
METHODS
published: 03 December 2019
doi: 10.3389/fninf.2019.00075

Edited by:

Arjen van Ooyen,
Vrije Universiteit Amsterdam,

Netherlands

Reviewed by:
Amy Bernard,

Allen Institute for Brain Science,
United States

Joanes Grandjean,
Radboud University Nijmegen
Medical Centre, Netherlands

*Correspondence:
Maja A. Puchades

m.a.puchades@medisin.uio.no
Jan G. Bjaalie

j.g.bjaalie@medisin.uio.no

Received: 11 February 2019
Accepted: 15 November 2019
Published: 03 December 2019

Citation:
Yates SC, Groeneboom NE,

Coello C, Lichtenthaler SF, Kuhn P-H,
Demuth H-U, Hartlage-Rübsamen M,

Roßner S, Leergaard T, Kreshuk A,
Puchades MA and Bjaalie JG

(2019) QUINT: Workflow for
Quantification and Spatial Analysis of
Features in Histological Images From

Rodent Brain.
Front. Neuroinform. 13:75.

doi: 10.3389/fninf.2019.00075

QUINT: Workflow for Quantification
and Spatial Analysis of Features in
Histological Images From Rodent
Brain
Sharon C. Yates1, Nicolaas E. Groeneboom1, Christopher Coello1,
Stefan F. Lichtenthaler2,3,4, Peer-Hendrik Kuhn5, Hans-Ulrich Demuth6,
Maike Hartlage-Rübsamen7, Steffen Roßner7, Trygve Leergaard1, Anna Kreshuk8,
Maja A. Puchades1* and Jan G. Bjaalie1*

1Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway, 2German Center for
Neurodegenerative Diseases (DZNE), Munich, Germany, 3Neuroproteomics, School of Medicine, Klinikum rechts der Isar,
and Institute for Advanced Study, Technical University of Munich, Munich, Germany, 4Munich Cluster for Systems Neurology
(SyNergy), Munich, Germany, 5Institute of Pathology, Technical University of Munich, Munich, Germany, 6Department of
Molecular Drug Design and Target Validation Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Leipzig,
Germany, 7Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany, 8European Molecular Biology
Laboratory, Heidelberg, Germany

Transgenic animal models are invaluable research tools for elucidating the pathways and
mechanisms involved in the development of neurodegenerative diseases. Mechanistic
clues can be revealed by applying labelling techniques such as immunohistochemistry
or in situ hybridisation to brain tissue sections. Precision in both assigning anatomical
location to the sections and quantifying labelled features is crucial for output validity, with
a stereological approach or image-based feature extraction typically used. However,
both approaches are restricted by the need to manually delineate anatomical regions.
To circumvent this limitation, we present the QUINT workflow for quantification and
spatial analysis of labelling in series of rodent brain section images based on available
3D reference atlases. The workflow is semi-automated, combining three open source
software that can be operated without scripting knowledge, making it accessible to most
researchers. As an example, a brain region-specific quantification of amyloid plaques
across whole transgenic Tg2576 mouse brain series, immunohistochemically labelled for
three amyloid-related antigens is demonstrated. First, the whole brain image series were
registered to the Allen Mouse Brain Atlas to produce customised atlas maps adapted to
match the cutting plan and proportions of the sections (QuickNII software). Second, the
labelling was segmented from the original images by the Random Forest Algorithm for
supervised classification (ilastik software). Finally, the segmented images and atlas maps
were used to generate plaque quantifications for each region in the reference atlas (Nutil
software). The method yielded comparable results to manual delineations and to the
output of a stereological method. While the use case demonstrates the QUINT workflow
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for quantification of amyloid plaques only, the workflow is suited to all mouse or rat brain
series with labelling that is visually distinct from the background, for example for the
quantification of cells or labelled proteins.

Keywords: rodent brain analysis, Alzheimer’s disease, quantification, workflow, APP—amyloid precursor protein,
beta-amyloid

INTRODUCTION

Transgenic rodent models are useful tools in the study of
neurodegenerative disorders, providing clues to the origins and
mechanisms of the protein aggregates that accumulate and
harm neurons and synapses in these conditions (Dawson et al.,
2018). A common study approach is to section the brains and
apply immunohistochemical or other histological techniques to
reveal features that can be explored by microscopy. Qualitative
assessments of such features can reveal vulnerable brain regions,
while understanding the connectivity of affected regions may
provide insight into disease mechanisms (Thal et al., 2002;
Hurtado et al., 2010). The ability to accurately assign anatomical
location to the data is of crucial importance to the validity of
the conclusions drawn, and is a limiting factor in these studies.
Present resources for assigning anatomical location to whole
brain rodent data are not easily applicable to 2D histological
series, especially if cutting angles deviate even marginally from
the coronal, sagittal or horizontal planes. Even with diligent
sectioning, small deviations of a few degrees are common.
Our recent registration tool, QuickNII, allows users to perform
that correction (Puchades et al., 2019). For users with coding
expertise, other tools for registration of image series to reference
atlases are also available (Kopec et al., 2011; Fürth et al., 2018;
Xiong et al., 2018). Furthermore, combining datasets from
different sources or comparison of data from different animal
models is difficult unless the data are linked to the same atlas
reference system (Simmons and Swanson, 2009; Kim et al., 2017;
Bjerke et al., 2018).

The gold standard for quantification of features in 2D image
series is stereological analysis applied to anatomical regions that
have been manually delineated by an expert in the field (Schmitz
and Hof, 2005). However, in practical terms, this method is
difficult to apply optimally due to a shortage of anatomical
expertise, the significant numbers of sections for analysis, and
limited availability of time. Large scale projects and multi-
centre collaborations would benefit from the automation of
both the extraction and spatial analysis steps. The introduction
of the machine learning concept has opened up possibilities
for semi-automated extraction of features based on supervised
machine learning algorithms (Berg et al., 2019). Furthermore,
the new generation of three-dimensional digital brain atlases
developed for murine brains (Lein et al., 2007; Hawrylycz et al.,
2011; Oh et al., 2014; Papp et al., 2014; Kjonigsen et al., 2015)
serve as spatial frameworks for data sharing and integration
(Boline et al., 2008; Zaslavsky et al., 2014), while also providing
possibilities for automation of spatial analysis.

To this end, we have developed the QUINT workflow based
on image analysis using a series of neuroinformatic tools.

The workflow entails three steps. In the first step, images are
registered to a 3D reference atlas. This step utilises a three-
dimensional brain atlasing tool, QuickNII (Puchades et al.,
2019) that supports arbitrary cutting angles, and is used to
generate atlas maps that are customised specifically to match
each section. In the second step, segmentation of distinct features
such as labelled cells or aggregates is performed with ilastik.
The ilastik software benefits from a supervised machine learning
approach (Berg et al., 2019) allowing a combination of many
parameters for segmentation as is demonstrated in the use cases
here. However, the workflow is compatible with segmentations
produced by other means, such as NIH ImageJ (Schneider
et al., 2012), or with another image analysis tool provided that
it supports segmented image export. As illustrated by Pallast
et al. (2019), different types of features may require different
segmentation tools. In the third step, the Nutil software draws
on the atlas maps and segmentations to quantify segmented
objects in relation to the delineated brain regions contained in
the atlas. Nutil also extracts the xyz position of the segmented
objects for viewing in reference atlas space. As an example, we
present the quantification of human amyloid precursor protein
(hAPP) and β-amyloid deposits across a whole mouse brain
series immunohistochemically labelled For the human APP
N-Terminus (rat monoclonal antibody; Höfling et al., 2016),
Aβ (4G8 mouse monoclonal antibody) and pyro-glutamate
modified Aβ [pE-Aβ; J8 mouse monoclonal antibody (Hartlage-
Rübsamen et al., 2018)]. The results are validated by comparing
the workflow output with ground truth data manually segmented
with the NIH ImageJ tool (Schneider et al., 2012), and by
comparing to stereological counts with the MBF Bioscience
Stereo Investigator Area Fraction Fractionator probe. A second
example is shared to demonstrate the use of the workflow for
quantification of another type of labelling (parvalbumin positive
cells in an Allen Mouse Brain series).

MATERIALS AND METHODS

The workflow for serial brain section image analysis comprises
several parts (Figure 1): namely, image pre-processing (Nutil
using the Transform feature); registration of images to a reference
atlas (QuickNII); segmentation of labelled features (ilastik); and
quantification of features per atlas region (Nutil using the
Quantifier feature).

Use Case Material: Animal,
Immunohistochemical Labelling and Image
Acquisition
An 18-month-old male Tg2576 mouse (Hsiao et al., 1996)
mimicking the amyloid pathology of Alzheimer’s disease
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FIGURE 1 | Workflow for automated quantification and spatial analysis. Diagram showing key steps of the workflow (blue frames). After sectioning and labelling,
brain sections are digitalised. Serial section images are pre-processed, and then registered to a 3-D reference atlas space using the QuickNII tool. The same images
are segmented using the ilastik tool. Exported custom atlas maps and segmented images are then combined in the Nutil tool in order to extract quantification of
objects in atlas brain regions as well as 3D coordinates of the objects.

supplied thematerial for the first use case (plaque quantification).
This study was carried out in accordance with the principles
of the Basel Declaration and recommendations of the ARRIVE
guidelines, National Centre for the Replacement, Refinement
and Reduction of Animals in Research, UK. The protocol used
was approved by the responsible authority Landesdirektion
Sachsen, Germany, license number T28/16. The mouse was
sacrificed by CO2 inhalation and the brain was fixed using
the transcardial perfusion fixation method. First, the brain
was perfused with 30 mL of PBS, followed by 30 mL
of 4% paraformaldehyde (PFA) solution and post-fixed at
4◦C overnight. The brain was cryoprotected by immersion
in 30% sucrose for 3 days and sectioned using a freezing
microtome in 30 µm thick coronal sections. Every 4th section
(60 sections) was used for immunolabelling of hAPP using
the species-specific monoclonal rat antibody 1D1 (dilution
1:2; Höfling et al., 2016). Neighbouring sections with the
same sampling frequency were labelled with the 4G8 antibody
detecting pan-Aβ (BioLegend RRID:AB_2734548, 1:8,000) and
with the J8 antibody detecting pE-Aβ (1:2,000; Hartlage-
Rübsamen et al., 2018). After incubation with biotinylated
secondary antibodies (1:1,000; Dianova; Hamburg, Germany)
in TBS with 2% bovine serum albumin for 60 min at room
temperature, the ABC method was applied, which comprised
incubation with complexed streptavidin–horseradish peroxidase
(1:1,000; Sigma; Deisenhofen, Germany). Incubations were
separated by washing steps (3-times, 5 min). Binding of
peroxidase was visualised by incubation with 4 mg 3,3′-
diaminobenzidine and 2.5 µl H2O2 per 5 ml Tris buffer
(0.05 M; pH 7.6) for 1–2 min. Stained brain sections were
extensively washed and mounted onto microscope slides.
All brain sections were scanned using a Zeiss Axioscan
Z1 slide scanner running Zeiss Zen Software (Carl Zeiss
MicroImaging, Jena, Germany) with a 20× objective. Images
were exported in Tagged Information File Format (TIFF).

The background in the raw images was adjusted within the
Zen software in order to optimise the signal to noise ratio,
with the same parameters for all images, thereby allowing
comparative results. The resolution of the exported Tiff
images was constant within each series (0.284 µm/pixel for
the antibody 1D1 and 0.265 µm/pixel for the antibodies
4G8 and J8).

Use Case: Allen Mouse Brain Series
To demonstrate quantification of another type of labelling, the
QUINT workflow was applied to parvalbumin positive cells in
an image series exported from the Allen Mouse Brain Atlas
Data Portal. The image series encompassed 20 sagittal mouse
brain sections from the left hemisphere labelled for parvalbumin
by in situ hybridisation, available at http://mouse.brain-
map.org/experiment/show/75457579 (© 2004 Allen Institute
for Brain Science. Allen Mouse Brain Atlas. Available from:
mouse.brain-map.org). All the analysis parameters and workflow
output files for this dataset are published on the human brain
project (HBP) Platform (DOI: 10.25493/6DYS-M3W; Yates and
Puchades, 2019), and so are not described here in full.

Image Pre-processing Steps: Nutil
Transform
The Transform feature in the Nutil software enables image
rotation, renaming, resizing and mirroring and was used to
prepare the image series for QuickNII alignment and ilastik
segmentation. Several sets of images were prepared as the
input size requirements for the QuickNII and ilastik software
differ. For QuickNII, the input requirements are described in
Puchades et al. (2019). For ilastik the resizing was performed
in order to enable efficient processing and to comply with the
pixel scale restriction of the features imposed by the ilastik
software. To clarify, the pixel classification algorithm relies on
input from manual user annotations of training images, and
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the features–intensity, edge and/or texture–of the image pixels.
The features at different scales are computed as filters with
pre-smoothing by a Gaussian with a sigma ranging from 0.3 to
10. For each pixel, the algorithm thus considers the values of the
filters in a small sphere around the pixel (the maximal sphere
radius is approximately 35 pixels) in the annotated regions, on
a scale of 0.3 to 10 pixels. This means that the pixel features
must fall within a maximum 10 × 10 pixel window for detection
(for example, a repeating textural pattern). The resize factor
was selected with reference to this maximum pixel scale to
bring the labelled objects within the detection range for all
the features, hence achieving a better segmentation (see the
ilastik manual for more information). In practise, a test run was
performed with ilastik on images of different sizes to find the
optimal resolution for segmentation, with a final resize factor of
0.1 selected for the pE-Aβ series, and a factor of 0.05 for the hAPP
and pan-Aβ series.

TheNutil software is shared through the HBP1 and is available
for download at NITRC2 with an extensive user manual. See
also Github3.

Alignment of Sections to Atlas Space With
QuickNII
The three image series (hAPP, pan-Aβ and pE-Aβ) were aligned
to reference atlas space with theQuickNII atlasing tool (Figure 2;
Puchades et al., 2019). This open access software allows
assignment of spatial location to serial brain section images. The
reference atlases available in the tool are the Waxholm Space Rat
Atlas for rat data (Papp et al., 2014; Kjonigsen et al., 2015) and the
Allen Mouse Brain Atlas for mouse data (© 2004 Allen Institute
for Brain Science. Allen Mouse Brain Atlas. Available from:
http://download.alleninstitute.org/informatics-archive/current-
release/mouse_ccf/annotation/ccf_2015/) (Lein et al., 2007;
Oh et al., 2014).

Within QuickNII, the volumetric brain reference atlases are
used to generate customised atlas maps that match the spatial
orientation and proportions of the experimental sections. In the
software, the location is defined by superimposing the reference
atlas onto the section images in a process termed ‘‘anchoring.’’ In
‘‘anchoring’’ the cutting angle of the reference atlas is adjusted
to match the plane of the sections, with the position of each
section identified prior to a manual adaptation of each atlas
image to match the section images using affine transformations.
Anchoring of a series of, e.g., 100 sections from an animal,
typically takes 2–6 h, depending on the quality of the sections
in the series (distorted sections are more difficult to anchor).

The QuickNII software is available at NITRC4 through
the HBP1.

Image Segmentation With Ilastik
The ilastik software was used to segment the downscaled
section images for immunohistochemically labelled plaques
(60 images per series: hAPP, Aβ and pE-Aβ; Berg et al., 2019;

1www.humanbrainproject.eu
2https://www.nitrc.org/projects/nutil/
3https://github.com/leuat/nutil
4https://www.nitrc.org/projects/quicknii/

version 1.2.2. post2 for Windows, 64-bit). The segmentation
was performed in two steps. First using Pixel Classification
to differentiate the immunoreactivity from the background,
followed by Object Classification to differentiate the specific
immunoreactivity from labelled artefacts (Figure 3). For each
image series, only 10% of the images were used to train
the classifiers, which were then applied to the whole series
in a batch mode, saving considerable time compared to an
individual segmentation approach (segmentation of a whole
image series takes a few hours depending on the size and number
of images).

Ilastik Pixel Classification Workflow
The Pixel Classifiers were trained with the training images
selected for each series (approximately every 6th section
per series). All the available features (texture, edge, and
intensity) and feature scales (0.3–10 pixels) were included in
the classification algorithms. In the training phase, annotations
were placed on the first training image, a few pixels at a time,
with inspection of the predictions with each annotation. To
refine the classifier and increase its applicability to the whole
series, each training image was annotated in turn until the
predictions were of a good standard across all the training
images. The trained classifier was then applied to the series
in the batch mode, with probability maps exported for the
whole series.

Ilastik Object Classification Workflow
The object classifier differentiates objects based on features
such as size and shape, and was applied to the output of
the pixel classification to remove artefacts that could not be
removed by pixel classification alone (for example, the elongated
immunoreactivity around the edges of sections as opposed to
the typically circular plaques). The training approach was the
same as for the pixel classification, with the same subset of
training images used. The probability maps were thresholded at
a probability of 0.4 for all the series, with the object size filters
set to 8–10,00,000 pixels for the hAPP and pE-Aβ series, and
4–10,00,000 pixels for the pan-Aβ series (the pan-Aβ labelled
objects were smaller than the hAPP and pE-Aβ objects). All
the object features in the ilastik software, except the location
features, were included in the classifier (find more information
on this in the ilastik user manual). The trained classifier was
applied to the whole series in the batch mode, with the object
prediction maps exported in PNG format. NIH imageJ was
then used to apply colours to the predictions maps with the
glasbey lookup table, and the coloured versions used as input
for Nutil Quantifier.

Quantification of Labelling in the Different
Brain Regions With Nutil Quantifier
Once the section images were segmented (ilastik) and registered
to the relevant reference atlas (QuickNII), Nutil—a software
application developed in-house—was used to extract quantitative
data about the labelling in each region in the reference atlas
(Quantifier feature).

Nutil is a stand-alone application that allows for object
classification from arbitrary image input files. The code for
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FIGURE 2 | Registration to reference atlas by QuickNII. Following initial preprocessing steps where the sequence and orientation of the serial images is validated
and a configuration file generated, images are imported to QuickNII together with a 3-D reference atlas of the mouse brain. In QuickNII, an atlas overlay image which
is interactively manipulated to generate an image with position, scale, and orientation (rotation and tilt) that best matches the selected experimental images (DV: +13;
ML: −4). QuickNII automatically propagates information about position, scale, and tilt to the entire series. By iterative anchoring of selected key sections, the user
can optimize the automatically propagated parameters. The rotation and position of the overlay atlas image is validated and if needed adjusted by the user. Output
from QuickNII is a series of custom atlas plates matching each anchored experimental image, and an XML file describing a set of vectors (o, u, and v) that define the
position of each image relative to the technical origin of the reference atlas used.

Quantifier uses a standard recursive pixel filling algorithm in
order to scan for and separate individual objects in a 2D
segmented image. This means that for each pixel that is not
classified as a background pixel, the algorithm checks whether
there are neighbouring pixels that are also not part of the
background. If so, Nutil applies the same algorithm to these
neighbours, and repeats the process until all surrounding pixels
are background only. The cluster of collected pixels is considered
to be an object, which is added to a global list of objects
before being assigned a label ID that is matched with the
corresponding reference atlas. This is performed by selecting the
top left pixel from each identified object and using this position
as a lookup in the reference atlas image files. In addition, the
statistical properties of each cluster are calculated and stored
(position, width, height, area, size, et cetera). When the entire
batch process has completed, reports are produced, which are
based on user inputs such as individual colour assignment
for different label IDs, areas to exclude, areas to merge, et
cetera. Finally, a set of report files are generated, in addition to
customised atlas images superimposed with colour-coded (and
labelled) objects.

Nutil is available for download at NITRC with an extensive
user manual5. See also Github6. The Nutil Quantifier feature
is fast to run, taking seconds to minutes on a desktop
computer depending on the size and number of images
for analysis.

5https://www.nitrc.org/projects/nutil/
6https://github.com/leuat/nutil

Validation of the Image Segmentation
In order to validate the segmentations produced with the ilastik
software, their area outputs as determined with Nutil Quantifier
were compared to ground truth measurements obtained by
manual delineation of plaques for five sections (s14, s54,
s94, s134 and s174), and to stereological measurements on
30 sections (s6, s14, s22, s30, s38, s40, s54, s62, s70, s78,
s86, s94, s120, s110, s118, s126, s134, s142, s150, s158, s166,
s174, s182, s190, s198, s206, s214, s222, s230, s238). The
comparisons were performed on section images that were
immunohistochemically labelled for hAPP (1D1 antibody) and
restricted to clearly visible plaques (we excluded neuronal
hAPP labelling). For both the 5 and 30 section subsets, the
sections were regularly spaced and spanned the full volume
of the brain. The subsets represented 8% and 50% of the full
hAPP series, respectively. The section images that were used
to train the classifiers (training images) were not selected for
the validation.

The ground truth areameasurements were obtained for five of
the sections by manual delineation of the hAPP immunoreactive
plaques by an expert in the field, with the NIH ImageJ tool
(Analyse function) on images at 5% of the original size.
Immunolabelled plaques were delineated for individual objects
at the pixel level. For each image, the surface area occupied by
plaques was calculated with reference to the resize factor and the
pixel length in the original image.

Stereological analysis of hAPP immunoreactivity was
performed with the Area Fraction Fractionator probe in theMBF
Stereo Investigator software (version 2017.02.2; MBF Bioscience,
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FIGURE 3 | Segmentation of images with the ilastik software. An image of a
Tg2576 mouse brain section, immunohistochemically labelled for pan-Aβ

(4G8), processed with the pixel and object classification workflows in the
ilastik software (version 1.2.2. post2). Panels (A,C,E,G) show the whole
image, with (B,D,F,H) representing the area identified in the dashed box.
(C,D) show the output of the pixel classification workflow, with images
segmented into five classes based on differences in intensity, edge and
texture (red: specific immunohistochemical labelling, blue: unlabelled tissue,
purple: artefacts, black: non-specific labelling, yellow: background). The pixel
classification workflow is able to differentiate labelling and artefacts such as
marks on the coverslip and debris (see arrows). Panels (E,F) show the output
of the object classification workflow: the probability maps derived from the
pixel classification workflow were thresholded at 0.4 for the channel
representing the labelling, and classified into two classes based on
object-level features such as size and shape (red: β-amyloid plaques, blue:
non-specific labelling). Panels (G,H) show the object classification output with
the blue channel removed to visualize the β-amyloid plaques only. Images
(A,C,E,G) are displayed at the same magnification with the scale bar
representing 1 mm. The scale bar for figures (B,D,F,H) represents 500 µm.

Chicago, IL, USA) with a sampling grid of 300 µm × 300 µm,
a counting frame of 200 µm × 200 µm, and a 20 µm point
spacing. The settings were selected with reference to the literature
(Tucker et al., 2008; Liu et al., 2017; Wagner et al., 2017).
Points within the section contours that overlapped the hAPP
immunoreactive plaques were marked as positive; with all
remaining points marked as negative. hAPP plaque load was

calculated by the software with respect to the magnification. The
30 section subset included the five sections for which ground
truth measurements were available, allowing comparison of
three methods for the five section subset.

Validation of the Atlas Delineations
To validate the atlas delineations derived from the QuickNII
software, we compared the plaque loads for five sections in three
anatomical brain regions delineated by two alternative methods.
The comparisons were performed on section images that were
immunohistochemically labelled for hAPP (1D1 antibody) and
restricted to clearly visible plaques (we excluded neuronal
hAPP labelling). For the first delineation method, five section
images were segmented to extract labelled plaques with the
ilastik method. The segmentations were then visualised on top
of the original images, and the cortex, olfactory region and
hippocampus manually delineated with the NIH ImageJ tool
with guidance from the Franklin and Paxinos mouse brain atlas
version 3 (Franklin and Paxinos, 2008). The Analyse function
in NIH ImageJ was used to quantify hAPP plaques in the
delineated regions for each brain section. Brain region-specific
hAPP load was calculated by dividing the area occupied by
hAPP labelling within the selected brain region by the total
area occupied by the brain region. For the second method,
the same five segmentations were processed with the QUINT
workflow with the delineations derived from the QuickNII
atlas maps. The hAPP loads were extracted for the cortex,
olfactory region and hippocampus for the five sections from the
output reports.

RESULTS

Workflow Description
We present the QUINT workflow for quantification and spatial
analysis of features in large series of labelled mouse or rat brain
sections (Figure 1). The different steps are indicated below:

1. Image pre-processing (change the contrast, resolution, file
type) with the Transform feature in the Nutil software

2. Registration of sections to reference atlas space using the
QuickNII software to generate atlas maps adapted to the
orientation of the images

3. Segmentation of the labelling with the ilastik image analysis
software using two classifiers

4. Data analysis with the Quantifier feature in the Nutil software
(combines the segmentation results with input from the atlas
maps to give a list of individual plaque features, region
level features and whole brain features, enabling quantitative
regional analysis).

The procedures used in all steps (a to d) are detailed in the
‘‘Materials and Methods’’ section. Image pre-processing: (a) is
necessary in order to produce copies of the images that are
suitable for each tool in the workflow. The registration of the
sections; (b) to the Allen Mouse Brain Atlas (© 2004 Allen
Institute for Brain Science. Allen Mouse Brain Atlas,
Available from: http://download.alleninstitute.org/informatics-
archive/current-release/mouse_ccf/annotation/ccf_2015/;
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Lein et al., 2007; Oh et al., 2014) is performed with the QuickNII
tool (Puchades et al., 2019). Briefly, as illustrated in Figure 2,
image series are uploaded to the software and visualised with
reference atlas overlays that have adjustable transparency. A few
sections with highly distinguishable landmarks are selected for
adjusting the dorso-ventral and the medio-lateral angles of the
atlas in order to match the cutting angles of the brain sections.
Once these sections are registered to the atlas, the software
automatically propagates the spatial information to the rest
of the image series. After a rapid overview of the registration
results and eventual minor positional adjustments, atlas maps
corresponding to each image are exported. These atlas maps are
used for the region-based analysis of the labelled features.

The next step (c) consists of segmentation of the labelled
features present in the brain sections (Figures 3A,B). In
the first ilastik step, a subset of the image series is used
to train the classifier with the pixel classification workflow
(Figures 3C,D). The user defines classes based on intensity,
edge and texture and annotates a few example pixels of each
class. The second ilastik step, object classification, is used for the
removal of artefacts (Figures 3E,F). The resulting segmentations
identify the plaques in a colour with a unique RGB colour
code (Figures 3G,H).

In the last step (d), the Quantifier feature in Nutil
enables quantitative regional analysis of labelling based on the
segmentations and corresponding atlas maps. The software is
simple to run, requiring no specialist computing or programming
knowledge. The user specifies the path to the input and output
directories in a simple Microsoft Excel template titled Quantifier
(the input directories should contain the segmentations and
the atlas maps), in addition to entering analysis parameters.
The necessary input parameters are the pixel scale (area
represented by one pixel in the segmentations), and the
minimum and maximum object size cut-offs. The template
is then uploaded to the Nutil software, which drawn on the
information in the template to perform the analysis. The
output files are automatically saved to the specified output
directory and consist of quantitative reports with variables
such as number of objects and surface area of objects
per region. Text files listing the xyz coordinates of each
segmented pixel in reference atlas space are also generated
for viewing with the Meshview atlas viewer (provided via the
MediaWiki link at https://www.nitrc.org/projects/meshview).
Nutil also generates customised atlas images with the segmented
objects superimposed providing an overview of the objects per
atlas region.

Validation of Object Segmentation
As accurate segmentation of the labelled objects is important
for a valid quantitative result, we decided to compare our
results with three different methods. The segmentations
generated with ilastik were compared to manual delineation
of labelled objects by an expert in the field (five sections),
and to measurements obtained with a stereological method
(30 sections). The hAPP labelled series was selected for
the validation. The ilastik segmentations gave hAPP load
estimates that were similar to the stereological estimates,

and that represented the outputs from manual object
delineations for the five sections for which manual object
delineations were available (error of ilastik estimates relative
to manual object delineations: mean −0.06% with a SD of
0.09%; error of stereological estimate relative to manual
object delineations: mean −0.05% with a SD of 0.11%;
see Figure 4A).

For the 30 sections, the mean error of the hAPP loads
from the ilastik method relative to the stereological method was
2.79× 10−3%with a SD of 0.16% (see Figure 4B). To summarise,
this means that for this image series, the ilastik method allows
the user to establish the plaque load (restricted to hAPP labelled
plaques) with 95% confidence to within an error of ±0.32%. As
described in the results, the plaque load variations detected from
section to section and between brain regions were of a much
greater magnitude than this error, indicating that the ilastik
method is suitable for detecting these differences.

Validation of Anatomical Delineations From
QuickNII
In a separate study, to validate the accuracy of the atlas
delineations from QuickNII, we compared the hAPP loads from
the QUINT workflow to loads calculated based on manual
delineations of three brain regions for five sections (cortex,
olfactory region and hippocampus; Figure 5). The QuickNII
delineations gave hAPP loads that were representative of the
loads from the manual delineations for all the sections and
brain regions that were investigated (Figures 5E–G). Overall,
the QUINT workflow slightly underestimated the hAPP loads
relative to the manual method for all the explored brain regions
(deviation of the workflow derived cortical hAPP load from the
manual method: mean of −0.11% with SD of 0.07%; deviation
of workflow derived olfactory hAPP load from manual method:
mean of −0.21% with SD of 0.23%; mean and SD are not
provided for the hippocampus as only two sections contained
this region).

Use Case Analysis
The QUINT workflow was used to analyse and compare three
consecutive series labelled for hAPP (1D1), pan-Aβ (4G8)
and pE-Aβ (J8) in one Tg2576 mouse model for Alzheimer’s
disease. Each series were composed of approximately 60 sections
extending from the olfactory lobes to the cerebrum (the
cerebellum was not included). All three series were registered
to the Allen Mouse Brain Atlas (© 2004 Allen Institute for
Brain Science. Allen Mouse Brain Atlas, Available from:
http://download.alleninstitute.org/informatics-archive/current-
release/mouse_ccf/annotation/ccf_2015/) using QuickNII. The
section images can be viewed with custom atlas overlays adjusted
for angle deviations (Supplementary Data Sheet 1).

Labelled plaques were segmented and quantified using the
QUINT workflow as represented in Figures 6, 7. Plaques
were found mainly in the olfactory regions (1.5–2.5%), the
neocortex (1–1.5%), the hippocampal region (1–1.5%) and
white matter tracts (0.5%; Figure 6G). The plaque burden
was lower in the striatum, thalamic regions and midbrain
(less than 0.5%). All Aβ and APP species co-localised in the
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FIGURE 4 | Comparison of whole section human amyloid precursor protein (hAPP) load outputs from three alternative quantitative methods. For all the methods,
the whole section hAPP load was calculated by dividing the area occupied by hAPP labelling by the total section area. Calculations were restricted to plaques that
were immuno-labelled with the hAPP antibody (1D1). Panel (A) compares hAPP load outputs from three alternative methods for five sections. The methods include
expert manual delineation of hAPP labelled objects (green), stereological estimate with the area fraction fractionator probe (blue), and quantification with NIH ImageJ
based on the ilastik segmentations (orange). Panel (B) compares hAPP load outputs from the stereological method and from the segmentations for thirty whole brain
sections that were regularly spaced and spanned the full volume of the brain.

same regions, with small differences, as seen in Figures 6A–C.
The customised atlas images superimposed with colour-coded
objects are found in the Supplementary Material. The size
of plaques and their distribution in the whole series is
illustrated in Figure 8. The pE-Aβ positive plaques were more
numerous but much smaller in size than plaques labelled for
hAPP or pan-Aβ labelled with 4G8 (Figure 7). As we were
interested to detect subregion expression differences in the
hippocampus, we refined the analysis to smaller brain regions.
As demonstrated in Figure 7, the subiculum showed more hAPP
and pan-Aβ labelling than the entorhinal cortex (EC), the cornu
ammonis (CA) region of the hippocampus and the dentate
gyrus (DG), whereas the subregion with highest pE-Aβ labelling
was the EC.

Our workflow is demonstrated here on brain section images
from one animal only, with analysis restricted to hAPP and Aβ

plaques. However, the QUINT workflow can also be applied
to other types of labelling like cell somas, as demonstrated by
the quantification and spatial analysis of parvalbumin positive

cells from an Allen mouse brain in situ hybridisation experiment
shared through the HBP platform: DOI: 10.25493/6DYS-M3W
(Yates and Puchades, 2019).

DISCUSSION

In this report, we present a new workflow for analysis of labelling
in brain-wide image series. The QUINT workflow builds on
newly developed tools and resources for brain atlasing and
segmentation, and consists of three main steps. In the first step,
QuickNII (Puchades et al., 2019) is used to generate customised
atlas maps corresponding to experimental brain sections for
mice, using the Allen Mouse Brain Atlas (© 2004 Allen Institute
for Brain Science. Allen Mouse Brain Atlas, Available from:
http://download.alleninstitute.org/informatics-archive/current-
release/mouse_ccf/; Lein et al., 2007; Oh et al., 2014), and
for rats using the Waxholm rat brain atlas version 2.0 (Papp
et al., 2014; Kjonigsen et al., 2015). In the second step, the
machine learning-based image analysis tool, ilastik, is used
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FIGURE 5 | Comparison of hAPP load outputs in three anatomical brain
regions defined by two alternative anatomical delineation methods. Brain
region-specific hAPP load was calculated by dividing the area occupied by
hAPP labelling within the selected brain region, by the total area occupied by
the brain region. The calculations were restricted to plaques that were
immuno-labelled with the hAPP antibody (1D1). For the first method, five
brain section images were segmented with ilastik and visualised on top of the
sections to allow manual delineation of brain regions. The cortex, olfactory
region and hippocampus were delineated with NIH ImageJ with guidance
from the Franklin and Paxinos mouse brain atlas version 3 (panels A,C show
the cortex, olfactory region and hippocampus delineated in red, blue and
yellow in section s134 and s174 respectively). The analyse function in NIH
Image J was used to quantify hAPP load in the delineated regions. For the
second method, the five segmentations were processed with the QUINT
workflow with input from the QuickNII derived atlas maps (panels B,D show
examples for s134 and s174 respectively). hAPP loads were extracted for the
cortex, olfactory region and hippocampus from the output reports. Panels
(E–G) compare hAPP loads in the cortex, olfactory regions and hippocampus
respectively for the five sections, with the loads calculated by the two
alternative methods described.

to segment the objects of interest from the immunolabelled
images. In the final step, Nutil is used to combine the customised
atlas maps and segmented images and to extract and quantify
objects in each parcellated brain region for each section and
for the whole image series. The tools allow users to perform
analyses at different levels, and to customise the granularity of
such analyses. Furthermore, Nutil supports the extraction of

spatial coordinates for each segmented object for viewing in the
MeshView brain atlas viewer (AMBA version 3 2015, available
at www.nitrc.org/projects/meshview via the MediaWiki link).
The QUINT workflow is also compatible with segmentations
generated with other image analysis software, so users are not
restricted to using ilastik for segmentation.

As a proof of concept, and to further characterise the amyloid
expression in the Tg2576 Alzheimer mouse model, the workflow
was applied to three series labelled with antibodies against the
hAPP N-terminus (1D1), pan-Aβ (4G8) and pE-Aβ (J8). Our
results show a plaque load of 1–3% depending on the brain
region, and are in accordance with other studies (Schilling et al.,
2008; Liu et al., 2017). When analysing the plaque load in
more detailed brain regions, we were able to detect subregional
differences. This was particularly true of the hippocampal regions
where we detected the highest load for hAPP and pan-Aβ in
the subiculum, compared to pE-Aβ that had more prominent
labelling in the entorhinal cortex. This subregional difference
could be of relevance to the pathophysiology and may be related
to the expression of the enzyme that catalyses pE-Aβ formation
(Hartlage-Rübsamen et al., 2009). Studies indicate that this
protein might influence or even seed the aggregation of other
amyloid peptide species (Schilling et al., 2006; Schlenzig et al.,
2009; Nussbaum et al., 2012), and so it is interesting to observe
its localisation from a mechanistic point of view. Our workflow
allows comparison of the expression of different proteins across
brain regions for any region defined in the Allen Mouse Brain
Atlas, potentially highlighting associations that would otherwise
remain undetected.

We conducted a validation study of the workflow in two parts,
with the first exploring how well the outputs from the ilastik
segmentations corresponded to outputs from two alternative
quantitative methods. The alternative methods included manual
delineation of labelled objects, which was performed on five
sections that were regularly spaced thoughout the whole brain,
and a stereological method that was applied to thirty sections
(half of the full dataset).

For all the sections, the segmentations gave plaque load
estimates that were similar to the outputs from the other two
methods, with the ilastik method establishing the plaque load
with 95% confidence to within an error of ±0.32% of the
stereological output. In other words, the ilastik method was
as good at detecting the absolute plaque load per section as
the stereological method in this mouse. The absolute error rate
could be reduced further by introducing a manual adjustment
step to remove false-positive labelling from the segmentations.
However, even without this manual adjustment, the method
is sensitive enough to detect the significant differences in
plaque expression that are seen between different sections.
A known challenge for the stereological evaluation was the
sparse distribution of the plaques throughout the brain, and
the concentration of the plaques in the frontal regions, which
could at least partially account for the discrepancy between the
stereological outputs and the outputs from the manual object
delineations. As suggested by Boyce and Gundersen (Boyce
and Gundersen, 2018), the classic fractionator approaches that
rely on systematic random sampling are highly inefficient and
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FIGURE 6 | Whole brain comparative analysis of three series labelled for hAPP, pE-Aβ and pan-Aβ in a Tg 2576 Mouse. Examples of Nutil image output
(segmentations superimposed on the atlas maps) for the hAPP (A,D), pan-Aβ (B,E) and pE-Aβ series (C,F). The segmented object colours represent their
anatomical location: isocortex (red); hippocampus (yellow); white matter tracts (pink); olfactory regions (blue); caudate putamen (CPu; black). Panel (G) shows the
comparative quantification results for the whole brain for the three series (the blue, red and green bars represent hAPP, pan-Aβ and pE-Aβ labelling respectively). The
abbreviations in the graph represent the following brain regions: isocortex (Cx); white matter tracts (Wm); hippocampal region (HC); olfactory regions (Olf);
hypothalamus (Hyp); CPu; midbrain, hind brain and medulla (MHM); thalamus (Thal). Images (A–C) are displayed at the same magnification with the scale bar
representing 1 mm. The scale bar for figures (D–F) represents 500 µm. The asterisk in panel (G) indicates the region represented in Figure 7.

impractical for sparse labelling. However, by increasing the
sampling frequency in our stereological analysis, we obtained
results very close to the manual delineation of objects.

As demonstrated there are clear advantages to a segmentation
based workflow. However, segmentation also introduces some
limiting factors. One limitation is that it imposes restrictions

on the resolution of the images that can be used as input. In
the examples shown here, we segment relatively large objects
(plaques) and therefore had the option to downscale the raw
images to speed up the analysis, while still achieving good
quantification of labelling (ilastik has an upper image size limit).
However, when segmenting smaller protein aggregates, such as
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FIGURE 7 | Comparative analysis of hAPP, pE-Aβ and pan-Aβ labelling in the hippocampus of a Tg 2576 mouse. (A) The pie charts show the percentage of the
total labelling of hAPP (blue chart), pan-Aβ (red chart) and pE-Aβ (green chart) in the hippocampus expressed in the subiculum (Sub), dentate gyrus (DG), entorhinal
cortex (EC), cornu ammonis (CA) and fasciola cinereum (FC; B,C). The expression differences are visualised for the subiculum and the EC with the MeshView atlas
viewer (the regions are shown in pale green with the Nutil output from the three series covisualised, with objects labelled for hAPP, pan-Aβ and pE-Aβ in blue, red and
dark green respectively). Both the pie charts and the brain images reveal spatial expression differences for the three markers in the hippocampus.

nuclear Huntingtin (not shown), downsizing is not an option.
In this case, the images would first have to be split into high
resolution tiles, in order to perform the segmentation, and
then retiled prior to analysis. Furthermore, as explained in the
methods part, the size of the object (number of pixels) has an
impact on the segmentation quality as there are restrictions on
the pixel scales of the features that can be included in the ilastik
algorithm (scale up to 10 pixels for intensity, edge and texture in
the ilastik version used here). A test run with some representative
images of different sizes is therefore recommended to determine
the optimal image resolution for segmentation. Alternatively,
another software or analysis approach could be used to
generate the segmentations. The workflow is compatible with
segmentations from other image analysis software as long as they
comply with the Nutil input requirement (segmentations must
be 24-bit colour images in PNG format). Users are therefore not
restricted to ilastik for segmentation.

In the second part of the validation study, we tested the
accuracy of region-based quantification by comparing the plaque
load outputs from the QUINT workflow to loads determined by
atlas delineations that were manually applied for three regions
(cortex, olfactory region and hippocampus) on five sections. We
demonstrate that the QUINT workflow is able to detect the

regional expression differences seen at this level of granularity
for this image series. In this particular case, we found that the
workflow slightly underestimated the real plaque load. Closer
inspection of the QuickNII atlas maps for the selected sections
showed that the anatomical location of a minority of the
plaques were incorrectly assigned. For example, some of the
hippocampal plaques were incorrectly assigned to the corpus
callosum. Indeed, the accuracy of the workflow for region-based
quantification is entirely dependent on the accuracy of overlap
between the experimental section and the corresponding atlas
map. Currently, we have to adapt the image registration of the
QuickNII tool from a global fit (whole slide) to a more local
fit when we want to analyse specific regions of the brain more
precisely (this is particularly relevant for the analysis of smaller
regions). However, this limitation would be circumvented if
QuickNII supported non-linear registration of the image sections
to the atlas, and this is planned for implementation in a
future release.

One of the main advantages of the QUINT workflow for
quantification is that it uses a reference atlas to delineate the
regions, allowing studies on brain regions that are not usually
explored. As most stereological studies require the experimenter
to manually delineate the region of analysis, some regions with
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FIGURE 8 | Size distribution of objects labelled for hAPP (A), pan-Aβ (B)
and pE-Aβ (C) in a whole T2576 mouse brain series. Object size in µm2 is
represented on the x-axis on a common logarithmic scale with frequency on
the y-axis. To remove false positive objects, minimum object size cut-offs of
258 µm2, 112 µm2 and 56 µm2 were applied to the hAPP (A), pan-Aβ (B)
and pE-Aβ (C) series, respectively.

very few visible landmarks (i.e., thalamus or olfactory bulb) are
typically not included in these studies. More importantly, as
rodent reference atlas delineations are improved and extended,
scientists will be able to conduct even more targeted studies
enabling detailed mapping of subregional expression differences.
By registering many datasets to the same reference atlas, the
data are made more comparable and interoperable (Bjerke
et al., 2018), increasing the likelihood for reuse. Importantly,
our method relies on histological sections, without a need for
block-face images.

The whole workflow is rapid, user-friendly and does not
necessitate coding aptitudes as is often the case for similar
image analysis software (Vandenberghe et al., 2016; Fürth

et al., 2018; Xiong et al., 2018). The optimal dataset for the
workflow would include images of undistorted whole brain
tissue sections spanning the full volume and with clearly
distinguishable features. We do not recommend the workflow
for sections with major tissue distortions as no correction
in QuickNII can compensate for this. Sections representing
only one hemisphere will also lead to higher uncertainty, as
it is not possible to determine the mediolateral cutting angle
without assessing the appearance of landmarks in both the
right and left hemisphere. This is also true for incomplete
sections in which major parts of the brain are missing. There
are, however, other types of limitations that the workflow can
overcome. For example, non-specific labelling can be filtered
out with the Object Classification workflow, and sections with
tissue distortions may benefit from a local anchoring approach.
Introducing corrections for limitations of these kinds may,
however, increase the processing time or marginally increase the
error rate.

The workflow is intended to enable more efficient and
comprehensive analysis than is currently possible with traditional
tools, but does not compensate for a lack of anatomical or
biological expertise on the part of the researcher. Both the output
of the segmentation and registration steps should be validated
by visual inspection prior to quantification, and interpretations
must be made in light of limitations. A complete analysis of a set
of images such as those analysed here (approximately 60 images
of sections of average quality) takes less than 24 h. The atlas
registration can be done in 2–3 h, with the segmentation taking
from 1 to 2 h depending on the image size, and the analysis
with Nutil being very quick (less than 30 min). In conclusion, we
believe that this workflow will enable large scale studies and the
integration of results frommany studies in different laboratories.
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