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Investigating the dynamics and function of large-scale spiking neuronal networks with

realistic numbers of synapses is made possible today by state-of-the-art simulation

code that scales to the largest contemporary supercomputers. However, simulations

that involve electrical interactions, also called gap junctions, besides chemical synapses

scale only poorly due to a communication scheme that collects global data on each

compute node. In comparison to chemical synapses, gap junctions are far less abundant.

To improve scalability we exploit this sparsity by integrating an existing framework

for continuous interactions with a recently proposed directed communication scheme

for spikes. Using a reference implementation in the NEST simulator we demonstrate

excellent scalability of the integrated framework, accelerating large-scale simulations with

gap junctions by more than an order of magnitude. This allows, for the first time, the

efficient exploration of the interactions of chemical and electrical coupling in large-scale

neuronal networks models with natural synapse density distributed across thousands of

compute nodes.

Keywords: gap junctions, electrical synapses, spiking neuronal network, large-scale simulation, parallel

computing, computational neuroscience

1. INTRODUCTION

Electrical synapses, called gap junctions, are channels in the membranes of two neighboring cells
allowing a direct bidirectional exchange of ions and small molecules (e.g., Bennett and Zukin,
2004). Such seemingly primitive forms of communication have been believed to be relevant mainly
in invertebrates after the discovery of chemical synapses, which provide more flexible molecular
machinery to modulate the interactions between neurons in vertebrates. However, there is evidence
that gap junctions are also widespread in the vertebrate nervous system (e.g., Connors and Long,
2004) where they provide an additional information channel between nerve cells. Today, gap
junctions are believed to play a prominent role in the development and function of the nervous
system. As they do not involve the typical millisecond delays arising from the transformation
between electrical and chemical signals at the synaptic cleft, gap junctions surpass chemical
synapses in terms of signaling speed which proves useful, e.g., in escape networks (El Manira
et al., 1993; Herberholz et al., 2002). Furthermore, by permitting subthreshold communication
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between adjacent cells, gap junctions allow efficient propagation
of activity waves, they facilitate the synchronization (e.g.,
Bennett and Zukin, 2004; Mancilla et al., 2007; Laing, 2015)
or desynchronization of neuronal populations (Vervaeke et al.,
2010), and they can enhance the integration of excitatory inputs
via coupling of dendritic trees (Vervaeke et al., 2012). Far
from being a primitive form of signaling, gap junctions have
been shown to support activity-dependent and neuromodulator-
dependent plasticity (Pereda et al., 2004, 2013; Pernelle et al.,
2018), and they can rectify signals via a different efficacy of
transmission in each direction (Furshpan and Potter, 1959).
Moreover, dysfunction in gap-junction coupling has been linked
to neurological disorders such as epilepsy (e.g., Mas et al., 2004).
The connectivity of neurons via gap junctions is fundamentally
different from that via chemical synapses. Gap junctions mainly
couple inhibitory interneurons of the same type (e.g., Bennett
and Zukin, 2004) in a locally restricted area of up to 500 µm
(Fukuda, 2007). While each cortical cell has on average several
thousands of connections via chemical synapses, gap-junction
connections are much sparser, each cell being coupled to about
60 of its neighboring cells (Fukuda, 2007).

It is now assumed that the functions of chemical and
electrical coupling in the nervous system are not independent
but complementary (Hormuzdi et al., 2004; Pereda, 2014), which
emphasizes the need to investigate both types of coupling in
computational models. Computational modeling serves as an
important tool for scientific discovery by allowing researchers
to quickly explore the dynamics and function of mechanistic
models that are difficult to handle analytically without severe
simplifications. While a plethora of different network models
consider the effect of chemical synapses, relatively few models
investigate the role of gap junctions on the dynamical, functional,
and behavioral level, let alone their role in nervous-system
dysfunction. Topics of present studies include: investigation of
the effect of gap junctions on the synchronization of neuronal
networks (Pfeuty et al., 2003; Holzbecher and Kempter, 2018),
demonstration of the emergence of oscillations (Tchumatchenko
and Clopath, 2014) and efficient propagation of traveling waves
due to subthreshold coupling, and recently also modeling of gap-
junction plasticity (Pernelle et al., 2018). The present network
models, however, are of relatively small size compared to, for
example, the number of neurons just under one squaremillimeter
of cortical surface. To faithfully reproduce network dynamics
and predict coarse-grained measures that can be related to
neuronal recordings one needs to simulate full-scale models (van
Albada et al., 2015). However, large-scale simulations at single
neuron resolution and with realistic connection density require
simulation technology that can efficiently distribute the workload
across many compute nodes.

The efficient distributed simulation of spiking neuronal
networks relies on the propagation of neuronal state variables
on a time grid with a time interval in the sub-millisecond range
(e.g., 0.1 ms). As spiking interactions are typically delayed, they
allow for communication of spike data at larger time intervals
(e.g., 1 ms) while still maintaining causality (Morrison et al.,
2005). This reduction in communication frequency constitutes
an important optimization in neuronal network simulation

technology. Firstly, it decreases the communication costs and,
secondly, the optimization improves cache utilization during
neuronal updates since the state variables of the individual
neurons are propagated for an entire communication interval
with substeps defined by the neuronal update interval. On
first assessment, incorporating electrical coupling through gap
junctions in such simulations seems to conflict with the reduced
communication frequency: In a time-driven simulation scheme,
a typical gap junction is modeled via an interaction of the form

Igap,ij(t) = gij
(

Vi(t)− Vj(t)
)

(1)

between neuron i and j (e.g., Pfeuty et al., 2003; Bennett and
Zukin, 2004; Mancilla et al., 2007). Computing the current Igap,ij
requires that the membrane potential Vi of neuron i is available
to neuron j at all times t (Igap,ij positive if current flows from i to
j as in Mancilla et al., 2007), and vice versa. Here, gij represents
the symmetric, possibly weakly voltage-dependent (e.g., Bennett
and Zukin, 2004) coupling strength of the gap junction. Coupling
neurons that reside on different compute nodes of a parallel
computer via a gap junction thus requires the communication
of membrane potential data on the same time scale as neuronal
updates. This entails increased communication costs with regard
to both latency and bandwidth, thus limiting scalability.

To address this issue, Hahne et al. (2015) introduced a
simulation technology for incorporating continuous coupling
between neurons in spiking neuronal networks using a numerical
interpolation scheme based on wave-form relaxation methods
(Lelarasmee et al., 1982). The novel framework meets the
requirements of simulations with continuous interactions while
still allowing for communication of spikes and continuous data
in intervals larger than the neuronal update step. This enables
researchers to investigate the interaction between chemical
and electrical coupling believed to be important for healthy
brain function (Pereda, 2014). However, the framework exhibits
suboptimal scaling properties in terms of runtime and memory
consumption, both of which increase linearly with the number of
MPI processes for a fixed problem size per process. This limits
the practical use of the technology for large-scale simulations
using several hundreds of compute nodes. The framework was
later extended to support rate-based connections (Hahne et al.,
2017), the scalability issues, however, remained. Technically gap
junctions and rate-based connections require similar capabilities
in a simulator: both lead to an instantaneous coupling between
two neurons. Hence, we also refer to such connections using
the generalizing term “continuous-data connections” in contrast
to the event-based coupling via spikes, which we refer to as
“spiking connections.”

Jordan et al. (2018) presented a technology tackling scalability
issues for networks with purely chemical coupling exploiting the
sparsity of large-scale cortical networks. By introducing a two-tier
connection infrastructure, which comprises complementary data
structures on both sending and receiving side, allows for directed
communication of spikes. This significantly improves the
scalability of large-scale spiking neuronal network simulations
with regard to runtime and memory usage. Due to the small
number of gap junctions per cell (Fukuda, 2007) compared
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to typical numbers of chemical synapses, the sparsity of gap-
junction coupling in large-scale neuronal networks as a function
of the number of MPI processes becomes relevant earlier
(Figure 1). Once the number of MPI processes exceeds the
typical number of outgoing connections per neuron, most of
the data collected on each process is not locally required. This
indicates that simulations of such networks can significantly
benefit from exploiting the extreme sparsity of gap junctions
through a directed communication scheme.

In this study, we describe how the framework for continuous
interactions is integrated with the two-tier connection
infrastructure and the directed communication scheme.
We demonstrate significantly improved scalability of network
simulations with gap junctions: For networks of about 600, 000
neurons connected via 36 million gap junctions simulation
time is reduced by more than a factor of 20 with respect
to the previous technology. Therefore, the new technology
enables a systematic numerical investigation of the dynamics
of large-scale cortical network models with both chemical and
electrical coupling.

The remainder of this work is organized as follows: In section
2 we introduce the network model used for comparing the
performance of the previous and new framework for continuous
interactions, we provide key data of the HPC system employed
for scaling experiments, and we introduce the NEST simulator
for which we provide a reference implementation. In section 3,
we first highlight the differences between the communication of
spike data and continuous data, then we present the necessary
changes to the two-tier connection infrastructure and the
directed communication algorithm that allows for continuous

FIGURE 1 | Fraction of activity data relevant for a given MPI process

decreases as a result of increasingly sparse connectivity. In weak-scaling

scenarios, the fraction of relevant spike data (pink) and gap-junction data (blue)

decreases as the number of MPI processes and thus the total network size

increases: an ever smaller fraction of the data produced by the network is

relevant for the synapses and neurons represented locally on a given MPI

process. The effect is more pronounced for gap-junction data than for spike

data due to the difference between the typical numbers of gap junctions and

chemical synapses per neuron. Here, we assume NM = 10, 000 neurons per

MPI process and either K = 10, 000 incoming chemical synapses per neuron

(pink) or Kgap = 60 gap junctions per neuron (blue) respectively. See

Supplementary Material for derivation.

interactions in parallel to spiking interactions, and finally,
we compare the performance of the previous and the new
simulation technology based on weak-scaling and strong-scaling
scenarios. The study concludes by discussing limitations of the
current technology and benchmark models, future extensions,
and modeling prospects.

The technology described in the present article will be made
available to the community with one of the next releases of
the open-source simulation software NEST. The conceptual and
algorithmic work described here is a module in our long-term
collaborative project to provide the technology for neural systems
simulations (Gewaltig and Diesmann, 2007).

2. MATERIALS AND METHODS

2.1. Benchmark Network Model
We compare memory usage and runtime of the previous
technology to the new framework for continuous-data
connections using the scalable network model introduced
in Hahne et al. (2015), which consists of N single-compartment
Hodgkin-Huxley neuron models with alpha-shaped postsynaptic
currents (in NEST: hh_psc_alpha_gap) connected by
gap junctions. As we investigate the scaling properties of
continuous coupling, we do not make use of chemical
synapses. The NEST implementation of the model uses the
Runge-Kutta-Fehlberg solver (gsl_odeiv_step_rkf45)
of the GNU Scientific Library with an adaptive step-size
control (gsl_odeiv_control_y_new) to advance the
state of an individual neuron. The network model exhibits
ring topology where each neuron is connected to 60 of its
nearest neighbors. Each neuron receives a noise current
that, for each simulation time step of duration h, is drawn
independently from a Gaussian distribution with mean
200 pA and standard deviation 250 pA; note that the resulting
variance of the filtered synaptic current thus depends on the
time resolution and is ∝ h for small time steps. All other
neuron-model parameters are as defined in Mancilla et al.
(2007). All gap junctions have identical weight g = 0.1nS. The
simulation step is h = 0.1 ms, and the communication interval
is 1 ms. The details of the network model are given in the
Supplementary Material.

In all simulations we use the following waveform-relaxation
parameters (Hahne et al., 2015): maximal number of iterations is
5, tolerance is 10−5, and interpolation order is 3.

2.2. Benchmark System: JURECA
For the scaling experiments in section 3.5 we use up to 1664
compute nodes of the JURECA HPC system located at the Jülich
Supercomputing Centre (JSC) in Jülich, Germany. Each node is
equipped with two Intel Xeon E5-2680 v3 Haswell CPUs and
a minimum of 128 GiB of memory. Communication between
compute nodes is enabled by a Mellanox EDR InfiniBand
high-speed network with non-blocking fat tree topology. For
all simulations we used two MPI processes per node and 12
OpenMP threads per process. NEST was compiled with GCC
8.2.0 and ParaStation MPI 5.2.1-1.
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2.3. NEST Simulator
NEST is an open-source software tool for simulations of
large-scale networks of spiking neuron models (Gewaltig and
Diesmann, 2007). The NEST Initiative1 maintains NEST with the
goal of long-term availability. The developer community actively
contributes new features, bug fixes, and documentation. NEST
is licensed under the GNU General Public License, version 22

and can be freely downloaded from the website of the NEST
simulator3. While the simulation kernel is implemented in
C++, specifications of simulations are performed in interpreted
languages: the built-in scripting language SLI or Python
(PyNEST; Eppler et al., 2009; Zaytsev and Morrison, 2014).
A hybrid programming model allows running a combination
of MPI processes for distributed computation and threads
for lightweight parallelization within compute nodes (Ippen
et al., 2017). NEST scales well throughout an entire range of
platforms — from laptops to supercomputers (Jordan et al.,
2018), and it supports advanced model components, for example
neuromodulated plasticity (Potjans et al., 2010), structural
plasticity (Diaz-Pier et al., 2016), coupling between neurons via
gap junctions (Hahne et al., 2015), and non-spiking neurons
with continuous interactions such as rate-based models (Hahne
et al., 2017). The simulation code used for the benchmarks
is based on the NEST 2.14 release, with Git SHA ba8aa7e
(4g) and 0f8d5b5 (5g), respectively. Source code, simulation
and analysis scripts are available as part of Jordan et al.
(2020).

3. RESULTS

The minimum synaptic transmission delay in spiking neuronal
network models allows for a fundamental optimization: For the
duration of the minimum delay individual neuron dynamics
are decoupled and, hence, can be independently propagated,
such that the communication of spikes can take place on a
coarser time grid than neuron updates (Morrison et al., 2005).
This reduces communication costs in distributed simulations.
The coupling of neurons via gap junctions is at odds with
such an optimized communication scheme as gap junctions
lead to an instantaneous coupling of membrane potentials,
seemingly requiring communication intervals comparable with
the neuronal update interval. To alleviate this issue, Hahne et al.
(2015) made use of an efficient iterative method to interpolate
membrane potentials over the duration of the minimum synaptic
delay. This method allows MPI communication to again take
place on a time grid larger than that of neuron updates, reducing
communication costs while maintaining high precision. The
framework introduced by Hahne et al. (2015) made use of
MPI Allgather (Message Passing Interface Forum, 2009) to
communicate continuous-data events, which was an efficient
communication scheme for spiking network simulations at the
time. The scheme is compatible with the characteristics of small-
to medium-scale simulations: As long as the number of MPI

1https://nest-initiative.org/
2https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
3https://www.nest-simulator.org/

processes is not much larger than the number of connections per
neuron, each neuron’s data is likely required on every process.
All data is hence collected on each process and irrelevant data
is only discarded after the communication. However, this turns
into a suboptimal strategy in regimes where most of the received
data is not locally required on each process. This is already
the case for a few hundreds of MPI processes in the case
of gap junctions (Figure 1). Here, we describe how the two-
tier connection infrastructure and the directed communication
scheme introduced for spike data in Jordan et al. (2018) is
extended to support continuous-data connections such as gap
junctions, eliminating the communication of irrelevant data.

3.1. Spiking and Continuous-Data
Connections Imply Distinct Requirements
for Communication
Hahne et al. (2015) presented a unified framework for both
spiking and continuous interactions, where the same data
structure stores continuous-data connections as well as spiking
connections. Moreover, the delivery of continuous-data events
to local targets, which takes place after the MPI communication,
follows the concept for the delivery of spike data using a source-
based address-event representation protocol (AER; Boahen,
2000; Lansner and Diesmann, 2012). Such an incremental
development process that extends and reuses existing data
structures and algorithms simplifies testing and maintenance of
the code base and allows new features to be released more quickly
to the community.

The unified framework of Hahne et al. (2015) uses a single
MPI buffer to communicate spiking and continuous data among
MPI processes. Each process maintains a communication buffer
for outgoing data, which is communicated to all other processes
via MPI Allgather (Figure 2A) such that the global network
state is available on each process. While effective for small
numbers of processes (Morrison et al., 2005), this type of
collective communication is inefficient already for hundreds
of MPI processes in simulations with typical numbers of gap
junctions (Figure 1). First, large amounts of unnecessary data are
communicated if the number of processes exceeds the average
number of gap junctions per neuron. Second, during delivery all
incoming data in theMPI buffer needs to be read and checked for
its relevance to the local neurons. Third, asMPI buffers reflect the
global network state, they consume large amounts of memory on
each process (see Figure 14 in Hahne et al., 2015).

To remove these inefficiencies the communication scheme in
a neuronal simulator needs to reflect the fundamentally different
temporal aspects of spiking, i.e., discrete, and continuous
interactions. For spiking interactions, the number of spikes and
their senders and receivers differ from one communication step
to the next. This requires, for example, temporary buffering of
data in spike registers for efficient collocation of MPI buffers in
multi-threaded simulations (Morrison et al., 2005; Eppler, 2006).
For continuous interactions in networks with a fixed topology
however, the amount of data and the corresponding senders
and receivers are identical in every communication step. As a
consequence there is a unique position in the continuous-data
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A B C

FIGURE 2 | Collective communication of receiver-selective data using MPI Allgather, MPI Alltoall, and MPI Alltoallv. The three panels illustrate send and receive buffers

for the example of an MPI communication that involves three ranks. Homogeneous data types are required throughout the entire send and receive buffer. Squares

represent single buffer entries. Data sent by rank 0, rank 1, and rank 2 are shown in dark gray, light gray, and medium gray, respectively. To indicate receiver selectivity,

we define the data marked with “x” to be required on rank 1 and rank 2 but not on rank 0. (A) MPI Allgather: All ranks receive the entire send buffer from all ranks,

which can include irrelevant data, for example, the receive buffer on rank 0 contains an “x”-entry with data that is not required. The receive buffer is a concatenation of

all send buffers and the receive buffer size hence scales with the total number of ranks taking part in the communication (assuming fixed send buffer sizes). Send

buffers of equal size and hence also receive buffers of equal size are required for all ranks, which can entail sending empty buffer entries (unfilled squares). (B) MPI

Alltoall: Send buffers consist of equally sized sections that are destined for different receiving ranks. This allows each rank to define the data to be transmitted to any

particular rank. Each rank has to send identically-sized buffer sections to each rank, which can entail sending empty buffer entries or even entirely empty buffer

sections. Rank 2, for example, sends an empty buffer section to rank 1. The size of the receive buffers is identical to the size of the send buffers and independent of

the number of ranks participating in the communication. To send specific data to multiple ranks, the sending rank needs to copy the data to the send-buffer sections

of all intended receiving ranks, which leads to redundancy in the send buffer; rank 0, for example, sends an “x”-entry to both, rank 1 and 2. (C) MPI Alltoallv: Similar to

MPI Alltoall, send buffers consist of sections that are destined for different receiving ranks. However, the sections are allowed to differ in size avoiding empty buffer

entries. Adapted from Jordan et al. (2018) under CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

MPI buffer for data from a specific source for a specific target
throughout the entire simulation (Figure 3). Here, we exploit
this temporal homogeneity to optimize the communication of
continuous-data events between neurons. We use separate MPI
buffers for spiking and continuous data, where spike data is
communicated using MPI Alltoall (Figure 2B) and continuous
data is communicated using MPI Alltoallv (Figure 2C). The use
of MPI Alltoallv makes most effective use of the MPI buffers
and is particularly efficient for the communication of continuous
data as we need to compute and communicate the amount of
data sent and received among all processes only a single time at
the beginning of the simulation. Jordan et al. (2018) presented
the algorithms and data structures required for the directed
communication in simulations with spiking connections. In
the following we describe the necessary changes that support
continuous-data connections.

3.2. Extension of Two-Tier Connection
Infrastructure for Continuous Interactions
To optimize memory consumption and runtime, Jordan et al.
(2018) introduced a two-tier connection infrastructure consisting
of a postsynaptic part on the process of the target neuron
and a presynaptic part on the process of the sending neuron.
The postsynaptic part stores the incoming synapses of all
process-local neurons and the global identifiers (GIDs) of
the corresponding presynaptic neurons. The presynaptic part
maintains a list of all targets for every process-local neuron.
The data structures allow the use of directed communication
methods (MPI Alltoall) to exclusively send spike data from a
presynaptic neuron to the processes hosting the corresponding
postsynaptic partners. Here, we adapt the two-tier connection

FIGURE 3 | Access to MPI buffers for communication of continuous-data

events. Neuron i on MPI rank r0 and neuron j on MPI rank r1 (blue filled circles)

are coupled through a gap junction (blue line), which requires them to

exchange continuous-data events in every communication step. To this end,

each neuron always writes to the same send-buffer position sij and sji ,
respectively (black solid arrows) and reads from the corresponding

receive-buffer positions tji and tij , respectively (black dotted arrows).

infrastructure to continuous-data connections and, hence, the
directed communication of continuous-data events.

3.2.1. Postsynaptic Connection Infrastructure
The original postsynaptic part of the connection infrastructure
for spiking connections presented in Jordan et al. (2018) consists
of two identically structured three-dimensional resizable arrays:
the first stores connection objects indexed by incoming spike
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events using a target-based AER scheme, while the second keeps
track of the corresponding presynaptic sources. The latter is
required to instantiate the presynaptic part of the connection
infrastructure at the beginning of the simulation and to speed
up user queries about network connectivity. Both structures are
continuously populated as connections are created.

To enable continuous-data connections we reuse the data
structures to store the connection objects and the corresponding
presynaptic GIDs (Figure 4A). In addition, we introduce another
identically structured resizable array that stores for each
continuous-data connection the corresponding MPI receive-
buffer position where presynaptic data for this connection is read
from (see also Figure 3). This additional data structure increases
the memory consumption per continuous-data connection but it
allows efficient delivery of continuous-data events as described
in section 3.4.

3.2.2. Presynaptic Connection Infrastructure
The original presynaptic part of the connection infrastructure
for spiking events consists of a three-dimensional resizable array
storing the targets of each local neuron. The target information
of a sending neuron is used to communicate spikes only to
the processes that host the postsynaptic targets. Essentially, the
target information comprises the locations of target synapses
in the postsynaptic data structure (see Jordan et al., 2018
for details).

To enable directed communication of continuous-data events,
we extend the presynaptic connection infrastructure with a four-
dimensional resizable array (Figure 4B). For each process-local

neuron with outgoing continuous-data connections the new
structure stores MPI send buffer positions separated by their
synapse type. The stored positions allow the sending neurons
to directly write events to the correct locations in the MPI send
buffer, allowing efficient filling of the buffer (see section 3.4).

3.3. Construction of Extended Connection
Infrastructure
When creating continuous-data connections, only the data
structures storing the actual connection objects and the
corresponding presynaptic GIDs are filled. Whereas, the data
structures storing the targets and the MPI buffer positions are
constructed at the beginning of the simulation or upon request by
the user. Their construction is performed in multiple subsequent
steps. First, all connections in the postsynaptic infrastructure are
sorted by the source neuron GIDs for each synapse type. This is
an optional step and part of an optimization for small-scale to
medium-scale neuronal network simulations (see Jordan et al.,
2018 for details). Then, receive buffer positions are computed
for each continuous-data connection as follows: (i) for every
continuous-data connection retrieve the source GID and the
synapse type, (ii) create a set of unique pairs of source GID
and synapse type across all threads, (iii) iterate over this set
to compute the relative receive buffer positions for each pair
according to the MPI rank of the source neuron, while keeping
track of the total amount of data to be expected from every
MPI rank, (iv) translate the relative receive buffer positions for
every continuous-data connection into absolute positions, and

A B

FIGURE 4 | Two-tier connection infrastructure for spiking and continuous-data connections on each MPI process. All components of the connection infrastructure

hold data separated by thread using a resizable array of pointers to the thread-local data structures (top, black). (A) Postsynaptic side. The receiver side of the

connection infrastructure consists of three identically structured parts: the connection table (left), the source table (middle), and the table of receive-buffer positions for

continuous-data connections (right). Connection table: Thread-specific resizable arrays store pointers to variable-sized containers for every synapse type. If a synapse

type is in use, the corresponding container (orange filled rectangle) stores all thread-local connections of this type in a resizable array; both spiking connections (pink

filled squares) and continuous-data connections (green filled squares) are stored. Synapse types can differ in memory consumption per object, indicated by different

sizes of the synapse objects. Source table: Source objects (dark red filled squares) are stored in a three-dimensional resizable array, with a one-to-one relation

between each source object and the connection object in the same location in the connection table. Sources contain the GIDs of the presynaptic neurons. Table of

receive-buffer positions: Thread-specific two-dimensional resizable arrays store receive-buffer positions (turquoise filled squares) for all continuous-data connections,

with a one-to-one relation between each buffer position and the continuous-data connection object in the same location in the connection table. (B) Presynaptic side.

The sender side of the connection infrastructure consists of the target table (left) and the table of send-buffer positions for continuous-data connections (right). Target

table: Thread-specific two-dimensional resizable arrays store the target objects (yellow filled squares) for every thread-local neuron. The target objects contain the

locations of the targets in terms of the MPI ranks and the locations in the corresponding connection table on the postsynaptic side. Table of send-buffer positions:

Thread-specific three-dimensional arrays store the send-buffer positions (blue filled squares) for the outgoing continuous-data connections of every thread-local

neuron. Adapted from Jordan et al. (2018) under CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).
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finally, (v) store the obtained absolute positions in the three-
dimensional array of receive buffer positions. Note that in (iii) the
MPI rank of the source neuron can be obtained from the GID of
the neuron due to the round-robin distribution of neurons across
MPI processes and threads.

Having thus completed the postsynaptic part of the
connection infrastructure, the presynaptic part can be
constructed. The construction of the presynaptic part of
the infrastructure for continuous-data connections is performed
together with the construction of the presynaptic infrastructure
for spiking connections (cf. Jordan et al., 2018, section 3.1.3).
However, while an entry in the presynaptic structure for
spiking connections encodes the location of a connection in the
postsynaptic connection infrastructure on a specific MPI rank,
the entry for a continuous-data connection is an index in the
MPI send buffer. The send buffer positions are computed from
the receive buffer positions received from every MPI rank, taking
into account the rank of the target neuron and the total amount
of data sent to each rank. During construction of the presynaptic
infrastructure we make sure that every send buffer position only
appears once in the target list, to avoid redundant writing to the
MPI buffer. Note that after gathering this information from each
rank one can easily compute the exact amount of data that will
be sent to each rank in every communication step, a prerequisite
for using MPI Alltoallv.

3.4. Communication of Continuous Data
Communicating continuous-data events using the new two-
tier connection infrastructure is straightforward. In contrast to
the previous technology (Hahne et al., 2015), MPI buffers for
spiking events and continuous-data events are separate and
communicated independently from each other. When a neuron
generates a continuous-data event, it retrieves the send buffer
positions from the corresponding data structure for all synapse
types that are able to handle the generated event (in NEST:
e.g., GapEvent or RateEvent). The neuron then writes the
data it needs to communicate to the corresponding position
in the MPI send buffer. At the end of the communication
interval the buffers are communicated across all ranks using MPI
Alltoallv. After the communication is completed, the delivery
of continuous-data events is performed by iterating over all
entries in the data structure storing MPI receive buffer positions.
For all continuous-data connections the data is retrieved from
the corresponding position in the MPI receive buffer and then
delivered via the synapse objects to the target neurons. In contrast
to the previous technology the new communication scheme does
not require temporary buffering of continuous data and supports
fully thread-parallel sending and delivery of events.

3.5. Performance of New Framework for
Continuous Interactions
Our analysis of the performance of the new simulation
technology for continuous interactions, henceforth referred to
as “5g,” and the comparison to the previous technology (Hahne
et al., 2015, “4g”) are based on reference implementations in
the NEST simulator (section 2.3). All scaling experiments are
performed on the JURECA supercomputer (section 2.2) using

the example network described in section 2.1. As in Jordan et al.
(2018), we distinguish between “build time,” “init time,” and “sim
time.” The build time accounts for network construction, not
including the construction of the presynaptic data structure and
the resizable arrays storing MPI buffer positions, which is taken
into account in the init time, a separately timed initial simulation
period of 10 ms. The sim time accounts for the actual simulation
of 0.5 s of biological time.

3.5.1. Weak Scaling
In a weak-scaling scenario the problem size per process is fixed,
here, the number of neurons and connections per process, while
the number of processes increases. This leads to an increase
of network size with the number of processes. As the compute
resources are scaled in proportion, one expects constant runtime
and memory consumption for a perfectly scalable application.
Here, we simulate NM = 185 neurons per MPI process and
Kgap = 60 gap junctions per neuron (see section 2.1). We
consider a structured network with ring topology: each neuron
is connected to a fixed number of its nearest neighbors, where
neighborhood between neurons is defined according to their
order of creation, indicated by their respective GIDs. The build
time is identical for both 4g and 5g and independent of the
number of MPI processes (Figure 5A), as the generation of
connections is fully parallel. The init time is similar between
the previous (4g) and the new technology (5g) up to about 100
MPI processes but then significantly increases for 4g (Figure 5B).
Due to the small number of connections per neuron the
construction of the presynaptic connection infrastructure takes
a negligible amount of time for 5g. Hence, despite its short
duration of 10ms, the init time is dominated by the propagation
of network dynamics, which has much better scaling behavior
for 5g than for 4g. This is also reflected in the sim time: already
at 512 processes the runtime of simulations with 5g is more
than an order of magnitude smaller than with 4g (Figure 5C,
15.17 s vs. 193.00 s). The poor scalability of simulation with
4g renders large-scale modeling studies inefficient, whereas for
5g the simulation duration only increases by a factor of about
15 from 2 processes to 3328 processes, while network size
grows by a factor of 1664 from 370 to 615, 680 neurons. The
largest network simulated in this study with the new technology
comprises 615, 680 neurons connected by ∼36.9 million gap
junctions and requires 71.90 s of wallclock time for 0.5 s of
biological time. The memory consumption after simulation is
constant for 4g and 5g up to about 128 MPI processes. Then
the memory usage of 4g increases linearly with the number
of processes, mainly due to the increase of MPI buffer sizes
(Hahne et al., 2015) in addition to the increased memory
usage by the MPI library (Figure 5D). For 5g the memory
consumption also increases due to an increasing overhead of the
MPI library as measured directly after startup of the NEST kernel
before any neurons or connections are created (Figure 5D). The
smallest simulations exhibit only marginal runtime and memory
differences between the two implementations confirming that
the changes to the connection infrastructure and communication
algorithms described in section 3.2 do not impair typical small-
scale simulations on laptops and workstations.
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FIGURE 5 | Weak scaling of neuronal network simulation with gap junctions on a petascale computer. Runtime and memory usage per compute node for an

increasing number of MPI processes in logarithmic representation M ∈ {2;4; 8;16; 32;64; 128;256;512;1024; 2048;3328} with two MPI processes per compute

node and T = 12 threads per MPI process on JURECA. Each compute node hosts NM = 185 neurons with K = 60 gap junctions per neuron. Network dynamics

simulated for 0.5 s of biological time. Color code in all panels (legend): 4g (orange, open circles), 5g (blue, open diamonds). (A) Build time (logarithmic). Gray triangles

and dashed line show the total network size N (right vertical axis, logarithmic). (B) Init time. (C) Sim time. Inset shows same data with logarithmic vertical axis. (D)

Cumulative memory usage for a single MPI process after NEST startup (dashed curves) and after simulation (solid curves).

3.5.2. Strong Scaling
In a strong scaling scenario the problem size is fixed, here the
total number of neurons and connections, while the number of
processes increases. Perfect scaling would result in a decrease
in runtime inversely proportional to the number of processes.
We consider a network of N= 94, 720 neurons, which reflects
the typical number of neurons in a cortical column, and
Kgap = 60 gap junctions per neuron. As in the weak-scaling
scenario, we consider a ring-network topology in which each
neuron is connected to its 60 nearest neighbors. The build time
decreases with an increasing number of MPI processes, reflecting
the parallel nature of the connection algorithm (Figure 6A).
However, as ever fewer neurons and connections are represented
on each process, serial overhead eventually dominates the build
time, such that no significant decrease is observed beyond 128
processes. Due to the small total number of connections in
the network, the init time (Figure 6B) is mainly dominated
by the propagation of network dynamics and hence exhibits
similar scaling behavior as the sim time. The sim time for 4g
decreases up to 128 MPI processes, but then becomes stagnant
(Figure 6C). In contrast, the sim time for 5g decreases further
up to 512 MPI processes. The directed communication via MPI
Alltoallv hence has significant benefits also in a strong scaling
scenario. For the largest number of processes considered here
a network with N = 94, 720 neurons coupled by ∼5.7 million
gap junctions is simulated for 0.5 s of biological time in 17.01 s,
making comprehensive investigations of cortical microcircuits
with a natural density of gap junctions practically feasible. As
in the strong-scaling scenario the network is distributed over an
increasing number of processes, one expects memory usage after
simulation to decrease with an increasing number of processes.

However, we neither observe a decrease for 4g nor for 5g
(Figure 6D). This is due to an increased memory usage of the
MPI library, which overshadows the decreased memory usage of
the simulation (Figure 6D).

4. DISCUSSION

Experimental evidence suggests that besides the signal
transmission between neurons through chemical synapses,
which prevail in vertebrate brains, the less abundant electrical
synapses play an important role in neuronal network dynamics
and function (Hormuzdi et al., 2004; Pereda, 2014). Interactions
through electrical synapses, also called gap junctions, occur
locally between neighboring neurons and they mediate direct
and continuous reciprocal influence between the membrane
potentials of the connected cells. This makes gap-junction
interactions fundamentally different from interactions via
chemical synapses, which can act remotely through neuronal
axons and typically involve signal-transmission delays ranging
from a few hundred microseconds to a few milliseconds.
Despite the experimental evidence for gap junctions affecting the
dynamics of neuronal systems, investigations of networks with
both spiking and gap-junction interactions using computational
models have been limited to relatively small network sizes.
Due to the complex dynamics of chemically and electrically
coupled networks, progress in this area of research relies on the
availability of appropriate simulation technology that allows for
efficient handling of both types of interactions.

An initial hurdle on the way to scalable simulation technology
for large-scale spiking neuronal networks with continuous
interactions was taken by Hahne et al. (2015). The authors
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FIGURE 6 | Strong scaling of neuronal network simulation with gap junctions on a petascale computer. Runtime and memory usage per compute node for an

increasing number of MPI processes in logarithmic representation M ∈ {2;4; 8;16; 32;64; 128;256;512;1024; 2048;3328} with two MPI processes per compute

node and T = 12 threads per MPI process on JURECA. N = 94, 720 neurons with K = 60 gap junctions per neuron. Network dynamics simulated for 0.5 s of

biological time. Color code and marker styles as in Figure 5; logarithmic vertical axes. For reference, straight dotted lines indicate perfect scaling. (A) Build time

(logarithmic). Gray triangles and dashed line show the total network size N (right vertical axis, logarithmic). (B) Init time. (C) Sim time (logarithmic). (D) Cumulative

memory usage for a single MPI process after NEST startup (dashed curves) and after simulation (solid curves).

make use of the wave-form relaxation methods of Lelarasmee
et al. (1982) in order to enable continuous-data interactions
with high precision in globally time-driven simulations where
the communication had been optimized taking into account the
delays of spiking connections. However, due to the underlying
collective communication scheme that performs a complete
exchange of data among processes (MPI Allgather), scalability
of the framework is limited. In a strong scaling scenario
of a network of almost 100,000 neurons and 6 million gap
junctions, the absolute runtime for simulations of 0.5 s of
biological time does not decrease below 105 s (Figure 6C)
achieving a minimum real-time factor of ∼210. This renders a
comprehensive investigation of such networks impracticable.

The ratio between the number of connections per neuron and
the number of MPI processes used to perform the simulation
determines whether a specific communication scheme is efficient.
When considering networks with only spiking connections
and assuming a typical connection density of, e.g., 10, 000,
connections per neuron (Stepanyants et al., 2009), a collective
connectivity scheme that transfers all data from each process
to all other processes (e.g., MPI Allgather) still transfers mostly
relevant data for simulations on up to a few thousand processes.
Formore processes, the situation changes however: If the number
of processes exceeds the number of connections per neuron,
a significant fraction of the communicated data is irrelevant,
rendering the communication scheme inefficient (Figure 1). In
simulations with gap-junction coupling with a typical number
of 60 connections per neuron (Fukuda, 2007) such a transition
occurs far earlier in a regime below 100 processes.

Jordan et al. (2018) address this issue of increasing sparsity
for simulations with purely spiking interactions. In order to

extend the scalability of simulation technology for spiking
neuronal networks, preparing for the exascale generation of
supercomputers, they replace the MPI Allgather communication
scheme used to exchange spike data among processes with a
collective communication scheme that allows each process to
send different data to different processes (MPI Alltoall). To this
end, they introduce a two-tier connection infrastructure, which
consists of a postsynaptic part as well as a presynaptic part
providing information about where to send the spike data on
each MPI process. They demonstrate that in benchmark network
simulations the new infrastructure and communication scheme
are scalable with respect to runtime and memory usage, with
significant benefits already on contemporary supercomputers,
i.e., in the regime of thousands and tens of thousands
of processes.

In this manuscript, we present a highly scalable technology
for simulations of large-scale neuronal networks combining
spiking and continuous-data interactions. We incorporate the
framework for continuous interactions introduced by Hahne
et al. (2015) with the extremely scalable connection infrastructure
and directed collective communication scheme for spiking
interactions presented in Jordan et al. (2018). As the typical
number of gap junctions is two orders of magnitude lower than
the typical number of spiking connections, we observe significant
reductions in runtime with respect to the previous technology
(Hahne et al., 2015) already for a few hundred processes, without
sacrificing numerical precision.

Using reference implementations of the previous technology
(4g) and the new technology (5g) in the NEST simulator, we
compare the performance using a benchmark network model
with only gap-junction coupling (see section 2.1). The time
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required for network construction and the memory usage are
similar for 4g and 5g (Figures 5A,D, 6A,D). We observe almost
perfect scaling with respect to network-construction time. Due to
the increased memory usage by theMPI library simulations show
poor scalability in this respect but did not reach a critical range
for the benchmark network simulated here. Considering the
time required to propagate the dynamical state of the network,
scalability significantly improves. For a network of about 600, 000
neurons connected via 36 million gap junctions simulation time
is reduced by more than a factor of 20 (Figure 5C). For a
network of almost 100,000 neurons and 6 million gap junctions,
the minimum runtime for simulations of 0.5 s of biological
time reduces to about 17 s (Figure 6C) achieving a minimum
real-time factor of ∼34. This demonstrates that comprehensive
investigations of large-scale spiking neuronal networks with gap
junctions are feasible with the new technology.

In case of high computational workload or serial overhead
caused by other software components, a poorly scalable
communication scheme may not be as exposed as it is in
the scaling scenarios shown here. However, communication
overhead, in particular overhead of a collective communication
scheme that increases with the number of participating MPI
processes, ultimately defines a hard lower limit to the runtime
that an application can achieve provided that all other bottlenecks
can be eliminated. By replacing the MPI Allgather scheme with
an MPI Alltoallv scheme supporting variable buffer sizes, the
limit to scalability has shifted toward larger numbers of MPI
processes in weak-scaling scenarios, and simultaneously also
toward lower minimum runtimes in strong-scaling scenarios.

A fundamental strategy in simulation technology for spiking
neuronal networks is the round-robin distribution of neurons
across MPI processes in order to achieve similar workload
on all processes. Consequently, simulations require a collective
communication scheme as each MPI process most likely has
to communicate with each other process at some point during
the simulation (Jordan et al., 2018). This is even more likely
if each process can host many neurons, which is the case
for simulation technology for point-neuron models, i.e. the
technology investigated here. In simulators for networks of
many-compartment neurons, such as NEURON (Carnevale and
Hines, 2006) and Arbor (Akar et al., 2019) the problem is less
pronounced as the investigated networks are typically of smaller
size while single neurons are represented at a great level of detail.
This typically results in high per-process workload while less data
needs to be communicated among MPI processes, such that the
overhead caused by communication is less noticeable. TheNeural
Tissue Simulator (Kozloski andWagner, 2011) also specializes in
detailed representation of neurons but uses a different approach
with respect to the distribution of workload, taking into account
the three-dimensional organization of neuronal tissue by placing
adjacent compartments on the same compute node or on an
adjacent node, thus allowing for local communication between
MPI processes. Such a distribution strategy seems particularly
beneficial for simulations with gap junctions due to their locality.

In the benchmark network model used here, the neuronal
dynamics is propagated using a numerical solver with adaptive
step size causing a high per-neuron workload as compared
to typical benchmark network models with current-based

leaky integrate-and-fire (LIF) model neurons, which allow for
exact integration (Rotter and Diesmann, 1999). In contrast to
integrate-and-fire dynamics, the neuron model describes the
shape of the action potential. While for chemical synapses only
the time of the spike is relevant, the interaction through electrical
synapses is driven by the difference in the voltage excursions
of the two cells. A meaningful test of a simulation framework
for networks with gap junctions therefore requires a neuron
model with an explicit representation of the action potential time
course. However, due to the increased computational load of this
neuron model, in our study the number of neurons per process is
relatively low, which entails lower memory usage and less data
to be communicated among processes with respect to typical
benchmark networks using simpler neuron models (e.g., Kunkel
et al., 2012; Jordan et al., 2018). A higher relative contribution of
computation compared to the need of communication trivially
leads to better scaling (van Albada et al., 2014). While a detailed
account of the contributions of different simulation phases to the
total runtime is not within the scope of this work, we speculate
that communication still is the limiting factor in the scaling
experiments shown here. Therefore, we expect that strong-
scaling scenarios of a network of current-based LIF neurons with
the same number of neurons and connectivity as the benchmark
network model will achieve a similar minimum runtime but
already at fewer numbers of processes. This advance over
previous simulation technology practically enables researchers
to investigate the interaction between chemical and electrical
coupling in networkmodels of the size of the cortical microcircuit
with natural neuron and connection densities (e.g., Potjans and
Diesmann, 2014).

The here assumed, experimentally obtained estimate of 60
gap junctions per neuron (Fukuda, 2007) might not apply
in general across all neuronal systems of interest. If the
modeled number of gap junctions per cell is higher, this
leads to a corresponding increase of MPI buffer size required
to communicate the continuous data events. The frequency
of collective communication calls would however remain
unchanged. A significant increase in buffer size entails an increase
in communication time. However, even an increase in the
number of gap junctions by two orders of magnitude would not
result in a situation where each MPI process requires all data
from all other processes, such that an MPI Alltoallv scheme with
varying buffer sizes would still be more efficient than an MPI
Allgather scheme. The technology presented here should hence
be tolerant to such challenges.

The benchmark network model used here assumes ring-
topology by coupling each neuron to its nearest neighbors.
This topology reflects the locality of gap junctions in neuronal
tissue. Due to the round-robin distribution of neurons and a
collective communication scheme in which each MPI process
communicates with all other processes, we expect network
topology to only marginally influence the communication
times. A comprehensive analysis of the performance of the
communication scheme for skewed distributions of the per-
receiver send buffer fractions caused by different network
topologies is, however, not within the scope of this study.
For the efficient construction of randomly connected networks
with gap junctions in NEST, a parallel implementation of a
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connection algorithm for bidirectional couplings is still missing
(Hahne et al., 2015).

We employed a standard single-compartment Hodgkin-
Huxley neuron model with passive gap-junction coupling. In
order to explore the variety of effects on electrical coupling in
neuronal tissue, new neuron models that support subthreshold
coupling and more complex gap-junction connections need to
be established in future work. Promising candidates include
voltage-gated gap junctions, various types of activity-dependent
or neuromodulator dependent gap-junction plasticity models or
even more complex heterogeneous synapses that involve both
chemical and electrical interactions (Pereda, 2014).

The technology we presented here is implemented using
separate communication buffers for continuous data and spike
data. Maintaining separate buffers is convenient due to the
different strategies for accessing them, and due to simulations
with gap junctions possibly requiring several communication
rounds in order to iteratively obtain a desired target precision
of membrane potentials. However, if communication latency is
a bottleneck, it is possible to combine the communication of
both types of events into a single MPI buffer by merging the
buffer part for continuous data with the respective buffer parts
for spike data. The efficiency gain of such an approach needs to
be carefully evaluated.

In the current implementation, the construction of the
presynaptic part of the connection infrastructure for continuous-
data connections relies on the same algorithms as the
construction of the presynaptic data structures for spiking
connections. This implementation choice is mainly to control
complexity, however it entails a penalty in runtime as redundant
information is sent to the presynaptic side: If a source neuron
has multiple targets on a postsynaptic process distributed across
several threads, each of the threads communicates the same
data to the sending process when constructing the presynaptic
infrastructure; the redundant information is only discarded after
arriving on the presynaptic process. The construction of the
presynaptic data structures takes place only once at the beginning
of the simulation. Nevertheless, for increasing numbers of
threads per compute node, the redundancy in the communicated
data could impair performance. Further analysis is required to
check whether the decrease in runtime warrants an increase in
implementation complexity.

Due to their prevalence in the vertebrate nervous system
and technological challenges, many computational studies focus
on chemical synapses and their role in neuronal network
function and dysfunction. The technology presented in this
article provides researchers with unprecedented possibilities to
investigate the interaction of chemical and electrical coupling in
large-scale neuronal networks with realistic numbers of synapses.

We hope that our work encourages further research into the
complementary function of chemical and electrical synapses in
the nervous system.
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