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One of the grand challenges for computational neuroscience and high-performance
computing is computer simulation of a human-scale whole brain model with spiking
neurons and synaptic plasticity using supercomputers. To achieve such a simulation, the
target network model must be partitioned onto a number of computational nodes, and
the sub-network models are executed in parallel while communicating spike information
across different nodes. However, it remains unclear how the target network model
should be partitioned for efficient computing on next generation of supercomputers.
Specifically, reducing the communication of spike information across compute nodes
is essential, because of the relatively slower network performance than processor
and memory. From the viewpoint of biological features, the cerebral cortex and
cerebellum contain 99% of neurons and synapses and form layered sheet structures.
Therefore, an efficient method to split the network should exploit the layered sheet
structures. In this study, we indicate that a tile partitioning method leads to efficient
communication. To demonstrate it, a simulation software called MONET (Millefeuille-like
Organization NEural neTwork simulator) that partitions a network model as described
above was developed. The MONET simulator was implemented on the Japanese
flagship supercomputer K, which is composed of 82,944 computational nodes. We
examined a performance of calculation, communication and memory consumption in
the tile partitioning method for a cortical model with realistic anatomical and physiological
parameters. The result showed that the tile partitioning method drastically reduced
communication data amount by replacing network communication with DRAM access
and sharing the communication data with neighboring neurons. We confirmed the
scalability and efficiency of the tile partitioning method on up to 63,504 compute nodes
of the K computer for the cortical model. In the companion paper by Yamaura et al., the
performance for a cerebellar model was examined. These results suggest that the tile
partitioning method will have advantage for a human-scale whole-brain simulation on
exascale computers.
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INTRODUCTION

The human brain consists of about ten to the 11th power of
neurons and ten to the fifteenth power of synapses (Herculano-
Houzel, 2009). In the brain, dozens to hundreds of functional
regions exist, and the types of neurons and synapses and the
number of connections per neurons differ across regions. To
identify these quantities, large-scale measurement techniques
have been suggested, including optogenetics (Deisseroth, 2015),
connectome analysis (Hunnicutt et al., 2014; Oh et al.,
2014; Zingg et al., 2014; Glasser et al., 2016), functional
magnetic resonance imaging (Buckner et al., 2011; Yeo et al.,
2011), and electroencephalograms (Parvizi and Kastner, 2018;
Pesaran et al., 2018). These technical advancements lead
to the construction of a realistic human-scale whole brain
model using supercomputers. Such large-scale simulations are
useful for understanding information processing mechanisms
by interactions among brain regions such as cerebral cortical
areas (Markram et al., 2015), cerebellum, and basal ganglia, and
developmental mechanism of brain disease such as epilepsy,
Parkinson’s disease (Moren et al., 2019), Alzheimer disease,
and depression, which occur due to interactions among
wide areas in the brain. The computational performance of
supercomputers has been increased exponentially since their
inception and will soon reach 1 exa FLOPS in 2020s, that
is, 10th to the 20th power of floating point operations per
second. This computational power will allow us to simulate
a human-scale brain model with realistic anatomical and
physiological parameters.

To date, computer simulations of large-scale brain models
using spiking neurons have been widely performed (Izhikevich
and Edelman, 2008; Ananthanarayanan et al., 2009; Igarashi
et al., 2011; Kozloski and Wagner, 2011; Helias et al., 2012;
Yamazaki and Igarashi, 2013; Kunkel et al., 2014; Markram et al.,
2015; Jordan et al., 2018; Yamazaki et al., 2019). Dedicated
semiconductor chips called neuromorphic chip have been
developed for large-scale simulation of spiking neural network
(Jin et al., 2008; Schemmel et al., 2010; Furber et al., 2013).
In the large-scale simulations, the network communication,
the data transfer across computer nodes, has been becoming
serious problem with increase in the network size. Modern
supercomputers consist of clusters of nodes. For example, the
Japanese flagship supercomputer K consists of 82,499 computer
nodes connected by a network (Miyazaki et al., 2012). On such
a supercomputer, neurons and synapses in a neural network
are assigned to multiple computer nodes for parallel processing.
When a neuron sends a spike to another neuron, the spike
information is transmitted from the source node to the receptor
nodes. As the number of spikes exchanged increases, the network
communication can become a bottleneck.

In the computer simulation of a large-scale Brunel
network model on the K computer, the problem of
network communication had occurred at around maximum
numbers of compute nodes, and it have been overcome by
changing communication function from “MPI_Allgather”
to “MPI_AlltoAll” (Helias et al., 2012; Kunkel et al., 2014;
Jordan et al., 2018). These studies addressed the computational

performance for the worst-case scenario of cortical network
which had random connections without spatial organization.

In contrast to the Brunel model with random connections
on modern supercomputer, large-scale simulation of spatially
organized models on next generation supercomputers leads to
two different issues related to network communication.

The first issue is an application of a spatial partitioning method
which splits neural networks into sub-networks and assigns
them to compute nodes. The cerebral cortex and cerebellum
which contain 99% of the neurons and synapses in the brain
(Herculano-Houzel, 2009) form layered sheet type structure.
The connections tend to be formed in limited spatial extent
in the spatial organization. In large-scale simulation of the
models with the spatial organization, there is possibility that
spatial partitioning method effectively works for reducing the
communication data amount.

The second issue is that growth of the network bandwidth
is relatively much smaller than those of computational
performance and memory bandwidth in next generation
supercomputers. For example, the computational performance,
memory bandwidth, and network bandwidth per compute
node of the next generation of Japanese supercomputer Fugaku
released around 2021 is going to be about 20 times, 10 times,
and twice greater than those of the K computer released in
2011, respectively (Ajima et al., 2018). The relatively much
smaller improved network bandwidth in next generation
supercomputers should require more efficient communication
than those on predecessors.

To examine the efficiency of the spatial partitioning method
for modern and next generation of supercomputers, in this study,
we developed simulation software called MONET (Millefeuille-
like Organization NEural neTwork simulator) consisting of
Python and C programs. The Python program interprets a
model description file in JSON format and generates intermediate
files which are fed to C program with hybrid parallelization
using OpenMP (OpenMP Architecture Review Board, 2008)
and MPI (Message Passing Interface Forum, 2009). The
Python and C programs run on multicore computers. We
implemented our previous cerebral cortical model (Moren
et al., 2019) using the MONET simulator. The model is
composed of six layers with realistic neuron numbers and ratios,
synapse numbers and density, intracellular parameters, and
response properties.

We examined effectiveness of the spatial partitioning method
for cortical model using the MONET and the K computer. The
results showed that the spatial partitioning method benefit from
a spatial model of cortex and hardware specification of current
and next generation supercomputers. We successfully simulated
6.04 billion neurons and 24.5 trillion synaptic connections
corresponding to 1,073 cm2 of the layered cortical sheet using
63,504 computer nodes on the K computer. The computational
time was about 350 times slower than real time. We also varied
the number of computer nodes with a fixed number of neurons
and synapses on a single tile and observed a nearly perfect
weak-scaling property, suggesting that the parallelization method
will enable a human-scale whole cortical simulation on next
generation supercomputers within the next 5 years.

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2019 | Volume 13 | Article 71

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00071 November 27, 2019 Time: 17:28 # 3

Igarashi et al. Large-Scale Cortical Model Simulation

This paper is organized as follows. See section “Materials and
Methods” described the details of the MONET simulator and
the cerebral cortical model. See section “Key Biological Features
of the Brain From the Whole Brain Simulation” discusses
the key biological features that next generation simulators
should include in human-scale whole brain simulation. See
section “Results” shows property of tile partitioning method
of a model of the cortex and demonstrates the efficiency and
scaling properties of the simulator. See section “Discussion” is
devoted to general discussion. A companion paper (Yamaura
et al., submitted to the same journal) reports the details of the
cerebellar model.

MATERIALS AND METHODS

A Three-Dimensional Model of a Layered
Cortical Sheet
To evaluate the effectiveness of the parallelization method for
spiking neural networks, a three-dimensional model of a layered
cortical sheet was developed on the basis of experimental data
from the mouse primary motor cortex (M1) and other cortical
regions when data from the M1 were lacking.

The layered cortical sheet was a cuboid with regular squares
on the top and bottom faces (Figure 1A). The direction
parallel to the top surface is referred to as horizontal, and
the direction perpendicular to the top surfaces is referred to
as vertical. The model has six layers consisting of layers 1,
2/3, 5A, 5B, and 6 as classified in M1. The layer thickness
and the numbers of neurons in different layers were based
on experimental data (Lev and White, 1997; Weiler et al.,
2008; Table 1). Fifteen neuron types are included in the
model (Table 1).

Layer 1 includes only two inhibitory neuron types: single
bouquet cells (SBC) and elongated neurogliaform cells (ENGC,
Jiang et al., 2013). Layers 2/3, 5A, and 6 have one excitatory
neuron type, intratelencephlic neurons (IT), and two inhibitory
neuron types, parvalbumin-expressing (PV), and somatostatin-
expressing (SST) interneurons (Tremblay et al., 2016). Layer
5B has two excitatory neuron types, IT and pyramidal-tract
(PT) neurons (Shepherd, 2013), and two inhibitory neuron
types, PV and SST.

The ratio of the numbers of excitatory neurons to inhibitory
neurons was set as 4:1 in all layers except for layer 1
Neurons are placed on spatial positions generated by pseudo-
random numbers within the space of the layer to which
the neuron belongs.

All neuron types are implemented using a leaky integrate-and-
fire model. A neuron i evolves according to

τm
dui
dt
= −ui + urest + Rm(Isyn,i(t)+ Iext,i),

if u(t) = θ⇒ u→ ur,

where ui is a membrane potential, urest is a resting potential, tm
is a membrane time constant, Rm is a membrane resistance, Isyn,i
is a synaptic current, Iext ,i is an external current, t is time, θ is a

FIGURE 1 | Three-dimensional structure of a layered cortical sheet model.
(A) 1300 × 1300 × 1400 µm of a layered cortical sheet model. Spheres
represent cell positions. Sphere colors: SBC (white), ENGC (gray), L2/3 IT

(Continued)
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FIGURE 1 | Continued
(red), FS (blue), LTS (green), L5A IT (orange), L5B IT (yellow), L6 IT (purple).
(B) Spike raster plot of the layered cortical sheet. The color code is as in (A).
(C) In-degree connections of example neurons. The color code is as in (A).
The box on the center is 1300 × 1300 × 1400 µm as in (A). (D) Connection
probability functions of horizontal distance between neurons within layers.

TABLE 1 | Neural parameters.

Layer Neuron
type

E or I n
Neurons/

mm2

Membrane
time

constant

Ave.
connections/

neuron

Firing
rate
(Hz)

1 SBC I 1259 10 15 0.03

1 ENGC I 540 10 21 0.02

2/3 IT E 14659 20 3178 0.06

2/3 PV I 2290 10 8105 14.7

2/3 SST I 1374 20 3040 30.7

5A IT E 5106 20 3952 0.01

5A PV I 774 10 4549 11.5

5A SST I 516 20 4215 31.6

5B IT E 6072 20 4248 0

5B PT E 3036 20 4673 0

5B PV I 1822 10 6440 0.05

5B SST I 1215 20 5283 58.58

6 IT E 14102 20 2279 0.01

6 PV I 1763 10 9908 1.7

6 SST I 1763 20 5586 16.6

spike threshold, and ur is a reset value of membrane potential.
The synaptic current is described as

Isyn,i(t) =
∑
j

∑
tfj

Wijgsyn(t − tfj )(ui − Esyn,i,j),

where Wij is a connection weight from neuron j to i, gsyn is
a time-dependent function of synaptic conductance, tjf is a
spike time from neuron j, and Esyn,i,j is reversal potential of
synaptic ion channel.

The membrane time constants are 20 ms, except for SBCs,
ENGCs, and PVs, which have a time constant of 10 ms. All
neurons receive constant bias currents, which follow a normal
distribution, to generate spontaneous firing at a low rate, as seen
in the cortex in a resting state. The normal distributions have a
mean of 10 and standard deviation of 5 for neurons in L1 and
excitatory cells and a mean of 18 and standard deviation of 5
for inhibitory neurons in L2/3–6. The average firing rate of total
neurons is around 4 Hz, as seen in resting state, with a low rate
and irregular firing (Figure 1B).

Overview of Experimental Data Used for Modeling
Each combination of presynaptic and postsynaptic neuron types
has its own connection parameters. Two types of experiments,
laser-scanning photo-stimulation (LSPS) and patch-clamp
recording experiments, were used to provide information for
establishing appropriate connection settings.

In the following sections, we describe the details of connection
settings using the information from the LSPS and patch-clamp
recording experiments.

Pre-processing of Information About LSPS
The LSPS responses of connections from excitatory to excitatory
(E-to-E) cells were reported by Weiler et al. (2008), connections
from inhibitory to excitatory (I-to-E) cells by Kätzel et al. (2011),
and connections from excitatory to inhibitory (E-to-I) cells by
Apicella et al. (2012). These responses are the sums of synaptic
inputs generated by a presynaptic neural population stimulated
by laser spots, in which the signal values reflect the number of
connections, synapse conductance, and density of the stimulated
presynaptic neurons. To remove the contribution of the neural
densities, the LSPS responses were divided by the neural densities
of the presynaptic neurons (Lev and White, 1997). Matrices of
processed LSPS response values were used for setting the relative
magnitude of connection probabilities of the connections.

Details of LSPS Experimental Data
Reports about E-to-E connections and I-to-E connections
provided data pertaining to the spatial extent of connections
within the layer where the presynaptic neurons are located, and
matrices of LSPS responses for all combinations of presynaptic
and postsynaptic layers (Weiler et al., 2008; Kätzel et al., 2011).
The spatial extent and relative connection probability of E-to-E
and I-to-E connections were set in the setting parameters using
the above-mentioned information.

There is no comprehensive information available about the
E-to-I and I-to-I connections for all layers. Assuming that the
axons of presynaptic neurons innervate postsynaptic excitatory
and inhibitory cells in a similar spatial range, the spatial extents
of the E-to-E and I-to-E connections were used for setting
the parameters of E-to-I and I-to-I connections, respectively,
except for the E-to-I connections of layers 5A and 5B for which
information is available.

PVs and SSTs have different parameter settings for E-to-
I connections. Given that the PVs tend to receive excitatory
connections as do neighboring excitatory cells (Xu and Callaway,
2009; Apicella et al., 2012; Avermann et al., 2012; Xue et al.,
2014), information about E-to-E connections can be applied to
the E-to-I connections of PVs in layers 2/3 and 6.

Information about E-to-I connections of PVs within layer
2/3 is set using data from the connections of SSTs within layer
2/3, considering the similarities found in patch-clamp recording
experiments (Avermann et al., 2012; Pala and Petersen, 2015).
The PVs and SSTs in layers 5A and 5B have individual parameter
values for the E-to-I connections based on data from LSPS
experiments (Apicella et al., 2012).

In the case of the I-to-I connections, only specific pairs of
neuron types, such as PVs to PVs and SSTs to PVs (Pfeffer
et al., 2013), have connections. The information about I-to-E
connections was applied to specific I-to-I connections.

The SBCs and ENGCs in layer 1 were connected according to
the spatial information and morphological features reported by
Jiang et al. (2013) and Lee et al. (2015).

Setting of Connection Probability Using Gaussian
Functions
Connection probabilities were set using two-dimensional
Gaussian functions for distance between neurons, where the
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distance is horizontal distance. During the pre-processing of
information from LSPS experiments, information about the
variances of the Gaussian functions were derived by Gaussian
fitting of extracted data from previous reports. The spatial
extent of trans-laminar connections were set to be the same
as those of the intra-laminar connections, except for the
E-to-I connections of PVs and SSTs in layers 5A and 5B, for
which specific information about trans-laminar connections
are available (Apicella et al., 2012). The cutoff distance of the
Gaussian function was 1300 µm from the center of the peak that
corresponds to two standard deviations of the widest Gaussian
function of all connections.

Data from LSPS and patch-clamp recording experiments were
used for setting the center of the peak of the Gaussian functions.
Data from LSPS experiments were used for establishing the
relative levels of the centers of the peaks of different connection
types. Data from patch-clamp recording experiments provided
the ranges of the absolute levels.

The maximum values of the centers of the peaks of
the Gaussian functions for E-to-E, E-to-I, I-to-E, and I-to-I
connections were set to 0.12, 0.25, 0.25, and 0.25, respectively,
based on data from patch-clamp recording experiments, which
provide information from neighboring neuron pairs in the
somatosensory cortex (Lefort et al., 2009; Avermann et al., 2012;
Pala and Petersen, 2015) and the visual cortex (Pfeffer et al., 2013).
According to these reports, the maximum probabilities of E-to-I,
I-to-E, and I-to-I connections (55∼60%) are more than twice as
high as those of E-to-E connections (∼25%). Figure 1D shows
the connection probability functions of E-to-I, I-to-E, and I-to-I
intra-laminar connections.

The connection weights of E-to-E connections follow a log-
normal distribution (Song et al., 2005; Lefort et al., 2009).
The parameter of the exponent of the distribution is −0.72.
E-to-I, I-to-E, and I-to-I had constant values. The connection
weights were 0.42 for connections between excitatory neurons
and PV, 0.19 for excitatory to SST, 2.00 for PV or SST to
excitatory neurons, 1.12 for PV to PV, 0.74 for PV to SST, 1.00
for ENGC to other neurons, and 0.80 for SBC to inhibitory
neurons. The spatial distribution of connection weights was
globally homogeneous. Time changes in synaptic conductance
were described using an alpha function. The time constants of
excitatory and inhibitory synaptic conductance were 2 ms. The
reversal potential of excitatory and inhibitory connections were 0
and -70 mv, respectively.

The total number of cells and connections per 1 mm2 cortical
sheet were 56,291 and 212 million, respectively. Figure 1C shows
spatial extent of in-degree connections of example cells. The
average numbers of connections per cell were 3781. For more
information, see Table 1.

MONET: In-House Spiking Neural
Network Simulator for Tile Partitioning
To test the tile partitioning method for realistic spiking neural
network models on parallel computers, we developed an in-
house neural network simulator, called MONET (Millefeille-
like Organization NEural neTwork simulator). The binary

executable files of the MONET are available at https://github.
com/junigarashi/MONET.

The MONET simulator partitions the layered sheet types of
spiking neural networks into regular square tiles, distributes
the tiles to compute nodes, and performs parallel computing
with asynchronous point-to-point communication using the
MPI library for the communication of spike information.
MONET runs on a distributed computer system consisting of
compute nodes with multicore CPUs. The following sections
describe internal processing in MONET with respect to the
construction of networks, execution of the simulation, and the
connection data structure.

Construction of Neurons and Connections in Neural
Network
Initially, MONET creates a data structure of neurons and sets
parameters for each compute node according to information in
intermediate files (see section “Usage Procedure of MONET”).
Each compute node sets the positions of the neurons in
its assigned tile and shares those positions through MPI
communication only with neighboring compute nodes that
have candidate postsynaptic neurons. Each compute node
makes connections based on the distances between neurons
and the connection-setting parameters, including information
about the connection probability, connection weight, and signal
transmission delay. Information about connections is stored at
each compute node with a tile containing postsynaptic neurons.

Parallel Computing and Communication in Simulation
Millefeuille-like Organization NEural neTwork simulator carries
out parallel computing of simulation of spiking neural networks
using a tile partitioning method and asynchronous point-to-
point communication.

Spike information is communicated among compute nodes
at an interval of a half of the minimum transmission
delay. The way of the communication in MONET is an
modified version of those used in the simulators NEST and
NEURON (Carnevale and Hines, 2006; Gewaltig and Diesmann,
2007). The original communication method transfers spike
information using synchronous collective communication at
an interval of minimum signal transmission delay in the
network and can completely keep right communication of
spike information among compute nodes in time and reduce
communication frequency.

The communication at an interval of a half of the
minimum transmission delay in MONET make possible to
use asynchronous communication, which allows concurrent
execution of the communication of spike information
and the numerical calculation of state variables about
neurons and synapses.

Figure 2 is a diagram of the order of calculation and
communication in a case where there are two MPI processes.
Each process first calculates the state variables of the synapses
and neurons and stores the resulting spike information. The
process then performs asynchronous communications related
to the reception of spike information in the previous interval
and the sending of spike information in the current interval.

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2019 | Volume 13 | Article 71

https://github.com/junigarashi/MONET
https://github.com/junigarashi/MONET
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00071 November 27, 2019 Time: 17:28 # 6

Igarashi et al. Large-Scale Cortical Model Simulation

FIGURE 2 | Concurrent execution of communication and calculation. Diagram
shows order of calculation and communication of two MPI processes. (#1)
MPI Process 0 (Pr0) stores spike information at calculation of state variables of
neurons for 0–0.5 ms. (#2) MPI Pr0 sends it to Process 1 (Pr1). (#3) Pr 1
receives it at the step of 0.5 ms and uses it in calculation of state variables of
synapse at the step of 1–1.5 ms (#4). Therefore, the calculation of synaptic
conductance and neurons in 0.5–1 ms overlaps with communication of spike
time information (SI) between S by Pr0 during 0–0.5 ms and R by Pr-1 over
0.5–1 ms. Yellow boxes denote numerical calculations. Sy and Ne in the
boxes represent the calculations of synapse and neuron, respectively. White
boxes denote communication. R and S represent receive and send,
respectively. Small red boxes represent SI originating in Pr0. The 0.5 ms
interval of calculation and communication is a half of the minimum signal
transmission delay.

The sending of spike information overlaps with numerical
calculation in the next interval. The spike information in
the current interval generates synaptic conductance after the
next interval when half of the minimum signal transmission
delay is used as an interval. Therefore, in the example
case with 1 ms of signal transmission delay in Figure 2,
the spike information generated in 0–0.5 ms reaches the
MPI process with postsynaptic neurons within 0.5–1 ms,
and calculation of the synapse conductance uses the spike
information in 1–1.5 ms.

Connection Data Structure
In realistic modeling of the cortex and cerebellum using
single-compartment leaky integrate-and-fire model, connections
account for most of the calculation, memory access, and memory
consumption in a simulation.

Millefeuille-like Organization NEural neTwork simulator
adopts a hierarchical data structure of connections (Figure 3).
The indices of the array at the top level represent presynaptic
neuron IDs. The structures at the second level contain
information about postsynaptic neurons as six arrays with a
number of elements corresponding to the number of postsynaptic
neurons. The data contents and data sizes of the elements of
the six arrays in the structure are postsynaptic neuron IDs
(four bytes), weights (four bytes), signal transmission delays (two
bytes), synaptic types (two bytes), synaptic plasticity types which
is booked for future development (one byte), and a local identifier
of the synapse (one byte). The total size of the information per
connection is 14 bytes.

When calculating synaptic conductance, the presynaptic
neuron IDs initially point to one structure containing
information about postsynaptic neurons and connections. A loop

FIGURE 3 | Hierarchical connection data structure. Vertical array in the
left-hand side represents an array of presynaptic neuron IDs. The individual
element is a structure containing four arrays of postsynaptic neuron
information, postsynaptic neuron IDs, weights, delays, and synapse types.

FIGURE 4 | Overview of the MONET simulator. The procedures consist of two
phases: pre-processing on a desktop computer and simulation on a
supercomputer.

through the arrays in the structure performs the calculation of
the synaptic conductance of postsynaptic neurons in sequence.

Numerical Calculation
A forward Euler method with calculation step of 0.1 ms was used
for all numerical calculations pertaining to neurons. The matrix
exponential method (Rotter and Diesmann, 1999) was used for
the calculation of the time evolution of synapse conductances.
Xorshift was used (Marsaglia, 2015) as algorithm for pseudo-
random number generation.

Usage Procedure of MONET
When using MONET, users take three steps: (1) prepare user-
defined files in JSON format, (2) make intermediate files fed
to compute nodes using a MONET Python program, and (3)
execute the simulation using MONET C program on computers
with the intermediate files (Figure 4). The following sections
explain how users set up spiking neural network models and their
settings for parallel computing using MONET.

User-Defined Files in JSON Format
Users define two JSON files: “system.json” describing the
parameters used in parallelization and the computational
environment and “region_X.json” describing the settings of a
neural network (Figure 4). In the two JSON files, users describe
the setting information using a hierarchical data structure.

The “system.json” file describes the settings of the simulation:
biological time, calculation step size, the number of MPI
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processes and OpenMP threads, the seed for the pseudo-random
numbers, amount of memory per compute node, and recording
of neural activity (Figure 5A).

The “region_X.json” file has three major sections (Figure 5B):
(1) structure of the neural network, (2) parameters of the model
neurons, and (3) settings of the intra-regional connections.

FIGURE 5 | Hierarchical data structure in two user-defined files.
(A) Region_X.json describes information of neural network models including
parameters of structure of the model, property of neurons, and connections.
(B) “system.json” contains information of settings of simulation, parallel
computing, and recordings.

MONET Python Program and Intermediate Files
At the second step, users generate intermediate files that are fed
to compute nodes by executing a MONET Python program. The
program reads two user-defined JSON files and determines which
tiles will communicate, based on their positions and spatial extent
of communication. The program creates intermediate files for the
number of compute nodes. Each intermediate file provides the
parameters for simulation settings and neural network of one tile
for a compute node.

Execution of Simulation by the MONET C Program
With Intermediate Files
At the third step, users execute a MONET C program to simulate
spiking neural networks on computers with intermediate files
fed to compute nodes. MONET performs simulation by hybrid
parallelization using MPI and OpenMP. One MPI process runs
on one CPU and one OpenMP thread runs on one CPU core. One
tile is assigned to one MPI process (Figure 6). After simulation,
the MONET output result files consisting of neural activity,
positions of neurons, and elapsed times of calculation.

Computational Environment
Software Environment
The C program in MONET was developed with MPI library
functions and OpenMP directives and compiled using Fujitus
C/C++ compiler (fccpx) version 1.2.0. The Python program
in MONET was developed using Python version 2.7.12. The
MONET Python and C program runs in a Linux environment.

Hardware Environment
The MONET C program runs on the K computer at the RIKEN
Center for Computational Science in Kobe, Japan (Miyazaki et al.,
2012). The K computer is a Japanese national supercomputer
which was developed with about 72 million dollar. There are
opportunities for domestic and foreign researchers to use the K
computer if their application is accepted. The K computer has
82,944 compute nodes, each of which has an 8-core SPARC VIII
fx processor operating at 2 GHz and 16 GB of DRAM with 64
GB/s of memory bandwidth. The total theoretical computational
performance is 10.62 PFLOPS, and the total amount of memory is
1.26 PB. The compute nodes are connected by a six-dimensional

FIGURE 6 | Tile partitioning of the layered sheet model and assignment of the
tiles to compute nodes. The layered sheet (left) is partitioned into regular
square tiles (middle) and assigned to compute nodes (right).
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mesh/tours network called Tofu interconnect. Each compute
node has 10 links in the Tofu interconnect. The theoretical
bandwidth of one link is 5 GB/s.

The MONET Python program runs on a workstation, a Dell
precision T7810 which has two eight-core CPUs running at
2.1 GHz (Intel Xeon E5 2620) and 128GB DRAM.

KEY BIOLOGICAL FEATURES OF THE
BRAIN FROM THE WHOLE BRAIN
SIMULATION

To achieve efficient calculation using high-performance
computing, it is necessary to identify the main part of the
code in terms of amount of computation and the bottlenecks
in the calculation. Parallelization and acceleration should be
performed so that computational loads are equally distributed
to the compute nodes of a parallel computer, and efficient
communication is performed among compute nodes. Here, we
outline three major anatomical and physiological features of the
brain from the viewpoint of the parallel computing of whole
brain models and consider how to parallelize the model.

Major Aspect of the Brain Consuming
Computational Resources
The first key feature is about the population of neurons in
the brain. The numbers of neurons and synapses determines
the total amount of calculation and memory consumption in
large-scale spiking neural networks (Izhikevich et al., 2004;
Izhikevich and Edelman, 2008; Ananthanarayanan et al., 2009;
Helias et al., 2012; Kunkel et al., 2014; Jordan et al., 2018;
Yamazaki et al., 2019). In the mammalian brain, the cortex
and cerebellum contain most of the neurons in the brain:
19% in the cortex and 80% in the cerebellum (Herculano-
Houzel, 2009). The cortex and cerebellum are also estimated
to include most of the synapses in the brain, because they
account for most of the brain volume: 82% in the cortex and
10% in the cerebellum (Herculano-Houzel, 2009). Therefore,
the cortex and cerebellum require most of the computation in
spiking neural networks of whole brain models. Although the
other remaining parts of the brain are undoubtedly crucial in
information processing, irrespective of the numbers of neurons
and volume, we focus on the simulation of the cortex and
cerebellum to appreciate the efficiency of parallel computing in
the current study.

Layered Sheet Type Circuitry and Its
Partitioning
The second key feature is the circuit structure of the major brain
regions in the cortex and cerebellum. The cortex and cerebellum
have similar circuit structures, layered two-dimensional sheets,
like a Millefeuille (Eccles et al., 1967; Standring, 2016), although
they are folded in the brain in a complicated manner. The
numbers of layers, neuron types, and neural densities are similar
over the entire cortical sheet (Standring, 2016) and cerebellar
sheets (Eccles et al., 1967).

In parallel computation of a simulation of the layered sheet
types of neural network models, one of the ways to parallelize
the model is by spatially partitioning the sheets into tiles. This
is called the tile partitioning method and is equivalent to cutting
Millefeuille into equal-sized pieces. The tile partitioning of the
neural sheets can place a similar amount of neurons and synapses
per tile if the quantities are homogeneous over the entire sheet.
The equal assignment of neurons and synapses leads to load
balancing in parallel computing.

The other form of parallelization is a round-robin
partitioning, in which neural elements are evenly assigned
to compute nodes in a round-robin manner without maintaining
spatial structure. In principle, round-robin partitioning is
better than spatial partitioning for load balancing, due to
its fine-grained partition. However, the tile partitioning
method can also produce load balancing at a similar level
to that of the round-robin method if the neural sheets are
sufficiently homogeneous.

Local-Dense and Remote-Sparse
Connections and Parallelization
The third key feature is connection patterns, which reflect the
communication performance of spike information among the
compute nodes. In rodent brains, neurons tend to connect
densely with neighboring neurons that are located within around
1 mm in the same brain regions (Weiler et al., 2008; Xu
and Callaway, 2009; Fino and Yuste, 2011; Hooks et al., 2011;
Kätzel et al., 2011; Packer and Yuste, 2011; Apicella et al.,
2012), and neurons tend to connect with remote neurons
in a limited number of brain regions (Hooks et al., 2013;
Oh et al., 2014; Denardo et al., 2015). The probability of
connecting with a neighboring neuron decreases with the
distance between neurons.

Given that the communication of spike information in
the simulation on a distributed parallel computer has a
significant computational cost, a parallelization method for
efficient communication is detailed in the following sections.

RESULTS

Tile Parallelization and Performance
In this section, we investigate the relationship between
parallelization method and communication of spike information
in layered neural sheets. If the properties of the neural sheets
and the hardware specification of the computers meet some
conditions, the tile partitioning method has three advantages
for communication among compute nodes compared with
random assignment of neurons to compute nodes. These
advantages are (1) replacement of slow network communications
with fast memory access, (2) reduction of communication
data by placing postsynaptic neurons into neighboring tiles,
and (3) a constant communication data amount per compute
node using the point-to-point communication function. The
details of the conditions and advantages are described in the
following sections.
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Replacement of Slow Network
Communication With Fast Memory
Access
When one compute node includes a pair of connected
presynaptic and postsynaptic neurons, a DRAM on the compute
node can allow fast transfer of spike information between
the pair of neurons (Figure 7A). When the presynaptic and
postsynaptic neurons are assigned to two distinct compute nodes,
network communication hardware such as a 10 gigabit ether
network performs a slower transfer (Figure 7B). Therefore, the
positioning of presynaptic and postsynaptic neurons in the same
compute node has an advantage for spike data transfer.

When neurons are randomly assigned to compute nodes,
irrespective of the spatial positions of the neurons, the proportion
of connected presynaptic and postsynaptic neurons within one
compute node depends on the total numbers of compute nodes.
For example, when a simulation runs on the maximum number
of 82,944 compute nodes in the K computer, the proportion
becomes 0.0012% (1/the numbers of compute nodes).

In the tile partitioning method, the proportion of connected
presynaptic and postsynaptic neurons within one compute
node depends upon the tile size. A tile tends to contain pairs
of presynaptic and postsynaptic neurons more frequently when
there are dense connections between neighboring neurons,
as described in see section “Local-Dense and Remote-Sparse
Connections and Parallelization”. The proportion of inclusion
of connected presynaptic and postsynaptic neurons within
one tile thus depends upon tile size and the spatial extent
of the connections (Figure 7C). The number of neurons
and synapses increases linearly as the area of the tile size
increases (Figure 7D). Figure 7E shows the proportional
increase with increase in the tile size in the layered cortical
sheet. At 1.69 mm2 (1.3 × 1.3 mm2), one tile had 95,124
neurons and 360 million connections (Figure 7D) and
consumed 5.03 GB for all connections (Figure 7F). In total
connections per compute node, 47.4% (170 million) of the
connections contained both presynaptic and postsynaptic
neurons in the same tile.

These results suggest that modern supercomputers consisting
of compute nodes with more than 10 GB memory can benefit
from the tile-partition method by replacing slow network
communication with fast memory access.

Reduction of Amount of Communication
Data by Placing Postsynaptic Neurons
Together in Neighbor Tiles
When a presynaptic neuron assigned to one compute node
projects to two postsynaptic neurons assigned to another
compute node, the first compute node sends spike information
about the presynaptic neuron to the other compute node
(Figure 8A). When the two postsynaptic neurons are assigned
to two different compute nodes, the first compute node, with
the presynaptic neuron, sends the spike information to the other
two compute nodes (Figure 8B). This means that collecting
postsynaptic neurons with the same incoming signal into a single

FIGURE 7 | Communication of spike information within and across tiles.
(A) Delivery of spike information between neuron1 and neuron2 through

(Continued)
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FIGURE 7 | Continued
DRAM within the same compute node. (B) Delivery of spike information
between neuron1 in compute node 1 and neuron2 in compute node 2
through gigabit ether. (C) Maximum spatial extent of connections in cortical
layered sheet (upper) and different sizes of tiles (lower). The two standard
deviation of the Gaussian function is 1300 µm. (D) The numbers of neurons
(red) and synapses (blue) per tile. (E) Fraction of connections that both
presynaptic and postsynaptic neurons are located within one compute tile in
tile partitioning method (black). Gray line shows the theoretical fraction in the
worst-case scenario that neurons are randomly distributed among 100,000
compute nodes. (F) Amount of memory consumption of connections per tile.
In (D–F), vertical dotted lines denote 1.69 mm2 (1300 µm × 1300 µm).

compute node decreases the total amount of communication
data. Furthermore, the placement of postsynaptic neurons in
the same compute node reduces the number of the compute
nodes with the postsynaptic neurons sharing the input. This
placement results in a decrease in the number of communication
function calls if point-to-point communication is used in
parallel computing.

In a realistic simulation of cortical neurons with thousands
of projections on tens of thousands of compute nodes, the
placement of postsynaptic neurons in the same compute nodes
reduced the requirement for communication.

When neurons are randomly assigned to compute nodes
irrespective of the spatial positions of neurons, the proportion of
postsynaptic neurons sharing inputs from outside tiles depends
upon the total number of compute nodes.

For example, when a simulation runs on the maximum
number of 82,944 compute nodes of the K computer, 0.0012%
(1/the numbers of compute nodes) of the postsynaptic neurons
with the same input are located in the same compute node.
It is therefore rare that more than two postsynaptic neurons
share an input in a model of layered cortical sheets (the
numbers of connections per presynaptic neurons/the numbers
of compute nodes).

In the tile partitioning of neural sheets, postsynaptic cells
receiving the same projection tend to be located in the same tile
because of the preservation of local circuit structure. Figure 8C
shows the average number of postsynaptic cells receiving the
same input from a presynaptic cell outside the tile. Although
the number tends to increase with increases in size, it is not a
simple monotonic increase. Until the maximum spatial extent
of 1300 µm, the numbers increase because any position in
the tile receives connections from all of the neighboring tiles.
When the tile size became larger than the maximum connection
length, the edge part does not receive connections from the
opposite side of the tiles and the density of connections from
neighboring tiles decreases. The number saturates when the tile
size is twice that of the maximum spatial extent of connections.
At a tile size 1.69 mm2 (1.3 × 1.3 mm), the average numbers of
postsynaptic cells receiving the same input is 316.3 (n = 598,474
presynaptic neurons from eight neighboring tiles). This result
means that the amount of communication data can be decreased
by a factor of 316.3 compared with the worst case, in which
postsynaptic neurons do not share the same input due to the
random connections.

FIGURE 8 | Continued
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FIGURE 8 | Communication reduction for shared input by postsynaptic
neurons in the same tile. (A) Delivery of spike information from one
presynaptic neuron in one compute node to two postsynaptic neurons in the
other compute node. (B) Delivery of spike information from one presynaptic
neuron in one compute node to two postsynaptic neurons in the other two
compute nodes. (C) The average numbers of postsynaptic neurons per
presynaptic input from the outside tile. (D) The number of tiles with which one
tile communicates spike information. (i) and (ii) show the spatial extent of
connections (blue) and connected tiles (brown) and not connected tiles
(white). Small tiles in (i) communicate with more tiles than the large tiles in (ii).

Figure 8D shows the number of compute nodes from which
one compute node receives spike information, which decreases
with an increase in the tile size. At a tile size of 1.69 mm2

(1.3 × 1.3 mm), the number of tiles was eight, when the tiles
communicate only with the nearest neighbor tiles.

These results show that the tile size used in the tile partitioning
method on modern supercomputers has advantages due to the
reduction in communication data and numbers of compute
nodes in point-to-point communication.

Constant Communication Data Amount
per Compute Node in Point-to-Point
Communication
If the tile size is sufficiently larger than spatial extent
of connections, only neighboring tiles communicate spike
information each other. Then, the amount of communication
data is constant per tile, irrespective of the total area of the
layered neural sheet.

The average amount of data for sending and receiving was
85 MB per compute node for 1 s of biological time when
one comute node communicated with the neighororing tiles
for 1.69 mm2 of the tile size and the neurons fired at around
4 Hz. The amount of communication data of different tiles did
not differ, except for the tiles on the edge of the neural sheet.
This result suggests that the tile partitioning method with the
point-to-point communication kept constant communication
data amount per compute node which has an advantage for
scaling up the size of layered sheet models.

Scaling Performance
To investigate whether the advantages of the tile partitioning
method described in the previous section actually works in large-
scale simulation, we tested the scaling performance of the layered
cortical sheet model using the MONET on the K computer.

Up to 14 GB of DRAM per compute node is available for users
on the K computer, so we used 1.69 mm2 (1.3 × 1.3 mm) of
tiles in the tile partitioning method. We investigated the weak-
scaling performance of the layered cortical sheet using from 576
to 63,504 compute nodes on the K computer. Biological time
in the simulation was 1 s. Figure 9A shows the result of weak-
scaling performance test. In the weak scaling performance test,
computational performance is tested for fixed model size per
compute node while varying the numbers of compute nodes
and total model size. We assigned 1.69 mm2 (1.3 × 1.3 mm)
of tiles to one compute node. The elapsed time did not change

materially with an increase in the numbers of compute nodes.
The processing times of the neurons, synaptic conductance, and
communication also did not change significantly. The largest
scale, executed by 63,504 compute nodes, achieved a simulation
of 1,073 cm2 of layered cortical sheet with 6.04 billion neurons
and 24.5 trillion connections.

Figure 9B shows the breakdown of elapsed time in simulation
for 1 s of biological time. The percentages of calculation
used by synaptic conductance, calculation of neurons, and
communications were 62.4, 10.4, and 27.1%, respectively.

DISCUSSION

In the current study, we investigated an efficient parallelization
method for spiking neural network models with a single-
compartment neuron model as a step toward the development
of whole brain models.

First, we summarized key physiological features of the whole
brain in terms of the numbers of neurons and synapses, circuit
structure, and connections in the brain. The three key features
are (1) dominance of the cortex and cerebellum in terms of the
numbers of neurons and synapses; (2) a layered sheet structure
in the dominant regions, cortex and cerebellum; and (3) locally
dense and remotely sparse connections in the brain.

Given these three key features, we examined the effectiveness
of tile partitioning method for the layered cortical sheet model in
terms of communication. Assuming the use of computers with
10 GB of memory per compute node, we showed that the tile
partitioning method in the layered cortical sheet replaced about
half of the slow communication with fast memory access. In
addition, the tile partitioning method produced a reduction in
the amount of communication data among tiles by a factor of
316.3 compared with random assignment of cortical neurons
to 100 thousand compute nodes. The tile partitioning method
also reduced the number of tiles involved in communication to
neighboring tiles, which results in the reduction of the number of
communication function calls.

Finally, weak-scaling performance was tested using 576 to
63,504 compute nodes. Use of the maximum number of compute
nodes achieved a simulation of a layered cortical sheet with 6.04
billion neurons and 24.5 trillion connections.

In this study, we investigated the proposed method for layered
cortical sheet using the parameters of the mouse primary motor
cortex. The proposed method may work for simulation of the
other cortical areas due to the similarity of the neural density
and circuit structure over the cortical sheet. In the accompany
paper (Yamaura et al., in review), we reported that the proposed
method showed good scaling performance for simulation of a
layered cerebellar sheet that has larger neural density and lower
numbers of connections per a tile. The proposed method may
be effective for brain regions with repeated structure, such as
striatum in the basal ganglia.

Pre- and post-processes for whole brain simulation become
huge for modeling and analyzing different brain regions, such
as introduction of connectome or comparison with multimodal
experimental dataset. Execution of simulation and pre- and
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FIGURE 9 | Weak-scaling performance test of the layered cortical sheet
model on the K computer. (A) Elapsed times of simulation for 1 s of biological
time. Total elapsed time (black), calculation of neurons (red), synapses (blue),
and communication (yellow). (B) Breakdown of computational time using
63,504 compute nodes. The color code is as in (A).

post processing all at once on supercomputers might be
practical solution.

An amount of computation of synaptic conductance and
communication data of spike information depends on the firing
rates in the network. We tested computational performance of
the proposed method for a resting state of the model with about
4 Hz of a mean firing rate for 1 s. The firing rate does not change
with time substantially as long as initial conditions of neuron
models are set in a biologically plausible range. If more than 1 s of
biological time is used, the wall-clock time increases linearly with
the biological time. On the other hand, firing rates of different
cortical regions become high or low in an active state depending
on whether it is default-mode network or not (Broyd et al., 2009).
The dynamic change can cause load imbalance among tiles in
parallelization. Although global average of the firing rate may
be kept to a similar range as estimated in the report of constant

energy consumption (Kiviniemi et al., 2003), we will need further
investigation of influence of the dynamically changing neural
activity on load balancing of a cortical model.

Typical Hardware Specification and Tile
Partitioning Method
In respect to the reduction of communication in the tile
partitioning method, two hardware features in the current
supercomputers are tightly related to the performance.

The first hardware feature is an amount of memory per
compute node. About 10 GB per compute node can implement
1–2 mm2 of cortical tile, which covers a large part of the spatial
extent of the intra-regional connections of the cortex in the
horizontal direction. The memory amount per compute node
has been increasing over years according to Moore’s law. The
phenomenon may improve the efficiency of communication
by enlarging the achievable cortical tile area in the tile
partitioning method.

The second hardware feature is the number of compute
nodes in supercomputers. The typical number of compute nodes
ranges from several thousand to 100 thousand. For example,
the Summit (Oak Ridge National Laboratory, United States) has
4,608 compute nodes, the Sierra (Lawrence Livermore National
Laboratory, United States) has 4,320, the Sunway TaifuLight
(National Supercomputing Center China) has 40,960, and the
K computer (RIKEN Center for Computational Science, Japan)
has 82,944 nodes. The use of multiple compute nodes leads to
neurons being distributed between nodes, with a concomitant
need for communication of information about spikes between
the compute nodes. It is necessary to take this issue into account
when using current supercomputers.

Difference of the Brain Among Animal
Spices
In the current study, the layered cortical sheet model was
developed on the basis of the physiological parameters of the
mouse primary motor cortex. The tile partitioning method
should work with the other parameters of mammalian cortex,
because the layered sheet structure of the cortex is conserved
among different mammalian brains (Defelipe, 2011). Even if the
total numbers of neurons and volume differ by a factor of 1,000
among mammals, layer structure, layer thickness, neural density,
and number of synapses per neuron falls within the range of
one order of magnitude. For example, the numbers of neurons
and the synapses per unit area of a cortical sheet range within
a factor of 2.5 between mouse and human (Defelipe, 2011). In
particular, primates have larger numbers of synapses per neuron
than rodents, which may require relatively large communication
per cortical sheet area. Efficient communication performance in
the tile partitioning method may work in the simulation of the
mammalian cortex including primate and rodent cortex.

Future Works Toward Whole Brain
Simulation
In the current study, we focused on the simulation of a
homogeneous single brain region with only intra-regional

Frontiers in Neuroinformatics | www.frontiersin.org 12 November 2019 | Volume 13 | Article 71

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00071 November 27, 2019 Time: 17:28 # 13

Igarashi et al. Large-Scale Cortical Model Simulation

connections. To implement a whole brain simulation of multiple,
heterogeneous brain regions, it is necessary to establish an
efficient way to implement inter-regional connections and a
mechanism for load balancing among the different brain regions.

The implementation of inter-regional connections can be
developed by extending intra-regional connections using signal
transmission delay in the current study. Using the tile-partition
method, a specific communication interval can be set for each
pair of tiles. Longer signal transmission delays between tiles allow
tiles to communicate at longer intervals. In terms of memory
consumption, additional memory allocation is required for the
implementation of the inter-regional connections. A similar
level of memory allocation to intra-regional connections may
be needed for the inter-regional connections in the whole
brain simulation.

In terms of load balancing among different brain regions, there
are two possible solutions. One is to assign different compute
nodes to different brain regions according to their computational
load. Another solution is to make a sheet consisting of different
regions of sheets taking into account inter-regional structure such
as the cortico–thalamo–cerebellar loop circuit.

Proposed Method for GPU-Based and
NMC-Based Supercomputers
Graphic processing units (GPUs) and neuromorphic chips
(NMCs) are promising technology for accelerating calculation
of spiking neural networks. Although we demonstrated
effectiveness of the proposed method using a CPU-based
supercomputer in the current study, the proposed method
should be applicable to neural network simulations on GPU-
based and NMC-based supercomputers.

In the application of the proposed method to GPU- based
supercomputers which contain CPUs as a host computer,
calculations of membrane potentials and synaptic inputs can be
offloaded to GPUs without changing communication part by
CPUs. As the proposed method in the current study, calculation
by GPUs and communication by CPUs can be overlapped. The
assignment may increase computational efficiency of GPUs which
are workhorses in GPU-based supercomputers.

For NMC-based supercomputers, the proposed method can be
used for parallelization of spiking neural networks and designing
a communication way among the NMCs with asynchronous
point-to-point communications. However, the degree of the
effectiveness of the proposed method on the NMCs depends
on the numbers of neurons which the NMC chips can
implement per one chip and spatial extents of connections
of target neural networks, as examined in chapters 4.2 and
4.3 (Figures 7, 8). The recent representative NMCs, such as
SpiNNaker (16 thousand neurons per a chip, Furber et al.,
2013), BrainSacleS (200 thousand neurons per a wafer module,
Schemmel et al., 2010) and TrueNorth (one million neurons per
a chip, Merolla et al., 2014) have a potential to benefit from the
proposed method.

The use of proposed method on CPUs and GPUs has
advantages over NMCs in terms of flexibility for changing
configuration of neural networks and adjusting details of the

parallelization way. On the other hand, the NMCs are superior
to CPUs and GPUs in an energy efficient computing of specific
neural networks that fit with the configuration of NMCs. These
should be used properly according to their targets.

Whole Brain Simulation Scale Simulation
on the Next Generation Supercomputers
The current study suggested the possibilities for further scaling
up the layered cortical sheet model. The human cortex has 16
billion neurons in 2500 cm2 of the cortical sheet (Herculano-
Houzel, 2009). The current study performed a simulation
with 6.04 billion neurons in 1073 cm2 of the cortical sheet
corresponding to more than one-third of the human cortex. To
implement a simulation of the full human cortex, a model which
is three times the size of the current model will be needed. As
shown in the companying report, models of layered cerebellar
sheets at a realistic human scale are ready. For simultaneous
simulation of the cerebellar sheet and the three-times-larger
cortical sheet, more than four times the amount of computational
resources will be required.

The next generation of supercomputers in 2020s will have
approximately 100 times greater computational performance
than the K computer. These exascale computers will be able to
implement realistic spiking neural network simulations of the
whole brain. The successor of the K computer has already been
announced as being available around 2021. According to the
announcement, it will have more than 150 thousand compute
nodes, each of which has 48-core CPUs and 32 GB DRAM.

The amount of memory will enable the implementation
of tile areas twice the size of current tiles per compute
node using the tile partitioning method and could improve
communication performance by increasing the fraction of
inclusion of presynaptic and postsynaptic neurons in the same
compute node (Figure 7E).

The performance gain in communication in the next
generation supercomputers (× 2) will be much smaller than those
of computation (× 20) and memory (× 10), which might result
in difficulty because of slower communication. To balance the
performance, the efficient communication of spike information
in the current study may help efficient whole brain simulation
using exascale computers.
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