
fninf-13-00077 December 23, 2019 Time: 16:44 # 1

ORIGINAL RESEARCH
published: 10 January 2020

doi: 10.3389/fninf.2019.00077

Edited by:
Tianyi Yan,

Beijing Institute of Technology, China

Reviewed by:
Renzo Phellan,

University of Calgary, Canada
Nagesh Koundinya Subbanna,
University of Calgary, Canada

*Correspondence:
Shengyu Fan

fanshengyu1987@gmail.com
Tao Tan

tao.tan911@gmail.com

Received: 31 January 2019
Accepted: 06 December 2019

Published: 10 January 2020

Citation:
Fan S, Bian Y, Chen H, Kang Y,

Yang Q and Tan T (2020)
Unsupervised Cerebrovascular

Segmentation of TOF-MRA Images
Based on Deep Neural Network

and Hidden Markov Random Field
Model. Front. Neuroinform. 13:77.

doi: 10.3389/fninf.2019.00077

Unsupervised Cerebrovascular
Segmentation of TOF-MRA Images
Based on Deep Neural Network and
Hidden Markov Random Field Model
Shengyu Fan1,2,3* , Yueyan Bian2, Hao Chen4, Yan Kang1,2,3, Qi Yang5 and Tao Tan6*

1 School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China, 2 Neusoft
Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China, 3 Engineering Research Center for Medical
Imaging and Intelligent Analysis, National Education Ministry, Shenyang, China, 4 Department of Biomechanical Engineering,
University of Twente, Twente, Netherlands, 5 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing,
China, 6 Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands

Automated cerebrovascular segmentation of time-of-flight magnetic resonance
angiography (TOF-MRA) images is an important technique, which can be used to
diagnose abnormalities in the cerebrovascular system, such as vascular stenosis and
malformation. Automated cerebrovascular segmentation can direct show the shape,
direction and distribution of blood vessels. Although deep neural network (DNN)-based
cerebrovascular segmentation methods have shown to yield outstanding performance,
they are limited by their dependence on huge training dataset. In this paper, we propose
an unsupervised cerebrovascular segmentation method of TOF-MRA images based on
DNN and hidden Markov random field (HMRF) model. Our DNN-based cerebrovascular
segmentation model is trained by the labeling of HMRF rather than manual annotations.
The proposed method was trained and tested using 100 TOF-MRA images. The results
were evaluated using the dice similarity coefficient (DSC), which reached a value of
0.79. The trained model achieved better performance than that of the traditional HMRF-
based cerebrovascular segmentation method in binary pixel-classification. This paper
combines the advantages of both DNN and HMRF to train the model with a not so
large amount of the annotations in deep learning, which leads to a more effective
cerebrovascular segmentation method.

Keywords: deep neural network, hidden Markov random field model, cerebrovascular segmentation, magnetic
resonance angiography, unsupervised learning

INTRODUCTION

According to the World Health Organization (WHO) report on the global burden of stroke,
adult stroke mortality rate has reached 39% (Kim and Johnston, 2011). The pathogenesis of
stroke is commonly associated to disorders in human cerebrovascular system (Arvanitakis et al.,
2016), and hence an accurate cerebrovascular segmentation is of vital importance for further
diagnosis and also for computer-aided diagnosis (CAD) (Yan and Kassim, 2005). Time-of-Flight
magnetic resonance angiography (TOF-MRA) is the most widely used imaging technique to
observe a complete cerebrovascular tree, because no contrast agent is required for this technique.
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Automated and accurate cerebrovascular segmentation from
TOF-MRA images is beneficial to quantitatively analyze
cerebrovascular disorders, such as the estimation of vascular
stenosis rate, and also to assess cerebral collateral circulation (Lee
et al., 2005; Bicakci et al., 2006).

In the past few years, many methods for extracting
cerebrovascular trees were developed based on deformable
models (Kavsak et al., 2000; Aylward and Bullitt, 2002; Yim
et al., 2003; Yan and Kassim, 2006; Lorigo et al., 2010), statistical
models (Wilson and Noble, 1997; Zhang et al., 2001; Gan
et al., 2004; Elbaz et al., 2005; Hassouna et al., 2006), and
deep neural network (DNN) (Wilson and Noble, 1997; Zhang
et al., 2001; Gan et al., 2004; Elbaz et al., 2005; Hassouna
et al., 2006). From deformable model-based methods, geodesic
active contours is a typical representative method, which fits
topological structures of blood vessels in TOF-MRA images
with level-set techniques (Lorigo et al., 2010). Yan et al.
proposed an effective segmentation method using capillary
active contours, which extended geodesic active contours to
capillaries modeled on the physical phenomenon of capillary
actions (Yan and Kassim, 2006). However, deformable models
can easily have leakage around the edge (Angelini et al., 2005;
Cengizler et al., 2014). The leakage gets into the area outside
of blood vessels during iterative optimization, especially at
the end and the stenotic parts of blood vessels. Moreover,
in our opinion these models may have a poor performance
on TOF-MRA images with inhomogeneity. Statistical model-
based methods extract cerebrovascular trees by fitting intensity
distributions of different tissues into statistical models such
as Gaussian mixture models. Hidden Markov Random Field
(HMRF) and Expectation-Maximization (EM) framework were
also widely used to segment blood vessels and brain tissue
from MR images (Wilson and Noble, 1997; Zhang et al., 2001;
Gan et al., 2004; Elbaz et al., 2005; Hassouna et al., 2006).
Zhang et al. (2001) firstly introduced HMRF model and EM
algorithms to segment gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF) in brain MR images. Hassouna
et al. (2006) proposed a 3D cerebrovascular segmentation
method using stochastic models, which described the intensity
histogram of MRA images by a finite mixture model consisting
of one Rayleigh and two normal distributions. These stochastics
models also estimated spatial contextual information using 3D
HMRF, then they segmented blood vessels by optimizing HMRF
and EM framework (Hassouna et al., 2006). A drawback of
the abovementioned statistical model-based methods is that
their segmentation performances significantly depend on the
adaptation between statistical model and intensity histogram of
MR images, and therefore their performances are sensitive to the
intensity distortion of TOF-MRA images.

Deep neural network-based cerebrovascular segmentation
methods have been proposed with great successes in semantic
segmentation (Chen et al., 2017; Nakao et al., 2017; Phellan et al.,
2017; Sahin and Ünal, 2017). Chen et al. (2017) proposed a
convolutional auto-encoder named Y-net to segment intracranial
artery in MRA images, of which dice similarity coefficient (DSC)
reached a value of 0.828. Phellan et al. (2017) built a DNN model
consisting of two convolutional layers and two fully connected

layers to extract cerebrovascular trees, of which the achieved
DSC ranged from 0.764 to 0.786. These DNN-based vessel
segmentation methods have outperformed the abovementioned
traditional machine learning methods, but the training sets of
DNN-based methods mostly consisted of TOF-MRA images
from only one type of MR scanner with the same resolution.
According to prior experiences (Simonyan and Zisserman, 2014;
Badrinarayanan et al., 2015; Ronneberger et al., 2015), DNNs
need to be trained with a large amount of various TOF-
MRA images annotated manually in order to keep a good
performance for TOF-MRA images with different resolutions
from different devices. However, since human cerebrovascular
system is complicated and huge, a large amount of manual
annotations of TOF-MRA images is very expensive to obtain.

Given all the aforementioned limitations of existing
cerebrovascular segmentation algorithms, we propose a
new unsupervised cerebrovascular segmentation framework
which combines DNN with HMRF model. It does not require
a large amount of manual annotations and achieves great
performance for TOF-MRA images for different devices and
with different resolutions. We compared two frameworks:
HMRF + SegNet2D and HMRF + U-Net3D. These two
frameworks are assessed on TOF-MRA images with different
resolutions from different devices. The remaining parts of this
paper are organized as follows. Section “Materials and Methods”
provides the mathematical details of the HMRF and EM
algorithm, and the architectures of SegNet and U-Net. In section
“Experiments,” the experimental dataset and experimental
setting are described, while section “Results” shows the various
experiments performed to evaluate the performance of the
proposed method. This is followed by a discussion about our
approach in section “Discussion.” Finally, we give a conclusion
in section “Conclusion.”

MATERIALS AND METHODS

Unsupervised HMRF + DNN-Based
Cerebrovascular Segmentation
In previous studies, DNN-based cerebrovascular segmentation
methods have significantly outperformed traditional methods
(Simonyan and Zisserman, 2014; Badrinarayanan et al., 2015;
Ronneberger et al., 2015). Since the human cerebrovascular
system has the intricate shape and high inter-individual
difference, manual annotations of cerebrovascular trees take
too much time. Thus, researchers often use a small amount
of TOF-MRA images to evaluate the performance of DNN-
based methods even though they necessitate great amount
of data. To solve this problem, we propose an unsupervised
cerebrovascular segmentation framework by adding a HMRF-
based pre-segmentation method before DNN architectures.

The HMRF + DNN framework for cerebrovascular
segmentation mainly consists of two parts, pre-segmentation
of blood vessels using HMRF and DNN architecture. In the
pre-segmentation part, we use HMRF technique to extract
brain blood vessels based on their intensity and spatial
information in TOF-MRA images. Generally, the brain blood
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vessels extracted using HMRF method are thick artery blood
vessels due to the fact that thick blood vessels have strong
intensity differences from brain tissue. Although cerebrovascular
system has the intricate shape, the difference between thick
and small blood vessels is mainly found in the radius of
blood vessels or spatial scale. Therefore, the HMRF-based
segmentation result includes most of the features of blood
vessels except spatial-scaling feature, while the spatial-scaling
feature can be learnt by setting max-pooling layers in the
DNN architecture. The second part, DNN architecture, is
trained by the results of pre-segmentation of blood vessels. In
this paper, 2D SegNet and 3D U-Net are adopted to perform
cerebrovascular segmentation. The workflow of the unsupervised
HMRF + DNN-based cerebrovascular segmentation method is
illustrated in Figure 1.

Cerebrovascular Segmentation Method
Based on HMRF Model and EM
Algorithm
Hidden Markov random field model is extended by Markov
random filed (MRF) and hidden Markov model (HMM) (Zhang
et al., 2001), which consists of a sequence of statistical states
hidden in MRF but observable in the observation field. In TOF-
MRA images, the spatial information can be described by the
associativity between the neighboring pixels, while the intensity
information can be represented into Gaussian mixture models
in each region-of-interest [e.g., brain tissue, vascular trees, and
CSF]. HMRF model can extract cerebrovascular trees using both
the spatial and intensity information.

Let S = {1, 2, 3, . . . , S} represent the set of indices of voxels in
TOF-MRA images, X = {Xi, i ∈ S} and Y = {Yi, i ∈ S} represent
the sets of label and image, L = {1, 2, 3, . . . , L} be the set of
region classes in TOF-MRA images, where S is the number of
voxels and L is the number of region classes. If we assume
that X and Y are two random fields and any pair of (Xi,Yi) is
the pairwise independence, the joint probability distribution of
(Y,X) is:

P(Y,X) =
∏
i∈S

P(Yi,Xi) (1)

According to the MRF theory (Zhang et al., 2001), the labels in S
are related to their neighborhood system, which is defined as N =
{Ni, i ∈ S}, where Ni is the set of labels neighboring i, i /∈ Ni and
i ∈ Nj ≡ j ∈ Ni. A Markov random field X can be represented
with a neighborhood system if and only if:

P(x) > 0, ∀ x ∈ X (2)

P(xi|xS−{i}) = P(xi|xNi) (3)

where S− {i} is the set of indices of voxels except {i} in TOF-
MRA images. Thus the above joint probability (1) can be
reformed into the following expression:

P(Y,X) =
∏
i∈S

P(Yi,Xi|XNi)

=

∏
i∈S

P(Yi|Xi)P(Xi|XNi) (4)

FIGURE 1 | An illustration of the workflow of unsupervised HMRF + DNN-based cerebrovascular segmentation method. Preprocessed TOF-MRA images are
pre-segmented to extract roughly cerebrovascular system using HMRF method, and then these images and rough masks of blood vessels are used to train deep
encoder-decoder network. Finally, blood vessels are pixel-classified by deep encoder-decoder network.
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and the marginal probability distribution of Yi is:

P(Yi|XNi , θ) =
∑
l∈L

P(Yi, l|XNi , θ)

=

∑
l∈L

P(Yi|l,XNi , θl)P(l|XNi) (5)

Where θl = (µl, σl)
T , respectively, µl and σl represent the

expectation and variance of Gaussian distribution.
According to the histogram of intensities of TOF-MRA

images, we assume that the conditional probability distribution
of each region class is a Gaussian distribution. Given Yi = l, Xi
follows a conditional probability distribution:

P(Yi|l) = g(Yi; θl), ∀ l ∈ L (6)

g(Yi; θl) =
1√

2πσ2
l

exp

(
−
(Yi − µl)

2

2σ2
l

)
(7)

Thus, the Gaussian HMRF model is represented as:

P(Yi|XNi , θ) =
∑
l∈L

g(Yi; θl)P(l|XNi) (8)

To find a labeling X̂ of TOF-MRA images, it can be used to
estimate the ground truth labeling X∗ using the maximizing a
posterior (MAP) criterion:

X̂ = arg max
x∈X
{P(y|x)P(x)} (9)

The prior probability of each voxel is different. According to
the Hammersley system theorem (Hammersley and Clifford,
unpublished), since X is considered as a MRF, its prior probability
can be formulated as:

P(X) = Z−1 exp(−U(X)) (10)

where Z is the partition function which is a normalizing constant,
and U(Y) is an energy function:

U(X) =
∑
c∈C

Vc(X) (11)

where Vc(X) is the clique potential function.

P(Y|X) =
1
Z′

exp(−U(Y|X)) (12)

where U(Y|X) is the likelihood energy.

U(Y|X) =
∑
i∈S

U(Yi|Xi)

=

∑
i∈S

[
(Yi − µXi)

2

2σ2
Xi

+ log(σXi)

]
(13)

and Z′ = (2π)(N/2). Thus, it has an obvious relationship
log(P(X|Y)) ∝ −U(X|Y) where:

U(X|Y) = U(Y|X)+ U(X)+ const (14)

is called the posterior energy. Thus, the labeling X̂ can be
estimated by minimizing the posterior energy function:

X̂ = arg min
x∈X
{U(Y|X)+ U(X)} (15)

According to the above derivation, the problem of the optimal
segmentation is equivalent to minimizing the posterior energy
function. To solve the equation (9), we estimate the optimal
parameters of HMRF model using EM algorithm, which is an
iterative optimal algorithm to solve the problem of the estimation
of maximum likelihood or posterior. For more details on EM
algorithm, kindly refer to (Dempster et al., 1977). The brief
description of EM algorithm for optimizing HMRF model is
given as follows.

Start Initialize the estimated parameters θ0.
E-step Calculate the expectation of log joint probability:

Q(θ|θ(t)) = ε[log(P(X,Y|θ))|Y, θ(t)]

=

∑
x∈X

P(x|y, θ(t)). log P(x, y|θ)

M-step Maximize the log joint probability to estimate the new
parameters θ(t+1):

θ(t+1)
= arg max

θ
Q(θ|θ(t))

µ
(t+1)
l =

∑
i∈S P

(t)(l|Yi)Yi∑
i∈S P(t)(l|Yi)

(σ
(t+1)
l )2 =

∑
i∈S P

(t)(l|Yi)(Yi − µl)
2∑

i∈S P(t)(l|Yi)

where P(t)(l|Yi) is estimated by the equation (7) in MRF-MAP
estimation procedure.

Update assign θ(t+1) to θ(t) and repeat from E-step.

Deep Convolutional Encoder-Decoder
Network
Deep convolutional encoder-decoder network (DCEDN) is a new
deep convolutional neural network resulted from modifying the
fully convolutional network (FCN) (Long et al., 2015). It can
provide more precise segmentation results with few training
datasets. The well-known architectures of DCEDN include
SegNet (Badrinarayanan et al., 2015), U-Net (Ronneberger
et al., 2015), and their main ideas consist of trying to
map low resolution features to input resolution for pixel-
wise classification. Their common architecture is illustrated in
Figure 2. There is no fully connected layers in their architectures.
They mainly contain two parts, encoder network and their
corresponding decoder network. Encoder network is designed to
extract feature maps of input images, while decoder network up-
samples low resolution feature maps into the input resolution.
The encoder network consists of a few convolutional layers, batch
normalization layers, rectified linear unit (ReLU) layers and max-
pooling layers. In common, the encoder network is designed as
the traditional architecture for object classification [e.g., VGG16
(Simonyan and Zisserman, 2014)], while the difference compared
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to traditional network for object classification is to memorize the
max-pooling indices in SegNet or the feature maps in U-Net.
Decoder network usually contains the same number of up-
sampling layers, convolutional layers, batch normalization layers
and ReLU layers as the encoder network. Up-sampling layers is
used to up-sample the feature maps from the encoder network.
Finally, the feature maps with the input resolution are pixel-
classified by a soft-max layer, and the probabilities for each
class are output.

In this paper, we performed cerebrovascular segmentation
from TOF-MRA images based on 2D SegNet (Badrinarayanan
et al., 2015) and 3D U-Net (Çiçek et al., 2016). The DCEDN
and SegNet architecture adopted in this paper is illustrated in
Figures 2, 3. The input of SegNet architecture consists of each
2D slice of TOF-MRA images which is resized into 256× 256.
The main structure of the 2D SegNet consists of 8 convolutional
layers, 8 batch normalization layers, 8 ReLU layers, 2 max-pooling
layers, and 2 up-sampling layers and a soft-max layers. Each
convolutional layer contains 80 filters with 3× 3 voxels receptive

field in a 1 voxel stride sliding. The batch normalization layer
after each convolutional layer helps improve the convergence
speed of SegNet, and the ReLU layer can reduce the impact
of the backpropagation vanishing problem. Finally, the pixel
classification is processed in the soft-max layer.

Given that 3D U-Net has achieved remarkable successes in
various biomedical segmentation tasks (Ronneberger et al., 2015;
Çiçek et al., 2016; Tong et al., 2017), we chose 3D U-Net as our
framework example to evaluate the performance of the proposed
method. One of differences with 2D SegNet architecture is that
the input is the 3D volume region of TOF-MRA images, while
each TOF-MRA images is patched into 64× 64× 64 because
of the limitation of the memory. The 3D U-Net architecture
designed in this paper contains the encoder network to encode
the valid feature and the decoder network to up-sample the
low resolution feature back to the input resolution. The encoder
network consists of 6 convolutional layers, and each of them
is followed by a batch normalization layer and a ReLU layer,
and 2 max-pooling layers to change the feature resolution.

FIGURE 2 | An illustration of the common DCEDN architecture.

FIGURE 3 | An illustration of SegNet architecture adopted in this paper. The different layers is indicated by boxes with different colors. The input of this architecture is
256× 256 2D TOF-MRA image. The input size of each convolutional block is denoted at the left bottom, and the number of channels on the top.
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The decoder network consists of 2 up-convolutional layers and
2 convolutional layers, and each of them is followed by a
batch normalization layer and a ReLU layer like the encoder
work. The feature up-sampled by the up-convolutional layer is
concatenated with the correspondingly cropped feature before
the batch normalization layer. Finally, soft-max layer performs
the voxel-based classification and outputs the probabilities for
each cluster. An illustration of the 3D U-Net used in this paper
is displayed in Figure 4.

HMRF + DNN Framework Training
The training of the HMRF + DNN framework for
cerebrovascular segmentation includes two parts, auto-
labeling ROI of TOF-MRA images using the HMRF model
and the training of the DNN model. According to the intensity
distribution of TOF-MRA images, the intensity distributions of
brain tissue and blood vessels can be approximately represented
as Gaussian distributions. Then, we constructed two Gaussian
HMRF models to automatically extract the blood vessels in the
preprocessed TOF-MRF images. The intensity of the background
of TOF-MRA images is zero through preprocessing, so we
labeled the background into an individual class in order to
improve the performance of the algorithms. Thus, in the first
part of HMRF + DNN framework, we labeled each TOF-MRF
images into three classes regions, background, brain tissue and
blood vessels using HMRF model method.

The second part of the HMRF+DNN framework is the DNN
training using TOF-MRA images and their labeling resulted
from the first part. We constructed two architectures in this

paper to segment cerebrovascular trees in TOF-MRA images,
respectively, 2D SegNet and 3D U-Net. The input image of 2D
SegNet consists of each 2D slice of TOF-MRA images, whereas
in the 3D U-Net, the input consists of 3D volume region.
To improve the performance of 2D SegNet in cerebrovascular
segmentation, we built the HMRF+ SegNet2D model with three
sub-SegNets which were, respectively, trained by 2D TOF-MRA
images in axial, sagittal and coronal directions, which is based
on the neurophysiology theory that cerebrovascular systems in
different individuals have similarly 3D topological structures.
Then, the final probability map was estimated by averaging the
probability maps from these three 2D SegNets. The loss function
over the whole training datasets was minimized through a mini-
batch gradient descent approach, and the minimum of batch
size was 50 inputs. The learning process goes through 50 epochs
with a learning rate of 0.001 and a gradient momentum of 0.9.
In 3D U-Net learning process, there are the same parameter
settings in epoch number, learning rate and gradient momentum,
but the minimum of batch size is set as 8 because of the
limitation of memory.

EXPERIMENTS

Data Preparation and Image
Pre-processing
In this study, we collected 100 TOF-MRA cases including
30 healthy cases and 70 stroke cases, which are used to
train and evaluate the performance of different segmentation

FIGURE 4 | An illustration of 3D U-Net architecture. The different layers is indicated by boxes with different colors. The input of this architecture is 64× 64× 64 3D
TOF-MRA volume region. The input size of each convolutional block put at the left bottom, and the number of channels put on the top. The gray arrow represents
the corresponding feature concatenation.
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methods. 60 TOF-MRA cases among the total dataset were
acquired on a 1.5T Discovery MR750 GE MRI scanner without
contrast agent at a parameter setting of a TE = 2.6 ms,
a TR = 22 ms and a flip angle = 20 degree. The voxel
size of each 1.5T TOF-MRA is 0.43× 0.43× 0.59 mm3,
and each volume contains 512× 512× 164 voxels. The
other 40 TOF-MRA cases were acquired on a 3T Verio
SIEMENS MRI scanner without contrast agent at a
parameter setting of a TE = 3.6 ms, a TR = 21 ms
and a flip angle = 18 degree, and their voxel size is
0.30 mm × 0.30 mm × 0.7382 mm and each volume size
is 616× 768× 136.

To reduce the impact of the brain skull on the cerebrovascular
segmentation, the dataset was preprocessed to remove brain
skull using the BET2 method (Wels et al., 2009), which
was followed by a bias correction using multiplicative
intrinsic component optimization (MICO) algorithm (Li
et al., 2014). Then, maximum intensity projection (MIP)
images in axial, sagittal and coronal axis were acquired
with a MIP algorithm. The vessels in MIP images of
each case were manually segmented by medical experts to

evaluate the performance of algorithm, which is illustrated
in Figure 5.

Hardware Settings
In this paper, our experiments were implemented, respectively,
using MATLAB 2017b and Python 3.0 in Window 10 OS.
Environments were made on a desktop computer with eight
Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz processors, 32 GB
of RAM memory and NVIDIA GeForce GTX 1080.

Evaluation Method
Since manual annotations for 100 cases of TOF-MRA images
need too much time, we manually segmented the vessels in MIP
images of each case in axial, coronal and sagittal directions.
We first adjusted the threshold, to segment high pixels, and
then modified it manually, focusing on the edges and the ends
of the vessels, as well as some small vessels. The performance
of the proposed method in cerebrovascular segmentation is
evaluated by comparing MIP post-processed binary images
resulted from the proposed method with manual annotations,
respectively, in axial, coronal and sagittal directions. Because

FIGURE 5 | The skull stripping and bias correction results. (A) Original TOF-MRA image. (B) Skull stripping result. (C) Bias field. (D) Bias corrected TOF-MRA image.

FIGURE 6 | Healthy person. An illustration of axial MIP images of cerebrovascular segmentation results through HMRF, HMRF + SegNet2D, HMRF + U-Net3D and
manual annotations. (A) TOF-MRA MIP images in axial, coronal and sagittal three axes. (B) MIP images of HMRF result in three axes. (C) MIP images of
HMRF + SegNet2D result in three axes. (D) MIP images of HMRF + U-Net3D result in three axes. (E) Manual annotations in three axes.
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FIGURE 7 | Stroke patient. An illustration of axial MIP images of cerebrovascular segmentation results through HMRF, HMRF + SegNet2D, HMRF + U-Net3D and
manual annotations. (A) TOF-MRA MIP images in axial, coronal, and sagittal three axes. (B) MIP images of HMRF result in three axes. (C) MIP images of
HMRF + SegNet2D result in three axes. (D) MIP images of HMRF + U-Net3D result in three axes. (E) Manual annotations in three axes.

MIP images in axial, coronal and sagittal directions contain
the most information of blood vessels, the comparison of MIP
binary images in axial, coronal and sagittal directions is able to
indicate the difference of cerebrovascular segmentation between
the proposed method and manual annotations. Therefore, the
binary classification performance of the proposed method is
evaluated by accuracy, sensitivity, specificity, precision, and DSC
(Dice, 1945) which is defined as DSC = 2|A∩B|

(|A|+|B|) , where A and B
is, respectively, the ground-truth and segmentations of DCEDN.
DSC ranges from 0 to 1.

RESULTS

We evaluated the performance of HMRF + DNN framework in
cerebrovascular segmentation to compare segmentation results
using HMRF, HMRF + SegNet2D, and HMRF + U-Net3D
methods. We separated all of the 100 TOF-MRA data into
training and testing datasets. We randomly chose 20 TOF-MRA
data from 1.5T GE scanner and 20 TOF-MRA data from 3.0T
SIEMENS scanner to build up the training dataset, while the
other 60 TOF-MRA data were assigned to the testing dataset.
HMRF + SegNet2D and HMRF + U-Net3D were trained using
the training dataset. Then, testing dataset was segmented by
HMRF, trained HMRF + SegNet2D and trained HMRF + U-
Net3D methods, and their results were evaluated according to the
above mentioned method.

We illustrate a case of healthy person of axial MIP
images of segmentation results of HMRF, HMRF + SegNet2D
and HMRF + U-Net3D in TOF-MRF images in Figure 6,
and a case of stroke patient in Figure 7. The evaluation
table for cerebrovascular segmentation results of HMRF,
HMRF + SegNet2D and HMRF + U-Net3D in testing dataset
are reported in Table 1. We also show the evaluation results of
healthy people and stroke patients in Tables 2, 3, respectively.
The DSC values were estimated by comparing the MIP images

of cerebrovascular segmentation in axial, coronal and sagittal
directions with the corresponding manual ground-truths. Values
in each column were the average among the testing dataset.

TABLE 1 | Evaluation of cerebrovascular segmentation evaluation in all samples.

Methods Accuracy Sensitivity Specificity Precision DSC

HMRF 0.9947 0.5073 0.9997 0.9472 0.6141 ± 0.155

HMRF + 0.9982 0.7967 0.9991 0.7981 0.7966 ± 0.035
SegNet2D

HMRF + 0.9983 0.7620 0.9993 0.8405 0.7941 ± 0.048
U-Net3D

The bold values mean the best performance by different method.

TABLE 2 | Evaluation of cerebrovascular segmentation evaluation in healthy
people.

Methods Accuracy Sensitivity Specificity Precision DSC

HMRF 0.9945 0.5072 0.9996 0.9388 0.6139 ± 0.157

HMRF + 0.9982 0.7967 0.9991 0.7981 0.7952 ± 0.065
SegNet2D

HMRF + 0.9983 0.7620 0.9993 0.8405 0.7938 ± 0.058
U-Net3D

The bold values mean the best performance by different method.

TABLE 3 | Evaluation of cerebrovascular segmentation evaluation in stroke
patients.

Methods Accuracy Sensitivity Specificity Precision DSC

HMRF 0.9948 0.5124 0.9997 0.9567 0.6192 ± 0.146

HMRF + 0.9983 0.8006 0.9991 0.8028 0.7969 ± 0.028
SegNet2D

HMRF + 0.9984 0.7708 0.9993 0.8441 0.7947 ± 0.041
U-Net3D

The bold values mean the best performance by different method.
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DISCUSSION

Deep neural network models are supervised deep learning models
which have been widely used to perform object recognition
and segmentation. They are commonly trained with a large
amount of images labeled by humans. However, most of the
traditional segmentation methods are unsupervised, and they can
extract objects based on observable or expressed features using
prior knowledge. To make use of the advantages of both DNNs
and traditional segmentation methods, in the cerebrovascular
segmentation field, we combine traditional machine learning
method with DNN models to achieve unsupervised DNN
training scheme.

According to our experimental results, both HMRF +
SegNet2D and HMRF + U-Net3D have good performances in
cerebrovascular segmentation, and which are better than that of
HMRF although they are trained with the results of HMRF. The
accuracy and the specificity are both high, the accuracy of all three
methods is above 0.99, and the specificity is above 0.999. But the
sensitivity is quite different, sensitivity of HMRF method is just
0.5073, while that of the other two methods can reach a value
above 0.76, which shows that the performance of HMRF with
DNN method is much better than that of HMRF method. Though
the accuracy is high, but the sensitivity is low. Low sensitivity
and high accuracy is due to the imbalance of the negative and
the positive samples. The proportion of blood vessels in human
brain is small, so most samples are negative and a few are positive,
which led to a large amount of negative samples and a small
amount of positive samples. When calculating the accuracy, we
used both true positive and true negative results as numerator,
and all positive and negative samples as denominator, so the
numerator is close to the denominator. But when calculating
the sensitivity, only true positive is used as numerator, while the
denominator is the sum of the true positive and false negative
results. As the number of the negative samples is much larger than
that of the positive samples, the false negative results is large due
to the large base, that makes the sensitivity low.

The statistical results of the healthy people and stroke patients
are similar, although the blood vessels are often smudged in
stroke patients. The DSC is also similar and it is noticed that the
DSC of stroke patients are even a little higher than that of the
healthy people. As shown in Figures 6, 7, the number of vessels
from the stroke patient is less than that of the healthy person, and
the complexity of vascular distribution is low. We think that is
why the stroke DSC value is similar to that of the healthy people,
due to the fact that the details of stroke patients are not as much
as those of the healthy people, which led to a better DSC value.

In fact, many small blood vessels are segmented by
HMRF + SegNet2D and HMRF + U-Net3D, but not by HMRF.
This can be explained from the view of feature extraction. In
TOF-MRA images, different blood vessels share many similar

features such as shapes, while their differences mainly are
intensity contrast and vessel thickness. Since blood vessels
segmented by HMRF are mainly large and high contrast vessels,
DNN models mainly learn the features of large and high contrast
vessels, while max-pooling layers in DNN provide a learning
ability based on the different resolution features of blood vessels.
Thus, DNN models trained by HMRF segmented blood vessels
have stronger ability to recognize smaller blood vessels than
HMRF method. Moreover, to improve the robustness of the
proposed method for different kind of TOF-MRA images, we
mixed 1.5T GE and 3.0T SIEMENS, healthy and ischemia stroke
TOF-MRA images in training dataset.

Because of the limitation to obtain the manual annotations
from public TOF-MRA dataset, it is difficult to directly compare
our method to other DNN-based cerebrovascular segmentation
methods, such as Y-Net (Chen et al., 2017) and CNN method
proposed by Phellan et al. (2017). However, in terms of Dice
numbers, our unsupervised method shows the great potential to
perform automatic cerebrovascular segmentation.

In the future, we will investigate post-processing methods
to boost the performance of the proposed method. Moreover,
we will focus on the accurate segmentation of Willis circle and
stenosis part of brain blood vessels since it can provide a fast and
efficient stenosis detection method.

CONCLUSION

We proposed a new unsupervised cerebrovascular segmentation
framework based on HMRF model and DNN techniques in
brain TOF-MRA images. The DNN model was trained by the
label data obtained from HMRF model rather than manual
annotations, which cost effective in terms of manual efforts. This
cerebrovascular segmentation framework achieved a state-of-art
performance evaluated on both 2D and 3D TOF-MRA images.
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