness of performance of
our method at different signal-to-noise ratios. Here, we varied
the ratio by modifying the number of background firing
neurons. We embedded a single cell assembly consisting of 100
neurons firing synchronously without jitters into a sizable neural
population while maintaining each neuron firing rate of 5 Hz.
The cell-assembly pattern appeared 20 times at random temporal

positions in neural activity data of the total length of 60 s. We
generated ten instantiations for each total number of neurons
([1,000, 3,000, 5,000]). We then analyzed these data sets by our
method with the time windows of 200 ms and calculated FS-score
for supervised clustering for each set (section 2). The results are
shown in Figure 6F, which proves the robustness of performance
against changes in the magnitude of background noise. We used
the parameter α = 1.0, MinPts 5 and v 5 in this analysis.

Finally, we tested that the method’s ability to detect a cluster
of assembly sequences that were activated on two different
time scales. Each assembly activation consists of 30 different
neurons which were sequentially activated in 200 ms and
embedded 20 times. In addition, we added the same numbers of
compressed patterns. We used three different shrinkage factors,
three, five, and ten times (illustrated in Green, Orange, and
Blue in Figure 6G). These cell assemblies were embedded in
the background Poisson firing at the rate of 1 Hz in 60 s.
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FIGURE 7 | Cell assemblies extracted from hippocampal CA1. (A) The spatial locations in the linear maze are shown for the detected cell-assembly sequences. The

x-axis shows time and y-axis shows the position of the rat. Twenty Go clusters and 20 Back clusters of time windows are shown, and the spatial positions at which

they were detected were indicated by the rightmost color diagram. Each colored region shows where each segment was observed. Cluster four and ten were

additionally colored in blue and pink. Cluster indices are shown on the right, which were sorted and colored according the order of appearance during the going and

returning along the maze. We sorted cluster indices according to their mean kernel density estimate (which is shown in Figure 9). The window size was 100 ms. (B)

t-SNE visualization of the feature space. Note that most of the neighboring colors in A are also adjacent in B, suggesting that two neuronal activities observed at

contiguous spatial positions have similar temporal patterns, but are still separate enough in the feature space. (C) Profiles of cell-assembly sequences are shown for

four cluster (left four panels). The first 10 neurons for four profiles are shown with number indicating cluster identity (Profile 4: [41, 0, 85, 53, 59, 68, 76, 5, 54, 4], Profile

53: [4, 15, 68, 49, 26, 84, 77, 12, 82, 13], Profile 10: [26, 54, 84, 17, 76, 68, 60, 36, 15, 0], Profile 16: [82, 39, 83, 61, 48, 13, 77, 28, 26, 85]). Color indicates the firing rate

of each neuron after a normalization across neurons within the profile: from lowest (dark blue) to highest (yellow). The cells (y-axis) were sorted according to the relative

temporal order note that the first ten neurons represent different firing order in the different profiles. (x-axis) of the peak activity of each cell in each profile. Note that the

absolute length of the x-axis in each profile does not necessarily represent the actual temporal length of sequences, though the approximate length coincides the

width of temporal windows (100ms in this case). (D) Between-cluster and within-cluster edit similarity scores. Edit similarity was compared between time windows

belonging to the same cluster and those belonging to different clusters. Box plot with whiskers from 5 percentile to 95 percentiles are shown with outliers (filled circles).

We have clustered the data with different alpha and same
clustering parameter. The result indicates that our method with
α = 0.1 detects both types of cell assemblies as identical when
shrinkage factor is three and five. We used MinPts 5 and v 5 for
the clustering.

3.3. Place-Cell Firing Sequences in the
Hippocampus
We now demonstrate that our method enables an automatic
detection of firing sequences of rat hippocampal neurons during
spatial exploration (Mizuseki et al., 2009). Our method extracted
60 distinct clusters of data segments (i.e., time windows), each of
which appeared repeatedly at a different location in the maze and
in a specific movement direction (Figure 7A). We introduced
three labels (Go, Back, Stop) for categorizing these clusters in
terms of their dominant relationships to behavior, allowing each
cluster to have multiple behavioral labels (section 2). Twenty
clusters appeared primarily when the rat ran from the start to
the goal (we call it the Go cluster), 20 clusters appeared primarily
during the opposite movement (called the Back cluster). There
are five overlapping clusters between the two types (#6, #10,

#21, #40, #48). Another 20 clusters mainly appeared during
immobility (Stop cluster). The relationship between each cluster
and a behavioral state indicates that our method successfully
detected behaviorally relevant cell assemblies, which likely consist
of hippocampal place cells. Some clusters (e.g., clusters #4 and
#10) were detected during both locomotion and the resting state.
These patterns presumably correspond to place-cell firing phase-
locked to theta oscillation and their ripple-associated replays,
respectively (Nádasdy et al., 1999; Foster and Wilson, 2006). It is
notable that our method automatically extracted these sequences
in spite of the different time scale. Such reactivation was also
observed in (Mizuseki et al., 2009). Figure 7B shows visualization

of the feature space with t-SNE, which defines a mapping from
high-dimensional data space to a low-dimensional space for
visualization such that the spatial relationships between data
points are optimally preserved (Maaten and Hinton, 2008). We

constructed the core temporal structure, which termed profile,
of highly variable activity patterns of each cell assembly (section
2). Figure 7C displays four sample profiles of activity patterns
for the clusters detected, where only the first 10 neurons are
shown. Three examples (#4, #16, #53) show clusters each of which
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FIGURE 8 | Cell assemblies detected from CA1. Four examples are shown from cluster 4 (top) and cluster 10 (bottom). The top, middle and bottom panels display

the velocity and spatial position of the rat, spike raster, and local field potentials band-passed at 4–10 Hz (theta band) and 150–200 Hz (sharp-wave ripples). We

calculated criteria (0.095) of the ripple detection with the method described in Davidson et al. (2009) to confirm our detected patterns during immobility accompanied

with sharp wave ripple. In the middle panel, gray vertical bars show noisy spikes and red bars represent the core spikes of the corresponding profile. Neurons are

sorted according to their firing position within the average profile.

was observed just once along the maze (see the rightmost color
diagram) whereas cluster #10 appeared at two slightly different
places during movements in both directions.

Figure 8 shows four examples of spike rasters from the
extracted cell assemblies corresponding to two clusters (cluster
4 and cluster 10) together with the position and velocity of the
animal. In each cluster, the spatiotemporal activity patterns vary
from segment to segment, but they also resemble each other (see
Figure 7D for the statistics of within-cluster and between-cluster
similarity of activity patterns). Thus, ourmethod is robust against
changes in the temporal scale of sequences. In addition, each
of the two clusters include an example of replays (at 1479 s in
cluster 4 and at 1868 s in cluster 10) of a cell assembly in the
immobile state of the animal. For the parameter values used here,
these sequences were grouped into the same cluster because our
method allows a certain degree of spike timing jitters. The larger
the value of α, the stricter the penalty for spike timing jitters.
We quantitatively evaluated clustering performance at different
values of α to find that both the number of clusters (Nc) and the
total number of time windows (Ntw) in the clusters decreased

as the value of α was increased: at α = 0.1, Nc = 58 and
Ntw = 21162; at α = 1.0, Ncl = 46 and Ntw = 17858; at α =

10.0, Nc = 33 and Ntw = 8028.
Figure 9A shows the receptive fields of neurons (top panels)

and clusters (bottom panels) when the rat was running forward,
backward and stopping. It is suggested that a cluster detected
at a given spatial location consists of neurons having similar
receptive fields around the location. To examine whether the
detected sequences have significant relationships to behavior, we
generated shuffled neural data in which spikes of each neuron
were redistributed at randomly chosen temporal locations
according to a homogeneous Poisson process. This manipulation
preserved the average firing rates of individual neurons. Edit
similarity score for cell-assembly sequences at some locations was
significantly higher than the score calculated from the shuffled
data (Figure 9B) (see Bayesian modeling section in section 2).
The result suggests that the cell-assembly sequences and their
profiles actually captured the behaviorally relevant characteristics
of neural population activity. Section 2 explains the details of the
statistical model used for the analysis.
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FIGURE 9 | The relationships between hippocampal cell-assembly

sequences. (A) The spatial receptive fields are shown for 36 hippocampal

neurons (top) and cell assemblies belonging to the 20 clusters (bottom). The

pseudo-color code indicates the probability of firing. (B) Estimated edit

similarity difference between the original and shuffled data. Each similarity

scores were calculated by using the profiles of cell assemblies and spike trains

of hippocampal neural population using a sliding time window. Solid lines

correspond to the mean of the estimated differences and blue shaded regions

to 95% credible interval. Orange bars designate the spatial locations at which

the lower bound of the credible interval is positive.

3.4. Cell Assemblies in the Prefrontal
Cortex
We further validated the method in neural ensemble activity
recorded from the medial prefrontal cortex of rats performing
a memory-guided spatial sequence task (Euston et al., 2007): see
the paper for experimental details). Briefly, the rats were trained
to visit eight locations equally spaced around the perimeter of
a circular arena in a prescribed sequential order with electrical
brain stimulation as a reward. Our method detected 11 clusters
of prefrontal cell-assembly sequences in total (Figure 10A).
The previous analysis based on template matching revealed a
sequence and its replay pattern in the same rat as we analyzed
here (Euston et al., 2007). Though some of the detected clusters
are overlapped, the larger number of detected clusters indicate
that the method extracted activity patterns without any reference
to events or positions on the track. These clusters were detected

in both behaving state and sleep state, and some clusters
were frequently replayed during sleep (Figure 10A). During the
behavior, cell assemblies were typically found when the rats were
approaching or leaving a reward zone (Figure 10B, green circles).
The profiles of three cell assemblies are shown in Figure 10C.
Each sequence usually appeared just once in a 250ms window
during behaving state, whereas they were repeated multiple times
during sleep state (Figure 10D). Thus, the detected sequences
were time compressed during sleep. These results are consistent
with the previous findings (Euston et al., 2007).

Because the profiling method is essential for inspecting the
activity patterns of cell assemblies, we examined whether the
method works robustly. For the applications reported in this
study, 10x to 100x times updating, where x is the number
of members of the cluster to be profiled, maximized the
average edit similarity score between the individual cluster
members and the corresponding profile. The convergence
of the profiling procedure is shown in Figure 11A for
experimental data.

3.5. Comparison With a Recent Method for
Sequence Detection
Recently, a statistical method to extract assembly structure with
arbitrary constellations of time lags was proposed (Russo et al.,
2017). We compared our method with the method (the code
is available at https://github.com/DurstewitzLab/Cell-Assembly-
Detection). The method recursively combines neurons into
larger sets based on significant statistical relations between their
activities. We first compared performance on artificial spike data
in which a spike sequence of 10 neurons was embedded into
background Poisson spike trains of total 100 neurons (including
the ten). The target sequence pattern occurred 60 times and
background firing rate were 1 Hz. We generated two sets of
50 independent datasets: one with the sequence duration of
100 ms and the other with 500 ms. The length of each dataset
was 60 sec.

While our method robustly showed a near perfect detection,
performance of the previous method depended on particular
samples. For 100 ms-long sequences, the mean FUS value was
0.940 and the variance was 0.134 in our method, whereas the
mean FUS value was 0.940 and the variance was 0.090 in the
method by (Russo et al., 2017). For 500 ms-long sequences, while
our method yielded the mean FUS value of 0.989 and the variance
of 0.008, the method by (Russo et al., 2017) showed the mean FUS
value of 0.635 and the variance of 0.197. Thus, the two methods
worked equally well for the shorter sequences (Figure 12A,
left), but our method exhibited better scores than the previous
method for the longer sequences (Figure 12A, right). On the
other hand, the previous method yielded better specificity than
our method for both data lengths (left, p = 0.001174; right, p
= 4.353e-07). This result suggests that the previous method is
more conservative, and it produces less false positive. However,
the differences were subtle: 99% confidence interval is (-0.0333,
0.0000) and (-0.0166, 0.0000) for the lengths of 100 and 500
ms, respectively. In addition, we analyzed spike data obtained
in the rat hippocampus (CRCNS.org., http://dx.doi.org/10.6080/
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FIGURE 10 | Cell assemblies detected from the prefrontal cortex. The width of time windows was 250 ms. (A) The onset times of detected time windows are shown

for all the clusters. (B) The spatial positions and movement directions of a rat are shown at the onset times of detected time windows belonging to three clusters by

arrows. Only ten percent of randomly sampled elements are drawn for visualization. (C) Profiles are shown for three prefrontal cell assemblies in terms of the sorted

neuron id and relative temporal order. The approximate length of the x-axis coincides the width of temporal windows (250 ms). (D) Cell assembly sequences detected

in awake (left three panels) and sleep (rightmost panel) are shown for the three clusters. From top to bottom, each row corresponds to the profile 2, 8, and 9,

respectively. Some sleep replay events showed evidence of multiple replays within the 250 ms window. This is most apparent in the first row, where the upward ramp

is seen twice.

K09G5JRZ), which highlighted another difference between the
two methods. As shown in Figure 12B, our method detected
multiple cell assemblies that cover the entire linear track. In
contrast, their method failed to merge similar subsequences
into a small number of core sequences. For instance, see
assemblies #12 to #15, which consisted of similar neuronal
populations with similar time lags. The same can be said
for assemblies #10, #11 and #16. This excessive division is
presumably due to jitters and failures in spike generation.
Although pruning solutions called “biggest” and “distance” were
described in (Russo et al., 2017), the previous method was not
completely free from the difficulty at least in our analysis of
real data.

3.6. Computational Time
This section lists up the computational time needed to detect cell
assembly sequences from each dataset. All computations were
done on Mac Pro (Late 2013) with 2.7 GHz 12-Core Intel Xeon
E5 and 64GB RAM.

Our method took 18 h to process the data described in 3.3
(Figures 7, 8), whereas the method described in Russo et al.
(2017) took 28 h (result is shown in Figure 12).

To analyze 300 s-length artificial data, our method took 27
min std. 95 s while the PCA/ICA-based method took 1 min std.
2 s (Figures 6A–C). On 60 s-length artificial data, our method
took 5 min std. 63 s while the PCA/ICA-based method took 47 s
std. 1 s (Figure 6E).
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FIGURE 11 | Characteristics of the proposed algorithm (A) There is no visual difference between the implementation used in our framework and described in Barton

and Sternberg (1987) (bottom). (B) Convergence of profile evaluation. Profiles were calculated for all clusters in the activity data from CA1 and PFC. The abscissa

shows the number of iterations and the ordinate shows edit similarity between the current profile and the preceding one. Thick lines represent the means over all

clusters and shaded areas show the standard errors.

FIGURE 12 | Comparison with Russo 2017 (A) FS-score (top) was significantly higher in the proposed method than in Russo et al. (2017) for artificial data of length

500 ms (right, p-value is 1.831e-12), but not significantly different between the two methods for artificial data of length 100 ms (left, p-value is 0.6386). (B) The output

of Russo 2017 is shown. The distributed computer code of Russo 2017 analyzes spike train data at various temporal precisions (i.e., correlation time scales) ranging

from milliseconds to several seconds. Only the part of results is shown to clarify the characteristic property of Russo 2017: the eight cell assemblies classified as

number 10 to number 17 look very similar to each other.

Our method took 8 h to process the data described in section
3.4 (Figure 10).

4. DISCUSSION

In this study, we have developed a method for extracting
multiple repeated sequences of cell assemblies frommulti-neuron
activity data. Our method is based on edit similarity, which was
developed in computer science as ameasure of similarity between
strings. Edit similarity compares the serial order of common
elements appearing in two strings with or without discounting
variations in inter-element intervals, hence it provides a flexible
and efficient metric for comparing highly noisy spatiotemporal
activity patterns of cell assemblies. We have validated the
method first in artificial data and then in neural activity data

recorded from the hippocampus and the prefrontal cortex of
behaving rodents.

In the assessment with artificial data, we showed that our

method is superior to PCA- (Peyrache et al., 2009; Lopes-dos
Santos et al., 2011) and ICA-based methods (Laubach et al.,
1999; Lopes-dos Santos et al., 2013) in detecting an assembly
of synchronously firing cells when the cell-assembly structure

is clear (i.e., small timing jitters of ±10 ms). However, when
timing jitters are fairly large (i.e., ±50 ms), our method tends
to categorize such a cell assembly into multiple clusters and
the performance becomes inferior to PCA/ICA-based methods.
However, this does not show the weakness of the method
because it is constructed as such: the method is specialized
for sequence detection. Dynamic programming-based methods
were previously introduced to quantify the similarity between
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spike trains of neurons(Victor and Purpura, 1996; Victor
et al., 2007). To our knowledge, no methods have been
developed with edit similarity to detect similar sequences of cell
assemblies from noisy population neural data in unsupervised
manner. Other methods also exist and discovered the activation
of specific neuron ensembles (Lee and Wilson, 2002; Ohki
et al., 2005; Chen and Wilson, 2017). The previous methods,
however, are generally not effective when data has a low
signal-to-noise ratio, for instance, when most of the recorded
neurons do not participate in sequences. In addition, the
previous methods have difficulties in distinguishing partially
overlapping cell-assemblies.

In particular, our method enables blind detection of cell-
assembly sequences without referring to external events such
as sensory stimuli and behavioral responses. Recently, a novel
statistical approach was proposed for the detection of cell
assembly structure with multiple time scales (Russo et al., 2017).
Starting from pairwise correlations in neuron pairs, the method
finds significantly correlated neurons within the set of cell
assemblies detected at the previous step. Acceleration of the
analysis was achieved by discarding statistically less significant
combinations at the next step. However, in the successive
statistical tests, the detection of long sequences becomes rare
and time consuming. In contrast, our method is computationally
more efficient when searching longer cell-assembly sequences.
It may also be inappropriate to discard long sequences just
because they are statistically less significant. For instance, place-
cell sequences spanning several seconds of behavior emerge
in the hippocampus during spontaneous activity after spatial
experience (Dragoi and Tonegawa, 2013; Grosmark and Buzsáki,
2016). We propose that behaviorally relevant cell-assembly
sequences should be addressed after all possible candidates
have been identified. Our method enables such an analysis of
cell-assembly sequences.

We note that the two data examples analyzed here (Euston
et al., 2007; Mizuseki et al., 2009) were recorded during
stereotyped, repeated behaviors, which presumably entrained
similar repeated patterns in neural activity. Whether the present
algorithm can be used to detect spontaneous (as opposed to
stimulus- or activity-driven) patterns, such as those reported

by Luczak et al. (2007) and Luczak et al. (2009) remains to be
tested. Other intriguing extensions of this method include the
detection of hierarchically organized cell assemblies overmultiple
spatiotemporal scales. Such an extension requires a flexible on-
line tuning of time windows, which is a challenge at the moment.

One area where time-scaling would be particularly relevant is in
the detection of replay events, which often occur at a compressed
timescale during slow-wave sleep. Our method might detect
considerably more reactivation events if we adjust the temporal
scaling between behavior and sleep epochs. We also note that
in principle our method is applicable to optical imaging data
if we adequately tune the sizes of time window and temporal
discount factor.

In summary, we proposed a novel method for the blind
detection of cell-assembly sequences based on the edit similarity
score and an exponential discount for timing jitters. This method
does not rely on external references, and is therefore useful
for detecting not only externally driven firing sequences, but
also internally driven sequences emergent from arbitrary mental
procedures. Whether the method reveals the involvement of
cell-assembly sequences in mental processes is an interesting
open question.
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