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Purpose: Susceptibility distortions impact diffusion MRI data analysis and is typically

corrected during preprocessing. Correction strategies involve three classes of methods:

registration to a structural image, the use of a fieldmap, or the use of images acquired

with opposing phase encoding directions. It has been demonstrated that phase encoding

based methods outperform the other two classes, but unfortunately, the choice of which

phase encoding based method to use is still an open question due to the absence of

any systematic comparisons.

Methods: In this paper we quantitatively evaluated six popular phase encoding based

methods for correcting susceptibility distortions in diffusion MRI data. We employed a

framework that allows for the simulation of realistic diffusion MRI data with susceptibility

distortions. We evaluated the ability for methods to correct distortions by comparing the

corrected data with the ground truth. Four diffusion tensor metrics (FA, MD, eigenvalues

and eigenvectors) were calculated from the corrected data and compared with the

ground truth. We also validated two popular indirect metrics using both simulated data

and real data. The two indirect metrics are the difference between the corrected LR and

AP data, and the FA standard deviation over the corrected LR, RL, AP, and PA data.

Results: We found that DR-BUDDI and TOPUP offered the most accurate and robust

correction compared to the other four methods using both direct and indirect evaluation

metrics. EPIC and HySCO performed well in correcting b0 images but produced poor

corrections for diffusion weighted volumes, and also they produced large errors for the

four diffusion tensor metrics. We also demonstrate that the indirect metric (the difference

between corrected LR and AP data) gives a different ordering of correction quality than

the direct metric.

Conclusion: We suggest researchers to use DR-BUDDI or TOPUP for susceptibility

distortion correction. The two indirect metrics (the difference between corrected LR and

AP data, and the FA standard deviation) should be interpreted together as a measure of

distortion correction quality. The performance ranking of the various tools inferred from

direct and indirect metrics differs slightly. However, across all tools, the results of direct

and indirect metrics are highly correlated indicating that the analysis of indirect metrics

may provide a good proxy of the performance of a correction tool if assessment using

direct metrics is not feasible.

Keywords: susceptibility distortion, diffusion MRI, opposing phase encoding, diffusion tensor, diffusion MRI

simulation
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1. INTRODUCTION

Analysis of diffusion MRI data is confounded by the presence
of susceptibility distortions, caused by an off-resonance field
induced by differences in magnetic susceptibility at the air-
tissue interface. There are a number of techniques available for
correcting susceptibility distortions. Broadly, these techniques
can be divided into three types: registration based (RB) methods,
fieldmap based (FB) methods and phase encoding based (PB)
methods. The first approach involves registration of the distorted
image to a structural image without distortions. The second
approach involves estimating a map of the B0 inhomogeneity,
and using this along with information about the diffusion
acquisition protocol to correct for the distortions. The third
approach is based on estimating the underlying distortions
using additional data acquired with a different phase encoding
direction. For example, it is common to collect LR (left right)
and RL (right left) images, or AP (anterior posterior) and PA
(posterior anterior) images. Phase encoding based techniques
have been demonstrated to outperform the other two approaches
(Esteban et al., 2014; Graham et al., 2017), at the cost of a longer
scan time.

There are many software packages providing phase
encoding based tools for correcting susceptibility distortions,
e.g., animaDistortionCorrection (aDC) (Voss et al., 2006),
animaBMDistortionCorrection (aBMDC) (Hedouin et al., 2017),
DR-BUDDI (Irfanoglu et al., 2015), EPIC (Holland et al., 2010),
HySCO (Ruthotto et al., 2013), and TOPUP (Andersson et al.,
2003), summarized in Table 1. To date, there is no systematic
comparison of existing phase encoding based methods for
susceptibility distortion correction. See Table 2 for an overview
of previous comparisons of different distortion correction tools.

The lack of ground truth means that evaluations are typically
indirect or qualitative (Jezzard and Balaban, 1995; Wu et al.,
2008; Bhushan et al., 2012; Ruthotto et al., 2013; Fritz et al., 2014;
Irfanoglu et al., 2015, 2018; Taylor et al., 2016; Hedouin et al.,
2017; Wang et al., 2017). Only a few investigations have been
carried out with the presence of a ground truth for evaluation
of susceptibility distortion correction (Andersson et al., 2003;
Esteban et al., 2014; Graham et al., 2017). Hedouin et al. (2017)
compared aDC, aBMDC, and TOPUP using phantom data and
human data. For the phantom data, both the aBMDC and
TOPUP corrected images appear visually similar for correcting

TABLE 1 | Phase encoding based susceptibility distortion correction tools evaluated in this paper.

Tool Software

package

Webpage References

animaDistortionCorrection ANIMA https://github.com/Inria-Visages/Anima-Public/wiki/Registration-tools#epi-distortion-correction Voss et al., 2006

animaBMDistortion

Correction

ANIMA https://github.com/Inria-Visages/Anima-Public/wiki/Registration-tools#epi-distortion-correction Hedouin et al., 2017

DR-BUDDI TORTOISE https://tortoise.nibib.nih.gov/tortoise/v313/10-step-31-after-diffprepdr-buddi Irfanoglu et al., 2015

EPIC https://github.com/dominicholland/EPIC Holland et al., 2010

HySCO SPM https://bitbucket.org/siawoosh/acid-artifact-correction-in-diffusion-mri/wiki/ACIDSC_wiki_hysco Ruthotto et al., 2013

TOPUP FSL https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup/TopupUsersGuide Andersson et al., 2003

the distortion, while aDC gives visually poorer results. aBMDC
outperformed aDC and TOPUP by obtaining smaller landmark
position errors. For human data, images corrected using aDC
contain a mismatch around the lateral ventricles compared
with respect to a structural (T1-weighted) image. aBMDC and
TOPUP both obtain a corrected image very close to the structural
T1-weighted image. aBMDC and TOPUP show a very high
similarity between the two corrected images CAP+PA and CLR+RL,
outperforming aDC. Irfanoglu et al. (2015) compared EPIC, DR-
BUDDI, and TOPUP using human data. DR-BUDDI produced
sharper images than EPIC and TOPUP, showing clearly visible
tissue interfaces. Areas such as the inferior temporal lobes and
the olfactory bulbs were more accurately reconstructed by DR-
BUDDI than EPIC and TOPUP. DR-BUDDI resulted in the
lowest variability between the two corrected images CAP+PA

and CLR+RL, followed by TOPUP and then EPIC. Overall, DR-
BUDDI corrected images showed a higher correlation with the
undistorted T2-weighted image than did EPIC and TOPUP.

In this work, we undertake a comparison of six phase encoding
based methods for susceptibility distortion correction using both
simulated diffusion data and real diffusion data, see Table 2 for
differences between our study and previous comparisons. A brief
summary of the six methods is as follows.

• aDC: The aDC method estimates the displacement field based
on the image cumulative distribution function along each
line in the PE direction. This method is rather sensitive to
noise and it realigns every line independently, so in order to
reduce the effect of noise and increase the coherence between
the corrected lines, a 3D Gaussian smoothing is applied on
the estimated displacement field, which leads to a trade-off
between regularity and precision.

• aBMDC: The aBMDC method adopts the symmetric
diffeomorphic image registration idea from Avants et al.
(2008) to make the transformed LR (or AP) and RL (or PA)
images as similar as possible. The transformation field is
obtained using a block-matching algorithm (Ourselin et al.,
2000). The squared correlation coefficient is used as the
similarity measure between blocks.

• DR-BUDDI: The DR-BUDDI method also adopts the
symmetric diffeomorphic image registration idea from Avants
et al. (2008). The first part of the cost function is designed
to maximize the similarity between the structural image and
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TABLE 2 | A list of susceptibility distortion correction evaluation papers.

Method

class

Ground truth

availability

Software Dataset Conclusion References

RB, FB No RB: In-house C++ code using ITK

FB: FSL function PRELUDE and FUGUE

5 human subjects RB showed an overall better performance than FB

RB and FB showed different performance in

different brain regions

Wu et al., 2008

FB, PB No FB: FSL function PRELUDE and FUGUE

PB: EPIC

Human subjects PB provided superior accuracy than FB Holland et al., 2010

FB, PB No FB: SPM fieldmap toolbox

PB: SPM function HySCO

1 human subject FB gave a better performance than RB Ruthotto et al., 2013

RB, FB, PB Yes RB: ANTs

FB: In-house code

PB: FSL function TOPUP

A simulated

phantom dataset

PB is the most accurate method Esteban et al., 2014

FB, PB No FB: SPM fieldmap toolbox

PB: FSL function TOPUP and SPM function HySCO

4 human subjects PB outperformed FB

TOPUP outperformed HySCO

Fritz et al., 2014

PB No TORTOISE function DR-BUDDI

EPIC

FSL function TOPUP

12 human subjects

1 mouse dataset

DR-BUDDI performed the best Irfanoglu et al., 2015

RB, FB, PB Yes RB: NiftyReg function reg_f3d

FB: FSL function PRELUDE and FUGUE

PB: FSL function TOPUP

A simulated dataset

10 human subjects

FB and PB outperformed RB

FB was sensitive to partial volume with air

Graham et al., 2017

PB No ANIMA function animaDistortionCorrection

ANIMA function animaBMDistortionCorrection

FSL function TOPUP

A phantom dataset

5 human subjects

animaBMDistortionCorrection performed the best Hedouin et al., 2017

RB, FB No RB: ANTs function SyN

FB: FSL function FUGUE

71 human subjects RB resulted in higher reliability Wang et al., 2017

PB Yes ANIMA function animaDistortionCorrection

ANIMA function animaBMDistortionCorrection

TORTOISE function DR-BUDDI

EPIC

SPM function HySCO

FSL function TOPUP

5 simulated datasets

40 human subjects

DR-BUDDI and TOPUP performed better

than the other four methods in several cases.

This paper

RB, registration based methods; FB, fieldmap based methods; PB, phase encoding based methods.
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the transformed LR/RL (or AP/PA) images. The second part
of the cost function is designed to maximize the similarity
between the structural image and the geometric average of
the transformed LR and RL images. The transformation
is constrained along the PE direction. Two co-dependent
transformations [one for mapping LR to RL (or AP to PA), the
other for mapping RL to LR (or PA to AP)] are used to account
for differences in the inhomogeneity between LR (or AP) and
RL (or PA) acquisitions. Unlike other methods, DR-BUDDI
estimates the transformation not only for b0 images but based
on a weighted sum over different diffusion weighted images,
in order to preserve tract structures.

• EPIC: The EPIC method estimates the displacement field
by minimizing the sum of squared differences between the
transformed LR (or AP) and RL (or PA) images. Two
regularization terms are used to regularize the smoothness
and amplitude of the displacement. The undistorted image can
then be restored using the estimated displacement field.

• HySCO: The HySCO method adopts the physical distortion
model from Chang and Fitzpatrick (1992) and minimizes
a distance function to estimate the inhomogeneity, such
that the transformed LR (or AP) and RL (or PA) images
become as similar as possible. Two regularization terms are
used to ensure a differentiable inhomogeneity and positive
intensity modulations.

• TOPUP: The TOPUPmethodmodels the displacement field as
a linear combination of basis warps consisting of a truncated
3D cosine transform. The weights of the basis warps are
estimated using an iterative procedure by minimizing the sum
of squared differences between the transformed LR (or AP)
and RL (or PA) images. Two options are available for obtaining
the distortion free image, they are based on least-squares
and Jacobian modulation. The resolution of the displacement
field is limited by the highest frequency component of the
cosine transform.

We used the POSSUM (Drobnjak et al., 2006, 2010) based
diffusion MRI simulator (Graham et al., 2016, 2017), in order
to produce realistic diffusion data with susceptibility distortions
typically seen in real data. Simulated data can provide ground
truth that enables direct and quantitative evaluation. Our analysis
directly measures the ability to correctly recover distortion-free
data by comparing the corrected b0 image with its ground truth.
We also investigate the suitability of two commonly used indirect
metrics, i.e., the difference of the corrected data from the LRRL
and APPA pairs (Ruthotto et al., 2013; Graham et al., 2017), and
the FA standard deviation over the corrected LR, RL, AP, and PA
data (Wu et al., 2008; Irfanoglu et al., 2015). We hope that this
work will enable researchers to make more carefully informed
choices when designing their processing pipelines.

2. DATA

2.1. Simulated Data
The diffusion data was simulated with 11 volumes of b =

700 s/mm2, 12 volumes of b = 2, 000 s/mm2 and 1 volume

TABLE 3 | A list of MR parameters (relaxation times T1, T2∗, spin density, and

chemical shift value) used in our simulations within POSSUM.

T1 (ms) T2∗ (ms) Spin density Chemical shift T2 (ms)

GM 1,331 51 0.86 0 75

WM 832 44 0.77 0 70

CSF 3,700 500 1 0 500

of b = 0. The input to the POSSUM diffusion MRI simulator
is a collection of three 3D anatomical volumes: gray matter,
white matter and cerebro-spinal fluid (CSF). The voxel values
in these segmentations reflect the proportion of tissue present
in each voxel, in the range [0,1]. The input was generated
from the T1-weighted structural image from HCP using the
FSL function FAST (Zhang et al., 2001). The representation of
diffusion weighting was achieved by a spherical harmonic fit of
order n = 8 to the b = 1, 000 s/mm2 shell of the diffusion data,
using theDipy (Garyfallidis et al., 2014) module reconst.shm. The
MR parameters used are listed in Table 3. We used a matrix size
of 72 × 86, 55 slices and a voxel size of 2.5 mm isotropic. The
TE was 109 ms, the TR was 9.15 s and the flip-angle was 90◦.
The PE bandwidth per pixel was 17.1 Hz for LR and RL data,
and 14.3 Hz for AP and PA data. The fieldmap was generated
from one phase difference volume and two magnitude volumes
(one for each echo time) from HCP using the FSL function
fsl_prepare_fieldmap (Jenkinson, 2003). To generate a tight brain
extration for fsl_prepare_fieldmap, the brain mask created by the
FSL function BET (Smith, 2002) was further eroded using a 5
mm box kernel. The generated fieldmap was linearly registered to
the T1-weighted structural image using the FSL function FLIRT
(Jenkinson and Smith, 2001; Jenkinson et al., 2002). Diffusion
data was simulated with four PE directions, i.e., left-right (LR),
right-left (RL), anterior-posterior (AP) and posterior-anterior
(PA). No other distortions (e.g., eddy-currents and head motion)
were included in the simulations. We also simulated a ground
truth set, acquired with the same acquisition parameters but
no input susceptibility fieldmap. We simulated diffusion data
for five subjects (100206, 100307, 100408, 100610, 101006) from
the Human Connectome Project (HCP)1 (Glasser et al., 2013;
Van Essen et al., 2013).

2.2. Real Data
We used 40 subjects from the developing HCP project (Hughes
et al., 2017; Bastiani et al., 2019). It provides diffusion data
acquired with four PE directions: AP, PA, LR and RL, enabling
evaluation using the indirect metric (i.e., comparing APPA
corrected to LRRL corrected). The data was acquired on a 3T

1Data collection and sharing for this project was provided by the Human
Connectome Project (U01-MH93765) (HCP; Principal Investigators: Bruce Rosen,
M.D., Ph.D., Arthur W. Toga, Ph.D., Van J.Weeden, MD). HCP funding was
provided by the National Institute of Dental and Craniofacial Research (NIDCR),
the National Institute of Mental Health (NIMH), and the National Institute of
Neurological Disorders and Stroke (NINDS). HCP data are disseminated by the
Laboratory of Neuro Imaging at the University of Southern California.
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Philips Achieva scanner and consists of 4 shells: 20 volumes of
b = 0, 64 volumes of b = 400 s/mm2, 88 volumes of b =

1, 000 s/mm2 and 128 volumes of b = 2, 600 s/mm2. The data
was acquired using TR = 3,800 ms and TE = 90 ms. The matrix
size is 128×128, the number of slices is 64 and the acquired voxel
size is 1.17× 1.17× 1.5 mm.

3. METHODS

For the simulated data, we used the FSL function BET (Smith,
2002) to create the brain mask from the distortion-free b0 image.
Diffusion tensor fitting and FA calculation were performed using
the FSL function dtifit. For simulated data, we evaluated the

FIGURE 1 | GT: simulated diffusion data (without distortions) for HCP subject 100206. Fieldmap: the real fieldmap used to simulate the distortions. LR: simulated

diffusion data with LR distortion. RL: simulated diffusion data with RL distortion. AP: simulated diffusion data with AP distortion. PA: simulated diffusion data with

PA distortion.

FIGURE 2 | Three levels of susceptibility distortion were simulated. 1 field is the original fieldmap. 1/2 field is the original fieldmap divided by 2. 1/4 field is the original

fieldmap divided by 4.
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ability of each method to recover the correct intensity at each
voxel, by computing error maps between the distortion corrected
data and ground truth. We also investigated two indirect metrics.
One is the difference of the corrected data from the LRRL and
APPA pairs (Ruthotto et al., 2013; Graham et al., 2017), and the
other is the FA standard deviation over the corrected LR, RL, AP
and PA data (Wu et al., 2008; Irfanoglu et al., 2015). Comparing
the uncertainty of data from different preprocessing pipelines is a
way to determine if one pipeline is better than the other (Sjölund
et al., 2018; Gu et al., 2019). For the real data, we used the brain
mask provided with the dataset. We corrected for head motion
between LR, RL, AP and PA scans by registering all volumes to the
first volume using the FSL function FLIRT (Jenkinson and Smith,
2001; Jenkinson et al., 2002). For real data, we used indirect
evaluation. We compared the corrected data from the LRRL pair
with the result from the APPA pair, since ideally the corrected
results from the two pairs should be the same.

For each susceptibility distortion correction tool we used
default settings and steps provided by the software’s basic help

documentation unless otherwise stated. For DR-BUDDI, we used
the command DR_BUDDI_withoutGUI because it is faster than
DR_BUDDI. By default, the first step in DIFFPREP performs
Gibbs ringing correction, denoising, head motion correction
and eddy-current distortion correction, prior to the second step
susceptibility distortion correction by DR-BUDDI. However, the
simulated data in this paper have only susceptibility distortions,
corrections by DIFFPREP are therefore not necessary and can
even be counterproductive. Additionally, the use of a structural
image in DR-BUDDI will introduce deviation from the ground
truth due to the registration between diffusion and structural
images. Therefore, we ran DR-BUDDI for the simulated data
without the corrections fromDIFFPREP and without a structural
image. For the real data, we ran DR-BUDDI with the default
setting together with DIFFPREP. There is no method referred
to in any of the EPIC documentation for choosing an alternate
phase direction than the y-direction (or the LRRL direction with
regards to this study). We manually rotated the LR and RL data
90 degrees in the x − y plane before feeding them to EPIC.

FIGURE 3 | Corrected b0 volumes for simulated HCP Subject 100206 using the six methods. Error maps were obtained by calculating the difference compared to the

ground truth. Correction was carried out for LRRL and APPA pairs, respectively.
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FIGURE 4 | b0 error maps for simulated HCP Subject 100206 using the six methods. Three levels of susceptibility distortion were simulated. Correction was carried

out for LRRL (left) and APPA (right) pairs, respectively. Three levels of susceptibility distortion were simulated.
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FIGURE 5 | MAE (Top) and MSE (Bottom) of b0 for five simulated HCP subjects using the six methods. The error bars represent standard deviation over subjects.

Correction was carried out for LRRL (Left) and APPA (Right) pairs, respectively. Three levels of susceptibility distortion were simulated.

FIGURE 6 | MAE (Top) and MSE (Bottom) of FA for five simulated HCP subjects using the six methods. The error bars represent standard deviation over subjects.

Correction was carried out for LRRL (Left) and APPA (Right) pairs, respectively. Three levels of susceptibility distortion were simulated.
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FIGURE 7 | MAE (Top) and MSE (Bottom) of MD for five simulated HCP subjects using the six methods. The error bars represent standard deviation over subjects.

Correction was carried out for LRRL (Left) and APPA (Right) pairs, respectively. Three levels of susceptibility distortion were simulated.

FIGURE 8 | MAE (Top) and MSE (Bottom) of principal eigenvalues for five simulated HCP subjects using the six methods. The error bars represent standard

deviation over subjects. Correction was carried out for LRRL (Left) and APPA (Right) pairs, respectively. Three levels of susceptibility distortion were simulated.
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FIGURE 9 | MAE (Top) and MSE (Bottom) of principal eigenvectors for five simulated HCP subjects using the six methods. The error bars represent standard

deviation over subjects. Correction was carried out for LRRL (Left) and APPA (Right) pairs, respectively. Three levels of susceptibility distortion were simulated.

TABLE 4 | MAE and MSE of b0, FA, MD, principal eigenvalues and principal eigenvectors using the six methods.

Metric

Tool
aDC aBMDC DR-BUDDI EPIC HySCO TOPUP

b0 MAE, LR 4.675 4.242 2.582 3.198 2.680 3.499

b0 MAE, AP 4.470 4.029 2.449 2.698 2.683 3.369

FA MAE, LR (×10−2) 2.719 2.698 1.700 3.143 3.326 1.923

FA MAE, AP (×10−2) 2.550 2.577 1.664 2.454 3.540 1.829

MD MAE, LR (×10−5) 3.371 3.224 2.535 3.588 3.454 2.584

MD MAE, AP (×10−5) 3.346 3.197 2.555 3.070 3.653 2.587

λ1 MAE, LR (×10−5) 4.043 3.914 2.954 4.272 4.785 3.057

λ1 MAE, AP (×10−5) 3.926 3.815 2.959 3.639 4.985 3.019

v1 MAE, LR (×10) 1.045 1.034 0.728 1.196 1.550 0.776

v1 MAE, AP (×10) 1.037 1.032 0.750 1.011 1.640 0.781

MAE and MSE are averaged across five simulated HCP subjects. For each row, the method with the best performance are in bold.

The data was finally rotated 90◦ in the other direction after
correction. We share our processing scripts on Github2, such
that other researchers can reproduce and extend our findings
(Eklund et al., 2017).

4. RESULTS

4.1. Simulated Data
Figure 1 shows the simulated diffusion data and the fieldmap
for HCP Subject 100206, the simulated distortions look very

2https://github.com/xuagu37/SusceptibilityDistortionCorrection

realistic. We investigated how different levels of distortion
affect the correction performance by simulating three levels of
susceptibility distortion, as shown in Figure 2. The distortion
level was controlled by dividing the fieldmap by a factor 1, 2, or 4.

4.1.1. Direct Metric

In this section, we present the results for the direct metric,
including the errormaps of b0, FA,MD, principal eigenvalues and
principal eigenvectors. Figure 3 shows the corrected b0 images
using six different methods, along with error maps obtained
by calculating the difference compared to the ground truth
images. Correction was carried out for LRRL and APPA pairs,
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FIGURE 10 | Difference between corrected b0 volumes from LR and AP for simulated HCP Subject 100206 using the six methods.

FIGURE 11 | MAD and MSD of b0 from corrected LR and AP for five simulated HCP subjects using the six methods. The error bars represent the standard deviation

over subjects. DR-BUDDI provides the smallest difference between the two corrections.
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respectively, and we used the corrected LR and AP images as the
results for the two pairs. aDC and aBMDC show large errors for
edge voxels. DR-BUDDI, EPIC, HySCO, and TOPUP produced
very small errors for both LR and AP cases, mainly along edges.

Figure 4 shows the error maps using the six methods for the
three levels of distortion. Correction was carried out for LRRL
and APPA pairs, respectively. In addition to visual inspection, we
computed the mean absolute error (MAE) and the mean squared
error (MSE) within the brain and their standard deviations (error
bars) for five simulated HCP subjects using the six methods,
as shown in Figure 5. The results confirmed what we observed
in Figure 4 and quantitatively demonstrates the accuracy and
robustness of the six methods. The MAE and MSE decreased
with decreasing inhomogeneity field strength, aligned with our
predictions. Similarly, Figures 6–9 show the error maps of
FA, MD, principal eigenvalues and principal eigenvectors after
diffusion tensor fitting of the corrected data. The error map of
principal eigenvectors was obtained by calculating the angle (in
degree) between the principal eigenvector and its ground truth.
All error maps are quantitatively summarized in Table 4.

4.1.2. Indirect Metric

In this section, we present the results for the indirect metric,
including b0 difference maps and the FA standard deviation
over the corrected LR, RL, AP, and PA data. To investigate the
suitability of LRRL-APPA differences as an indirect metric we
plot the corrected LR andAP data, and their differences, as shown
in Figure 10. Ideally, the corrected LR and the corrected AP

would be identical. The whole-brain mean absolute difference
(MAD) and mean squared difference (MSD) were computed for
every correction method, as shown in Figure 11. The results
show larger MAD and MSD for aDC and aBMDC compared
to the other four methods DR-BUDDI, EPIC, HySCO, and
TOPUP. The results are not completely consistent with the
previous results in Figure 5 for the direct metric. These results
demonstrate that the indirect metric (difference maps) shows a

FIGURE 13 | Mean FA standard deviation over LR, RL, AP, and PA data for

five simulated HCP subjects using the six methods. The error bars represent

standard deviation of this metric across subjects. DR-BUDDI produces the

smallest standard deviation.

FIGURE 12 | FA standard deviation over the corrected LR, RL, AP, and PA data for simulated HCP Subject 100206 using the six methods.
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FIGURE 14 | LRRL and APPA pairs for dHCP Subject CC00069XX12.

different ordering of correction performance compared to the
direct metric (b0 error maps).

To investigate the suitability of FA standard deviation as
an indirect metric we plot the FA standard deviation over the
corrected LR, RL, AP, and PA data, as shown in Figure 12.
Ideally, the corrected LR, RL, AP, and PA would be identical,
which would result in zero FA standard deviation. The whole-
brain mean of the standard deviation was computed for every
correction method, as shown in Figure 13. The results show the
largest mean FA standard deviation for EPIC. DR-BUDDI and
TOPUP produced very small FA standard deviation over LR, RL,
AP, and PA data, and the standard deviation of this metric is also
low across subjects. The indirect metric (FA standard deviation)
served as a good indication for correction performance compared
to the direct metric (FA error maps) as shown in Figure 6.

4.2. Real Data
Figure 14 shows the distorted diffusion data from a dHCP subject
scanned with four different PE directions. The distortions are
more pronounced in regions close to tissue-air interfaces, such
as the frontal poles and the temporal lobes near the petrous
bone. To evaluate the six methods, we computed the difference
between the corrected LR and AP for the dHCP data, as shown
in Figure 15. Higher difference values are visible in regions
most affected by magnetic susceptibility variations such as the
boundary regions of the brain. Figure 16 reports the whole-brain
mean of the difference, for the 40 processed subjects.DR-BUDDI,
EPIC,HySCO, and TOPUP performed almost equally well, which
resembled the results for simulated data given in Figure 11. We
plot the FA standard deviation over the corrected LR, RL, AP, and
PA data for the 40 processed subjects in Figure 17. It confirmed
what we observed in Figure 13 for results of simulated data.

4.3. Processing Time
The processing time of one simulated HCP dataset for the
six softwares are 2.8 (aDC), 35.5 (aBMDC), 153.3 (DR-BUDDI
without its pre-step DIFFPREP), 38.0 (EPIC), 8.1 (HySCO), and
195.7 (TOPUP) seconds, respectively. Please note that aBMDC,
DR-BUDDI, EPIC, and HySCO use several CPU threads to
speedup the processing. We used a computer with 32 GB RAM
and an Intel(R) Xeon(R) Silver 4114 2.20 GHz CPU (containing
10 cores, which can run 20 threads in parallel).

5. DISCUSSION

5.1. Discussion
In this paper, we used both simulated and real data to evaluate
six phase encoding based methods for correcting susceptibility
distortions. This work is important given that phase encoding
based methods have been demonstrated to outperform the other
two classes of approaches, and are very frequently used in
diffusion data analysis pipelines. It is thus essential to carefully
evaluate phase encoding based correction techniques and their
limitations. By this work we aim to answer the following two
questions. Which method of the six provides the best distortion
correction? Are the indirect metrics suitable for measuring the
distortion correction performance?

The error map directly measures the ability to correctly
recover distortion-free data for different methods. Based on
our experiments, we found that DR-BUDDI, EPIC, HySCO,
and TOPUP were generally superior to the other two methods
in achieving better performance for the error map of b0, see
Figure 5. We then applied the transformation field obtained from
b0 images to diffusion weighted volumes and calculated FA, MD,
eigenvalues and eigenvectors after diffusion tensor fitting. The
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FIGURE 15 | Difference between corrected b0 volumes from LR and AP for dHCP Subject CC00069XX12 using the six methods.

FIGURE 16 | MAD and MSD of b0 from corrected LR and AP for 40 dHCP subjects using the six methods. The error bars represent the standard deviation over

subjects. In all cases DR-BUDDI produces the smallest difference.
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FIGURE 17 | Mean FA standard deviation over LR, RL, AP, and PA data for 40

dHCP subjects using the six methods. The error bars represent standard

deviation of this metric across subjects. DR-BUDDI produces the smallest

standard deviation.

error maps of these four metrics demonstrated that DR-BUDDI
and TOPUP provided the most accurate and robust distortion
corrections among the six methods. EPIC andHySCO performed
well in correcting b0 images but produced poor corrections for
diffusion weighted volumes, and these two methods produced
rather large errors in terms of the four diffusion tensor metrics as
shown in Figures 6–9. Therefore, the error map of b0 should be
interpreted together with the error maps of diffusionmetrics for a
better evaluation of the correction quality. It is notable that EPIC
showed large errors and very large variance of performance over
subjects for the LRRL case when the inhomogeneity field strength
was 1. The reason might be that EPIC was originally designed for
the APPA case and there is no method referred to in any of the
EPIC documentation for choosing an alternate phase direction
than the y-direction (or the LRRL direction with regards to this
study). With the phase encode direction chosen in the APPA
dimension, susceptibility distortion is manifested as stretching or
compression of the image in the APPA direction, which can be
more desirable than asymmetric distortion in the LRRL direction
(Glover et al., 2012). This might explain that EPIC was designed
only for the APPA case. It is indeed often the case that the
phase encoding direction is chosen to be the y-direction, however
there are many images where this is not the case (Kemper
et al., 2015; Hughes et al., 2017). TOPUP was found to work
only for data volumes with even size on x, y, and z directions
since the default configuration file (b02b0.cnf ) performs a
factor of 2 subsampling. There are two solutions suggested to
eliminate this problem; either cropping or adding dummy data
to the 3D volume.

Indirect metrics are often used to evaluate distortion
correction for real data due to the absence of ground truth.
We investigated the ability of two indirect metrics to measure
the correction quality. We validated two of the most promising
indirect metrics for correction quality, i.e., the difference between
corrected LR andAP data, and the FA standard deviation over the
corrected LR, RL, AP, and PA data. The first indirect metric, as
shown in Figures 11, 16, roughly confirmed what we observed

for the error map of b0 in Figure 5, although the ordering of
correction quality is slightly different. Similarly, the FA standard
deviation over the corrected LR, RL, AP, and PA data, as shown
in Figure 13, confirmed what we observed for the error map of
FA in Figure 6.

5.2. Limitations
Before comparing the quality of the corrections provided by
each of these tools, it is important to note that each tool
has its customizable parameters. The default parameter settings
were used in this work, as it was reasoned that this would be
representative of the way the tools were most often used. It was
also reasoned that changing default parameters or influencing the
inputs prior to correction would lead to a less fair comparison.

It should be noted that we used different DR-BUDDI settings
for simulated data and real data, because the default pipeline
is designed for real data with different types of distortions,
but our simulated data only contain susceptibility distortions.
It is therefore possible that the corrections in this work
may not represent the best corrections attainable by use of
these tools.
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