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The main hypothesis of this work is that the time of delay in reaction to an unexpected

event can be predicted on the basis of the brain activity recorded prior to that event.

Such mental activity can be represented by electroencephalographic data. To test

this hypothesis, we conducted a novel experiment involving 19 participants that took

part in a 2-h long session of simulated aircraft flights. An EEG signal processing

pipeline is proposed that consists of signal preprocessing, extracting bandpass features,

and using regression to predict the reaction times. The prediction algorithms that are

used in this study are the Least Absolute Shrinkage Operator and its Least Angle

Regression modification, as well as Kernel Ridge and Radial Basis Support Vector

Machine regression. The average Mean Absolute Error obtained across the 19 subjects

was 114 ms. The present study demonstrates, for the first time, that it is possible to

predict reaction times on the basis of EEG data. The presented solution can serve as a

foundation for a system that can, in the future, increase the safety of air traffic.

Keywords: aircraft control human factors, cognitive workload, data mining, electroencephalography, reaction

time, safety, regression, prediction

1. INTRODUCTION

Safety is an important consideration in the modern airline industry. Although many factors have
an influence on the proper execution of flight processes, performance of the pilot is one of the most
crucial factors. In particular, multiple sources point out that fatigue has a significant adverse impact
on pilot performance (Lee and Kim, 2018; Bushmaker et al., 2019). The International Civil Aviation
Organization (2016) defines fatigue as:

A physiological state of reduced mental or physical performance capability resulting from sleep
loss or extended wakefulness, circadian phase, or workload (mental and/or physical activity) that
can impair a crew member’s alertness and ability to safely operate an aircraft or perform safety
related duties.

Results of a survey published in 2002 demonstrate that fatigue is a significant issue among pilots,
and may be responsible for 4–8% of aviation mishaps (Caldwell and Gilreath, 2002). Moreover, a
survey conducted in a group of short-haul pilots points out that over 75% of pilots claimed that they
have experienced significant fatigue (Jackson and Earl, 2006). In addition, over 70% of corporate
pilots claimed that they have fallen into micro-sleep during various phases of the flight (Caldwell,
2005). Such micro-sleep states have been related to a reduced ability to respond to external stimuli
(Ogilvie and Simons, 1992), as well as, degradation of performance on cognitive tasks (Belyavin and
Wright, 1987).

Another large-scale study blames errors of the cockpit crew on 73% of the 456 aircraft crashes
between the years 1959 and 1996 (National Research Council, 1998). Importantly, this trend does
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not seem to decrease over time, as the same source suggests that
72% out of the 145 accidents between the years 1987 and 1996
can be attributed to the cockpit crew.

In 2003, the National Transportation Safety Board estimated
that fatigue contributes to around 20–30% of transportation
accidents (i.e., aircraft, marine, railway, road). Given that ∼70%
of commercial aircraft accidents can be attributed to human
errors, fatigue is thought to contribute to 15–20% of total aircraft
accidents (Akerstedt et al., 2003).

Recent research study (Bennett, 2019) demonstrate that,
on average, 7.3% of pilots who participated in this study
and completed the inbound Top-of-Climb-Top-of-Descent scale
were found to be either extremely tired or completely exhausted.
In addition, 9.3% of pilots who completed the inbound Top-
of-Descent-On-Blocks scale also claimed to be either extremely
tired or completely exhausted. Of note, the Top-of-Climb-
Top-of-Descent and Top-of-Descent-On-Blocks are phases of
a flight. According to Bennet, these numbers could be even
higher because there is a rule that pilots should not operate
when fatigued; thus some pilots may under-report their fatigue
level to avoid penalty. Exhaustion has been found to increase
with the time of flight and Powell et al. estimated a linear
relationship between tiredness and length of duty (Powell et al.,
2007). It is worth mentioning that problems related to the
workload and fatigue among pilots are important topics that
have sparked recent changes in laws. For example, the European
Aviation Safety Agency introduced new Flight Time Limitations
(European Union Regulation 83/2014).

Considering the substantial impact of human factors on flight
safety, there has been a rise of ideas and support for so-called,
pilotless aircraft, in recent years (Ross, 2011; Stevenson, 2017).
An approach that is most commonly postulated in this area is the
idea of ground-based human or artificial intelligence support for
a single pilot in an aircraft. However, a reduction in a number of
on-board pilots might not necessarily be the best option, because
the redundancy and support that two pilots provide to each other
may be extremely valuable. Therefore, instead of removing pilots
from cockpits, a more promising solution may be to support
pilots with systems that can increase their capabilities and
improve their performance during flights. The main hypothesis
that will be tested in this work is that the electroencephalographic
(EEG) signals recorded from a pilot’s scalp during flight can be
used in such performance-enhancing systems. In particular, we
will test for associations between mental activity of pilots (as
measured by EEG) and their ability to react quickly and make
correct decisions in face of unexpected events. In this study,
we also propose and test a basic pipeline that can be used for
processing such signals and extracting information that can be
used to predict a pilot’s delay in response to unexpected events.

Use of EEG data in the context of prediction is most
commonly associated with a seizure detection (Varsavsky et al.,
2016). In a prospective study of antiepileptic drug withdrawal,
a step-wise logistic regression analysis method was employed to
predict an outcome of either antiepileptic drug withdrawal or
seizure relapse (Overweg et al., 1987). However, an evaluation
of the multivariate model showed that none of the variables that
were related to the EEG signal contributed to the final score.

A recent study presents a use of Deep Convolutional Neural
Networks (CNN) for the automated detection and diagnosis of
seizures using EEG signals (Acharya et al., 2018). Although CNN-
based models are characterized by a high level of complexity,
the additional preprocessing used in the work was limited to
data standardization and normalization, and is thus fairly basic.
Additionally, the aforementioned problem can be considered as
more of a classification problem than a regression. EEG has
already been utilized to predict a single-trial reaction time in a
hand motor task (Meinel et al., 2015). The study by Meinel et al.
used EEG band power features that were enhanced by a spatial
filtering method called Source Power Comodulation. Alpha band
power was found to comodulate with reaction time measured
during an isometric hand force control task, which allowed for
an average correlation of 0.19, with the best feature explaining
up to 17% of the variation between single trials. Multiple studies
have been performed to examine the impact of mental activity—
as measured by EEG—on traffic safety. Most of these studies have
been focused on car transport and driving. For instance, Deep
Belief Networks (DBN) have been evaluated for their potential
use in feature extraction and dimension reduction in predicting
the cognitive state of drivers (Hajinoroozi et al., 2015). These
studies show that DBN can predict around 85% of the variation
in cognitive state. A subject-transfer framework for detecting
drowsiness during simulated driving task based on EEG was also
recently developed (Wei et al., 2018). In that study, response
time was measured from the onset of a lane deviation to the
onset of the response, which served as a behavioral assessment of
drowsiness during the lane-keeping task. One interesting study
associates periods of mind wandering during 20-min driving
sessions with increased power in the alpha band of the EEG
recording, as well as, a reduction in the magnitude of the
P3a component of the event related potential in response to
an auditory probe (Baldwin et al., 2017). Thus, these results
suggest that, mind wandering can be detected on the basis of
underlying brain physiology which has an impact on driving
performance and the associated change in the driver’s attentional
state. Prior studies have documented changes in EEG activity
that are present during the transition from normal drive to high
mental workload and ultimately mental fatigue and drowsiness
(Borghini et al., 2014). A review of the literature suggests that
a high mental workload can be associated with increased EEG
power in the theta band and a decreased power in alpha band.
Additionally, increased EEG power in the theta, as well as, delta
and alpha bands can be observed during the transition between
mental workload and mental fatigue. Relatively fewer studies
have explored the application of EEG data for the purpose of
enhancing aircraft operations (Borghini et al., 2014). A recent
study presented the idea of utilizing EEG signals in systems
designed to monitor and enhance the performance of aircraft
pilots (Binias et al., 2018). This work focuses on the problem
of discriminating between states of brain activity related to idle
but focused anticipation of a visual cue and the response to this
cue. In this study, almost 78% average classification accuracy
was obtained. This study can be regarded as a preamble to
the work presented in the present article. Accordingly, to the
best of our knowledge, no articles published to-date address the
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problem of predicting the delay in response time based on EEG
activity. Therefore, the ideas presented in this article can be
considered to be innovative and novel. In addition, the present
study used simulators of the Virtual Flight Laboratory; thus,
the experimental design used in this study is air-craft oriented.
This design is valuable, as it targets a very important, yet not
sufficiently explored field.

The remainder of this article is organized as follows. First,
we provide a description of the experimental set-up and
experimental protocol in section 2.1. Then, a steps of the EEG
data processing pipeline proposed in this research are described
in detail in section 2.3. Section 2.3.1 provides an overview of the
tuning procedure used to find the optimal settings of prediction
algorithms, and contains details about the algorithm validation
procedure. The obtained results are presented in section 3.
A general discussion about the results and the implemented
approach can be found in section 4. Appendix A presents a brief
theoretical background to all machine learning and statistical
methods used in this work.

2. MATERIALS AND METHODS

2.1. Study Population and Experiment
Description
The goal of this experiment was to obtain the brain’s bioelectrical
activity prior to the occurrence of a visual cue. Additionally, we
measured the time of delay in the participant’s reaction time to
that visual cue. To this end, we performed a series of experimental
sessions. Each session consisted of a 2-h long simulated flight
with activated auto pilot. Participants in this experiment were
instructed to stay focused and maintain awareness while waiting
for the appearance of the visual cue. Once the cue was observed,
participants were instructed to press the button as quickly as
possible. The location of the button was chosen to minimize
the time required to react to the visual cue by restraining any
additional movements of the pilots body, besides their fingers.
Additionally, participants were asked to behave as pilots during
regular flight, i.e., to observe cockpit instruments and scan the
surroundings of the plane. The experiments took place in the
Flight Navigational Procedure Training II class simulator and
portrayed a Cessna 172RG airplane. To maintain consistency
between successive experimental sessions, the simulated flight
was on the route between Frankfurt and London. The same
section of the flight was presented to each participant during the
experiment. Flights took place at an average altitude of 6000 ft.,
and to simulate flight with auto pilot activated, the take off and
landing were removed from the registered material. Moreover,
the entire flight that was presented to participants took place
over land. Importantly, sounds of engines were also generated in
the cockpit.

Visual cues were displayed randomly with a normal
distribution characterized by mean µ = 2.5 min, standard
deviation σ = 1 min. This variance was introduced to prevent
habituation of the human brain to regular patterns. The visual
cue was represented by a solid gray-colored box that overlapped
75% of the main simulator screen that was responsible for

displaying the terrain. Participants were between the ages of 20
and 65 years. Before start of the session, participants were asked
to complete a survey regarding the level of their fatigue. All
participants claimed that they were well rested before the session
and all provided consent to utilize the outcomes obtained of the
experiment for scientific research. During the experimentation
phase, 19 participants (3 females and 16 males) were examined.
Every experimental session started at the same time of the
day—around 12:00 (noon)—to minimize the potential effects of
external factors on the experiment.

This experiment was approved by the The Jerzy Kukuczka
Academy of Physical Education in Katowice Bioethical
committee (protocol number 2/1/2017).

2.2. Hardware Description
This study analyzed EEG signals to examine bioelectrical activity
of participants’ brains during the experiments. EEG signals were
recorded using the Emotiv EPOC+Headset. This device provides
a useful bandwidth in the range of 0.16–43 Hz, and is sequentially
sampled at a frequency of 128 Hz. The resolution of the data is
on the level of 14 bit (1LSB = 0.51 µV). To avoid interference
of the electrical network, a real-time, digital 5-th order Sinc
filter and notch filters at 50 and 60 Hz were built into EPOC+
(EMOTIV Systems, 2014). The placement of EPOC+ electrodes
follows the 10 − 10 configuration. Available channels are: AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. with
references in the P3/P4 locations. Emotiv headsets use active
electrode placed in P3 location as an absolute voltage reference
i.e., Common Mode Sense. The passive electrode located in P4
position serves as a feedback cancellation system to float the
reference level on the common mode body potential i.e., Driven
Right Leg (EMOTIV Systems, 2014). The position of electrodes is
presented in Figure 1 (Koessler et al., 2009).

Emotiv EPOC+ is a relatively inexpensive EEG recording
device that was designed for scientific research and other non-
medical applications. Due to it’s many advantages, EPOC+ is
regularly used in Brain-Computer Interface (BCI) and similar
solutions (Alrajhi et al., 2017; Setiono et al., 2018; Borisov
et al., 2019). EPOC+ has also proven to be useful in a study
concerning the classification of brain activity of pilots (Binias
et al., 2018). A study evaluating EPOC+ in tasks that measured
alpha brain activity and the Visual Steady-State Response showed
that EPOC+ is capable of performing at levels comparable to
research-grade EEG systems (Grummett et al., 2015). Due to
setup difficulties, however, the authors of that study were unable
to provide evidence to support the use of Emotiv in paradigms
that rely on time-locked events. However, some reports of Emotiv
EEG systems use in such tasks are available (Tahmasebzadeh
et al., 2013).

2.3. Data Processing and Analysis
2.3.1. Prediction of Response Delay
First, regression models were created to predict the delay in
participant’s response to the visual cue. The response delay is
calculated as the offset between the moment in time when the
cue was presented to the subject and the moment when subject’s
reaction to that cue was recorded. The prediction was made using
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FIGURE 1 | Positions of electrodes in the standard 10-10 electrode montage system. Highlighted locations reflect positioning of the Emotiv Epoc+ electrode with

respect to 10-10 system-based on Koessler et al. (2009).

only the segments of the recorded multichannel EEG signal that
immediately preceded the onset of the cue. Such defined EEG
segments will be referred to as the Temporal Segment of Interest
(TSI). In particular, the length of the TSI is defined as the number
of samples that will be considered when predicting the length of
used time window. An illustrative representation of the concept
of the TSI in the EEG signal and other defined names is presented
in Figure 2.

Analysis of the raw, unprocessed signals in the TSI would
not prove to be effective. Therefore, such data has to be
appropriately preprocessed. First, the raw data were carefully
examined to evaluate the significance of artifacts present in
the recordings. A detailed description of this phase can be
found in section 2.3.2. Next, the raw data from the TSI were
divided into multiple signals on the basis of their frequency
range, as described in section 2.3.3. From these signals, features
were subsequently extracted according to procedure described in
section 2.3.4. These features were used to train machine learning
algorithms to predict the measured delay in a given subject’s
response to the occurrence of the visual cue. In the proposed

FIGURE 2 | An illustrative representation of the EEG signal’s TSI. The delay of

response is calculated as the offset between the moment in time when the cue

was presented to the subject and the moment when the subject’s reaction to

that cue was recorded. The prediction was made using only the segments of

recorded EEG signal that immediately preceded the cue onset- or the

“Temporal Segment of Interest” (TSI).

approach, signal from each electrode is analyzed individually.
A general flow of the EEG processing pipeline is presented in
Figure 3.
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FIGURE 3 | EEG signal processing pipeline (for single electrode).

Performance of machine learning models is dependent
on the values of the variables-or “hyperparameters.” These
hyperparameters differ based on different methods. The
problem of choosing the optimal hyperparameters for a learning
algorithm that minimizes a predefined loss function is called,
hyperparameter optimization or tuning. For hyperparameter
optimization, the present study used the Grid Search
method (Bergstra et al., 2011). This approach involves an
exhaustive searching through a manually specified subset of the
hyperparameter space of a learning algorithm. Performance of
various hyperparameter combinations was measured by 3-fold
cross-validation on the training set with Mean Absolute Error
(MAE) selected as the optimized performance metric.

For each subject, ∼48 events were obtained during the
experimental stage. Samples were then randomly divided so
that 75% of samples were used for the training and tuning of
prediction algorithms. The remaining 25% of the samples served
as an independent dataset on which the best model (i.e., selected
after hyperparameter optimization) was tested for each compared
algorithm. To reduce the impact of random data division on
the final score, datasets for each individual participant were
randomly split into train-test datasets 11 times. MAE values
obtained for each random repetition were then averaged for each
subject. Let us assume that ym is the real time of response delay for

sample m, and the predicted delay response time for that sample
is ŷm. If M denotes the number of samples in the training set,
then the final MAE value obtained from 11 cross-validations for
subject s can be calculated with the following formula:

MAEs =
1

11

11
∑

i = 1

(

M
∑

m = 1

|ŷm − ym|

M

)

(1)

A brief description of regression algorithms selected for the
comparison can be found in Appendix A. A list of used
hyperparameters and the searched space of their values for each
algorithm is presented in Appendix B. For a detailed description
of all hyperparameters, please refer to the documentation for the
Python-based machine learning library scikit-learn (Pedregosa
et al., 2011).

2.3.2. Correction and Removal of Ocular Artifacts
Raw, multichannel time series data was obtained from EPOC+
devices during the experiment. Bioelectrical recordings from the
brain are often contaminated with artifacts caused by muscle
tensions, which are primarily related to eye movements and facial
expressions. Given that these artifacts have a frequency spectrum
that overlaps with part of the EEG spectra, the analysis of those
signals is not only less effective, but in many cases, is impossible
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in their presence (Binias et al., 2015). Many approaches for
filtering out artifacts and retrieving the underlying neural
information have been proposed. Most commonly, regression
methods are performed either in time or frequency domains
(Binias et al., 2015). These artifact regression methods have
been found to be highly effective. However, a requirement of
providing at least one signal with a noise reference is a downfall
for solutions that favor a limited number of electrodes in the
configuration. This is particularly problematic for solutions that
are designed for use in aircraft, which is the case for the
system developed for the present study. On the other hand,
if artifact regression is applied in the time domain, methods
based on Adaptive Noise Cancelling (ANC) can be implemented
for real-time applications. Indeed, this is a benefit of ANC
approaches. There are various other techniques that can be used
for detecting and filtering muscle movement-related artifacts,
including blind source separation based algorithms (Jung et al.,
2000). These algorithms include Principal Component Analysis
(PCA) and Independent Component Analysis (ICA), which rely
on recorded EEG and noise signals for calibration (Makeig
et al., 1996). PCA and ICA approaches are particularly effective
when a large amount of data is recorded across many channels.
Similar to ANC-based approaches, the high data dimensionality
requirement forces an extended electrode set-up, which is an
inconvenience for practical solutions. Additionally, it must
be noted that these methods function best in semi-automatic
approaches, where supervision of an experienced user (i.e.,
expert) is required (Makeig et al., 1996). Although there are
many eye blink correction and filtering methods described in the
literature, proper validation of these methods a very demanding
matter. To address this would require an uncontaminated EEG
signal that can be used to compare the obtained corrected data,
to evaluate the quality of filtering. However, since EEG signals
are recorded with disturbances already additively mixed, there
is no precise way to extract an original, desired component.
Thus, it is impossible to recover the exact morphology of
the uncontaminated signal and consequently, no unambiguous
way of evaluating the accuracy of the reconstruction of the
filtered signal (Binias and Niezabitowski, 2017). In light of these
limitations, we decided to simply remove highly contaminated
TSIs from further analysis. This approach is commonly used in
clinical practice. EEG segments were therefore visually inspected
for the presence of artifacts that had an amplitude multiple times
greater than that of the surrounding data. Based on this criteria,
careful inspection of the data revealed that no EEG segments
were removed due to their contamination. Since the main goal
of this work was to provide an initial validation of the stated
thesis rather than to propose a production ready solution, an
automatic artifact removal method was not necessary. Additional
motivation behind this approach was that the solution described
in this work should serve as a baseline and reference for
future improvements.

2.3.3. Frequency Analysis
As developments in neuroscience suggest, neural oscillations
and their synchronization represent important mechanisms for
inter-neuronal communication and the binding of information

processed in distributed brain regions (Roach and Mathalon,
2008). Therefore, EEG signals are often analyzed based on
their frequency characteristics. Indeed, time-frequency analysis
of EEG signals can provide information on which frequencies
have the most power at specific points in time and in certain
location in the cortex. In the present study, the samples preceding
the occurrence of the visual cue i.e., the TSI, will represent
neural activity in the moment when performing of an action is
required. The information about the spatial nature of observed
processes will be obtained from the location of the EEG
electrodes. In the proposed pipeline, EEG signals are analyzed
in the following frequency bands, which correspond to specific
brainwaves (Nunez and Srinivasan, 2006):

• Delta (1–4 Hz) (Landolt et al., 1996; Amzica and Steriade,
1998),

• Theta (4–8 Hz) (Strijkstra et al., 2003),
• Alpha (8–12 Hz) (Beatty, 1971; Strijkstra et al., 2003),
• Low Beta (12–16 Hz) (Beatty, 1971; Ang et al., 2012),
• Middle Beta (16–20 Hz) (Beatty, 1971; Ang et al., 2012),
• Middle-High Beta (20–24 Hz) (Beatty, 1971; Ang et al., 2012),
• High Beta (24–28 Hz) (Beatty, 1971; Ang et al., 2012),
• Gamma 1 (32–36 Hz) (Teplan, 2002; Ang et al., 2012),
• Gamma 2 (36–40 Hz) (Teplan, 2002; Ang et al., 2012),
• Broad band range (8–30 Hz) that is commonly related to the

planning of motor movement (Blankertz et al., 2008).

Such bands have proven to be highly useful in a recent study that
focused primarily on the problem of EEG-based discrimination
between states of brain activity related to idle but focused
anticipation of a visual cue and the response to that cue (Binias
et al., 2018).

Since EEG is traditionally modeled as a series of sine waves
of different frequencies that overlap in time and have different
phase angles, the use of Fast Fourier Transform (FFT) for the
frequency decomposition of such signal seems to be the most
intuitive approach. To obtain bandpass filtered subsignals, each
TSI was first decomposed into frequency components using FFT,
for each channel separately. Then, the undesired frequencies
were removed by changing their Fourier amplitudes to 0. Finally,
the filtered signal was reconstructed using this modified Fourier
representation using Inverse Fourier Transform algorithm.
Although a detailed description of FFT is beyond the scope
of this article, one important aspect of this approach warrants
mention. That is, it is widely accepted that the larger the length
of time window used for the FFT, the greater the frequency
resolution of analysis. However, increasing the length of the
TSI comes at the cost of decreasing the temporal resolution.
This decrease in temporal resolution might cause a situation
where the analyzed signal no longer represents the bioelectrical
state of a subject’s brain prior to the action requirement. As a
result, these data might not be useful for predicting the delay in
response. This problem is captured in the Heisenberg uncertainty
principle (Folland and Sitaram, 1997). To address this problem,
the present study utilized the, zero-padding, approach (Marple
and Marple, 1987). In this method, the analyzed segment of a
signal is extended by a sequence of zeros. This extended sequence
is represented as a low frequency peak in the Fourier amplitude
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spectrum. If such addition is correctly treated during the analysis
(i.e., discarded), it won’t negatively affect the outcome, but it
will increase the frequency resolution. Given that frequency
components lower than 1 Hz are not considered in the present
study, the zero padding approach could be implemented. For the
purpose of this research, 0.5 s time windows were used, which
corresponds to 64 samples of TSI length. Analyzed segments were
additionally padded with 192 zeros so that the total length of
signal to be decomposed with FFT was 256 samples.

2.3.4. Feature Extraction
A common assumption is that changes in EEG power reflect
changes in underlying neuronal activity (Roach and Mathalon,
2008). These power changes are typically referred to as Event-
Related Synchronization and Event-Related Desynchronization,
to describe the changes in EEG power that are related to the
occurrence of a specific event (Pfurtscheller and Da Silva, 1999).
Therefore, one of the most effective and widely used descriptors
of EEG data is the power of the signal calculated in a specific
frequency range (Blankertz et al., 2008). Since the mean value of
the bandpass filtered signal tends to zero, the variance of such
signal can be used to represent its bandpower. To improve the
performance of chosen classification algorithm, the distribution
of the extracted bandpower features is often normalized using a
natural logarithm function (Binias et al., 2016a). The logarithm
of variance feature, that will also be referred to as logvar, was
chosen as the descriptive statistics in the described pipeline. Since
the experimental set up consists of 14 electrodes and each signal
is further decomposed into 10 frequency subbands, a total of
140 logvar features were obtained for each trial i.e., appearance
of visual cue, in each experiment. Before tuning and training
of the prediction algorithms, all features were subjected to the
classical standardization and normalization procedures to obtain
a zero mean value and unitary standard deviation. Section 2.3.1
contains a detailed description of the implemented approach to
the problem of regression.

3. RESULTS

Summary statistics for delay times in response to the cue and a
total number of epochs registered for each subject, are presented
in Table 1. One of the initial hypotheses was that the delay
in reaction time will increase with an increase in the duration
of the experiment. To determine whether a relation between
the time in experiment when the event happened and response
delay, a Robust Linear Model (RLM) was fit to the data. The
RLM is estimated via iteratively reweighted least squares (Huber,
1973). The robust criterion function used for downweighting the
outliers was Hubers T for M estimation (Huber, 1973; Huber
et al., 2013). A more detailed description of this approach lies
beyond the scope of this article. The explanatory variable used for
the modeling was the timestamp of the event i.e., cue appearance.
The delay in response time was the explained variable. Table 1
shows observed slope coefficients of fitted lines, as well as, p-
values describing their statistical significance. Only for subjects
6, 7, 8, 9, 13, 14, 16, and 18, p-values of the slope coefficients
were lower than 0.03 and can therefore be considered statistically

TABLE 1 | Basic statistics of the response delay times summarized for each

subject.

Subject Min.

[s]

Median

[s]

Max. [s] σ [s] Slope

[s/s]

p-value No.

epochs

1 0.408 0.553 1.616 0.305 1.82E-12 0.161 50

2 0.468 0.659 1.129 0.154 7.26E-13 0.527 44

3 0.402 0.592 1.124 0.163 –3.61E-12 0.120 46

4 0.450 0.627 0.934 0.130 –2.35E-12 0.393 45

5 0.386 0.495 0.784 0.097 1.01E-12 0.106 50

6 0.304 0.408 0.704 0.087 –1.14E-12 0.016 48

7 0.443 0.616 1.498 0.234 2.76E-12 0.027 49

8 0.323 0.544 2.113 0.426 7.43E-12 0.020 48

9 0.381 0.487 1.086 0.128 2.26E-12 <1E-5 50

10 0.658 1.199 3.279 0.613 6.57E-12 0.468 48

11 0.412 0.541 0.743 0.093 –8.59E-13 0.250 47

12 0.421 0.560 0.994 0.129 –7.99E-13 0.208 49

13 0.414 0.759 2.610 0.432 5.47E-12 <1E-5 51

14 0.379 0.664 1.982 0.238 –1.90E-12 0.025 49

15 0.278 0.421 0.665 0.091 3.90E-14 0.956 47

16 0.436 1.009 3.192 0.749 1.48E-11 <1E-5 43

17 0.390 0.555 1.660 0.229 –8.87E-13 0.301 50

18 0.375 0.547 1.296 0.181 1.59E-12 0.017 53

19 0.362 0.533 1.947 0.297 –1.99E-12 0.078 51

significant. Slope coefficients for those subjects, as well as for
other subjects, are very close to 0. Given these observations, it can
be assumed that neither a linearly increasing nor decreasing trend
can be attributed to the changes in response delay over time.
Further analysis was conducted on the basic statistics of the data
presented in Table 1, especially the standard deviation σ and the
difference between minimal and maximal values for each subject
with respect to the median. These additional analyses suggest
high variability in response time values throughout each session.

Average MAE scores obtained for different prediction
algorithms are presented in Table 2. It can be observed that the
best average results were obtained with the SVMRBF algorithm
(114 ms). What is worth to notice is that MAE for subjects 10
and 16 is much higher than that of other subjects. However
considering that the average reaction delay was around 600 ms,
this is a relatively small error. Therefore, the obtained results can
be considered satisfactory. Additionally, the standard deviations
of absolute errors (AE) were taken into account and presented
in Table 3. Again, the SVMRBF results were characterized by
the lowest value of 68 ms. The maximal prediction AEs are
shown in Table 4. Given that the presented solution is meant
to be utilized for safety solutions in the future, this metric
is especially important. Failing to predict a single decrease in
performance (i.e., a drastic increase in response delay) might
lead to more serious consequences than averaging a relatively
higher mean error for all events. The average maximal prediction
absolute error exceeded 200 ms for all algorithms, with SVMRBF
outscoring other algorithms by at least 24 ms.

On average, all scores of both LASSO-based algorithms
and Kernel Ridge regression were off by a few milliseconds
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TABLE 2 | Comparison of prediction’s Mean Absolute Errors obtained for

each subject.

ID LASSO

[s]

LASSO-

LARS

[s]

KernelRidge

[s]

SVMRBF

[s]

Shuffled

SVM [s]

1 0.140 0.140 0.144 0.125 0.230

2 0.077 0.077 0.082 0.082 0.144

3 0.076 0.070 0.062 0.077 0.138

4 0.081 0.081 0.103 0.092 0.164

5 0.062 0.062 0.059 0.073 0.091

6 0.046 0.046 0.044 0.050 0.066

7 0.121 0.121 0.138 0.121 0.196

8 0.264 0.264 0.210 0.231 0.317

9 0.067 0.066 0.066 0.065 0.086

10 0.292 0.292 0.380 0.265 0.425

11 0.063 0.063 0.063 0.064 0.079

12 0.058 0.058 0.053 0.061 0.088

13 0.190 0.190 0.199 0.132 0.233

14 0.085 0.086 0.094 0.069 0.104

15 0.058 0.058 0.050 0.059 0.069

16 0.411 0.409 0.406 0.340 0.684

17 0.105 0.105 0.138 0.087 0.146

18 0.074 0.074 0.076 0.073 0.127

19 0.105 0.105 0.106 0.108 0.167

AVG 0.125 0.125 0.130 0.114 0.187

with respect to SVMRBF. In order to properly examine the
performance differences between compared algorithms a one-
way ANOVA test was performed, where all AEs of prediction
were used as observations and each of the regression algorithms
was representing an individual group. The computed F-value of
one-way ANOVA test was 2.246. The associated p-value from
the F-distribution was 0.081. Since the results of performed
ANOVA tests indicate the existence of statistically significant,
albeit subtle, differences between AE obtained within each group
post-hoc t-tests were performed to investigate this furthermore.
Table 5 presents p-values obtained from performed t-tests. The
results indicate that the SVMRBF algorithm allowed to obtain a
significantly (p < 0.05) values of AE.

An additional analysis was carried out in order to validate
the proposed solution further. For this purpose, the best
performing algorithm—the SVMRBF—was trained with shuffled
reaction times. The motivation behind that is to compare
how well does the prediction work against simply learning
to predict the average reaction time for each subject. Average
MAEs obtained for each subject with this approach are
presented in Table 2 under Shuffled SVM column. Insignificant
differences in MAE between properly trained algorithms and
this would indicate that proposed approach is not using EEG
information. F-value of performed one-way ANOVA (with
Shuffled SVM included as one of the groups) was 20.901
(associated p-value is less than 10−16). This indicates some
statistical differences between groups and justifies performing

TABLE 3 | Comparison of Absolute Errors Standard Deviations obtained for

each subject.

ID LASSO

[s]

LASSO-

LARS

[s]

KernelRidge

[s]

SVMRBF

[s]

Shuffled

SVM [s]

1 0.103 0.103 0.107 0.082 0.170

2 0.062 0.062 0.073 0.056 0.102

3 0.039 0.037 0.034 0.044 0.085

4 0.056 0.056 0.072 0.061 0.102

5 0.044 0.044 0.040 0.046 0.053

6 0.020 0.020 0.024 0.025 0.038

7 0.066 0.066 0.081 0.076 0.163

8 0.141 0.142 0.123 0.163 0.262

9 0.038 0.037 0.040 0.038 0.052

10 0.165 0.165 0.196 0.111 0.230

11 0.040 0.040 0.041 0.037 0.040

12 0.040 0.040 0.044 0.042 0.061

13 0.119 0.119 0.121 0.089 0.255

14 0.055 0.055 0.057 0.044 0.081

15 0.033 0.033 0.034 0.032 0.041

16 0.253 0.252 0.312 0.172 0.590

17 0.061 0.061 0.091 0.054 0.156

18 0.058 0.09 0.058 0.055 0.131

19 0.086 0.086 0.088 0.073 0.140

AVG 0.078 0.078 0.086 0.068 0.145

TABLE 4 | Comparison of Maximal Absolute Errors obtained for each subject.

ID LASSO

[s]

LASSO-

LARS

[s]

KernelRidge

[s]

SVMRBF

[s]

Shuffled

SVM [s]

1 0.305 0.304 0.313 0.261 0.476

2 0.180 0.180 0.213 0.168 0.311

3 0.119 0.113 0.103 0.132 0.240

4 0.144 0.144 0.188 0.164 0.282

5 0.129 0.129 0.120 0.143 0.172

6 0.076 0.076 0.083 0.090 0.129

7 0.211 0.211 0.262 0.236 0.485

8 0.446 0.448 0.380 0.467 0.706

9 0.122 0.119 0.124 0.120 0.169

10 0.505 0.505 0.628 0.399 0.719

11 0.131 0.131 0.132 0.126 0.140

12 0.124 0.124 0.131 0.129 0.188

13 0.389 0.389 0.398 0.284 0.719

14 0.167 0.171 0.176 0.139 0.249

15 0.110 0.110 0.103 0.115 0.136

16 0.814 0.911 0.873 0.605 1.666

17 0.201 0.201 0.274 0.161 0.439

18 0.168 0.176 0.177 0.168 0.390

19 0.250 0.250 0.257 0.243 0.442

AVG 0.242 0.242 0.260 0.218 0.424

additional post-hoc t-tests. Results presented in Table 5 prove
that all proposed algorithms perform significantly better than
fitting average.
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TABLE 5 | p-values of pairwise t-tests performed in order to compare absolute

errors of prediction obtained with different regression algorithms.

p-value LASSO LASSO-

LARS

KernelRidge SVMRBF Shuffled

SVM

LASSO 0.991 0.627 0.043 <1E-7

LASSO-

LARS

0.991 0.619 0.044 <1E-7

KernelRidge 0.627 0.619 0.014 <1E-6

SVMRBF 0.043 0.044 0.014 <1E-10

Shuffled

SVM

<1E-7 <1E-7 <1E-6 <1E-10

Since the best performing regression algorithm—SVMRBF—
requires initial feature ranking and selection, analysis of the
nature of top predictors could provide an interesting and
valuable information. Presented in Table 6 is a summary of
most commonly selected features, across all 11 cross-validation,
for each individual subject. Figure 4 presents a histogram of
top feature selections. It can be observed that optimal subset
of features varies highly between subjects with most frequently
selected features—Gamma 1 in AF3 electrode location and
Gamma 1 in F8 electrode location—being common only for 5
subjects each. Further features—Gamma 2 (AF3 electrode), High
Beta (AF3 electrode), Delta (T7 electrode) and Gamma 2 (AF4
electrode)—were common only for 4 subjects.

4. DISCUSSION

The present study provides a novel utilization of EEG to
predict delays in response time. Indeed, we demonstrated that
it is possible to obtain satisfactory results based solely on the
processed EEG signals. The average MAE value for SVMRBF
was 114 ms. This is a relatively small error, which indicates that
the achieved results are very promising. This is particularly true
given that this is the initial phase of this work and the first time
that this problem has been approached. For all subjects, the MAE
was at least a few times smaller than their lowest reaction delay.
The other tested regression algorithms performed significantly
worse than SVMRBF; however the gap between LASSO-LARS,
LASSO, and Kernel Ridge regression was only couple seconds.
With the lowest standard deviation of prediction’s AE, SVMRBF
was also the most precise algorithm. Additional tests proved
that proposed solution performs significantly better than simple
average fitting.

Errors obtained for 12 subjects did not exceed 100 ms. A
higher score for some of the subjects emphasizes the complexity
of the problem. Additionally, another important observation can
be made—that none of the algorithms resulted in the lowest
MAE for all subjects. Altogether, these findings might indicate
that subject-specific algorithm selection might improve the
performance of the proposed solution. However, the significantly
higher errors for few subjects could be related to the phenomena
known as BCI illiteracy (Allison andNeuper, 2010). Indeed, some
studies suggest that there is a group of people not capable of using

TABLE 6 | Summary of top features selected most commonly for individual

subjects, as well as, for all subjects combined for SVMRBF algorithm.

ID Top features

1

Delta (T7), Gamma 1 (FC5), Gamma 2 (F7), Gamma 2 (FC5),Gamma 2

(F7), High Beta (FC5), High Beta (T7), Low Beta (T7), Broad (T7), Mid

Beta (T7)

2
Alpha (AF3), Alpha (F4), Alpha (F7), Alpha (T8), Delta (T8), Gamma 1 (P8),

High Beta (T8), Broad (F7), Broad (T8), Mid Beta (P8)

3 Alpha (F3), Gamma 2 (AF3), Gamma 2 (F3), Low Beta (F3), Mid Beta (P8)

4
Alpha (O1), Alpha (T7), Delta (AF4), Delta (F3), Delta (F4), Delta (F7),

Delta (FC6), Delta (P7), Delta (T7), Low Beta (F3)

5 Delta (P7), Gamma 2 (P7),Gamma 2 (P7), Mid Beta (P7)

6 Gamma 1 (AF3), Broad (AF4), Broad (F8), Raw (AF3), Raw (AF4)

7
Alpha (O1), Alpha (O2), Gamma 1 (F8), Gamma 2 (AF4), Gamma 2 (F8),

Mid Beta (F3)

8

Gamma 1 (AF3), Gamma 1 (AF4), Gamma 1 (F7), Gamma 1 (F8),

Gamma 1 (T8), Gamma 2 (AF3), Gamma 2 (AF4), Gamma 2

(O2),Gamma 2 (F8),Gamma 2 (FC5)

9
Alpha (T7), Delta (T7), Gamma 2 (T7),Gamma 2 (T7), High Beta (T7),

Low Beta (T7), Mid Beta (T7), Theta (T7)

10
Alpha (AF3), Alpha (F3), Alpha (F4), Alpha (F7), Alpha (F8), Alpha (FC5),

Alpha (FC6), Alpha (T8),Gamma 2 (F3),Gamma 2 (F7)

11
Gamma 1 (P8), Gamma 2 (F7),Gamma 2 (T7), High Beta (FC5),

Low Beta (F4), Low Beta (P8)

12
Alpha (P7), Delta (F3), Gamma 2 (AF3),Gamma 2 (F4),Gamma 2 (FC6),

High Beta (AF3), High Beta (O2), High Beta (T7), Broad (P7), Raw (F3)

13
Gamma 1 (F8),Gamma 2 (F8), High Beta (F7), High Beta (F8), High Beta

(O2), Raw (F4)

14
Alpha (AF3), Gamma 1 (AF3), Gamma 2 (AF3),Gamma 2 (AF3), High

Beta (AF3), Low Beta (F3)

15

Alpha (P8), Delta (F4), Gamma 1 (AF4), Gamma 1 (F8), Gamma 1 (O1),

Gamma 1 (P8), Gamma 1 (T8), Gamma 2 (AF4), Gamma 2 (F8),

Gamma 2 (T8)

16
Alpha (FC5), Alpha (O1), Alpha (O2), Alpha (P8), Delta (T7), Gamma 1

(T7), Gamma 2 (T7), Gamma 2 (T7), High Beta (AF3), High Beta (FC5)

17 Gamma 1 (AF3),Gamma 2 (AF3), High Beta (AF3), Low Beta (AF3)

18

Gamma 1 (AF3), Gamma 1 (AF4), Gamma 1 (F3), Gamma 1 (F4),

Gamma 1 (F8), Gamma 1 (FC5), Gamma 1 (T7), Gamma 1 (T8),

Gamma 2 (AF4), Gamma 2 (F3)

19 Alpha (O2), Gamma 1 (T7), Gamma 2 (T7), Low Beta (AF4), Broad (O2)

Overall
Gamma 1 (AF3), Gamma 1 (F8), Gamma 2 (AF3), High Beta (AF3),

Delta (T7), Gamma 2 (AF4)

Frequency ranges correspond to those listed in section 2.3.3. Values in brackets

correspond to electrode locations. Features are sorted alphabetically.

EEG-based BCI systems (Allison and Neuper, 2010; Vidaurre
and Blankertz, 2010). While this possibility must be taken into
consideration in future work this conclusion should not be drawn
hastily to explain the poorer than expected performance of the
proposed solution for some subjects.

The statistics presented in Table 1 suggest no significant trend
i.e., neither increasing nor decreasing in the lengths of delay in
response times. Additionally, high values of standard deviations
(compared to the median) might indicate that the times are
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FIGURE 4 | Histogram of cumulative feature selections for all subjects for SVMRBF algorithms. Only features selected more than once were included.

random, or at least independent from obvious variables such
as timestamp of experiment. Such high variability in the data
is a good prognostic indicator of the experiment. In particular,
when designing machine learning algorithms, great care needs
to be taken to avoid tuning the model to strong correlations
that have no actual relation to the explained or explanatory
variables. If the data where instead aligned to any monotonic
function that is dependent upon the timestamp, then relatively
low regression errors could be obtained; however, EEG-related
variables would have a negligible impact on that score. Since that
is not a case, the obtained results can be considered satisfactory
with a greater confidence.

The analysis of selected features for—the most effective—
SVMRBF algorithm was additionally performed. A high
variability between the optimal subsets of features selected for
individual subjects was observed. In particular, the greatest
number of subjects for whom same features were common
(Gamma 1 in AF3 electrode location and Gamma 1 in F8
electrode location) was 5. This is merely over 25% of the
total number of subjects. Therefore, no detailed conclusions
about the mental processes underlying fast reaction related
actions can be drawn at this stage of the experiment. Such
differences can be explained by both, or either of individual
characteristics of neural activity related to the presented task
or overlapping of bioelectrical source activity caused by the
effects of volume conduction. It is a common knowledge that
due to this phenomena analysis of cortical activity may be less

precise. Additionally, some important spatiotemporal features of
the EEG signal might not be properly observed (Blankertz et al.,
2008). Therefore, among the most important future additions
to the pipeline is the implementation of a spatial filtering step
(Blankertz et al., 2008). The use of a spatial filtering algorithm
has proven to be highly beneficial in various EEG bandpower-
based solutions (Binias et al., 2016b, 2018). Authors believe
that such addition would no only allow to further decrease the
prediction MAE, but also make the analysis of most relevant
frequency bandwidths and cortical locations more accurate
and exhaustive.

Another feature that should be tested, that may have an
impact on prediction error is the removal and correction of
short-time, high-amplitude artifacts such as eye movement,
blinking, and muscle activity. Several approaches, including
Artifact Subspace Reconstruction (ASR) or rejecting the subspace
of ICA coefficients, may provide a potent solution to this
problem (Le et al., 2011; Akhtar et al., 2012; Mullen et al.,
2013). Due to its capability for real-time application, the ASR
method, in particular, should be considered for addition to
the pipeline.

The presented solution may serve as a starting point for
future concepts and improvements. The idea of predicting the
delay in response time to an unexpected event hides a much
broader concept than the one reflected in the present experiment.
The constant monitoring of predicted reaction time might shed
new light on how pilot’s capabilities change over the course
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of a flight. These changes over time might then be used to
trigger an alarm once a significant decrease in predicted reaction
time is expected. Such an approach to addressing the problem
would then provide an overview of the overall level of fatigue,
rather than being a temporally-limited metric. A future follow-
up experiment will be conducted that includes a larger sample
size, and a measurement device that provides greater coverage
of the brain’s cortical areas. This followup experiment will
validate the proposed approach and test the potential of the
implemented solution.
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