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Mathematical models for excitable cells are commonly based on cable theory, which

considers a homogenized domain and spatially constant ionic concentrations. Although

such models provide valuable insight, the effect of altered ion concentrations or

detailed cell morphology on the electrical potentials cannot be captured. In this

paper, we discuss an alternative approach to detailed modeling of electrodiffusion in

neural tissue. The mathematical model describes the distribution and evolution of ion

concentrations in a geometrically-explicit representation of the intra- and extracellular

domains. As a combination of the electroneutral Kirchhoff-Nernst-Planck (KNP) model

and the Extracellular-Membrane-Intracellular (EMI) framework, we refer to this model

as the KNP-EMI model. Here, we introduce and numerically evaluate a new, finite

element-based numerical scheme for the KNP-EMI model, capable of efficiently and

flexibly handling geometries of arbitrary dimension and arbitrary polynomial degree.

Moreover, we compare the electrical potentials predicted by the KNP-EMI and EMI

models. Finally, we study ephaptic coupling induced in an unmyelinated axon bundle

and demonstrate how the KNP-EMI framework can give new insights in this setting.

Keywords: finite element, electrodiffusion, ion concentrations, cell membrane, ephaptic coupling, KNP-EMI

1. INTRODUCTION

The most common computational models for excitable cells are those based on cable theory (Rall,
1977; Koch, 1999). In its standard form, the cable model is based on several simplifying
assumptions, most importantly that the extracellular potential and both intracellular and
extracellular ion concentrations are constant in space and time. Multi-compartmental neuron
models based on cable theory are widely used within the field of neuroscience to simulate large
network of interacting neurons (see e.g., Markram et al., 2015). In such models, only synaptic
interactions between neurons are considered, whereas changes in the extracellular field and
extracellular ion concentrations associated with a neuron’s activity are assumed to be too small
to have any influence on its neighboring neurons (or itself). Although these assumptions are only
approximations, the resulting models still give accurate predictions of neuronal electrodynamics
in many scenarios. Indeed, concentration changes are often limited by neuronal and glial uptake
mechanisms that strive toward maintaining concentrations close to basal levels.
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However, there are also many scenarios that involve
dramatic changes in extracellular ion concentrations. On a large
spatial scale, ion concentration changes are a trademark of
several pathological conditions, such as spreading depression
or epilepsy (Dietzel et al., 1989; Somjen, 2001; Syková and
Nicholson, 2008; Ayata and Lauritzen, 2015). Extracellular
concentration shifts will lead to changes in neuronal reversal
potentials, and can thus affect the dynamical properties of the
neurons (Kager et al., 2000; Øyehaug et al., 2012;Wei et al., 2014).
Under non-pathological conditions, concentration-dependent,
electrodiffusive effects are hypothesized to be important in
specific microdomains of the brain (Savtchenko et al., 2017).
In general, the extracellular ion concentration changes resulting
from a neuronal event can be expected to be largest in regions
where the extracellular space is small and confined.

Similarly, there are several scenarios where the assumption
of a constant extracellular potential may be questionable. For
instance, ephaptic interactions have been reported to play a role
for neural phenomena taking place at both small and large spatial
scales (Holt and Koch, 1999; Bokil et al., 2001; Anastassiou et al.,
2011; Anastassiou and Koch, 2015; Goldwyn and Rinzel, 2016;
Tveito et al., 2017b; Han et al., 2018; Shifman and Lewis, 2019).
Ephaptic interaction (or coupling) is a coupling between neurons
via the extracellular potential, which is hard or impossible to
represent under the aforementioned assumption.

The olfactory nerve is one example in which variations in ion
concentrations and extracellular potentials may be important.
Whereas most axons in the mammalian brain are coated in an
insulating layer of myelin, the axons in the olfactory nerve are
unmyelinated and organized in tight bundles (Doucette, 1984;
Griff et al., 2000). In view of the tight packing, one might
expect large ion concentration variations in the extracellular
space between the olfactory nerve axons. Moreover, the olfactory
nerve axon arrangement will maximize any ephaptic coupling,
with a potential evolutionary purpose (Lowe, 2003). In addition,
diffusion along extracellular ion concentration gradients can
generate so-called diffusion potentials (Halnes et al., 2016;
Savtchenko et al., 2017; Solbrå et al., 2018), which may constitute
an additional ephaptic effect on membrane potentials.

There are several computational studies considering ephaptic
interaction in the brain. Bokil et al. (2001) use a simplified model
based on cable theory, and find that an action potential in a
single axon can evoke action potentials in neighboring axons.
A more detailed model for coupling intra- and extracellular
currents is the Extracellular-Membrane-Intracellular (EMI)
model (Krassowska and Neu, 1994; Ying and Henriquez, 2007;
Agudelo-Toro, 2012; Agudelo-Toro and Neef, 2013; Tveito et al.,
2017a,b). The EMI model incorporates explicit 3D shapes of the
neuron, allowing for morphologically detailed descriptions of the
neuropil. However, neither of the aforementioned frameworks
explicitly model the ion concentrations and can therefore
not capture ephaptic effects due to electrodiffusion, such as
diffusive potentials.

The most physically detailed scheme for modeling
electrodiffusion is the Poisson-Nernst-Planck (PNP)
framework (Lopreore et al., 2008; Pods et al., 2013; Holcman
and Yuste, 2015; Cartailler et al., 2017a,b; Sacco et al., 2017).

The PNP framework is based on explicitly simulating charge
relaxation processes taking place at small spatiotemporal scales
(∼nm and ∼ns), and thus requires high resolutions in both
time and space. Consequently, applications have been limited
to studying dynamics at the ion channel and cell membrane
level. An alternative approach is to assume that the bulk tissue
is electroneutral, thus circumventing the need for explicit
modeling of charge relaxation processes. Models based on the
electroneutrality assumption are therefore numerically stable
for coarser spatial and temporal resolutions, allowing for longer
simulations on larger domains.

On this background, a series of electroneutral models for ionic
electrodiffusion have been developed, both for homogenized
domains (Mori et al., 2008; Halnes et al., 2013, 2016, 2017;
Niederer, 2013; Pods, 2017; Solbrå et al., 2018), and for domains
including an explicit geometrical representation of the cells
and of the extracellular space (Mori and Peskin, 2009). In
particular, Mori and Peskin (2009) presents a finite volume
method for solving a system of equations describing cellular
electrical activity accounting for both geometrical effects and ion
concentration dynamics.

In this paper, we present a variation of the Mori and
Peskin (2009) model and introduce a mortar-based finite
element formulation of this model. Key advantages of the finite
element formulation are (i) the independence of dimension:
the same scheme is applicable for one-, two-, or three-
dimensional domains (with zero-, one-, or two-dimensional
cell membranes/interfaces); (ii) the handling of complicated
interface geometries; and (iii) the straightforward use of more
accurate, i.e., higher order polynomial schemes. The framework
can be viewed as a combination of the EMI framework and the
electroneutralKirchhoff-Nernst-Planck (KNP) framework (Solbrå
et al., 2018), and will henceforth be referred to as the KNP-EMI
framework. Previous numerical schemes for the KNP framework
are restricted to simplified 1D geometries (Halnes et al., 2013,
2015; Sætra et al., 2020), or components within a hybridmodeling
scheme to compute extracellular dynamics (Halnes et al., 2016,
2017; Solbrå et al., 2018).

The KNP-EMI framework can be viewed as an extension of the
EMI framework by the explicit modeling of ion concentrations
and the effects of ionic electrodiffusion. We here evaluate the
effect of these extensions by comparing the KNP-EMI and EMI
solutions in idealized axon domains, and find that the solutions
are qualitatively similar but differ locally. However, the KNP-
EMI simulations give further insights into the importance of
extracellular bulk conductivities for ephaptic couplings in neural
tissue: KNP-EMI simulations of idealized, unmyelinated axon
bundles reveal increased extracellular bulk conductivities and, as
a result, a reduced tendency toward induction of action potentials
in neighboring axons.

2. METHODS

We present the governing equations for ionic electrodiffusion
in neural tissue with a geometrically explicit representation
of the cellular membranes in section 2.1 below. To take full
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FIGURE 1 | Overview of the computational domains. (Left) Idealized axon bundle consisting of 9 cuboid-shaped axons. (Middle) Cross-section of the axon bundle,

where the axons are labeled with repeated labels for symmetric positions. (Right) Idealized 2D computational domain with one intracellular region �i and extracellular

region �e.

advantage of this framework, a numerical solution scheme
capable of efficiently handling three-dimensional, complicated
geometries is required. We here propose a novel numerical
solution scheme using a mortar finite element method (Bernardi
et al., 1993; Agudelo-Toro and Neef, 2013) and a two-
step splitting scheme, described in section 2.2. This solution
algorithm flexibly allows for arbitrary geometries and efficient
solution of the separate subproblems. Our implementation of
this algorithm is openly available at: https://zenodo.org/record/
3492075#.XahQOhh9g5k.

2.1. A Mathematical Framework for
Electrodiffusion With Explicit Membrane
Representation
2.1.1. Representation of the Computational Domain
We consider N domains �in ⊂ R

d (d = 1, 2, 3) for n =

1, . . . ,N representing disjoint intracellular regions (physiological
cells, e.g., neurons) and an extracellular region �e, and let the
complete domain � = �i1 ∪ · · · ∪ �iN ∪ �e with boundary
∂�. See Figure 1 (Right) for an illustration of a sample domain
configuration. We denote the cell membrane associated with cell
in, i.e., the boundary of the physiological cell �in , by Ŵn. We
assume that Ŵn ∩ Ŵm = ∅ for all n 6= m and that Ŵn ∩ ∂� = ∅

(It follows that ∂�in ∩ ∂�e = ∅ for all n = 1, . . . ,N.). For
simplicity and clarity, we present the mathematical model for
one intracellular region �i1 = �i with membrane Ŵ below.
The extension to multiple intracellular regions is immediate (but
notationally cumbersome).

2.1.2. Intracellular and Extracellular Governing

Equations
We will here derive a system of coupled, time-dependent,
non-linear partial differential equations to describe ionic
electrodiffusion in this domain. We consider a set of ion species
K. Typically K will include sodium Na+, potassium K+, and
chloride Cl−. For each ion species k ∈ K and each region r ∈

{i, e}, we model the ion concentrations [k]r :�r × (0,T] → R

(mol/m3) and the electrical potentials φr :�r × (0,T] → R (V).
Conservation of ions for the bulk of each region�r stipulates that

∂[k]r

∂t
+ ∇· Jkr = 0 in�r , for r ∈ {i, e}, (1)

for t ∈ (0,T]. Here, Jkr :�r × (0,T] → R
d is the regional ion

flux density [mol/(m2s)] of ion k. To proceed, we invoke the KNP
assumption of bulk electroneutrality. In this case, the ion flux
densities Jkr satisfy:

− F
∑

k∈K

zk ∇· Jkr = 0 in�r , for r ∈ {i, e}, (2)

where zk is the valence of ion species k and F is Faraday’s constant.
The assumption (2) states that the total net flow of ions (weighted
by the respective valences) out of any infinitesimal representative
bulk volume is zero. Furthermore, we assume that the each
regional ion flux density can be expressed by a Nernst-Planck
equation as follows:

Jkr = −Dk
r∇[k]r −

Dk
r z

k

ψ
[k]r∇φr , in�r , r ∈ {i, e}. (3)

Here, Dk
r denotes the effective diffusion coefficient (m2/s) of ion

species k in the region r. The constant ψ = RTF−1 combines
Faraday’s constant F, the absolute temperature T, and the gas
constant R. The ion flux density, i.e., the flow rate of ions per
unit area, is thus modeled as the sum of two terms: (i) the
diffusive movement of ions due to ionic gradients −Dk

r ∇[k]r
and (ii) the ion concentrations that are transported via electrical
potential gradients, i.e., the ion migration −Dk

r z
kψ−1[k]r∇φr

whereDk
rψ

−1 is the electrochemical mobility. This model ignores
convective effects, and thus assumes that the underlying material
(typically fluid) is at rest. As the potential φe is only determined
up to a constant in Equations (1–3)„ an additional constraint is
required, e.g.,

∫

�e

φe dx = 0. (4)

By inserting (3) into (2) we recognize (from volume conductor
theory) the following expression for the bulk conductivity σr :

σr =
F

ψ

∑

k∈K

Dk
r [k]r(z

k)2. (5)

Notably, the bulk conductivity σr depends on the ion
concentrations [k]r and the diffusion coefficients Dk

r .
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Electrodiffusive models without explicit modeling of the
ion concentrations typically set the bulk conductivity as a
independent parameter (e.g., Krassowska and Neu, 1994; Bokil
et al., 2001; Tveito et al., 2017a).

Inserting (3) into (1) and into (2), we thus obtain a system
of N|K| + N equations (N|K| parabolic, N elliptic) for the
N|K| + N unknown scalar fields. The system remains to be
closed by appropriate initial conditions, boundary conditions,
and importantly interface conditions.

2.1.3. Interface Conditions
We next turn to modeling the cell membrane currents and
membrane potential across the interface Ŵ. We denote the
membrane potential φM as the jump in the electrical potential
over the membrane:

φM = φi − φe on Ŵ. (6)

We introduce the total ionic current density IM :Ŵ × (0,T) →

R [C/(m2s)] across the interface Ŵ. By definition and by
conservation of total charge, we have that

IM ≡ −F
∑

k∈K

zkJke · ne = F
∑

k∈K

zkJki · ni. (7)

where nr denotes the boundary normal pointing out of �r for
r ∈ {i, e}. Next, we assume that IM consists of two components:
(i) a total channel current Ich and (ii) a capacitive current Icap:

IM = Ich + Icap. (8)

We further assume that the total channel current Ich is the sum of
the ion specific channel currents Ik

ch
:

Ich =
∑

k∈K

Ikch, Ikch = Ikch(φM , [k]·, ...). (9)

The channel currents Ik
ch
are subject to modeling. Typical models

for Ik
ch

notably includes an synaptic input current Isyn, leaky
passive neuron, Hodgkin-Huxley etc., and will be detailed further
below in section 2.1.4. On the other hand, the capacitive current
Icap is defined over to be the capacitance CM times the rate of
change of the voltage (Sterratt et al., 2011), hence:

Icap = CM
∂φM

∂t
. (10)

Inserting (10) into (8) and rearranging gives the following
relation for the membrane potential φM :

∂φM

∂t
=

1

CM
(IM − Ich). (11)

It remains to specify a set of interface conditions for the
specific ion fluxes Jkr · nr for r ∈ {i, e}. Here, we propose a
heuristic approach via ion specific capacitive current modeling.
An alternative approach is presented in Mori and Peskin (2009).

As for the total current, we assume that the capacitive current can
be represented as a sum of ion-associated currents:

Icap =
∑

k∈K

Ikcap. (12)

Without loss of generality, we let the ion specific capacitive
current Ikcap,r in region �r at the interface Ŵ be some fraction αkr
of the total capacitive current Icap:

Ikcap,r = αkr Icap. (13)

Specifically, we assume that:

αkr =
Dk
r (z

k)2[k]r
∑

l∈K Dl
r(z

l)2[l]r
, (14)

and note that
∑

k∈K α
k
r = 1 for r ∈ {i, e}. By definition of the

ion currents and the expression for the capacitive current given
by (8), we let the intracellular and extracellular ion fluxes across
the membrane be given by:

Jki · ni =
Ik
ch
+ αki (IM − Ich)

Fzk
, −Jke · ne =

Ik
ch
+ αke (IM − Ich)

Fzk
,

(15)

for k ∈ K.

2.1.4. Modeling Specific Ion Channels
The framework presented thus far allows for general
representations of the ion channel current dynamics. In
particular, the framework admits different choices of ion specific
channel current models Ik

ch
. An advantage of the geometrically

explicit framework is that it allows for different channel currents
models for individual cells and e.g., geometrically heterogeneous
material properties. We here summarize two examples of ion
specific channel currents: a passive membrane model (Sterratt
et al., 2011) and the Hodgkin-Huxley model (Hodgkin and
Huxley, 1952).

2.1.4.1. Passive membrane dynamics
We model the passive membrane channel current for ion species
k as (Sterratt et al., 2011):

Ikch(φM) = gkL(φM − Ek), (16)

where gkL is a constant leak conductivity, and E
k is the ion specific

reversal potential, given by

Ek =
RT

zkF
ln

[k]e

[k]i
,

with valence zk, Faraday’s constant F, absolute temperature T,
and gas constant R.
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2.1.4.2. Hodgkin-Huxley membrane dynamics
In order to model active membrane dynamics, we use the
standard Hodgkin-Huxley membrane model (Hodgkin and
Huxley, 1952). The ion species under consideration are sodium
Na+, potassium K+, and chloride Cl−, and the model additionally
introduces three gating variables m, h, n associated with sodium
channel activation, potassium channel activation, and potassium
channel inactivation, respectively. The membrane potential φM is
then modeled by the following specialization of (11):

∂φM

∂t
=

1

CM
(IM − INach − IKch − IClch), (17)

with ion specific membrane channel currents:

INach (φM) = ḡNam3h(φM − ENa), (18)

IKch(φM) = ḡKn4(φM − EK), (19)

IClch(φM) = ḡCl(φM − ECl). (20)

Here, ḡk is the maximal conductivity for ion species k. The gating
variables are governed by the following ODE:

∂p

∂t
= αp(φM)(1− p)− βp(φM)p, (21)

for p ∈ {m, h, n}. The rate constants αp and βp take the form

αp(φM) = p∞(φM)/τp, (22)

βp(φM) = (1− p∞(φM))/τp, (23)

where p∞ is the steady state value for activation and τp is the
time constant.

2.1.5. Initial and Boundary Conditions
We assume that initial conditions are given for all ion
concentrations, both intracellularly and extracellularly:

[k]r(x, 0) = [k]0r (x) x ∈ �r , r ∈ {i, e}. (24)

Furthermore, we assume that these conditions are compatible
with the assumption of bulk electroneutrality, i.e., that the initial
state of the system satisfies:

∑

k∈K

zk[k]0e = 0. (25)

In addition, we assume that an initial condition is given for the
membrane potential:

φM(x, 0) = φ0M(x), x ∈ Ŵ. (26)

Finally, a set of boundary conditions will close the system.
We describe specific boundary conditions in the numerical
experiments in section 2.3.

2.1.6. Summary of Governing Equations
In summary, the mathematical framework for electrodiffusion
with explicit geometrical representation of the cell membranes
is comprised of the bulk equations (1), (2) with (3), the interface
conditions (7), (11) with (6) and (9), and (15) with (14), the initial
conditions (24) and (26), and additional boundary conditions.
We will refer to this set of equations as the KNP-EMI framework.

2.2. Numerical Methods
To solve the KNP-EMI framework numerically, we consider a
finite difference time integration scheme, a splitting scheme, and
a mortar finite element method in space. We derive the new
finite element scheme and describe the splitting algorithm in the
sections below.

2.2.1. Weak Formulation of the Governing Equations
Multiplying (1) with test functions vkr (for r ∈ {i, e}), integration
over the intracellular and extracellular domains �i and �e

separately, integration by parts, and inserting (15) for the ion
fluxes across the membrane, yields

∫

�i

∂[k]i

∂t
vki − Jki · ∇vki dx+

1

Fzk

∫

Ŵ

(

Ikch + α
k
i (IM − Ich)

)

vki ds = 0,

(27)
∫

�e

∂[k]e

∂t
vke − Jke · ∇vke dx−

1

Fzk

∫

Ŵ

(

Ikch + α
k
e (IM − Ich)

)

vke ds

= −

∫

∂�

Jke · ne v
k
e ds. (28)

Similarly, multiplying (2) by test functions wr for r ∈ {i, e},
integration by parts and inserting (7) for the total membrane
current, yields

F
∑

k∈K

zk
∫

�i

Jki · ∇ wi dx−

∫

Ŵ

IM wi ds = 0, (29)

F
∑

k∈K

zk
∫

�e

Jke · ∇ we dx+

∫

Ŵ

IM we ds = F
∑

k∈K

zk
∫

∂�

Jke · ne we ds.

(30)

The zero average constraint (4) is enforced by introducing an
additional unknown (a Lagrange multiplier) ce ∈ R along with
a test function de ∈ R and letting

∫

�e

φede dx = 0. (31)

Finally, multiplying (11) by a test function q, and integrating over
Ŵ yields

CM

∫

Ŵ

∂(φi − φe)

∂t
q ds−

∫

Ŵ

(IM − Ich) q ds = 0. (32)

We remark that this is a weak formulation of a set of time-
dependent, non-linear equations. In particular, recall that Ich and
Ik
ch

depend on φM and [k]r cf. (9) while αkr depends on [k]r
cf. (14).
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To solve this system numerically, we consider the
following approximations.

• We discretize the time derivatives in (27)–(28) and (32) using
a finite difference method.

• We approximate Jkr at time tn by the linearized ion flux density
[cf. (3)]:

Jkr ≈ −Dk
r∇[k]nr −

Dk
r z

k

ψ
[k]n−1

i ∇φni .

• We evaluate αkr at time tn by the previous value [cf. (14)]:

αkr ≈
Dk
r (z

k)2[k]n−1
r

∑

l∈K Dl
r(z

l)2[l]n−1
r

. (33)

Moreover, we evaluate Ich and the discretization of (32)
depending on the choice of ion channel model (cf. section 2.1.4)
as follows.

• For the passive model, we insert the linear relation given
by (16) directly in (27)–(28) and (32). Moreover, the implicit
discretization of (32) reads as:

∂(φi − φe)

∂t
≈ 1t−1(φnM − φn−1

M ), (34)

at time tn with φnM = φni − φne and1t = tn − tn−1.
• For the Hodgkin-Huxley model, we use the following two-

step splitting procedure. Consider n ∈ [1, . . . ,N] with tn −

tn−1 = 1t, and assume that [k]n−1
r and φn−1

M at time step tn−1

are known.

– In the first (ODE) step, we update the membrane potential
φnM at time step tn by solving the ODE system (17)–(23),
with IM set to zero, using 25 explicit (forward) Euler steps
of size1t∗ = 1t/25.

– In the second (PDE) step, we solve for [k]nr , φ
n
r and InM

(for r ∈ {i, e}) in the linear system arising from spatial
discretization of (27)–(32), with Ich set to zero in (32), and
Ich approximated by

Ich ≈ Ich(φ
n
M , [k]n−1

... ), (35)

in (27)–(28), where φnM is the membrane potential solution
at tn from the ODE step (see section 2.2.2 for details). The
implicit discretization of (32) reads as:

∂(φi − φe)

∂t
≈ 1t−1(φnM − φn−1

M ), (36)

where φnM = φni −φ
n
e is the membrane potential solution at

tn from the ODE step.

The steps are repeated until global end time tN is reached.

2.2.2. Spatial Discretization
To numerically solve the PDE part of the governing equations
defined on the domain � = �i ∪ �e, we use a mortar
finite element method. We discretize each subdomain �r by a

conforming mesh Tr for r ∈ {i, e}. We assume that the meshes
Ti and Te match at the common interface Ŵ, and define a (lower-
dimensional) mesh TŴ of this interface (cf. Figure 2).

Next, we introduce separate finite element spaces for
approximating the unknown fields in the weak formulation (27)–
(32), [k]r :�r → R,φr :�r → R for r ∈ {i, e}, Im :Ŵ → R.
We approximate the ion concentrations [k]r and potentials φr
using continuous piecewise linear polynomials (linear Lagrange
finite elements) over the meshes Tr . These fields thus have
degrees of freedom defined on the vertices of the extracellular and
intracellular meshes. The Lagrange multiplier ce is approximated
using a single real number. Furthermore, the transmembrane
current IM is approximated using continuous piecewise linear
polynomials over the facet mesh TŴ . We denote the finite
element spaces for approximating [k]r by Vk

r , the spaces for
approximating φr byWr and the spaces for approximating IM by
Q. Let 〈u, v〉� =

∫

�
uv dx. For notational simplicity, we denote

the approximation of [k]r by [k]r , the approximation of φr by φr ,
and the approximation of IM by IM below. We here use linear
polynomials for concreteness, but the formulation also applies
directly for higher order polynomials.

We then solve the PDE step in the two-step splitting scheme
described in section 2.2.1 as follows: given [k]nr ∈ Vk

r and φ
n
M ∈ Q

at time step tn, and the previously computed Ik
ch

and αk [cf. (35)

and (33)], find the ion concentrations [k]r ∈ Vk
r , the potentials

φr ∈ Wr , the total transmembrane current density IM ∈ Q at
time step tn+1 (and the Lagrange multiplier ce ∈ R) such that:

1

1t
〈[k]i, v

k
i 〉�i − 〈Jki ,∇vki 〉�i + 〈

αki

Fzk
IM , vki 〉Ŵ

=
1

1t
〈[k]ni , v

k
i 〉�i − 〈

Ik
ch
− αki Ich

Fzk
, vki 〉Ŵ ,

1

1t
〈[k]e, v

k
e〉�e − 〈Jke ,∇vke〉�e − 〈

αke

Fzk
IM , vke〉Ŵ

=
1

1t
〈[k]ne , v

k
e〉�e + 〈

Ik
ch
− αke Ich

Fzk
, vke〉Ŵ

− 〈Jke · ne, v
k
e〉∂�, F

∑

k∈K

zk〈Jki ,∇wi〉�i

− 〈IM ,wi〉Ŵ = 0,

F
∑

k∈K

zk〈Jke ,∇we〉�e + 〈ce,we〉�e + 〈IM ,we〉Ŵ

= F
∑

k∈K

zk〈Jke · ne,we〉∂�,

〈φe, de〉�e = 0,

1

1t
〈φi − φe, q〉Ŵ −

1

CM
〈IM , q〉Ŵ =

1

1t
〈φnM , q〉Ŵ ,

for all vki ∈ Vk
i , v

k
e ∈ Vk

e , wi ∈ Wi, we ∈ We, de ∈ R and
q ∈ Q. The ion flux terms on the right-hand side are replaced
by appropriate boundary conditions in the subsequent sections.

To evaluate the accuracy of the numerical solutions defined
over �r for r ∈ {i, e}, we use the standard L2 and H1 norms
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FIGURE 2 | Schematic representation of meshes for the discretization of the PDE part of the governing electrodiffusive equations using a mortar finite element

method. Mesh Te of the extracellular subdomain �e (left), mesh Ti of the intracellular subdomain �i (middle) and mesh TŴ of the interface Ŵ (right). Note that the

shared facets of the extracellular and intracellular meshes form the (codimension 1) mesh of the interface.

denoted by ‖ · ‖0 and ‖ · ‖1, respectively: for u :�r → R,

‖u‖20 =

∫

�r

u2 dx, ‖u‖21 =

∫

�r

u2 + ∇ u · ∇ u dx.

In addition, for I :Ŵ → R, we define the broken L2-norm by
summing over the L2-norms over the mesh cells of the interface
mesh TŴ :

‖I‖20,Ŵ =
∑

f∈TŴ

‖I|f ‖
2
0.

2.2.3. Implementation
The numerical scheme was implemented using a mixed
dimensional framework from the FEniCS finite element
library (Alnæs et al., 2015). The linear systems arising in the
numerical experiments were solved using a direct (MUMPS)
solver. The code is publicly available at: https://zenodo.org/
record/3492075#.XahQOhh9g5k.

2.2.4. Comparison With EMI Framework
In the numerical experiments comparing the KNP-EMI and the
EMI models, the EMI model is discretized using the mortar finite
element formulation as presented in Tveito et al. (2017b).

2.3. Computational Models and Parameters
We consider two model set-ups for testing the presented
methodology (Model A and B), amodel (Model C) for comparing
simulation results between the KNP-EMI and EMI frameworks,
and a model for studying ephaptic coupling (Model D). The
model set-ups are described in detail here. The model parameters
are given in Table 1, unless otherwise stated in the text.
We assume that all axons in each simulation have the same
membrane channel current Ich.We denote the spatial coordinates
in this and subsequent sections by (x, y, z).

2.3.1. Model A: One Axon With a Passive Membrane

Model
For Model A, we consider a two-dimensional domain � = �i ∪

�e = [0, 6.0 · 10−5] × [0, 6.0 · 10−5] m, with one intracellular
domain (cell)�i = [6.0 ·10−6, 5.6 ·10−5]× [2.8 ·10−5, 3.4 ·10−5]
m. We mesh this domain by dividing the domain into n × m

rectangles, with 1x = 6.0 · 10−5/n and 1y = 3.0 · 10−5/m,
and dividing each rectangle into two triangles by a diagonal, for
a series of 1x = 1y = 2.0 · 10−6, 1.0 · 10−6, 5.0 · 10−7, 2.5 ·

10−7 m. We model Ich using the passive model, as described in
section 2.1.4, and prescribe a synaptic input Isyn of the form

Isyn = gsynH(x)e
t−t0
α (φM − ENa), (37)

where α is the synaptic time constant, H(x) = {1 for x ∈

Z and 0 elsewhere} for an interval Z. We let Z = [5.0 · 1.0−5, 1.0 ·
10−5]m, and set t0 = 0, gsyn = 1.25 · 103 S/m2. At the exterior
boundary ∂�, we apply the boundary condition

Jke · ne = 0, at ∂�, (38)

describing that no ions can leave or enter the system.

2.3.2. Model B: One Axon With a Passive Membrane

Model and Non-physical Parameters
To evaluate the numerical accuracy of the mortar finite element
scheme presented in section 2.2, we construct an analytical
solution using the method of manufactured solutions (Roache,
1998). In particular, we let the analytical solution to (1)–(15) be
given by:

[Na]ei = 0.7+ 0.3 sin(2πx) sin(2πy) exp(−t), in�i,

[Na]ee = 1.0+ 0.6 sin(2πx) sin(2πy) exp(−t), in�e,

[K]ei = 0.3+ 0.3 sin(2πx) sin(2πy) exp(−t), in�i,

[K]ee = 1.0+ 0.2 sin(2πx) sin(2πy) exp(−t), in�e,

[Cl]ei = 1.0+ 0.6 sin(2πx) sin(2πy) exp(−t), in�i,

[Cl]ee = 2.0+ 0.8 sin(2πx) sin(2πy) exp(−t), in�e,

φei = cos(2πx) cos(2πy)(1+ exp(−t)), in�i,

φee = cos(2πx) cos(2πy), in�e,
(39)

with the passive model Ich = φM and with Isyn = 0. We assume

that the parameter values all equal one: Cm = Dk
i = Dk

e = F =

G = R = 1, and that K = {Na+, K+, Cl−}. We consider a
two-dimensional domain � = �i ∪ �e = [0, 1] × [0, 1], with
one intracellular domain �i = [0.25, 0.75] × [0.25, 0.75]. The
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TABLE 1 | The physical parameters and initial values used in the simulations.

Parameter Symbol Value Unit References

Gas constant R 8.314 J/(K mol)

Temperature T 300 K

Faraday’s constant F 9.648 · 104 C/mol

Membrane capacitance CM 0.01 F/m

Na+ diffusion coefficient DNa
r 1.33 · 10−9 m2/s Hille, 2001

K+ diffusion coefficient DK
r 1.96 · 10−9 m2/s Hille, 2001

Cl− diffusion coefficient DCl
r 2.03 · 10−9 m2/s Hille, 2001

Na+ leak conductivity gNaL 2.0 S/m2

K+ leak conductivity gKL 8.0 S/m2

Cl- leak conductivity gClL 0 S/m2

K+ HH max conductivity ḡK 360 S/m2 Hodgkin and Huxley, 1952

Na+ HH max conductivity ḡNa 1200 S/m2 Hodgkin and Huxley, 1952

Synaptic time constant α 1.0 · 10−3 s

Initial intracellular Na+ concentration [Na]0i 12 mM Pods et al., 2013

Initial extracellular Na+ concentration [Na]0e 100 mM Pods et al., 2013

Initial intracellular K+ concentration [K]0i 125 mM Pods et al., 2013

Initial extracellular K+ concentration [K]0e 4 mM Pods et al., 2013

Initial intracellular Cl− concentration [Cl]0i 137 mM Pods et al., 2013

Initial extracellular Cl− concentration [Cl]0e 104 mM Pods et al., 2013

Initial membrane potential φ0
M −67.74 · 10−3 V

Initial HH gating value (Na+ activation) m0 0.0379 Hodgkin and Huxley, 1952

Initial HH gating value (Na+ inactivation h0 0.688 Hodgkin and Huxley, 1952

Initial HH gating value (K+ activation) n0 0.276 Hodgkin and Huxley, 1952

Global time step 1t 1.0 · 10−5 s

Local time step 1t∗ 1t/25 s

The values are collected from Hodgkin and Huxley (1952), Hille (2001), and Pods et al. (2013). All units are reported in SI base units.

domain is meshed as for Model A (cf. section 2.3.1) for a series of
n = m = 8, 16, 32, 64, 128, 256. In the numerical experiments for
this test case, we initially let1t = 1

64 · 10
−5, and then quarter the

timestep in each series. The errors are evaluated at t = 2
64 · 10

−5.

2.3.3. Model C: Multiple Axons With a Passive

Membrane Model
ForModel C, we define three different two-dimensional domains:
(C1) a domain with one intracellular region (cell), (C2) a domain
with two intracellular regions with a distance of 4.0 · 10−6m
in the y-direction between the cells, and (C3) a domain with
two intracellular regions with a distance of 1.0 · 10−5m in the
y-direction between the cells. More precisely, we let

Model C1: � = �i ∪ �e = [0, 1.2 · 10−4] × [0, 1.2 · 10−4] m,
�i = [3.5 · 10−5, 8.5 · 10−5]× [5.7 · 10−5, 6.3 · 10−5] m.

Model C2: � = �1
i ∪�

2
i ∪�e = [0, 1.2·10−4]×[0, 1.2·10−4] m,

with two cells�1
i = [3.5·10−5, 8.5·10−5]×[5.2·10−5, 5.8·10−5]

m and�2
i = [3.5 · 10−5, 8.5 · 10−5]× [6.2 · 10−5, 6.8 · 10−5] m.

Model C3: � as in Model C2 but with �1
i = [3.5 · 10−5, 8.5 ·

10−5] × [4.9 · 10−5, 5.5 · 10−5] m and �2
i = [3.5 · 10−5, 8.5 ·

10−5]× [6.5 · 10−5, 7.1 · 10−5] m.

The ion channel currents Ik
ch
are modeled using the passive model

described in section 2.1.4. The synaptic input current model (37)
is applied with gsyn = 1.25 · 103 S/m2, t0 = 0, and with Z = [3.5 ·

10−5, 4.0 · 10−5] m for Model C1, Z1 = [6.0 · 10−5, 6.5 · 10−5] m
forModel C2, and Z2 = [5.5·10−5, 6.0·10−5] m forModel C3. At
the exterior boundary ∂�, we apply the boundary condition (38).
In order to compare the KNP-EMI and the EMI framework,
we set the bulk conductivity σr in the EMI model by (5) with
initial values [k]0r for the ion concentration [k]r . Note that σr will
generally change over time.

2.3.4. Model D: Axon Bundle With Active

Hodgkin-Huxley Membrane Model
For Model D, we consider a domain� = �1

i ∪ · · · ∪�9
i ∪�e =

[0, 4.0 · 10−4] · [0, 1.4 · 10−6]× [0, 1.4 · 10−6] m, where 9 cuboidal
cells of size 3.9 · 10−4 × 2.0 · 10−7 × 2.0 · 10−7 m are placed
uniformly throughout� (cf. Figure 1). The distance between the
cells is 1.0 · 10−7 m. The domain is meshed as in section 2.3.1
with1y = 1z = 1.0 · 10−7 m and1x = 1.25 · 10−6 m. The ion
channel currents are modeled using the Hodgkin-Huxley model
as described in section 2.1.4. An action potential is induced every
20 ms throughout the simulations by applying the synaptic input
current model (37) with gsyn = 40 S/m2, α = 0.002 s, and t0 =

0, 0.02, 0.04 s. We ran two sets of simulations: (1) stimulating,
i.e., applying the synaptic current to the membrane of, the middle
axon only (axon A in Figure 1), and (2) stimulating the 8 axons
around axon A (axons B,C in Figure 1). At the exterior boundary,
we apply the boundary condition (38).
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FIGURE 3 | Model A: Comparison (under mesh refinement) of extracellular potential (A–D) and extracellular sodium concentration (E–H) in the surroundings of a

single simplified axon at t = 10 ms.

3. RESULTS

We here present results from numerical experiments using
the KNP-EMI framework and the numerical method presented
above. We start by assessing the accuracy (Model A and B)
and performance (Model A and D) of the numerical method.
Next, we compare the KNP-EMI and EMI frameworks in
idealized 2D axons (Model C), before we finally investigate
ephaptic coupling in unmyelinated axons bundles (Model D).
Note that the values in this section are given in physiologically
reasonable units for the sake of readability; i.e., the results

have been converted from the SI base units, e.g., seconds
to milliseconds.

3.1. Numerical Verification and Accuracy
To evaluate the numerical accuracy and convergence of
the proposed numerical approach, we consider two sets of
experiments. First, we examine the convergence of the model
under mesh refinement by visual inspection. Second, we perform
a formal convergence analysis for a smooth test case with
manufactured solution.
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TABLE 2 | Approximation errors (with convergence rates in parenthesis) for the extracellular and intracellular concentrations and potentials, and transmembrane current,

under simultaneous refinement in time and space.

n
∥

∥[Na]i − [Na]i,h
∥

∥

0

∥

∥[Na]e − [Na]e,h
∥

∥

0

∥

∥[Na]i − [Na]i,h
∥

∥

1

∥

∥[Na]e − [Na]e,h
∥

∥

1

8 9.01E-03 (—) 3.12E-02 (—) 2.54E-01 (—) 8.80E-01 (—)

16 2.33E-03 (1.95) 8.08E-03 (1.95) 1.30E-01 (0.97) 4.50E-01 (0.97)

32 5.88E-04 (1.99) 2.04E-03 (1.99) 6.53E-02 (0.99) 2.26E-01 (0.99)

64 1.47E-04 (2.00) 5.10E-04 (2.00) 3.27E-02 (1.00) 1.13E-01 (1.00)

128 3.69E-05 (2.00) 1.28E-04 (2.00) 1.64E-02 (1.00) 5.67E-02 (1.00)

256 9.22E-06 (2.00) 3.21E-05 (1.99) 8.18E-03 (1.00) 2.86E-02 (0.99)

n
∥

∥[K]i − [K]i,h
∥

∥

0

∥

∥[K]e − [K]e,h
∥

∥

0

∥

∥[K]i − [K]i,h
∥

∥

1

∥

∥[K]e − [K]e,h
∥

∥

1

8 9.01E-03 (—) 1.04E-02 (—) 2.54E-01 (—) 2.93E-01 (—)

16 2.33E-03 (1.95) 2.69E-03 (1.95) 1.30E-01 (0.97) 1.50E-01 (0.97)

32 5.88E-04 (1.99) 6.79E-04 (1.99) 6.53E-02 (0.99) 7.54E-02 (0.99)

64 1.47E-04 (2.00) 1.70E-04 (2.00) 3.27E-02 (1.00) 3.78E-02 (1.00)

128 3.69E-05 (2.00) 4.25E-05 (2.00) 1.64E-02 (1.00) 1.89E-02 (1.00)

256 9.22E-06 (2.00) 1.20E-05 (1.82) 8.18E-03 (1.00) 1.02E-02 (0.89)

n
∥

∥[Cl]i − [Cl]i,h
∥

∥

0

∥

∥[Cl]e − [Cl]e,h
∥

∥

0

∥

∥[Cl]i − [Cl]i,h
∥

∥

1

∥

∥[Cl]e − [Cl]e,h
∥

∥

1

8 1.80E-02 (—) 4.16E-02 (—) 5.08E-01 (—) 1.17E+00 (—)

16 4.67E-03 (1.95) 1.08E-02 (1.95) 2.60E-01 (0.97) 6.00E-01 (0.97)

32 1.18E-03 (1.99) 2.72E-03 (1.99) 1.31E-01 (0.99) 3.02E-01 (0.99)

64 2.95E-04 (2.00) 6.82E-04 (2.00) 6.54E-02 (1.00) 1.51E-01 (1.00)

128 7.38E-05 (2.00) 1.71E-04 (1.99) 3.27E-02 (1.00) 7.56E-02 (1.00)

256 1.84E-05 (2.00) 4.48E-05 (1.93) 1.64E-02 (1.00) 3.85E-02 (0.97)

n
∥

∥φi − φi,h

∥

∥

0

∥

∥φe − φe,h

∥

∥

0

∥

∥φi − φi,h

∥

∥

1

∥

∥φe − φe,h

∥

∥

1

8 9.37E-02 (—) 6.60E-02 (—) 1.69E+00 (—) 1.42E+00 (—)

16 2.52E-02 (1.90) 1.80E-02 (1.87) 8.66E-01 (0.96) 7.42E-01 (0.94)

32 6.41E-03 (1.97) 4.63E-03 (1.96) 4.35E-01 (0.99) 3.76E-01 (0.98)

64 1.61E-03 (2.00) 1.17E-03 (1.99) 2.18E-01 (1.00) 1.89E-01 (1.00)

128 3.96E-04 (2.02) 2.95E-04 (1.98) 1.09E-01 (1.00) 9.44E-02 (1.00)

256 9.04E-05 (2.13) 8.14E-05 (1.86) 5.45E-02 (1.00) 4.74E-02 (0.99)

n
∥

∥IM − IM,h

∥

∥

0,Ŵ

8 7.03E+00 (—)

16 2.54E+00 (1.47)

32 8.93E-01 (1.51)

64 3.14E-01 (1.51)

128 1.11E-01 (1.50)

256 3.94E-02 (1.49)

Approximation errors are measured at t = 2
64 · 10−5, i.e., e.g., ‖[Na]r − [Na]r,h‖0 = ‖[Na]r (t)− [Na]r,h (t)‖0 and similarly for all reported values. The largest time step is 1t = 1/64 · 10−5;

the time step was quartered in each refinement level.

3.1.1. Inspection of Convergence Under Mesh

Refinement
The extracellular potential and sodium (Na+) concentration of
Model A for four different mesh resolutions are shown at t =

10 ms in Figure 3. The system quickly (after 3 ms) reaches a
semi-steady state where the membrane potential does not change
notably over time, but there is a slow exchange of sodium
(Na+) and potassium (K+) ions due to the leak currents. The

extracellular sodium concentration does not appear to change
visibly under mesh refinement, and the extracellular potential
seems to reach a converged state for the finest mesh resolution.
More precisely, the mean relative difference (over time) between
the solutions for the finest mesh (1x = 0.25) and the coarser
mesh resolutions 1x = 2.0, 1x = 1.0, and 1x = 0.5 are
4.8 · 10−5, 4.6 · 10−6, and 1.6 · 10−6 for [Na]e, respectively, and
2.0 · 10−2, 2.3 · 10−3, and 4.3 · 10−4 for φe, respectively, at the
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point (4, 31). We conclude the differences between the solutions
are small and decreasing, indicating convergence of the method.

3.1.2. Convergence Rates of Numerical Solutions
Using Model B, we analyzed the rates of convergence for the
approximations of all solution variables under refinement in
space and time. Based on properties of the approximation
spaces and the time discretization, the optimal theoretical
rate of convergence is 1 in the H1-norm and 2 in the
L2-norm and the broken L2-norm. Our numerical findings
(Table 2) are in agreement with the theoretically optimal
rates. We observe second order convergence in the L2-norm
for the approximation of the extracellular and intracellular
concentrations and potentials, and first order convergence in the
H1-norm. For the transmembrane ionic current IM , we observe
a convergence rate of 1.5 in the broken L2-norm. The loss of
convergence of ∼ 0.5 for IM is likely due to a lack of smoothness
of the interface in the test domain.

3.1.3. Effect of Boundary Conditions
To examine whether the size of the extracellular space (ECS)
affects the solution near the axon, we consider Model C1 with
both the default size of the ECS (120 × 120 µm) and with
an extended ECS (240 × 240 µm). The axon is placed in
the same position in both cases. The two cases do not differ
substantially in the extracellular Na+ concentrations or the
extracellular potentials near the axon (Figure 4). The maximal
difference between the default model and the model with
extended extracellular space, measured 2µm above the axon at
t = 10 ms, for φe and [Na]e are 6.33 · 10

−3 mV and 5.72 · 10−6

mM, respectively.

3.2. Numerical Performance
To evaluate the performance and scalability of the
implementation of the presented framework, we consider
an additional set of experiments measuring the memory usage
and CPU timings for simulations of Model A (2D) and D (3D).
We observe that the memory usage increases sublinearly with
the system size: increasing the system size by a factor of four
for Model A leads to an increase in memory of a factor 1 − 3
(Table 3). We observe that the CPU time for the simulations
grows superlinearly with the system size: increasing the system
size by a factor of four for Model A leads to an increase in total
simulation time of a factor 3 − 5 (Table 3). This behavior is
expected as the linear systems are solved using a direct solver.
The total simulation time is dominated by the cost of finite
element assembly and linear solves (70–94%). For small system
sizes, the time required for finite element assembly is comparable
to that of the linear solves. However, for larger system sizes, and
especially in 3D, the linear solution time dominates the total
simulation cost.

3.3. Comparison of the KNP-EMI and EMI
Frameworks in Idealized Axons
The KNP-EMI framework extends the EMI framework by
explicitly modeling the ionic concentrations and incorporating
ionic electrodiffusion. A key question is when and to what extent

the solutions from the two (KNP-EMI and EMI) frameworks
differ. To compare the two frameworks, we consider threemodels
(Model C1, C2, and C3) and compare the corresponding solution
of the KNP-EMI equations (the KNP-EMI solution) with the
solution of the EMI equations (the EMI solution).

We first consider the extracellular potential resulting from
stimulating a single axon (Model C1) using the KNP-EMI and
EMI frameworks (Figure 5). We observe that the KNP-EMI
and EMI solutions are qualitatively very similar: an extracellular
potential difference of ∼0.12 mV along the length of the axon
develops in both (Figures 5A–C).

Next, we compare the extracellular potentials resulting from
stimulating two neighboring axons (Model C2 and C3) using the
KNP-EMI and the EMI frameworks (Figure 6). The two models
differ by the distance between the axons. For Model C2, we again
observe that the KNP-EMI and EMI solutions match closely, but
differ locally. The maximal difference between the extracellular
potential solutions is 0.016 mV (Figures 6A–C). For Model C3,
we observe the analogous behavior, but note that the extracellular
field is weaker than for Model C2 (Figures 6D–F).

3.4. Ephaptic Coupling in Unmyelinated
Axon Bundles
We now turn to explore the effect of ephaptic coupling in
an idealized axon bundle with 9 axons using the KNP-EMI
framework. We consider two sets of simulations using Model
D: (1) stimulating, i.e., applying the synaptic current to the
membrane of, the middle axon only (axon A, Figure 1), and (2)
stimulating the 8 axons around axon A (axons B,C, Figure 1).

3.4.1. Electrodiffusion Effects in Unmyelinated Axon

Bundles
To investigate ephaptic coupling, we first apply a synaptic current
to stimulate the cell membrane of the middle axon of the
axon bundle (axon A, Figure 1, Model D). The synaptic current
induces a series of action potentials in axon A and also induces
substantial changes in the surrounding extracellular potential
(Figures 7A,B). The extracellular potential fluctuations further
spread to axon B. However, the ephaptic effect on the membrane
potential in axon B is relatively small (1–2 mV), and is not
sufficient to reach the threshold for inducing an action potential
(Figure 7C).

The ephaptic effect is stronger if we simultaneously stimulate
the cell membranes of all eight peripheral axons (axons B–
C). Again, we observe a series of action potentials in the eight
stimulated axons. Moreover, the combined ephaptic currents
have a pronounced excitatory effect on axon A, but again fail to
induce an action potential there (Figure 7D).

The difference between the EMI and KNP-EMI simulations
are due to the time evolution of the intracellular and extracellular
ion concentrations, accounted for by the KNP-EMI model
but not by the EMI model. For each action potential fired,
the Nernst potential will change due to alterations in the
ionic concentrations using the KNP-EMI framework (Figure 8),
whereas in the EMI framework the Nernst potential is constant.

Our predictions differ from those made in a similar study
by Bokil et al. (2001), who found that a single active neighbor
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FIGURE 4 | Comparison of results in Model C1 with the default size of ECS (120 × 120 µm), and with an extended ECS (240 × 240 µm) at t = 10 ms. The upper

panels display the ECS potential, both at 2µm above the axon (A) and in the surrounding ECS for the default model (B) and for the model with extended ECS (C). The

lower panels display the ECS sodium concentration, both at 2µm above the axon (D) and in the surrounding ECS for the default model (E) and for the model with

extended ECS (F).

can induce action potentials in all nearby axons. We hypothesize
that the main explanation for these differences is that the
bulk conductivities differ between the two studies. Here, in the
KNP-EMI framework, the bulk conductivities are functions of
the ion concentrations [cf. (5)]. Using realistic values for the
intra- and extracellular ion concentrations, we obtained bulk
conductivities values of σi ≈ 2.01µS/µm and σe ≈ 1.31
S/m. In contrast, Bokil et al. set the bulk conductivities as
free parameters, with σi = 1 S/m and σe = 0.1 S/m as the

corresponding effective bulk conductivities in the EMI model.
Tveito et al. (2017b) found that the ephaptic current was inversely
proportional to σe, which suggests that the ephaptic current
was more than seven times stronger in Bokil et al. (2001)
than here.

In light of this, we repeated the simulations of the EMI model
using the lower effective bulk conductivity values (σi = 1 S/m
and σe = 0.1 S/m). In this case, simultaneous stimulation of the
8 peripheral axons (B–C) induced an action potential in axon A
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TABLE 3 | CPU timings and memory usage for different KNP-EMI scenarios (Models A and D).

Model 1x(µm) Size Memory (MiB) TA (s) TS (s) T (s) # N

A 2 4,125 34 22.9 24.8 67.2 1,000

A 1 15,445 43 26.6 134 191 1,000

A 0.5 59,685 113 37.8 662 777 1,000

A 0.25 234,565 241 98.5 4,168 4,604 1,000

D 401,671 300 86.6 7,190 7,740 100

1x: mesh resolution (for Model A), Size, linear system size (number of degrees of freedom); Memory, Maximal memory usage of simulation relative to baseline. TA, CPU time for finite
element assembly; TS, CPU time for linear system solution; T, Total CPU time for simulation; N, number of timesteps.

FIGURE 5 | A comparison of the KNP-EMI and the EMI frameworks using Model C1 at t = 10 ms. Extracellular potentials measured 2µm above the cell (A).

Extracellular potentials from the KNP-EMI (B) and the EMI framework (C) surrounding the cell.

(Figure 7F). Stimulation of axonA alone did not induce an action
potential in the 8 peripheral axons (Figure 7E).

4. DISCUSSION

We have presented a finite element-based numerical method
for a revised mathematical model of ionic electrodiffusion with
explicit geometrical representation of the extracellular space, the
intracellular space and the cell membrane. Our numerical scheme
is based on the mortar finite element method and is capable of
efficiently handling complex geometries in one, two, or three
spatial dimensions. Our numerical investigations demonstrate
that the scheme is accurate and yields optimal convergence rates
in the relevant norms.

Further, we compared the KNP-EMI framework and the
EMI framework by computationally studying (i) extracellular
fields surrounding passive idealized axons, and (ii) membrane
potentials in a bundle of unmyelinated axons under Hodgkin-
Huxley membrane mechanisms. The potentials predicted by the
two frameworks are essentially identical during the first period

(∼5 ms) of the simulations, but the predictions later differ due to
changes in ion concentrations (only accounted for by the KNP-
EMI framework). We note that the strongest ephaptic coupling is
due to changes in the Nernst potentials (ionic ephaptic coupling),
and not via extracellular potentials (electric ephaptic coupling).

The predictions of ephaptic coupling made in this study
differs from those made by Bokil et al. (2001) using cable
theory. This discrepancy is likely due to differences in the
extracellular bulk conductivities. Indeed, an important difference
between geometrically explicit frameworks (e.g., PNP, EMI, and
KNP-EMI) and homogenized frameworks (e.g., cable theory)
is the interpretation of the bulk conductivities σi and σe. In
homogenized frameworks based on volume-conductor theory,
the bulk conductivity σ is interpreted as the tissue average,
i.e., the effective bulk conductivity for currents propagating
over distances in brain tissue (Holt and Koch, 1999; Pettersen
and Einevoll, 2008; Reimann et al., 2013). Importantly, this
tissue-averaged bulk conductivity is smaller than the actual
conductivity of the extracellular solution, largely due to the
fact that the extracellular space only constitutes about 20% of
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FIGURE 6 | A comparison of the KNP-EMI and the EMI frameworks using Model C2 and C3 at t = 10 ms. The extracellular potentials from Model C2 (A) and C3 (D)

on the midline between the neurons (y = 60µm). The extracellular potentials surrounding the cells as calculated by KNP-EMI (B) and EMI (C) using Model C2, and by

KNP-EMI (E) and EMI (F) using Model C3.

the total tissue volume. On the other hand, in the KNP-EMI
framework, the bulk conductivities are defined in terms of the
local ion concentrations and will thus vary consistently across
the domain.

The KNP-EMI framework is comparable to the PNP
framework (Lopreore et al., 2008; Pods et al., 2013; Holcman
and Yuste, 2015; Cartailler et al., 2017a,b; Sacco et al., 2017)
as both frameworks can account for the explicit morphology
of neural tissue (Noguchi et al., 2005; Biess et al., 2007). The

difference between the frameworks is in the way that the
electrical potential φ is computed. In the more physically
detailed PNP framework, φ is computed from the Poisson
equation ∇2φ = −ρ/ǫ, where ρ is the charge density
and ǫ is the permittivity of the medium. In neural tissue,
the charge relaxation time, i.e., the typical time-scale that
ρ varies on, is in the order of 1 ns, and most of the local
net charge density is resolved in nanometer thick layers
surrounding neuronal membranes (Grodzinsky, 2011; Gratiy
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FIGURE 7 | Effects of ephaptic coupling in a bundle of axons at x = 200 µm. The membrane potential (φM ) of axon A (A), and the extracellular potential (φe)

measured 0.05 µm away from the membrane of axon A (B) during stimuli of axon A only. Ephaptic coupling measured in axon B when only axon A is stimulated (C),

and measured in axon A when all peripheral axons (B–C) are stimulated (D). Setting σi = 1.0 S/m and σe = 0.1 S/m in the EMI framework increases the ephaptic

coupling to the point where simultaneous action potentials in all eight surrounding axons will induce an action potential in the central axon (F). However, only

stimulating the middle axon (A) will not induce action potentials in the peripheral axons (E).

et al., 2017). Hence, simulations on the PNP framework requires
a spatiotemporal resolution smaller than nanoseconds and
nanometers, and become unstable otherwise. In contrast,
the KNP-EMI framework circumvents the need for explicit
modeling of charge accumulation near the membrane by
assuming bulk electroneutrality, so that all net charge is
associated as a membrane charge and not resolved spatially;
that is, the membrane interface conditions (6)–(15) ensure

that the mesh elements bordering the membrane contain the
charges consistent with the membrane potential, regardless of
mesh size. The electroneutrality condition has been shown to
be a good approximation on spatiotemporal scales larger than
micrometers and microseconds (Pods, 2017; Solbrå et al., 2018),
and the application of it results in a more numerically stable
framework for coarser time and space resolutions, allowing
for longer simulations on larger domains. The differences

Frontiers in Neuroinformatics | www.frontiersin.org 15 March 2020 | Volume 14 | Article 11

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Ellingsrud et al. Finite Element Simulation of Ionic Electrodiffusion

FIGURE 8 | Ion concentration dynamics in an axon bundle measured at the middle axon (A) at x = 200 µm using the KNP-EMI framework, both when middle axon

(A) is stimulated, and when all peripheral axons (B–C) are stimulated. Extracellular sodium (A) and extracellular potassium (B) concentrations evaluated 0.05 µm away

from axon A. Intracellular sodium (C) and intracellular potassium (D) concentrations evaluated at the center of axon A. Reversal potentials for sodium (E) and

potassium (F) at the membrane of axon A.

between the PNP framework and (bulk-) electroneutral
frameworks, such as KNP have been discussed extensively
in previous works (Mori and Peskin, 2009; Pods, 2017;
Solbrå et al., 2018).

An example of a phenomenon where large ion concentration
changes in brain tissue build up over time, is (cortical) spreading
depression. During spreading depression, the extracellular K+

concentration can change from a basal level of 3–5 mM to peak

values at tens of mM over a period of several minutes (Somjen,
2001). As such, we advocate that the KNP-EMI model would be
suitable for studying cellular level aspects of spreading depression
computationally. However, for simulations of longer duration
(>50 ms), the membrane mechanism model should be chosen
carefully. The Hodgkin-Huxley formalism used in this paper to
describe the membrane mechanisms does not account for the
effect of ion pumps and co-transporters, which generally will
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strive to restore concentrations to baseline. As a consequence,
the concentration changes taking place in our simulations are
likely overestimates of what could be expected in a real biological
system. Adding ion pumps and co-transporters to the membrane
model would be relatively straightforward (Hübel and Dahlem,
2014; Hübel et al., 2014).

In conclusion, the KNP-EMI framework presented in this
paper allows for detailed computational studies of the interplay
between ion movement, membrane mechanisms and electrical
potential in healthy neural tissue and under pathological
conditions. The computational expense of KNP-EMI simulations
compared to, e.g., homogenized models calls for further research
into efficient and scalable solution methods.
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