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An essential aspect of scientific reproducibility is a coherent and complete acquisition of

metadata along with the actual data of an experiment. The high degree of complexity

and heterogeneity of neuroscience experiments requires a rigorous management of the

associated metadata. The odML framework represents a solution to organize and store

complex metadata digitally in a hierarchical format that is both human and machine

readable. However, this hierarchical representation of metadata is difficult to handle when

metadata entries need to be collected and edited manually during the daily routines of a

laboratory. With odMLtables, we present an open-source software solution that enables

users to collect, manipulate, visualize, and store metadata in tabular representations (in

xls or csv format) by providing functionality to convert these tabular collections to the

hierarchically structuredmetadata format odML, and to either extract or merge subsets of

a complex metadata collection. With this, odMLtables bridges the gap between handling

metadata in an intuitive way that integrates well with daily lab routines and commonly

used software products on the one hand, and the implementation of a complete,

well-defined metadata collection for the experiment in a standardized format on the other

hand. We demonstrate usage scenarios of the odMLtables tools in common lab routines

in the context of metadata acquisition and management, and show how the tool can

assist in exploring published datasets that provide metadata in the odML format.

Keywords: metadata management, open metadata Markup Language (odML), reproducibility and tools, graphical

user interface (GUI), laboratory routines and automation, electrophysiology

1. INTRODUCTION

In recent years, the workflows involved in conducting and analyzing neurophysiological
experiments have become increasingly complex (e.g., Coles et al., 2008; Denker and Grün, 2016;
Brochier et al., 2018). Several factors contribute to this development. Nowadays, a recording
setup is usually comprised of several hardware and software components that are often produced
by different companies, or might even be custom made. In addition, due to the technological
progress in neuroscience during the last decades the task designs have become more and more
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sophisticated, as can be observed, for example, when considering
experiments mimicking realistic, natural conditions. Neuronal or
muscular signals (e.g., eye and arm movements) can be gathered
in parallel from multiple optical or electrical recording sites
(Nicolelis and Ribeiro, 2002; Verkhratsky et al., 2006; Obien et al.,
2014) together with complex behavioral measures (Maldonado
et al., 2008; Jacob et al., 2010; Vargas-Irwin et al., 2010; Schwarz
et al., 2014). Moreover, these signals can be experimentally
manipulated in intricate ways, e.g., via multidimensional natural
stimuli (Geisler, 2008) or sophisticated optical or electrical
stimulation methods (Deisseroth and Schnitzer, 2013; Miyamoto
and Murayama, 2015). As a result, the amount of information
required to fully describe all circumstances under which
the experiment was conducted and data was recorded, here
collectively referred to as “metadata”, has grown considerably
at the same time. Therefore, metadata of neuroscientific studies
are increasingly difficult to document and the implementation of
specific software solutions to facilitate their management in daily
routines involves a lot of time and effort (Zehl et al., 2016).

The complexity of collecting metadata originates from two
factors: Firstly, the growing heterogeneity of setup equipment
alone makes it difficult to fully track the exact circumstances
under which the primary data were recorded and how the
recorded signals were processed along an experimental recording
session (“black box” effect, i.e., the difficulty to precisely relate
inputs and outputs to the equipment). Secondly, the complexity
of the signal types and manipulations using various tools within
custom signal processing pipelines increases the effort needed
for comprehensive metadata tracking across all parts of the
recording system and all processing steps. In particular, the
hardware components and software tools employed in these
experimental setups typically do not provide a complete account
of their metadata and store their output in non-standardized
representations that impede gaining insights into the details
of the recording process. Nonetheless, collecting and providing
metadata of an experiment is a necessary step towards replicable
experiments and therefore forms the basis for reproducible
research (Tebaykin et al., 2018). In this regard, metadata have
to be human readable in order to give users semantic access
to the data, similar to a traditional lab book. However, only
standardized, machine-readable metadata can be systematically
reproduced during automatized analysis processes, which makes
them a crucial ingredient for tracking the data provenance
leading to a research publication.

A software approach to manage neuroscientific metadata is
the open metadata Markup Language (odML) framework (Grewe
et al., 2011). odML provides a standardized format for organizing
metadata of arbitrary type into a hierarchical structure that is
both human and machine-readable. With this, it is possible to
organize metadata originating from heterogeneous sources in
a unified way and record them in an common, interoperable
format. Providing metadata in such a standardized format along
with the data files of an experiment facilitates the collaboration
process between members of a scientific project, because
metadata can be organized and made available to all members
in a unified way, thus supporting rigor and reproducibility
of data analysis through standardized and formalized access

to the available metadata (Zehl et al., 2016). The reference
implementation of the odML format is based on the generic
eXtensible Markup Language (XML). Version 1.4, which is
considered here, also supports the JSON and YAML formats and
provides an application programming interface (API) for Python
and Matlab (http://www.g-node.org/odml).

Figure 1 shows a generic representation of an example
workflow that results in the generation of a metadata collection
represented in odML. The starting point are collections of
files containing various subsets of the metadata for individual
recordings of an experiment (e.g., different recording days).
The data in these files are often organized in different formats
within a collection, and files and metadata between different
collections may differ due to factors, such as changes in the
experiment. Therefore, it is possible and advisable to construct
template structures for the metadata collection to enforce a
systematic metadata structuring. However, in practical scenarios
often custom scripts are required to populate these templates,
e.g., to cover small variations between metadata collections when
a certain piece of information is not present for a particular
recording. In addition, the metadata collection must be manually
enriched by information that is not digitally available in the first
place. The outcome of this build process are odML files for each
recording, adhering to a uniform template structure. In a final
step, these individual metadata collections may be merged into
a single odML file in order to provide scientists with the ability
to perform full metadata queries on the complete experiment.
Zehl et al. (2016) provides a complete account of this workflow
including practical examples.

Implementing and applying such a rigorous workflow as
described in Figure 1 requires programming skills by the
scientist. However, metadata handling is often performed by
several experimenters with varying computational expertise.
Furthermore, extensive manual editing of the metadata files
via the present graphical user interface (GUI) included in the
odML framework tends to be cumbersome for large metadata
trees due to their hierarchical, complex organization. While
visualization of the hierarchical organization is suited for an
overview of the general structure and relation of the metadata,
finding or comparing particular values can be difficult if they are
distributed in different branches of the hierarchy. Furthermore,
editing of distributed entries is laborious, because a hierarchical
organization also requires navigation through the tree to access
a particular entry. This makes this metadata management tool
inefficient to use in an experimental laboratory where often (i)
single particular entries need to be modified manually as the
experiment progresses, (ii) a batch of similar entries need to
be modified coherently as the data processing progresses. The
combinations of all these factors results in many experimental
laboratories frequently collecting metadata in flat tabular formats
independent of an explicit, underlying hierarchical structure,
using tools for generation and manipulation of tables that do
not require programming expertise, are widely adopted, readily
available and familiar to the experimenters.

Thus, for these purposes a flat tabular representation of the
metadata appears to be suitable. It has the advantage of providing
easier access to, and simpler visualization of, the metadata than
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FIGURE 1 | Generic workflow of generating metadata collections from source files using the odML framework. For a given metadata collection (top row, example

metadata collections A–C), metadata are pooled from multiple files and enriched via manual entry (second row). These metadata are converted into individual

collections via a scripted approach applying an odML template structure (third row). By further integrating individual multiple metadata collections (fourth row), a

complete odML collection containing all recordings of a particular experiment can be created (bottom row).

a hierarchical format. Tabular representations of hierarchical
structures are implemented in a number of generic software tools
for xml representation1. However, these generic xml editors do
not provide support for using xml to handle scientific metadata
in a concise way.

We developed odMLtables as a Python package to
complement the odML framework in simplifying working
with, and in particular manually editing, the metadata stored
in the hierarchical odML format. odMLtables facilitates the
integration of the odML framework into the experimental
workflow by converting between hierarchical odML and
tabular representations in xls or csv format. As opposed to

1See e.g., https://www.oxygenxml.com/xml_editor/xml_grid_editor.html or

http://rustemsoft.com/xfox.aspx

working on the hierarchical odML structure, these tabular
formats are easily accessible via familiar spreadsheet tools (e.g.,
Microsoft Excel, LibreOffice Calc) that enable neuroscientists
to manually extend or edit the content of an odML metadata
file. Vice versa, the ability to convert configurable tabular
representations of metadata to odML will help into a robust,
self-consistent, and validated format, ready for automation tasks,
such as batch analysis processing or integration into databases.
Thus, odMLtables acts as a bridge between users and formal
representation. In addition, the odMLtables package comprises
a GUI that guides the user through all functional features of the
tool. Besides the conversion between hierarchical and tabular
formats, these features include operations identified as useful in
the metadata acquisition process, such as merging or filtering
metadata. Implementing these operations would require custom
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programming efforts in the absence of odMLtables, either by
manipulation of odML files using the odML API, or by using
programmatic capabilities of the tabular editor. odMLtables
also opens access to the odML framework for scientists with
little or no programming experience. All main functionality
to interact with metadata files is directly accessible from the
odML GUI since version 1.4.0. The software has benefited
from the experiences gained in applying it in collaborative
projects involving three different experiments collecting
electrophysiological data: (i) cortical activity in macaque
performing a visually-guided motor task (e.g., Brochier et al.,
2018; Denker et al., 2018), (ii) cortical and hippocampal activity
in a developmental study in mice (e.g., Bitzenhofer et al., 2017),
and (iii) cortical activity in a category learning task in gerbils
(e.g., Ohl et al., 2001).

The embedding of odMLtables in a real-world metadata
management workflow is described in Zehl et al. (2016), resulting
in a published dataset with detailed metadata descriptions in
the odML format (Brochier et al., 2018). In these publications
the focus was on the concepts of metadata management and
the detailed experiment description. Here we complement these
studies by a technical tool for convenient metadata capture.
Because the complexities of the real experiment (an instructed,
delayed reach to grasp task with multielectrode recordings from
monkey motor cortex) would distract from the presentation of
the features and usage of odMLtables, the examples presented
here are abstracted from these studies.

To demonstrate the application of odMLtables we present
seven minimalistic scenarios of practical metadata management
using odML and odMLtables. Together these scenarios form
a complete metadata workflow based on an exemplary multi-
day experiment as commonly encountered in neurophysiology
(cf. Figure 1). However, such scenarios also occur in other fields
of science where data is aggregated in repetitive acquisition cycles
(e.g., multiple days of measurements). Moreover, the scenarios
are of sufficiently generic nature to translate to other situations
where metadata information is collected. The first two scenarios
demonstrate the first steps for setting up a new metadata
workflow and daily metadata collection. Four scenarios deal with
the ongoing metadata validation, enrichment and visualization.
The last scenario introduces automation of metadata collection
and management using odML and odMLtables.

Using these scenarios we demonstrate how odMLtables
facilitates access to sophisticated metadata management software
odML for non-programmers and with that optimizes routine
manual metadata acquisitions in any laboratory workflow. In
addition, odMLtables can be used to create visually enhanced
tabular overviews of complete or filtered metadata from any
hierarchically structured odML files. For a scripted metadata
approach a Python interface also permits programmers to benefit
from odMLtables features.

2. SOFTWARE DESCRIPTION

odMLtables is a Python package that provides a set of functions
for working with metadata descriptions in the odML metadata

framework, with a particular focus on making these metadata
easily accessible for users. The key approach is to bring the
typically complex, hierarchical structure of the odML format
into a tabular and reduced representation, such that metadata
can be more easily inspected or edited. Therefore, at its core,
odMLtables provides functions to convert between the odML
format and the corresponding tabular representation which can
be represented in the Microsoft Excel (xls) or the generic comma
separated value (csv) format (Figure 2). Metadata converted to
these tabular formats are accessible via widely used spreadsheet
software (e.g., Microsoft Excel2 or LibreOffice Calc3), such that
users are able to intuitively view and edit the metadata. After
editing, the metadata can be brought back to the standardized,
hierarchical form defined by the odML framework (as illustrated
in Figure 2).

Next to the functionality of converting between odML
and the tabular formats, odMLtables provides four additional
capabilities that address common tasks when working with
metadata collections:

• filtering (or reduction) of a metadata collection to a subset
• merging of two metadata collections
• generation of a basic odML structure to facilitate the design of

a new metadata collection
• creating a tabular overview across multiple metadata entries

within a metadata collection

The functionality of odMLtables can be accessed in one of two
ways. First, the API of odMLtables complements the original
Python odML API (Grewe et al., 2011). As such, odMLtables
simplifies the scripting of automated metadata extraction and
aggregation tasks in an experiment. Second, odMLtables includes
a GUI that enables non-programmers access to the large majority
of functionality offered by the library. In this way, odMLtables
can aid work with odML-based metadata collections in metadata
workflows that do not include scripted processing stages.

In the following, we describe in detail the structure of the
hierarchical and tabular metadata representations, the main
capabilities of odMLtables illustrated by means of the GUI, and
its internal architecture.

2.1. Hierarchical and Tabular
Representations of Metadata
2.1.1. Hierarchical Metadata in the odML Format

odML4 is a versatile hierarchical format for metadata (Grewe
et al., 2011) developed by the German Neuroinformatics
Node (G-Node). While it was originally designed for
electrophysiological metadata, its generic structure makes it
also applicable to other scientific contexts.

The basic concept is to use a tree-like structure of Sections
to store metadata as Properties (extended key-value pairs) in
a common Document (Figure 3B). For example, using this
paradigm, parameter settings of a specific device used in the
experiment would be represented as Properties collected in a

2https://products.office.com/en-us/excel
3https://www.libreoffice.org/discover/calc
4https://github.com/G-Node/python-odml, RRID:SCR_001376
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FIGURE 2 | Minimal workflow for manually editing odML files via odMLtables.

Metadata is manually edited in tabular form using spreadsheet software and

stored in xls and csv formats (left). The minimal functionality of odMLtables is

to convert between such tabular representations and the hierarchical odML

structure (right). The hierarchical placement of individual metadata entries, i.e.,

the Sections of the odML tree, is encoded in a specific column of the table

(gray boxes and circles), whereas the values and attributes of metadata

entries, i.e., a Property represented as leaves of the odML tree, are stored in

rows of the table (colored boxes).

specific Section for that device. For a detailed tutorial5 on
odML please refer to the online reference documentation6.
The usage of odML in different environments with varying
requirements has led to diversification, the identification of
unused features, and the need for improvement of the original
data model. In case of the odMLtables project, for example, the
original internal data representation required only a subset of the
complete odML datamodel. These and other re-implementations
(NIX and RELACS projects) did not fully comply with the
original specifications and led to a diversification of the de-facto
implemented data models. In order to resolve this situation,
with the latest release of odML version 1.47 (i) data model and
implemented features were streamlined and adapted to ensure
compatibility between the various project implementations and
(ii) additional features were introduced. The following paragraph
briefly reviews the changes of the data model since its publication
in Grewe et al. (2011).

2.1.1.1. odML model revision and streamlining
A number of features were merged or moved by the change from
odML version 1.3 to version 1.4 in order to simplify usage of the
odML framework as originally described in Grewe et al. (2011),
and to mitigate potential ambiguities in the data structure. In the
following, we briefly explain two major changes that affected the
design and use of odMLtables. The first change was the merging
of Value and Property entities (compare Figures 3A and B). This
prevents value ambiguities within a Property and reduces the
effective file size since the value dependent attributes (“unit,”
“uncertainty,” “data type,” and “reference”) are defined only
once for a set of values. This change simplified also the tabular
representations of lists of values created by odMLtables. Second,
for compatibility with the NIX projects’ odML implementation,
entities now contain a universally unique identifier (UUID, auto-
generated identifier with extremely low collision probability) for
unique identification of odML entities even across unrelated
files to ensure comprehensive provenance tracking, including the
ability to create tabular metadata representations across projects

5https://github.com/G-Node/python-odml/blob/master/doc/tutorial.rst
6http://g-node.github.io/python-odml
7https://github.com/G-Node/python-odml/releases/tag/v1.4.0

using future odMLtables versions. Compatibility for odML
files using the old format version is ensured via automatized
conversion functionality.

2.1.1.2. Additional features
The odML core library already provides an in-built mechanism
to search and retrieve Sections, Properties or values within
a Document. The need to consistently search for metadata
entities across Documents from different sources led to the
development of an export feature of odML metadata to the
Resource Description Framework (RDF) format8, a general and
widely used storage format of graph databases. Multiple odML
files exported to RDF can be loaded into any graph database
supporting RDF and will be combined into a single graph.
Moreover, while XML is still the default storage format, odML
now additionally supports storing the metadata in the text based
file formats JSON9 and YAML10. JSON has become a de-facto
data exchange standard between web based and standalone
computer applications. The support of JSON makes odML
metadata more easily consumable in machine-only workflows
through modern applications. Since both XML and JSON
primarily aim at machine-readability, their structure is not easily
readable by humans. To ease reading of raw odML files by actual
persons the YAML file format support was added.

For easy visualization andmanipulation of specific odML files,
the graphical user interface of odMLtables was integrated into
the native odML GUI (odml-ui11). Thus, the odML GUI now
grants direct access to the main odMLtables features, making
both software tools even easier to use back to back for both
browsing and editing of metadata.

2.1.2. Tabular Representation of the odML Format

odMLtables converts the hierarchical odML structure
(Figure 4A) into a specific tabular (flat) representation
(Figure 4B), stored either in the xls or csv format. In this
format, each row corresponds to one particular value entry. The
columns further describe the Property and Section each value
belongs to, e.g., the Property name, the Section and Subsections
the Property belongs to, the physical units, or the Property
definition. The hierarchy of Sections in which a Property is
located in the original odML structure is represented by a path
construct, where individual Section names are delineated by the
“/” character. For increased readability, repetitive information
(i.e., identical information to the cell above) is optionally
displayed only at the first instance (e.g., “Path to Subject”
entry (“/Subject”) in row 3, 4, and 5 in Figure 4B). By default,
the column headers are predefined (Figure 4B, second row),
however the header names can also be customized as long as a
mapping between the predefined names and the custom names
can be provided. The order of the columns of the table can be
customized since the column header names are used to associate
columns with attributes of the hierarchical odML structure.
The odML Document attributes “author,” “date,” “version,” and

8http://www.w3.org/TR/rdf-primer
9https://json.org
10https://yaml.org
11https://github.com/G-Node/odml-ui
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FIGURE 3 | Evolution of the odML data-model. Each box represents an entity defined by the data model and is color coded. Connections between entities are

illustrated using the UML aggregation relation where a diamond denotes the target of a connection; the numbers at source and target denote the cardinality of each

entity in the connection. (A) Version 1.3 data model. Four entities are defined: The Document (marked in white) as the root element of a metadata file contains

information about the author, document date, the document version and a default repository containing definitions used within the Document. It further contains

grouping elements, Sections (marked in dark blue). These are defined via their name and type attributes and can hold subsections and provide semantic structure to

an odML Document. The “definition” attribute provides information about the nature of a Section, while “link” and “include” refer to further Sections within the same or

a different Document, respectively. Sections may contain named Property entities (marked in cyan) which hold at least one Value (marked in light blue) thus creating an

extended key-value pair. (B) Version 1.4 data model: To simplify the use of the odML data model the Value entity was integrated into the Property taking over the

attributes “dtype” (data type), “unit,” “uncertainty,” “value origin,” and “reference.” In this version a Property may contain a list of values, which must be identical in

terms of the relocated attributes thus reducing the risk of ambiguities in the value list. For more information on attributes that have not been modified please refer to

the original publication (Grewe et al., 2011). Figure with permission adapted from Grewe et al. (2011).

“repository” are handled separately and are placed in the top row
of the tabular odML representation.

2.2. Software Functionalities
odMLtables is a tool that provides five functionalities
surrounding work in creating and accessingmetadata collections.
In the following, we describe the capabilities of these features,
while their use is put into the context of a typical workflow in
section 3.

All main features of odMLtables are available via the
odMLtables GUI (Figure 5). Upon launching the application, it
presents the user with five buttons, each leading to a series of
dialogs (wizards) to perform a specific odMLtables functionality.
For the more complex dialogs that include a large number
of parameters to set, the GUI offers to save and load the
dialog configuration to efficiently re-run a functionality with
given parameters.

In addition to the functionality offered by the GUI, the Python
programming interface of odMLtables offers additional features,
most notably, the ability to customize the default values for
odML data types. The default values can be displayed using a
highlighted coloring scheme to indicate to the researcher that a
Property currently contains a default value (for details, see the
odMLtables documentation12).

The main features of odMLtables are described in detail below
and are referred to as features F1–F5:

12https://odmltables.readthedocs.io

F1: Convert between odML and table format. This function
converts metadata collections between the representations in
the different file formats odml, xls, and csv. For the conversion
to and from the tabular formats (xls/csv) a specific formatting
of the table is required in order to interpret the table as
hierarchical odML structure (see section 2.1.2). Nevertheless,
odMLtables allows for a certain degree of flexibility in order
to give researchers the ability to design tabular formats to best
fit their workflow. In particular, this encompasses the inclusion
or removal of certain optional columns, the arrangement
of columns, column headers, or the coloring scheme. Note
however, that for the reverse conversion from a tabular format
back to the odML format, these customizations need to be
known (e.g., custom column names, see section 3.1).

F2: Generate new metadata collection table. This function
generates and saves an empty, generic (template) odML
structure in the xls format. This generic structure provides a
good starting point to design a metadata collection or template
structure in a tabular format providing the required tabular
structure for conversion to a hierarchical odML structure.
Similar formatting options can be applied to the table as
indicated above.

F3: Generate overview across entries within a metadata

collection. This function creates a chart listing multiple entries
within a single metadata collection. It is intended to develop
overview sheets containing similar Properties, e.g., the animal
weight at different ages. The generated table does not follow
the tabular odML format and can therefore only be used for
visualization and not for conversion into the hierarchical odML
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FIGURE 4 | Mapping of an odML structure in (A) hierarchical metadata format to (B) tabular format. Individual attributes of the odML entities are represented in

different columns in the tabular representation (e.g., “Section Definition,” “Property Name,” “Data Uncertainty,” compare color code). Document attributes (“author,”

“date,” “repository,” and “version”) are described separately in the first row of the tabular representation. The hierarchy of Sections is captured in an additional column

(“Path to Section”) describing the path between the odML Document and the current Section. Each metadata entry in the hierarchical format corresponds to a single

row in the tabular format. Items of a list are treated as individual entries.

format. Using common spreadsheet software the comparison
table can be saved as a figure and printed for usage in a
laboratory notebook.
F4: Merge contents of two metadata collections.

This function allows to merge multiple files (odML
format) into a single file. Here, by default, Sections,
Properties and values are added to existing entities during
merging. However, for values of coinciding Properties
the option exists to overwrite values during the process
of merging.
F5: Filter content of a metadata collection. This function
reduces the size of an odML file based on a filter mechanism,
which can include multiple steps of filtering and custom filter

functions to select only specific parts of an odML structure. The
filter mechanism e.g., can extract all Properties containing no

values to present the experimenter potential missing entries in

the metadata collection.

2.3. Software Architecture
In the following, we explain the internal structure of the
odMLtables software. For a detailed description, see the function
reference in the odMLtables documentation.

The core of odMLtables is the OdmlTable class,
which provides the main functionality for loading and
saving metadata collections in the different file formats.
It implements basic operations on the loaded metadata
independent of the file format they originate from. Within
the class, metadata are internally represented as a list of
dictionaries, where each dictionary corresponds to an odML
Property. Functions that modify the metadata collection, like
merging and filtering, act directly on this internal dictionary
representation. The two tabular formats xls and csv require
additional information regarding the table layout when
being saved to disk, e.g., the color scheme. Therefore, two
subclasses of the OdmlTable class (OdmlXlsTable and
OdmlCsvTable ) carry these additional output settings.
Finally, a separate CompareSectionTable class implements
the function for comparing Properties within one odML
structure. As for the OdmlTable class, two specific
subclasses for xls and csv output are defined to capture
layout information (CompareSectionXlsTable and
CompareSectionCsvTable ).

One feature of odMLtables in generating xls files is to highlight
a value entry if it corresponds to the default value of the

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2019 | Volume 13 | Article 62

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Sprenger et al. odMLtables

FIGURE 5 | Main window of the odMLtables GUI. The interface gives access to the main functionalities available by the tool: converting files from hierarchical to

tabular (flat) representations, generating an empty generic odML table (template), comparing entries within a metadata collection, merging contents of two collections,

and selecting a subset of a metadata collection (filtering). Each button starts a series of dialogs (wizards) that guide the user through the corresponding process.

corresponding Property’s data type. However, the odML library
itself does not specify such default values for all of its data types.
Moreover, it is not mandatory, nor always desired, to specify a
data type in the odML in all circumstances, e.g., when leaving
a value empty. Therefore, odMLtables provides functionality to
work with default values for data types in the OdmlDtypes
class. It manages the data types, synonyms, default values, and
value conversions. The class is used for entering default entries
when loading empty values from a tabular representation, and
for default value highlighting.

In addition to the core module, odMLtables provides a
GUI that exposes most functionality of the core module.
The GUI is based on the PyQt513 framework and consists
of a main window (Figure 5) and five wizards (see section
2.2). Each wizard inherits from the OdmltablesWizard
class, which provides helper functions and error handling.

13https://wiki.python.org/moin/PyQt

The Settings class stores the current user settings for calls
of odMLtables core functions, and provides functionality to
save and restore user settings between different executions of
the GUI.

3. EMBEDDING ODMLTABLES IN DATA
ACQUISITION AND ANALYSIS

While most scientists would agree that accurate records
of the minute details of an experiment are the foundation
of good scientific practice, in the everyday routine of an
experimental electrophysiology lab it is difficult for the
scientist to record, sort, and maintain the wealth of metadata
information that accumulates during an experiment. While
the odML format is suitable for storing metadata information
from different sources, lacking to date is a set of tools that
allows the scientist to create, manipulate and visualize the
data stored in this format. In the following, we present
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commonly encountered scenarios involving metadata handling
that originate from our collaborative work. These scenarios
touch the issues of how to design the hierarchical structure
to store and organize the metadata, how to practically enter
metadata before, during or after the experiment, and how
to create a comparison of rich metadata buried within
the odML structure. It turns out that for each of these
scenarios a flattened tabular representation of the metadata
is a practical solution that feels intuitive to the user. In the
following we demonstrate how to implement these scenarios
that consist of combining operations in odMLtables and a
spreadsheet program. All scenarios are also available as an
interactive Jupyter Notebook14 accessible via the odMLtables
documentation15, and available in pre-executed form as
Data Sheet 1.

Scenario 1: How to Generate a Metadata
Template Without Programming
In conducting animal experiments, a typical scenario where
metadata are collected manually on a daily basis is the creation
of an animal score sheet. Such score sheets record quantitative,
and in part also qualitative, measures that are collected in
order to document and judge the animal’s health and state
over the duration of the experiment. Often, these sheets are
an obligatory piece of documentation of the experiment, such
that only the availability of a defined workflow to create score
sheets guarantees their consistency over multiple years and
different experimenters. For example, for mouse experiments,
typical measures are the body weight, water intake and breathing
frequency, many of which can be used to assess the health of an
animal, e.g., by calculating a health score for each mouse (Foltz
and Ullman-Cullere, 1999; Burkholder et al., 2012). In Figure 4

we depicted how metadata of a single, minimized score sheet
can be integrated into an odML document containing collective
information on a subject.

The measurements for such score sheets are typically easy
to perform, and for this reason may be conducted by a
number of different people in the lab. Therefore, the daily
process must be simple, intuitive, and robust in order to
be conducted by all members of the group. Collecting the
information in a table format using common spreadsheet
software tools, such asMicrosoft Excel or LibreOffice Calc, satisfies
these requirements.

To guarantee a consistent structure of such a score sheet,
initially a template needs to be set up, i.e., a table containing
the measures that are to be recorded on a single day. In
order to accomplish this, as a first step we generate an empty
template table using odMLtables. To improve the readability,
we enter custom column names in odMLtables to create
the table (“Section” instead of “Path to Section,” “Measure”
instead of “Property Name,” “Unit” instead of “Data Unit,”
and “Type” instead of “odML Data Type”). Also we omit the
attributes “Section Definition,” “Property Definition,” and “Data
Uncertainty” in the context of these example scenarios. As second

14https://jupyter.org/
15https://odmltables.readthedocs.io/en/latest/tutorial.html

step, using a spreadsheet, we design the metadata structure for
a single score sheet as shown in Figure 6. The value field for
each entry can be either left empty or a default value can be
entered. The latter case is interesting for values that are likely to
be constant for the majority of experiments, e.g., the name of the
experimenter. Since the colors of a table saved in the xls format
are ignored when converting to the odML format, it is possible
to use arbitrary color coding within the spreadsheet software
to improve the readability of the table for the experimenters
entering the values.

We designed the template table such that it matches the
properties of the minimized score sheet section already depicted
in Figure 4. Notice that in the template the entry for column
“Section” already includes a parent section to reference the
animal (cf., Figure 4). This is convenient for defining the position
of each score sheet in the odML hierarchy to simplify a later
merging process (cf., scenario 2).

Scenario 2: Collecting Daily Observations
in a Common odML Structure
Once the template from scenario 1 is complete, it is copied
to a new file on each measurement day, and the copy is filled
out by the person taking the measurements. To avoid that
metadata are spread across multiple files and potentially multiple
locations, we aim to gather the data from multiple days into
a single odML file. To achieve this, we use odMLtables to
first convert the individual xls file containing an individual
score sheet into the odML format, and to subsequently merge
these into a common odML structure spanning multiple
recording days.

Specifically, for the conversion from the xls to the odML
format we use the odMLtables feature F1 (for details of odML
features F1–F5, see section 2.2). After the conversion, the current
score sheet present in odML format is merged into the common
odML document collecting the complete information of an
animal using feature F4 on a daily basis. This extends the odML
structure of the subject document by an additional Section
each recording day. Note that this is possible because the first
column of individual score sheets (Figure 6) not only provides
a unique Section name for each score sheet, but also indicates
the location of the odML Section in the hierarchical structure of
the subject document, (e.g., “Subject/Scores_2000-01-01”). The
result is a single odML file containing measures collected on
all recording days while the source files generated each day can
be archived.

FIGURE 6 | Template score sheet. The template score sheet contains the

measures required for each measurement day, including optional default

values (here: “Alice” for “Experimenter” and “g” as unit for “Weight”).
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Themetadata collection containing the merged score sheets of
2 recording days might look like the following:

Document "mouse-score-sheets"
Section "Subject"

Property "Species": Mus musculus
Property "Birthday": 1999-12-24
12:00:00
Property "uID": asdf1234ghjk56789
Property "Alias":
Section "Scores_2000-01-01"

Property "Experimenter": ["Alice",
"Bob"]
Property "Weight": 5g
Property "Date": 2000-01-01
Property "Comment":

Section "Scores_2000-01-02"
Property "Experimenter": "Bob"
Property "Weight": 5.5g
Property "Date": 2000-01-02
Property "Comment": "Small scratch
at the right ear"

Scenario 3: Create a Tabular
Representation of the odML File for Better
Viewing Using the Color Options
Once the recordings for a number of animals were performed and
the corresponding metadata collection is completed, data and
metadata should be shared among collaborators in a common
repository. In order to get an overview of the data obtained
across different animals, the metadata of each animal can be
converted into the xls format to simplify the inspection of
the associated metadata using spreadsheet software (cf., also
Figure 4B). Here, odMLtables provides the option to use color
coding and highlighting of default/missing values to improve the
readability (Figure 7).

Scenario 4: How to Filter a Subset of an
odML File to Edit It Later on
As the common odML structure grows day by day it is of
advantage to extract specific subsets of odML values of interest for
visualization using the tabular format. Instead of visualizing the
wholemetadata collection to periodically verify that all Properties
are filled with a value, we can extract a subset of the collection and
visualize only the relevant (e.g., empty fields) entries. For this,
we use odMLtables feature F5 which can be used to generate an
odML that contains only Properties without value information
specified. We then convert this reduced odML into a tabular xls
representation using odMLtables feature F1. The generated table,
as shown in Figure 7 indicating the two empty properties in the
odML structure of scenario 2, can be visualized using spreadsheet
software and, in case of values not being filled, these can be
directly edited manually.

Scenario 5: Merging the Edited Subset
Back Into the Original Structure
The enriched xls sheet generated in step 4 should now be merged
back into the common odML structure. For this, we convert it

FIGURE 7 | Metadata collection filtered to show only Properties with an empty

value. Missing values entries are highlighted in red by odMLtables.

back into the odML format and use the odMLtablesmerge feature
F4 to replace the edited values in the common odML structure
with the edited ones. Here, odMLtables merges the two odML
files by extending the odML structure and appending metadata
entries when the same Property is present in both files. However,
when modifying already existing metadata entries in the filtered
version this would result in duplication of entries. Therefore,
odMLtables offers the possibility to overwrite already existing
metadata entries when merging two odML structures. Note that
a selective merge of a subset of metadata can be achieved by first
filtering the file to be merged using feature F5.

Scenario 6: Compare Entries in the odML
File for Data Screening and Lab Book
Usage
In addition to the complete metadata representation as presented
in scenario 3, it is possible to generate a reduced overview table
containing only plain values of selected Properties. This feature
can be used to create a tabular display of Properties of interest
(e.g., weight of a specific animal, experimenter who performed
the experiment and comments regarding the measurement) in
rows for the individual recordings (days) in columns. An example
of such a table is given below:

Scores_2000-01-01 Scores_2000-01-02

Date 2000-01-01 2000-01-02

Weight 5.0g 5.5g

Experimenter Alice, ... Bob

Comment Blood sample was taken [...] Small scratch at the right ear

This type of overview tables can also be printed and used
as part of the mandatory documentation of the experiment
in a written or printed lab book. This way, the recorded
data only need to be documented once in a digital fashion
and consistency between documentation and digitally available
metadata is guaranteed.

Scenario 7: Automatized Processing of
Metadata Collections
After completion of an experiment covering many recording
days, the processing steps presented in scenarios 1-6 can be
performed in an automatized fashion on the complete metadata
collection to generate a comprehensive metadata document and
corresponding overviews. While it is possible to perform this
action using the graphical user interface, an automated approach
has the advantage that it can be repeatedly executed when one
of the original files changes, e.g., by a retrospective update of
metadata or loss of the generated metadata files. In addition an
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Listing 1 : Program to assemble a target odML document covering metadata of multiple recording days by pooling information from multiple csv files and generate

visualizations and overviews. Individual functions are automatizing functionalities presented in previous scenarios.

1 import os.path, glob
2 import odmltables as odt
3

4 def csv_to_odml (csv_file):
5 """ Convert a score sheet from csv to odML format. """
6 # initialize an OdmlTable object for handling metadata
7 table = odt . OdmlTable()
8 # specify headers used in the score sheet csv files (here: Section, Measure, Unit and

Type)
9 table . change_header(Path =1, PropertyName =2, Value =3, DataUnit =4, odmlDatatype =5)
10 table . change_header_titles(Path ='Section' ,PropertyName ='Measure' , DataUnit ='Unit' ,

odmlDatatype ='Type' )
11 # load from csv format and save in odML format
12 table . load_from_csv_table(csv_file)
13 table . write2odml(csv_file[: -4 ] + '.odml' )
14

15 def merge_odml_files (file1, file2, overwrite_values =False ):
16 """ Merge one odML file (file2) into another odML file (file1) """
17 # load first odML file
18 table1 = odt . OdmlTable(file1)
19 # merge file2 into table1
20 table1 . merge(odt . OdmlTable(file2), overwrite_values =overwrite_values)
21 # overwrite file1 with the merged score sheets
22 table1 . write2odml(file1)
23

24 def visualize_as_xls (odML_file):
25 """ Generate an xls version of an odML file for visualization purposes """
26 table = odt . OdmlXlsTable(odML_file)
27 # optional: change the color options in the output table
28 table . first_marked_style . fontcolor = 'dark_green'
29 table . second_marked_style . fontcolor = 'dark_teal'
30 table . highlight_defaults = True
31 # write to xls format
32 table . write2file(os . path . splitext(odML_file)[ 0] + '.xls' )
33

34 def generate_overview (odML_file):
35 """ Compare entries with same structure across an odML file """
36 table = odt . compare_section_xls_table . CompareSectionXlsTable()
37 table . load_from_file(odML_file)
38 # specify all score sheet sections to be compared here
39 table . choose_sections( 'Scores_2000-01-01' , 'Scores_2000-01-02' )
40 # save to different odML file
41 table . write2file(os . path . splitext(odML_file)[ 0] + '_overview.xls' )
42

43 # extract all metadata files present in this metadata folder
44 folder = 'mymetadatacollection/'
45 source_files = sorted (glob . glob(folder + '/ * .csv' ))
46

47 # convert all source files
48 for source_file in source_files:
49 csv_to_odml(source_file)
50 # merge score sheets into animal info document
51 for score_sheet in sorted (glob . glob(folder + '/score_sheet * .odml' )):
52 merge_odml_files(folder + '/animal_info.odml' , score_sheet, overwrite_values =True )
53

54 # create visualization and comparison tables
55 visualize_as_xls(folder + '/animal_info.odml' )
56 generate_overview(folder + '/animal_info.odml' )
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automated approach is more robust against errors introduced
by the manual operation and can be at least partially reused for
subsequent experiments.

By use of the odML library together with the odMLtables
Python API, users have a rich collection of functions to
manipulate and convert metadata stored in the odML format.
In this specific example, we show an example script in Listing
1 that loads all daily animal score sheets, adds them to a
common metadata structure and exports the final document
into an overview and comparative xls sheet for visualization.
The code demonstrates the metadata handling workflow by
structuring it into a sequence of three generic functions,
which can be of use in creating related workflows for
different projects.

Improved Handling and Visualization of
Complex Metadata Structures
Up to now we demonstrated the basic mechanisms of
odMLtables based on highly simplified examples presented
above. In a real-world example, however, metadata collections
are inherently complex and corresponding metadata collections
can easily encompass thousands of values. A publicly available
example of this are electrophysiological recordings of macaque
monkeys performing a reach to grasp task that include a
rich metadata collection stored in the original odML files
as well as the corresponding xls representation created
by odMLtables (Brochier et al., 2018). We demonstrate
the usage of odMLtables to select and visualize a subset
of the complete metadata collection as well as generation
of overview tables in an interactive Jupyter Notebook
in the odMLtables documentation16 (available in pre-
executed form as Data Sheet 2) as well as in a video tutorial
(Supplementary Video 1).

4. DISCUSSION

We presented the odMLtables software, which facilitates the use
of the odML metadata format in everyday experimental and data
analysis work. To illustrate the application of odMLtables in
real-world situations, we presented the features of odMLtables
in seven scenarios describing a simplified realistic example,
namely the definition of an animal score sheet and its use for
controlled routine collection of metadata. More specifically, we
showed in scenario 1 the setup of a template for an animal
score sheet in the csv format and its conversion to odML (F1,
F2). In the next scenario, we used this template to routinely
collect the animal’s health measures and aggregated them in a
single odML file per animal (F1, F4). Besides a simplification of
metadata acquisition in the csv format, we showed in scenario
3 the benefits of a colored tabular representation for visual
inspection of the collected score sheets (F1). In scenario 4,
we demonstrated how supplements of metadata values can be
easily added by extracting the missing metadata entries from
the complete collection (F5). Subsequently we demonstrated
in scenario 5 the integration of the amended metadata back

16https://odmltables.readthedocs.io/en/latest/tutorial.html

into the complete collection (F4). We generated a compressed
overview table, summarizing the metadata from different routine
collections in a concise format suitable for laboratory notebook
in scenario 6 (F3). Finally, in scenario 7 we discussed the
automation of the workflow presented in the previous scenarios
and provided code examples showcasing the odMLtables
Python interface.

As odMLtables can be used by programmers and
non-programmers alike, it simplifies the development of
comprehensive metadata management in the scientific
community by offering user-friendly interaction with the
odML format. In this way, its usage is intended to improve
reproducibility and replicability of experiments and to facilitate
cooperative work, both within labs and across different
laboratories. Complementing the model scenarios above, in
Figure 8 we summarize and generalize the use of individual
components of odMLtables during the course of an entire
experiment. Although the minimalistic workflow presented
here as well as the real-world workflow described in Zehl et al.
(2016) and Brochier et al. (2018) are all set in the field of
animal experiments covering multiple days, odML as well as
odMLtables are not specific to neuroscience and can therefore
be used for metadata management in other scientific disciplines.
In virtually any experimental research, odMLtables provides
benefits on multiple stages of the experiment: from setting up
a specific metadata structure in the preparatory phase, manual
enrichment of the metadata collection during the experiment,
to the generation of overviews and summaries from metadata
collections during data analysis. Also, for publicly available
datasets with an odML metadata collection, odMLtables can
be used to create a tabular representation of the odML files
to quickly scan the metadata of the experiment. For example,
considering the files comprising datasets hosted on public
repositories, tabular, yet arbitrarily formatted representations
are commonly used to supply additional information describing
the dataset. This information must be parsed by custom
codes in order to make it available in the analysis process.
In contrast, using odMLtables, such metadata could be
transformed into a structured, machine-readable representation
with only moderate restrictions on formatting of the xls or
csv files. Although odML and odMLtables can be used in
a broader context, in the following we discuss specifically
its embedding into a tools landscape developing in the field
of electrophysiology.

4.1. Performance Estimation
Since the release of the original version, odML has been
used in various projects for storing metadata as they become
available during data acquisition or analysis (e.g., in the NIX17

and RELACS18 projects), as metadata schema in the EEGbase
database19 (see also Mouček et al., 2014), and as a part of the
metadata data pipeline as described by Zehl et al. (2016) and
Brochier et al. (2018). The advantage gained by comprehensive

17https://github.com/G-Node/nix, RRID:SCR_016196
18https://github.com/relacs/relacs
19http://eeg2.kiv.zcu.cz:8080/home-page?1, RRID:nif-0000-08190
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metadata management using odML can be demonstrated by a
small example based on a published dataset (Brochier et al.,
2018) for which detailed metadata are stored in the odML
format. Accessing information about the number of neurons
recorded on different electrodes contained in the odML files
using common desktop hardware requires∼0.5 s for this dataset
using the odML iteration and filter mechanism. Extracting
the same information not from the odML metadata but from
the original data files using the Python library Neo version
0.7.120 requires about 25 s using the Neo filter and annotation
mechanism. Comparing these times, the usage of odML in this
example gives a speedup of a factor 50. However, for a fair
comparison also the time for odML generation needs to be
taken into account, where for a dataset of this complexity a
realistic upper bound is on the order of 10 min, considering
that the generation process needs to read the data files and
a number of associated files (Zehl et al., 2016), and perform
various quality or automated preprocessing checks. Comparing
this conservative estimate of the generation time of the odML
file, the access time using the odML format and the access
time using the original data files shows that using the odML
format pays off after 25 times of metadata access. This is a
relatively small number of metadata accesses for a single dataset
considering the relevance of metadata in multiple steps of the
experiment, e.g., exploratory analysis and parameter scans in
analyses runs, and collaborative work, where different people
access the same metadata on different computers. In the latter
setting using odML is also of advantage because the potentially
large original data files might not be present on all computers of
all collaborators, whereas odML files are much smaller in file size
and can therefore be sharedmore easily, e.g., via a version control
system like git21.

4.2. odMLtables as Conversion Tool
One may argue that extending the existing odML editor to
support a flattened view on the metadata is a more direct
and efficient way to implement tabular representations, as
opposed to a converter (such as odMLtables) between formats.
However, such a solution has direct implications on (i) the
maintainability of the tool, (ii) its adoption by the community,
and (iii) its interoperability in the heterogeneous types of
workflows typically encountered in data acquisition. Regarding
(i), the development of graphical editors for tabular data is a
time-consuming endeavor and leads to a complex code base
that is difficult to maintain. This is even more true in a scientific
environment, where software maintenance is often left to persons
who are not expert in GUI programming and design patterns
for graphical applications. Regarding (ii), spreadsheet software
is already commonly used in laboratory environments to track
metadata, and experimental scientists are used to efficiently
use these tools in their daily routine. Therefore, integrating
such software in a digitized workflow, rather than proposing an
entirely new user-facing tool, is bound to lower the threshold for
adoption in a laboratory. Finally, regarding (iii), data acquisition

20https://github.com/NeuralEnsemble/python-neo/releases/tag/0.7.1
21https://git-scm.com

workflows in an experimental environment are often subject to
constraints set by the individual formats in which metadata are
generated by the components of the experimental setup. Tabular
representations, and in particular those stored in the csv format,
represent per-se one of the most commonly encountered and
most simple formats to exchange data. Indeed, the capability to
read csv data files is provided by the standard libraries of many
programming languages, in particular those commonly used in
data analysis and scientific computing, such as Python, Matlab,
or R. Therefore, being able to convert between human readable
tabular metadata generated automatically by various metadata
sources of the experiment and their joint representation in a
hierarchical odML metadata collection is helpful in creating
a metadata acquisition workflow that is interoperable with
the various components of the experiment. Combining such
workflows with version control systems, such as git, to store
the hierarchical or tabular metadata representations is a
viable option to enable collaborative creation of metadata
records, in particular when considering the text-based
csv or odML formats.

4.3. Relation to Electronic Laboratory
Notebooks
One particular case where flexible interoperability is in demand
are electronic laboratory notebooks (ELNs) which are available
from a large range of manufacturers and are becoming
increasingly utilized by laboratories (Kwok and Kanza, 2018).
Their design is actively being researched in the process of
digitizing the research process (Kanza et al., 2017). ELNs
are software tools originally designed to replace the hand-
written lab book used in experimental sciences to document
experiments, outcomes and analyses by providing a method
to electronically enter such metadata in a digitally signed
and potentially encrypted fashion that ensures protection
from falsification. Some ELNs go beyond this functionality
by integrating tightly with laboratory inventory management
systems (LIMS) or analysis pipelines [comparisons of selected
ELNs can be found in Rubacha et al. (2011) and various
web resources22, 23, 24]. One major advantage of ELNs that
store hard metadata (Grewe et al., 2011) in form of key-value
pairs is that they can be directly digitally accessed in analysis
scripts, rather than having to manually copy the information
from the hand-written lab book (Zehl et al., 2016). While for
some disciplines specialized lab notebook software packages
have been developed (Kwok and Kanza, 2018) that are aware
of community standards for storing such metadata, most of
these packages come with their own format for storing data
that can only be accessed via file export functionality or specific
APIs. In some disciplines this may be of little importance,
since either the metadata records stored in the ELN are not
required in the analysis process, or the metadata are captured
using a domain-specific ELN that is integrated with functionality
to directly perform the analysis steps from within the ELN.

22https://datamanagement.hms.harvard.edu/electronic-lab-notebooks
23https://www.labfolder.com/electronic-lab-notebook-eln-research-guide
24https://www.gurdon.cam.ac.uk/institute-life/computing/elnguidance
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Nonetheless, other disciplines, such as neurophysiology, require
detailed metadata available in an environment suitable for
performing complex, exploratory analysis protocols that go
beyond the capabilities of currently available ELNs. Here, odML
is a potential candidate for implementing such features. In
absence of a global standard to record metadata, csv represents
one of the de-facto standards to export metadata from ELNs
in a universal format. For this reason, the conversion to odML
via odMLtables provides access to metadata recorded with
ELNs for external analysis pipelines that rely on hierarchically
structured metadata collections. The same holds true for the
reverse direction, where metadata generated by tools building
on the odML specifications can be imported into an ELN. For
example, the feature of odMLtables to create tabular overviews
of the metadata (feature F3, see section 2.2) would allow to
generate current overview tables in terms of animal score sheets
as csv that could be directly (and assuming the ELN has an
API, even automatically) integrated into the documentation of
an experiment contained within an ELN, assuming only basic csv
import capabilities.

Beyond ELNs, labs increasingly resort to institution-wide
databases to manage and record their research activities, and, in
some cases, even the data as such. Depending on the architecture,
some systems are likely to implement data imports using tabular
schemata. One example of such a tool implementing database
and processing functionality is DataJoint25 as a tool to assist
in ingesting, combining and analyzing heterogeneous data in a
relational database (Yatsenko et al., 2015). It is easy to populate
a DataJoint database using tabular data, as described in detail in
the accompanying online documentation. For example, one may
extract a subset of the metadata in form of a comparison table
using the odMLtables feature F3, and then incorporate this table
into a larger DataJoint database spanning all experiments using a
generic function for populating from csv tables. In such a fashion,
odMLtables presents a gateway to integrate structured metadata
by the diverse tools used in a laboratory to organize the record
keeping of an experiment.

4.4. Outlook
The current version of odMLtables provides a set of core
functions that were identified as necessary in co-designing
various data and metadata acquisition workflows in
collaboration with multiple laboratories spanning different
types of experiments and data modalities. Nevertheless, a
number of additional features are envisioned as a result of
feedback received from these collaborations to extend the
range of applications for the tool and enhance its flexibility
for heterogeneous metadata workflows. In addition, feature
requests are welcome on the project’s issue system on github.
One next step will be to extend the capability to create tabular
comparisons (feature F3) across metadata stores in multiple files.
This would give researchers the option to query for metadata
that are distributed over several, even differently structured,
odML files. For example, in chronic recordings of brain activity
accumulated over the course of multiple months, researchers

25https://datajoint.io/, RRID:SCR_014543

may decide to generate a single odML file per recording day,
and may want to utilize such a functionality to compare the
number of trials and other performance measures across the
entire recording period.

A second planned feature addition to odMLtables, related
to the previous aspect, is the ability to create complete tabular
representations (i.e., feature F1) across multiple odML files, and
vice versa. To this end, one may implement an additional column
next to the odML path and Property name that indicates the
file in which a certain metadata entry is found. As an example
application, one may consider a complex experiment where
metadata originating from different parts of the experiment are
stored in separate odML files, but a large overview table is
desired for manually browsing themetadata.While this is already
possible bymerging (F4) individual files and then converting (F1)
the table, the information about the origin of metadata in the
original file structure is lost.

A third feature addition to odMLtables is the automatic
generation of Python code based on the steps the user
performs in the graphical user interface. For example, this may
yield the Python code to perform a certain filter operation
designed in the GUI. This would simplify the automation
of metadata processing without specific knowledge about the
odMLtables API.

For communicating the structure of a complex metadata
collection to new collaborators neither tabular nor hierarchical
views have been found to be efficient. For this, a graphical
representation of the metadata structure is likely to be
more useful, especially for large metadata collections. For
this reason, a fourth addition to odMLtables would be to
introduce a common graphical representation as new output
conversion format.

Lastly, as a fifth feature addition, odMLtables could assist
scientists in defining the links between data and metadata in an
experiment. Typically, several metadata are accumulated from
various sources in an experiment that are directly related to
one particular part of the data, and in fact, may be crucial in
performing data analysis. For example, the signal recorded from
a particular electrode may contain the impedance as measured
by the manufacturer as well as noise estimated from a pre-
processing step. Due to the heterogeneity of experiments and
metadata descriptions, it is currently not feasible to establish
these connections between data and metadata automatically,
e.g., using a predefined mapping based on Property values.
Instead, the mapping is carried out manually by implementing
customized code that annotates data with metadata during
the loading process. Even when data can be loaded via
standardized data framework (e.g., Neo26, see also Garcia et al.,
2014), the annotation of data objects with metadata taken
from a standardized metadata collection (e.g., odML), has to
be performed independently (see Figure 8). This complicates
the process of reading data, and is not transparent to an
external user. A possible way of reducing the implementation
effort to create experiment-specific annotation of data with
metadata, would be to store the relations between data and

26https://github.com/NeuralEnsemble/python-neo, RRID:SCR_000634
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FIGURE 8 | Integrating odMLtables and other software tools in the different stages of an experiment from preparation to publication. During the preparation of an

experiment odMLtables in combination with spreadsheet software is used to develop an experiment specific structure of the metadata collection (templates, F2).

During the execution and documentation of the experiment, odMLtables converts (F1) between the tabular and odML representations. The compare functionality (F3)

is used to generate overviews of odML Properties across different Sections of a metadata collection. The filter (F5) and merge (F4) functionalities are used to create

and merge subsets of odML collections, respectively. For analysis and sharing, data can be represented using the Neo framework and annotated with metadata from

the odML metadata collection using custom scripts. This combined representation can be saved in a single format using the NIX framework, e.g., to share of data and

metadata via a database. In parallel, metadata collections can be incorporated in databases, for example using an export of the odML to the RDF standard.

metadata directly in the metadata structure. For example, using
odMLtables, we suggest to add supplementary fields to the
table that directly link blocks of metadata to specific data,
e.g., to channels with a certain channel ID or to events with
specific IDs. In this way, compact objects containing both data
and selected metadata could be loaded using a single, generic
loading routine. Moreover, by providing odMLtables with a
feature to export to NIX27, e.g., using the odML-NIX conversion
tool28, as an additional output file format that combines odML-
like metadata with primary data (Stoewer et al., 2014), such
that combined data/metadata objects could be easily serialized
to disk.

Validation of user generated input is implemented on the
level of odML: When saving or loading an odML file via
odMLtables or any other method, the odML structure is checked
for basic integrity (e.g., consistency of data types and values).
It is intended to support custom, user defined validations in
future releases. That is, users will be provided with the means
of defining own validations to check for required Sections,
Properties or Values and combinations thereof. These additional
validations will be directly stored within the odML files. They

27http://g-node.github.io/nix, RRID:SCR_016196
28https://github.com/G-Node/nix-odML-converter

can be applied to ensure metadata consistency even if the
file is handled on a different system or by a different person.
For example users would be able to define specific Values as
required for a particular Property or make sure a Section tree
with an experiment-specific content is present before the file
can be saved.

In recent years, the scientific community has begun to
recognize the need for developing workflows that enable rigorous
data management not only to ensure reproducibility, but also to
expedite research through efficient data sharing among scientists.
The principles governing corresponding data management
practices are summarized under the FAIR (Findable, Accessible,
Interoperable, Reusable) principles (Wilkinson et al., 2016). The
requirement to make data globally findable has lead to the
emergence of multiple resources commonly subsurmised under
the term “Knowledge Graph,” referring to a graph-like linkage
of metadata through an appropriate ontologies, for example, as
done in the Knowledge Graph of the Human Brain Project29. The
resource description format, RDF30, is a semantic web technology
that provides one possible standard interface to populate such
metadata graphs (cf., Figure 8). The complexity of creating RDF

29https://www.humanbrainproject.eu/en/explore-the-brain
30https://www.w3.org/RDF
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descriptions from scratch can be simplified by exploiting the
functionality of odML to export RDF schemata from odML files.
In this context, odMLtables can be incorporated as a bridge
to support researchers in easily entering predefined metadata
schemata to expose their data records in large-scale Knowledge
Graph infrastructures.

odMLtables is actively developed and a comprehensive
documentation including a tutorial is available for release
versions on ReadtheDocs31 and the latest version can be obtained
from GitHub32. Future developments of odMLtables include the
ongoing embedding of odMLtables in different neuroscientific
data and metadata aggregation workflows, and, as a long term
prospect, odMLtables is planned to become a fully integrated
component of the odML and NIX libraries.

5. CURRENT CODE VERSION

Code version 1.0.0

Permanent link to

code/repository

https://github.com/INM-6/python-odmltables

Documentation https://odmltables.readthedocs.io

Support https://github.com/INM-6/python-odmltables/issues

Programming Language Python

Key Dependencies odML, PyQt5

Research Resource

Identifier (RRID)

SCR_016228

Legal Code License BSD 3-Clause

Logo
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32https://github.com/INM-6/python-odmltables/
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