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Purpose: Estimation of uncertainty of MAP-MRI metrics is an important topic, for
several reasons. Bootstrap derived uncertainty, such as the standard deviation, provides
valuable information, and can be incorporated in MAP-MRI studies to provide more
extensive insight.

Methods: In this paper, the uncertainty of different MAP-MRI metrics was quantified
by estimating the empirical distributions using the wild bootstrap. We applied the wild
bootstrap to both phantom data and human brain data, and obtain empirical distributions
for the MAP-MRI metrics return-to-origin probability (RTOP), non-Gaussianity (NG), and
propagator anisotropy (PA).

Results: We demonstrated the impact of diffusion acquisition scheme (number of
shells and number of measurements per shell) on the uncertainty of MAP-MRI metrics.
We demonstrated how the uncertainty of these metrics can be used to improve group
analyses, and to compare different preprocessing pipelines. We demonstrated that with
uncertainty considered, the results for a group analysis can be different.

Conclusion: Bootstrap derived uncertain measures provide additional information to the
MAP-MRI derived metrics, and should be incorporated in ongoing and future MAP-MRI
studies to provide more extensive insight.

Keywords: bootstrap, diffusion MRI, MAP-MRI, RTOP, NG, PA, uncertainty

1. INTRODUCTION

Mean apparent propagator (MAP) MRI is a diffusion-weighted MRI framework for accurately
characterizing and quantifying anisotropic diffusion properties, at large as well as small levels of
diffusion sensitivity (Ozarslan et al., 2013). Consequently, it has been demonstrated that MAP-
MRI can capture intrinsic nervous tissue features (Ozarslan et al., 2013; Avram et al.,, 2016;
Fick et al., 2016b). Some novel features of the diffusion process can be characterized by MAP-
MR, including the return-to-origin probability (RTOP), non-Gaussianity (NG), and propagator
anisotropy (PA). It has already been shown that MAP-MRI metrics can be potential biomarkers of
brain microstructure, demonstrated using synthetic data, ex-vivo marmoset brain data (Ozarslan
et al., 2013) as well as in-vivo healthy human brain data (Avram et al., 2016; Fick et al., 2016b).
Moreover, in a transgenic rat model of Alzheimer’s disease, it was found that MAP-MRI metrics
can be sensitive to age-dependent neuronal demise (Fick et al., 2016a). The utility of MAP-MRI
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metrics as biomarkers has also been demonstrated for axonal
remodeling after ischemic stroke (Brusini et al., 2015) and they
have been employed for distinguishing pathological (after stroke)
and healthy subjects (Brusini et al., 2016; Obertino et al., 2016).
Clearly, researchers have already started using MAP-MRI metrics
as clinical biomarkers, due to their potential sensitivity and
specificity for various diseases. However, it is still not clear how
high the uncertainty is for different MAP-MRI derived metrics.

1.1. Why Study Uncertainty?

To use MAP-MRI metrics as clinical biomarkers, it is necessary
to estimate the metric itself as well as its uncertainty. Without an
uncertainty measure it is difficult to know if a subject, or a specific
brain region, for example has a lower non-Gaussianity, or if it
is lower by random chance. For group analyses, an uncertainty
for each subject and voxel can be used to downweight outliers or
subjects with more uncertain estimates (e.g., due to more severe
head motion). MAP-MRI is based on a number of parameters
and settings, such as the maximum order of the Hermite basis
functions, how the initial tensor is estimated and the resolution of
the propagator. An uncertainty measure can be used to select the
settings that result in the lowest uncertainty. Similarly, it becomes
possible to investigate how much the uncertainty is increased
when the amount of diffusion data is reduced (to decrease MR
scanner time). Furthermore, an uncertainty measure can be used
for comparing different softwares and preprocessing pipelines, as
a better pipeline should result in a lower uncertainty. MAP-MRI
is becoming more and more popular, and has been implemented
in several software packages, e.g., Dipy (Garyfallidis et al., 2014)
and Tortoise (Pierpaoli et al., 2010; Irfanoglu et al., 2017). For the
mentioned reasons, it is of great value to study the uncertainty of
MAP-MRI derived metrics.

1.2. Bootstrap

Bootstrap is a non-parametric statistical technique, based on
data resampling, used to quantify uncertainties of parameters
(Efron, 1992). Bootstrap can be used regardless of the estimation
method, in contrast to other methods that are only applicable
to linear least-squares (Sjolund et al., 2018). Bootstrap has
been widely used in diffusion tensor imaging (DTI) to study
uncertainty associated with DTI parameter estimation (Pajevic
and Basser, 2003; Heim et al., 2004; Chung et al., 2006; Yuan
etal., 2008; Vorburger etal., 2012,2016). The repetition bootstrap
method requires multiple measurements per gradient direction
to perform resampling (Heim et al, 2004). For most clinical
and research applications, it is more interesting to obtain a
higher number of gradient directions, since diffusion parameter
estimation can be more precise with high angular resolution
diffusion imaging (HARDI). To be able to use bootstrap
for diffusion data with many gradient directions, instead of
repetitions of the same direction, residual bootstrap can be
used with the assumption that the error terms have constant
variance. The wild bootstrap (Wu, 1986) is suited when data are
heteroscedastic (i.e., have non-constant variance), and it is also
valid for non-parametric regression (Ferraty et al., 2010; Sidik
and Jonkman, 2016).

Implementation of the repetition bootstrap (Jones, 2003;
Chung et al., 2006; Yuan et al., 2008), residual bootstrap (Chung
et al., 2006; Vorburger et al., 2012), and wild bootstrap (Chung
et al., 2006; Whitcher et al., 2008; Polders et al., 2011; Vorburger
et al., 2012, 2016) have already been reported for DTI for
single-shell data. To the best of our knowledge, there are no
studies about bootstrap for multi-shell diffusion data, or for the
original MAP-MRI formulation. The uncertainty of Laplacian-
regularized MAP-MRI was investigated in Sjolund et al. (2018),
but this version of MAP-MRI does not guarantee positivity of the
propagator. Furthermore, the Bayesian approach used in Sjolund
et al. (2018) is only efficient for studying uncertainty of linear
MAP-MRI metrics, such as RTOP.

For the standard diffusion tensor model, the violation of
constant variance comes from the common log-transformation
of the diffusion signal. MAP-MRI requires diffusion data from
several shells (corresponding to different b-values), and the
variance differs between the shells due to the difference in signal
to noise ratio. We therefore used the wild bootstrap to provide
estimates of uncertainty for MAP-MRI derived quantities, for
physical phantom data (SPARC) (Ning et al., 2015) and for
human brain data (HCP-MGH) (Van Essen et al., 2013).

The rest of the paper is organized as follows. Section 2
describes the background theory, for MAP-MRI and bootstrap.
Section 3 describes the data used in this study (phantom data
and Human Connectome Project data) and presents the technical
details of the implementation and data processing. Section 4
contains results for the phantom data and Human Connectome
Project data. Finally, discussion and conclusion are presented
in section 5.

2. THEORY

2.1. MAP-MRI
We start by reviewing the fundamentals of the MAP-MRI
model, since the theory is required to introduce the different
MAP-MRI metrics, for which we estimate the uncertainty. The
MAP-MRI approach uses a functional basis to represent the
3D diffusion signal with as few assumptions as possible. It
then analytically reconstructs the 3D diffusion propagator by
only assuming a short gradient pulse approximation. In this
way, it accurately estimates the diffusion propagator in the
presence of both non-Gaussian diffusion and crossing tissue
configuration. We will study three g-space indices: Return-
To- Origin (RTOP), non-Gaussianity (NG), and propagator
anisotropy (PA), which in theory describe the volume of a
cylindrical pore, the ratio between the Gaussian and non-
Gaussian components of the signal and the anisotropy of the 3D
diffusion propagator, respectively.

The three-dimensional q-space diffusion signal attenuation
E(q) is expressed in MAP-MRI as

Nmax

E((I) = Z Z aﬂ1n2n3 q)nlnzm (A) q)’ (1)

N=0 {ny,n2,n3}

where @, 4, (A, q) are related to Hermite basis functions and
depend on the second-order tensor A and the q-space vector
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q. A can be taken to be the covariance matrix of displacement,
defined as
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where R is the transformation matrix whose columns are
the eigenvectors of the standard diffusion tensor D, and t;
is the diffusion time. The non-negative indices n; are the
order of Hermite basis functions which satisfy the condition
ny + np + n3 = N, and Ny is the maximum order and it
is even-valued. The g-space vector q is defined as q = y§G/27,
where y is the gyromagnetic ratio, § is the diffusion gradient
duration, and G determines the gradient strength and direction.
The diffusion propagator, a 3-dimensional probability density
function, is the three-dimensional inverse Fourier transform of
E(q), and can be expressed as

Nmax
P(l') = Z Z Aninyng \I/nlnzm (A) I'), (3)
N=0 {ny1,n2,n3}

where W, ,,n;,(A, 1) are the corresponding basis functions in
displacement space r. The number of coefficients for MAP-MRI
is given by

1 /N, N,
Ncoef=g< I;ax"rl)( r;]ax+

The MAP-MRI basis functions, @y, ,4,(A,q) in q-space and
W, nam; (A, 1) in displacement r-space, are given by

2) (2Nmax +3). (4

q>n1nzn3 (A, q) = ¢n1 (s q;c)(pnz(uyx Qy)¢n3 (uz, ‘Zz), (5)
Wiinons (A, 1) = Y, (1, X) Uy, (”y>)’)1//n3 (uz,2), (6)

with Ozarslan et al. (2008)

Sl q) = —— T H, (2 ug), %

2"n!
1

V2 ply

where H,(x) is the nth order Hermite polynomial. Equation (1)
can be written in matrix form (with error term added on the right
side) as

Yra(tt, x) = e ¥/ H, (x/u), 8)

y=Qa+e, )

where y is a vector of T signal values, Q is a T X Ngoef
design matrix formed by the basis functions @y, ,4,(A,q), a
contains the parameters to estimate, and & is the error. The
coefficients a can be obtained by solving the following quadratic
minimization problem,

Qa|’, Ka >0, 1'Ka < 0.5,

min ||y — (10)
a

where 0 and 1 are vectors with elements 0 and 1, respectively.
The rows of the constraint matrix K are the basis functions
W mons (A 1) evaluated on a uniform Cartesian grid in the
positive z half space. The first constraint enforces non-negativity
of the propagator, and the second one limits the integral of the
probability density (propagator) to a value no greater than 1.

Zero displacement probabilities include the return-to-origin
probability (RTOP), and its variants in 1D and 2D: the return-
to-plane probability (RTPP), and the return-to-axis probability
(RTAP), respectively. Return-to-origin-probability, P(r), is the
probability for water molecules to undergo no net displacement.
In terms of MAP-MRI coeflicients through the expression it is
defined as

Nmax
RTOP 3 Z Z ( 1) an1n2n3Bn1nzn3) (11)
Vv 87 |A N=0 {n;,ny,n3}
where
(I’ll!i’lz!l’l_?,!)l/z
Bn1n2n3 = Kn1n2n3 T (12)

gl

and Ky nny, = 1 if ny, np, and n3 are all even and 0
otherwise. If we consider a population of isolated pores, with the
assumptions that the diffusion gradients are infinitesimally short
and the diffusion time is sufficiently long, it can be shown that
(Ozarslan et al., 2013)

<V > = RTOP™!, (13)
which indicates that the reciprocal of the RTOP is the
statistical mean pore volume. The non-Gaussianity (NG) and
the propagator anisotropy (PA), respectively, measures the
dissimilarity between the propagator and its Gaussian and
isotropic parts, according to Ozarslan et al. (2013)

2
a
NG= |[1- — 000 . , (14)
Z Z{nl 12,13} anlnzn;
de)(
PA = (Z Z{nl 2,13} umﬂz"aoﬂlﬂzm)
- Nmax ax :
Z Z{Vll 2,13} nlﬂzna)(Z Z{ml,mzdm} 3n1mzm3)

(15)

where 0, m,m, are the MAP-MRI coefficients of its isotropic part.

2.2. Bootstrap

Repetition (regular) bootstrap requires multiple measurements
per gradient direction, and for each gradient direction the
measurements are sampled with replacement over-and-over
again to characterize the uncertainty of the diffusion derived
metrics (Heim et al, 2004). However, nowadays it becomes
clinically more feasible to have scan protocols with a large
number of gradient directions (Jones, 2004), instead of having
more than one measurement per direction.
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Alternatives to repetition bootstrap are model-based
bootstrap approaches, such as the residual bootstrap and the
wild bootstrap. Residual bootstrap relies on the assumption that
the residuals are independent and identically distributed (i.i.d);
the sample diffusion data are generated by randomly sampling
with replacement from the residuals. Wild bootstrap is designed
for heteroscedastic data, that is when the constant variance
assumption is violated. In the case of the diffusion tensor model
(Basser et al., 1994), it is known that the log-transform leads
to non-constant variance (Wegmann et al., 2017). Therefore,
the residuals are weighted by a heteroscedasticity consistent
covariance matrix estimator and random samples are drawn
from the auxiliary distribution (Davidson and Flachaire, 2008).
The wild bootstrap can be defined as Whitcher et al. (2008)

T
¥ = (Qa);. —uig i=1,---,T, 16
yi = (Qa);. + /T_Ncoefu,s, i (16)

where (Qa);. is the ith row of the product of Q and a, a is the
solution of the quadratic minimization problem in Equation (10),
and ¢; is the ith residual of the original regression model & =
y — Qa, and u; is a random sample drawn from the Rademacher
distribution, i.e.,

= { 1, with probability 0.5, (17)

—1, with probability 0.5.

Solving the quadratic minimization problem for y* =
[y, -+, y%] will produce a bootstrap estimate of the coefficients
a*. Repeating these steps for some fixed large number N,
resampling and estimation, builds up a collection of coefficients
aj,- - ,ay, called the bootstrap distribution, from which some
MAP-MRI scalar indices can be calculated. Summary statistics
from this empirical distribution can be used to describe the
original parameter estimate. Here the sample statistic 6 is an
estimate of the true unknown 6 (such as the noise-free RTOP
of the voxel) using the original data y, and 6* is the bootstrap
replication of §. The bootstrap-estimated standard error of 6 is
simply the standard deviation of the Np replications, i.e.,

Np

— > [é*(n) - é*]z, (18)
1

STDy =

N8 0*(n). In this paper we use the standard
deviation for comparing the dispersion of parameters.

gx — 1 yNp
where 6% = - }°

3. DATA AND METHODS

In this section we first detail the diffusion data used in the
following study. We used phantom data with known fiber
configuration to quantify its MAP-MRI metrics uncertainty. We
also used human subjects data from the Human Connectome
Project. To perform group comparisons of MAP-MRI metric
maps, the data of four subjects were transformed to a standard
space. Finally, to verify the wild bootstrap method, we manually
added Gaussian noise of different standard deviation to the
MAP-MRI fitted signal.

3.1. SPARC Phantom Data

We used data from the Sparse Reconstruction Challenge for
Diffusion MRI (SPARC dMRI) hosted at the 2014 CDMRI
workshop on computational diffusion MRI (Ning et al., 2015).
The data were acquired from a physical phantom with known
fiber configuration. The phantom is made of polyfil fibers of
15 pum diameter (Moussavi-Biugui et al., 2011). It provides
a mask to indicate the number of fiber bundles crossing in
each voxel. In two-fiber voxels, the fiber bundles are crossing
at a 45 degree angle with isotropic diffusion outside. The
voxels that are masked by 0 have no fibers and are not
considered. Three sets of data are acquired with b-values
of 1,000, 2,000, and 3,000 s/mm?, using 20, 30, and 60
gradient directions per shell for the three datasets respectively
(hereinafter referred to as SPARC-20, SPARC-30, and SPARC-
60). The gold-standard data was obtained by acquiring 81
gradient directions at b-values of 1,000, 2,000, 3,000, 4,000,
and 5,000 s/mm? averaged over 10 repetitions, resulting in
405 measurements (hereinafter referred to as SPARC-Gold).
All datasets include one measurement with by. The data
has dimension 13 x 16 x 406 and resolution 2 x 2 X
7 mm. The diffusion time and pulse separation time are
d = A = 62ms.

3.2. Human Connectome Project MGH

Adult Diffusion Data

We used the MGH adult diffusion dataset from the Human
Connectome Project (HCP) (Setsompop et al., 2013). Data were
collected from 35 healthy adults scanned on a customized
Siemens 3T Connectom scanner with 4 different b-values
(1,000, 3,000, 5,000, and 10,000 s/mm?). The data has already
been preprocessed for gradient non-linearity correction, motion
correction and eddy current correction (Glasser et al., 2013). The
data consists of 40 non-diffusion weighted volumes (b = 0), 64
volumes for b = 1,000 and 3,000 s/mm?, 128 volumes for b = 5,000
s/mm? and 256 volumes for b = 10, 000 s/mm?2, which yields 552
volumes of 140 x 140 x 96 voxels with an 1.5 mm isotropic voxel
size. The diffusion time and pulse separation time are § = 12.9
ms and A = 21.8 ms. The HCP-MGH data also contains high-
resolution T1 images of 256 x 256 x 276 voxels with an 1.0 mm
isotropic voxel size.

Data used in the preparation of this work were obtained
from the Human Connectome Project (HCP) database
(https://ida.loni.usc.edu/login.jsp). The HCP project (Principal
Investigators: Bruce Rosen, M.D., Ph.D., Martinos Center
at Massachusetts General Hospital; Arthur W. Toga, Ph.D,,
University of Southern California, Van J. Weeden, MD, Martinos
Center at Massachusetts General Hospital) is supported by
the National Institute of Dental and Craniofacial Research
(NIDCR), the National Institute of Mental Health (NIMH) and
the National Institute of Neurological Disorders and Stroke
(NINDS). HCP is the result of efforts of co-investigators
from the University of Southern California, Martinos
Center for Biomedical Imaging at Massachusetts General
Hospital (MGH), Washington University, and the University
of Minnesota.
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3.3. Simulated Data

We used the MAP-MRI fitted signal of subject MGH-1010 with
manually added Gaussian noise to verify the wild bootstrap
method. The ratio between mean signal of by voxels within the
brain and the standard deviation of noise was used as the SNR
measure. Three levels of Gaussian noise with SNR = 10, 5, and 2
were added to the MAP-MRI fitted signal of subject MGH-1010.

3.4. Comparison of Phantom Data and

Human Data

The SPARC data is based on a physical phantom with a crossing
angle of 45 degree, using polyfil fibers with a diameter of 15 pm.
h The diffusion outside of the fiber bundles is isotropic, which
can at best mimic diffusion in the extracellular space. Fibers
were wound wet onto the spindles to generate anisotropic water
diffusion. The diffusion time is 62 ms. The SNR can be estimated
as the ratio between mean signal and the standard deviation
of noise. The SNR of by for one-fiber voxels was estimated
to be 45, 52, 52, 59 for SPARC-20, SPARC-30 and SPARC-60,
SPARC-Gold, respectively. The SNR of by for two-fiber voxels
was estimated to be 23, 26, 26, 30 for SPARC-20, SPARC-30 and
SPARC-60, SPARC-Gold, respectively. The HCP-MGH data was
acquired from healthy adults. The diffusion time is 21.8 ms. We
used PIESNO (Koay et al.,, 2009) to identify noise voxels and
estimate standard deviation. The SNR of by for white matter
was estimated to be 34, 40, 32, 38 for subject MGH-1003, 1005,
1007, and 1010, respectively. The SNR of by for gray matter was
estimated to be 54, 66, 57, 63 for subject MGH-1003, 1005, 1007,
and 1010, respectively.

3.5. Methods

Diffusion tensor fitting, MAP-MRI fitting and bootstrap
sampling were implemented using C++ and the code is available
on Github!. The initial tensor fitting was performed with data
with b-values < 2,000 s/mm? using weighted least squares.
To impose the constraint of positivity of the propagator, we
sample P(r) in a 21 x 21 x 11 grid, resulting in 4851 points.
Here the last dimension is only sampled on its positive axis
as the propagator is antipodally symmetric. We use the Gurobi
Optimizer (Gurobi Optimization, 2016) to solve the quadratic
optimization problem. The Open Multi-Processing (OpenMP)
(Dagum and Menon, 1998) framework is used to run the analysis
for many voxels in parallel. MAP-MRI fitting and bootstrap
sampling are computationally expensive, due to the large number
of MAP coefficients, constraints in the quadratic minimization
problem and repeating the analysis 500-5,000 times. We use
a computer with 512 GB RAM and two Intel(R) Xeon(R) E5-
2697 2.30 GHz CPUs. Each of the two CPUs has 18 cores (36
threads), which makes it possible to run the analysis for 72 voxels
in parallel.

In order to perform voxel-level group comparisons of
diffusion-derived metric maps, the diffusion data must be
transformed to a standard space. The transformation between
MNI standard space and diffusion space was achieved in
three separate steps. First, the non-diffusion volume was

Thttps://github.com/xuagu37/dtb

registered to the T1 volume using the FSL (Jenkinson et al.,
2012) function epi_reg. Second, the T1 volume was non-
linearly registered to the MNI152 T1 2 mm template using
the FSL function fnirt (Andersson et al, 2007). Third,
the two transformations were combined, to transform the
diffusion data to MNI space. The statistics analysis was
performed in MATLAB (R2016b, The MathWorks, Inc., Natick,
Massachusetts, United States).

4. RESULTS

In this section we present several experiments that investigate
the uncertainty of MAP-MRI metrics using simulated data,
phantom data, and human diffusion data. We begin by first
showing the diffusion scalar maps (FA, MD, RTOP, NG, and
PA) of the SPARC data, to study the fiber configurations of the
phantom. Following this, we present results investigating the
impact of diffusion acquisition scheme, i.e., number of shells
and number of measurements per shell. We then present the
uncertainty of RTOP, NG, and PA for HCP data, focused one
axial slice of four subjects. Finally, we assess the impact of
preprocessing by comparing the uncertainty of RTOP for raw
and preprocessed data.

It has previously been reported that including terms up to
order 6 (Npax in Equation 1) was found to yield a sufficient
level of detail in propagators from diverse brain regions (Fick
et al.,, 2016b). It is recommended to use order 4 for data with
few shells, according to Hutchinson et al. (2017). All further
analyses of MAP-MRI parameters described in this paper use
Nmax = 4 for SPARC data and Ny, = 6 for HCP data,
if not specified otherwise. With the help of OpenMP and the
Gurobi Optimizer, we are able to perform the MAP-MRI fitting
for SPARC-30 using a Ny of 6 within 1.5 s, which is 33 times
faster than its counterpart in Fick et al. (2016b). Computation
time can be an issue when the number of bootstrap samples is
large. The implementation of MAP-MRI in Fick et al. (2016b)
takes 55 s to fit MAP-MRI (Nyhax = 6) for the SPARC-30 data
(which has only one slice of 208 voxels), that is 55 x 1,000 s =
15 h for 1,000 bootstrap samples. Our implementation makes it
possible to collect the same number of samples within 0.4 h, using
40 CPU threads.

4.1. SPARC

Figure 1 shows the scalar maps of the fiber bundles mask,
fractional anisotropy (FA), mean diffusivity (MD), RTOP, NG,
and PA. The values in the fiber bundles mask indicate the
number of fiber bundles in each voxel. The voxels masked by
0 are referred as empty area. The construction of the physical
phantom is described in Moussavi-Biugui et al. (2011). The
MD, RTOP, NG, and PA clearly show different diffusivities in
two-fiber areas and single-fiber areas. To investigate whether
1,000 bootstrap samples are adequate, we present the standard
deviation maps of RTOP for SPARC-Gold using 100, 250,
500, and 1,000 bootstrap samples in Figure 2. Using only 100
bootstrap samples slightly underestimates the standard deviation,
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FIGURE 1 | Top left: The fiber bundles mask, top middle: Mean Diffusivity (MD) (mm2 /s), top right: Fractional Anisotropy (FA), bottom left: RTOP (mm’S), bottom
middle: NG, bottom right: PA for SPARC-Gold. It can be seen that MD, RTOP, NG, and PA differ for different fiber configurations, while FA shows less contrast in
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FIGURE 2 | Standard deviation of RTOP for SPARC-Gold, using 100, 250, 500, and 1,000 bootstrap samples. SPARC-Gold has five shells and 81 measurements for
each shell. Mean standard deviation plots of RTOP are shown for one-fiber and two-fiber voxels, radial order Nmax = 4.

3

mean RTOP std
w e

N

while 500 bootstrap samples results in standard deviations close
to using 1,000 samples.

To investigate the impact of diffusion acquisition scheme
(number of shells and number of measurements per shell) on
the uncertainty of MAP-MRI metrics, 1,000 bootstrap samples
of RTOP and PA were generated for SPARC-20, SPARC-30,
SPARC-60, and SPARC-Gold using radial order Nmax = 4.
Standard deviation of the 1,000 RTOP and PA samples are shown
in Figure 3. Alongside the standard deviation maps, the mean
standard deviation of RTOP and PA are shown for one-fiber
and two-fiber voxels. SPARC-20, SPARC-30, and SPARC-60 have
the same three shells but different number of measurements per
shell: 20, 30, and 60, respectively. SPARC-Gold has five shells and
81 measurements per shell. In general, the standard deviation
maps and the mean standard deviation plots demonstrate that the
uncertainty of RTOP and PA depend on the diffusion acquisition
scheme. It can be noticed that the five-shell dataset SPARC-Gold
always demonstrates a lower uncertainty for both RTOP and PA,
compared with the three-shell datasets. For RTOP, increasing the

number of measurements per shell from 20 to 60 has different
impacts on the one-fiber and two-fiber voxels. However for PA,
the uncertainty for both types of voxels decreases equally as
the number of measurements per shell increases. Thus, it can
be concluded that the number of measurements per shell have
different degrees of impact on the uncertainty of RTOP and PA
and voxels with different fiber structures.

To further investigate the impact of number of measurements
per shell, we sub-sampled the SPARC-Gold data by keeping
1/4, 1/3, and 1/2 of the measurements per shell. One thousand
bootstrap samples of RTOP and PA were generated for each
sub-sampled dataset, results are shown in Figure4. For all
sub-sampled datasets and both MAP-MRI metrics, the two-
fiber voxels give a lower uncertainty than the one-fiber voxels.
The conclusions can be again confirmed, that is the RTOP
uncertainty of one-fiber voxels does not greatly depend on
the number of measurements per shell. Secondly, the PA
uncertainty has a stronger dependence on the number of
measurements per shell. The mean standard deviation of RTOP
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FIGURE 3 | Standard deviation of RTOP and PA for SPARC-20, SPARC-30, SPARC-

deviation plots of RTOP and PA are shown for one-fiber and two-fiber voxels, radial order Nmax = 4.
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plots of RTOP and PA are shown for one-fiber and two-fiber voxels for SPARC-Gold and each subsampled dataset.
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and PA are linearly correlated with the number of measurements
per shell.

4.2. HCP-MGH

In the following section, we present results from HCP-MGH data.
Figure 5 shows MD, FA, RTOP, NG, and PA of a slice from
subject MGH-1010. The RTOP map revealed higher values in
white matter (especially in the corpus callosum) than in gray
matter. The RTOP tissue contrast may reflect overall restrictions
and cellularity better than does the MD. NG is high in white
matter and low in gray matter, and homogenous for both tissue
clusters. PA measures diffusion anisotropy based on the angular
dissimilarity of the propagator relative to its isotropic counterpart
for MAP-MRI and Gaussian (DTI) approximations, respectively.

4.2.1. Uncertainty of RTOP, NG, and PA
The bootstrap approach to be applied depends on if the residuals
have a constant variance (homoscedasticity). A common test for

heteroscedasticity is the White test (White, 1980). We applied the
white test to the residual in every voxel, the voxels that survive an
(uncorrected) significance level of p = 0.05 are shown as white
voxels in Figure 6. Clearly, most of the voxels have residuals with
a heteroscedastic variance, which means that the wild bootstrap
is the appropriate method to use.

To verify wild bootstrap’s ability of quantifying uncertainty,
we added Gaussian noise with SNR = 10, 5, and 2 to the
MAP-MRI fitted signal. Wild bootstrap was then applied to
calculate the standard deviation of RTOP. The results are
presented in Figure 7. It shows that uncertainty is increased as
the SNR decreased.

Figure 8 shows the standard deviation of RTOP, NG, and PA
for subjects MGH-1003, 1005, 1007, and 1010. There are two
main clusters of voxels in the RTOP standard deviation maps
wherein the white matter areas generally appear hyperintense,
while the gray matter areas make up the lower intensity regions.
A portion of the white matter regions shows higher standard
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FIGURE 5 | MD, FA, RTOP, NG, and PA for subject MGH-1010, slice 45. CSF voxels were removed prior to data analysis.
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08

p value < 0.05

FIGURE 6 | White test for subjects MGH-1010, slice 45. White voxels have
residuals where the variance changes over time.

deviation values for RTOP, most notably in the splenium of the
corpus callosum. Within the corpus callosum, the splenium part
shows a higher standard deviation than the genu and body of the
corpus callosum. The standard deviation maps for RTOP, NG,
and PA show marked differences across subjects. It is interesting
to note that the RTOP standard deviation for subject MGH-1010
is clearly lower compared to the other three subjects.

As for the phantom data, we sub-sampled the MGH-1010 data
by keeping 1/4, 1/3, and 1/2 of the measurements per shell. Five
hundred bootstrap samples of RTOP, NG, and PA were generated
for each subsampled dataset, results are shown in Figure 9. A
clear decrease in the uncertainty of the three MAP-MRI metrics
can be observed for a larger number of measurements per shell.
Both NG and PA are greatly affected by the measurements per
shell, while RTOP is less vulnerable. The PA standard deviation
changes from a noisy map to an anatomically meaningful map as
the measurements per shell increases.

4.2.2. Group Analysis

It is common to perform group studies using diffusion MRI,
to for example find differences between healthy controls and
subjects with some disease. One of the most common scalar
measures for group analysis is fractional anisotropy, calculated
from the diffusion tensor, which for example has been shown

to be sensitive to diffuse axonal injuries in mild traumatic
brain injury (Shenton et al., 2012; Eierud et al., 2014). Existing
approaches for group analyses such as TBSS (Smith et al,
2006), do not incorporate the uncertainty, and can for example
not downweight subjects with a high degree of head motion.
Incorporation of uncertainty can result in better group analyses.
For example, as shown in Figure 8, subject MGH-1010 shows
a lower uncertainty for the RTOP maps compared to the other
three subjects. When calculating the mean RTOP map for a
group, subjects like MGH-1010 which have lower uncertainty
should contribute more in the weighted mean RTOP map. A
weighted mean can be calculated as (Sjolund et al., 2018)

(19)

where w,, = 1 /03 and oy, is the standard deviation for subject
n. Instead of each voxel subject contributing equally to the final
mean, subjects with higher standard deviation contribute less
“weight” than others. A comparison between the mean RTOP
and the weighted mean RTOP is presented in Figure 10. The
weighted mean for example downweights an outlier close to the
posterior cingulate. A notable difference can be found in the
corpus callosum, which has a relatively high uncertainty in the
RTOP map. In Figure 10, also presented is a comparison of the
unweighted and the weighted probability density distributions of
RTOP for the corpus callosum. Subjects with a higher uncertainty
will be downweighted, which can lead to a skew of the mean
RTOP distribution.

4.2.3. Impact of Artifacts

The HCP-MGH data provided as “preprocessed” have already
been corrected for gradient non-linearity, head motion and eddy
currents. The data provided as “raw” were only corrected for
gradient non-linearity. To investigate how the imaging artifacts,
e.g., head motion and eddy currents, affect the uncertainty of
MAP-MRI metrics, we generated 500 bootstrap samples for both
preprocessed and raw data. Results for subject MGH-1010 are
shown in Figure 11. All three scalar maps (RTOP, NG, PA) show
consistent patterns; preprocessing reduces the uncertainty. The
boundaries of the brain are more vulnerable to imaging artifacts
and show a larger uncertainty, especially for RTOP and PA. This
is likely related to the head motion present in the raw data.
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FIGURE 7 | Standard deviation of RTOP for MAP-MRI fitted signal of subjects MGH-1010, slice 45, using 500 bootstrap samples. Gaussian noise of SNR = 10, 5,
and 2 were added.
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FIGURE 8 | Standard deviation of RTOP, NG, and PA for subjects MGH-1003, 1005, 1007, 1010, slice 45, using 500 bootstrap samples. CSF voxels were removed
prior to data analysis.
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FIGURE 9 | Standard deviation of the RTOP, NG, and PA for subject MGH-1010 with 1/4, 1/3, 1/2, and all measurements per shell, using 500 bootstrap samples. A
lower number of measurements clearly leads to a higher uncertainty. CSF voxels were removed prior to data analysis.
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FIGURE 10 | Mean and weighted mean of RTOP for subjects MGH-1003, 1005, 1007, and 1010, using 500 bootstrap samples. The normalized difference was
calculated as the difference divided by the weighted mean of RTOP. Probability density function of RTOP was estimated for the corpus callosum, and is shown
to the right.
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FIGURE 11 | Standard deviation of RTOP, NG, and PA of preprocessed (gradient non-linearity correction, head motion correction, and eddy current correction) and
raw (only gradient non-linearity correction) data for subject MGH-1010, using 500 bootstrap samples. The normalized difference was calculated as the difference
divided by the RTOP, NG, or PA of the of preprocessed data. Clearly, preprocessing results in a lower uncertainty.

normalized difference
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5. DISCUSSION

Researchers have previously applied bootstrap methods to the
linear regression used to fit the diffusion tensor model. We have
extended this technique to a more sophisticated diffusion model
to quantify the uncertainty of its derived metrics. We used the
wild bootstrap technique to evaluate the uncertainty of the MAP-
MRI derived metrics, using physical phantom data as well as
human brain data. While uncertainty was previously investigated
for linear MAP MRI measures (Sj6lund et al., 2018), we here also
show uncertainty estimates for non-linear measures (such as NG
and PA), which cannot as easily be obtained using the Bayesian
approach proposed by Sjolund et al. (2018).

The experiments are divided into two sections: one dealing
with uncertainty estimation for physical phantom data, in

which four sets of data are collected using different number of
measurements and different b-values, and the other dealing with
uncertainty estimation for human brain data of four healthy
subjects scanned using the same protocol. The uncertainty
originates from measurement noise, physiological noise, head
motion, and is influenced by a wide range of parameters, many
of which are difficult or impossible to fully model, such as
signal-to-noise-ratio. It is important to note that all acquisition
parameters which influence the SNR of the diffusion signals,
such as the b-value, the number of measurements, the gradient
strength, the echo time, etc., most likely have a direct influence
on the uncertainty. It is generally assumed that diffusion
data are primarily affected by normally distributed thermal
noise, which leads to a Rician distributed signal magnitude.
However, physiological noise and artifacts may also affect
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diffusion data and may result in more complicated and spatially
variant noise characteristics.

Several studies report that for the diffusion tensor model, the
uncertainty in the tensor trace, diffusion anisotropy, and the
tensor major eigenvector are related to the spatial orientation
of the tensor (Batchelor et al., 2003; Jones and Pierpaoli, 2004).
The orientational dependence of the tensor variance decreases
for both more uniformly distributed encoding schemes and
increased number of encoding directions. In the experiment
using SPARC data, we have demonstrated that the uncertainty of
MAP-MRI derived metrics decrease for both increased number
of shells and increased number of gradient directions in each
shell. The variation in single-fiber area is less sensitive to the
number of gradient directions in each shell.

Constraints were not present in original applications of the
wild bootstrap (Wu, 1986), thus one concern arises because
of the inequality and equality constraints present in Equation
(10). A natural question is how the bootstrap approach performs
in situations with a constrained parameter space. The bootstrap
distribution may be inconsistent with the sampling distribution
of the maximum likelihood estimator if the boundary constraints
are met (Andrews, 2000). Investigating this issue is beyond the
scope of this paper, but further validation studies can be carried
out in the future.

In Avram et al. (2016), the computation time for the
reconstruction of MAP-MRI parameters from whole-brain
diffusion data sets (70 x 70 x 42 x 698) using Ny,x = 6 was
less than 3 h on a single workstation with 32GB RAM and 8 cores
(Intel i7-4770 K at 3.5G Hz). In Fick et al. (2016b), it is reported
that it takes around 60 s to do the MAP-MRI fitting (Npax of
6) for all voxels of SPARC-30, using an Intel(R) Core(TM) i7-
3840QM CPU with 32 GB RAM. In this paper, we use two
Intel(R) Xeon(R) E5-2697 CPUs and OpenMP to support multi-
thread processing, which makes it possible to do the MAP-MRI
fitting (Nmax of 6) for all voxels of SPARC-30 within 2 s. To run
500 bootstrap replicates takes about 40 min and 20 h, respectively
for the SPARC data and a slice of the HCP-MGH data. In theory,
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