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Computer simulation of the human brain at an individual neuron resolution is an ultimate
goal of computational neuroscience. The Japanese flagship supercomputer, K, provides
unprecedented computational capability toward this goal. The cerebellum contains 80%
of the neurons in the whole brain. Therefore, computer simulation of the human-scale
cerebellum will be a challenge for modern supercomputers. In this study, we built a
human-scale spiking network model of the cerebellum, composed of 68 billion spiking
neurons, on the K computer. As a benchmark, we performed a computer simulation
of a cerebellum-dependent eye movement task known as the optokinetic response.
We succeeded in reproducing plausible neuronal activity patterns that are observed
experimentally in animals. The model was built on dedicated neural network simulation
software called MONET (Millefeuille-like Organization NEural neTwork), which calculates
layered sheet types of neural networks with parallelization by tile partitioning. To examine
the scalability of the MONET simulator, we repeatedly performed simulations while
changing the number of compute nodes from 1,024 to 82,944 and measured the
computational time. We observed a good weak-scaling property for our cerebellar
network model. Using all 82,944 nodes, we succeeded in simulating a human-scale
cerebellum for the first time, although the simulation was 578 times slower than the wall
clock time. These results suggest that the K computer is already capable of creating a
simulation of a human-scale cerebellar model with the aid of the MONET simulator.

Keywords: cerebellum, human-scale model, computer simulation, spiking network model, K computer, MONET

INTRODUCTION

Computer simulation of the whole human brain is an ambitious challenge in the field of
computational neuroscience and high-performance computing (Izhikevich, 2005; Izhikevich and
Edelman, 2008; Amunts et al., 2016). The human brain contains approximately 100 billion neurons.
While the cerebral cortex occupies 82% of the brain mass, it contains only 19% (16 billion) of all
neurons. The cerebellum, which occupies only 10% of the brain mass, contains 80% (69 billion)
of all neurons (Herculano-Houzel, 2009). Thus, we could say that 80% of human-scale whole
brain simulation will be accomplished when a human-scale cerebellum is built and simulated on
a computer. The human cerebellum plays crucial roles not only in motor control and learning
(Ito, 1984, 2000) but also in cognitive tasks (Ito, 2012; Buckner, 2013). In particular, the human
cerebellum seems to be involved in human-specific tasks, such as bipedal locomotion, natural
language processing, and use of tools (Lieberman, 2014). Once a human-scale cerebellar network
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model is built, the computer simulation of the model will
be a useful tool to examine the roles of the cerebellum in
such complex tasks.

Several attempts have been made to simulate large-scale
spiking network models on supercomputers. A large-scale model
of the cerebral cortex, with 1.51 billion neurons and 16.8 trillion
synapses has been built on the Japanese flagship K computer
(RIKEN Center for Computational Science) (Helias et al., 2012;
Kunkel et al., 2014; Jordan et al., 2018). For the cerebellum, we
previously built a cat-scale cerebellar model composed of 1 billion
spiking neurons on another supercomputer (Yamazaki et al.,
2019). Currently, in a national project called “Post-K exploratory
challenge #4,” we have been building large-scale spiking network
models of the cerebral cortex (Igarashi et al., 2019), basal ganglia
(Moren et al., 2019), and cerebellum on the K computer.

In this study, we aimed to build and simulate a human-
scale spiking network model of the cerebellum under the
Post-K project, where we use the entire K computer system
and our in-house spiking neural network simulator MONET
(Millefeuille-like Organization NEural neTwork) (Igarashi et al.,
2019). The MONET simulator is optimized to the K computer
and its successor Fugaku (RIKEN Center for Computational
Science). The simulator arranges a given large-scale spiking
network on a two-dimensional layered sheet, and splits the sheet
into a number of smaller tiles for parallel computing, where
subnetworks on neighboring tiles can exchange spikes. This
tile-based decomposition method achieves a good weak-scaling
property, because it is enough for each tile to communicate with
only the surrounding tiles. However, there is a strong assumption
behind the tile-based decomposition: the target network must
consist of mostly short-range connections and few long-range
connections. In other words, a target brain region must suffice for
a characteristic anatomical structure to be simulated efficiently on
the MONET simulator.

The cerebellum is known for its regular and repeated
crystallized anatomical structure (Eccles et al., 1967), which
seems to be ideal for tile-based decomposition. Therefore, we
built our previous spiking network model of the cerebellum on
the MONET simulator while extending the network size. Owing
to the characteristic structure of the cerebellum, we achieved
good weak-scaling from 1,024 nodes to 82,944 nodes on the K
computer. Our model is not just a baseline model showing only
spontaneous activity, but a functional model that can reproduce
a basic eye movement reflex task called optokinetic response
(OKR). Eventually, using all 82,944 nodes of the K computer,
we succeeded in simulating a human-scale cerebellar model with
68 billion neurons.

MATERIALS AND METHODS

K Computer
Until its shutdown on August 30th, 2019, the K computer
(RIKEN Center for Computational Science) was the Japanese
Flagship supercomputer. We used this computer for our
cerebellar simulation. An overview of the K computer is
described elsewhere (Miyazaki et al., 2012). Briefly, the K

computer comprised 82,944 compute nodes and 1.26 petabyte
of DRAM memory in total. The peak performance was 11.3
PFLOPS. Each node had a SPARC VIIIfx CPU with 8-cores
operating at 2 GHz and 16 GB of DRAM memory. The compute
nodes were interconnected via six-dimensional torus called
“Tofu” network. OpenMP v3.0 and MPI v2.1 were supported for
parallel programming.

Neural Network Simulator MONET
On the K computer, we ran a versatile spiking neuron network
simulator called MONET (Millefeuille-like Organization NEural
neTwork) (Igarashi et al., 2019). The MONET simulator is
designed to run on multi-node clusters such as the K computer.
The simulator computes dynamics of a given large-scale spiking
network model in parallel by partitioning the entire network
into a number of small subnetworks called “tiles,” assigning a
tile to a processor, and performing numerical calculation on
each processor independently while exchanging spikes across
processors (Figure 1A). A tile can stack an arbitrary number of
layered sheets in z-axis, which is suitable for building layered
sheet types of neural networks naturally, such as the cerebellar
cortex with three layers (granular layer, Purkinje cell layer, and
molecular layer).

A typical use case of the simulator is as follows. First, users
prepare parameter files in a JSON format that defines the
simulation settings and neural network parameters, respectively.
The former includes simulation time, the number of nodes to
use, the size of a tile, and the output file name (Supplementary
Figure S1). The latter describes layer thickness, the number of
neurons in a tile, types of neurons, and connectivity among
neurons (Supplementary Figure S2). The neuron parameters
include membrane time constant, threshold, resting and reset
values of membrane potential, external current (I_ex), and
absolute refractory period. The connectivity parameters specify
projection area, connection probability, receptor time constant,
receptor reversal potential, and synaptic weight. Second, a python
script generates intermediate files for all compute nodes from the
JSON file. These intermediate files are used to build a network
on the MONET simulator. The core of the MONET simulator
is a C program that reads the files, executes the simulation
using a forward Euler method with fixed time step of 0.1 ms,
and generates output data. These data include computational
time, spike time and its neuron ID, and neuron position in
three-dimensional space.

Neural Network Model of the Cerebellum
We implemented a spiking network model of the cerebellum that
we had developed previously (Figure 1B; Yamazaki and Nagao,
2012) on the MONET simulator. The model receives two afferent
inputs from mossy fibers and climbing fibers. We implemented
one square millimeter of the cerebellar neuronal sheet on a tile,
and the number of tiles was increased to extend the network
size in the x–y plane and the depth along the z-axis. Along
the z-axis, we stacked seven layers: upper and lower molecular
layers, Purkinje cell layer, granular layer, deep cerebellar nucleus,
inferior olive, and pons with thicknesses of 0.1, 0.1, 0.03, 0.2, 0.1,
0.1, and 0.2 mm, respectively (Eccles et al., 1967). A layer can
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FIGURE 1 | Building a cerebellar neural network model. (A) Schematics of the tile structure composed of two-dimensional sheets of neural networks. We show the
three-dimensional structure of our cerebellar network model. Dots indicate neurons. A 2 mm×2 mm of the cerebellar neuronal sheet on a tile (left) is partitioned into
regular square tiles (right). Each tile communicates with the neighboring tiles to exchange spike data. (B) A schematic of the cerebellar cytoarchitecture. The
cerebellum receives two types of afferents from pons cells and inferior olive cells, respectively.

have multiple stacked sheets along the z-axis. Figure 1A shows
the three-dimensional structure of our cerebellar network model.
The upper molecular layer was composed of four sheets of stellate
cells (STs), and each sheet contained 32 × 32 STs. The deep
molecular layer and the Purkinje cell layer were a single sheet
containing 32 × 32 basket cells (BAs), and Purkinje cells (PCs),
respectively. The granular layer was composed of eight sheets of
granule cells (GRs) and a sheet of Golgi cells (GOs). A GR sheet
contained 320× 320 GRs, and a GO-sheet 32× 32 GOs. The deep

cerebellar nucleus and the pons were a single sheet with 32 × 32
deep cerebellar nucleus cells (DCNs) and pons cells, respectively.
The inferior olive layer contains only one sheet with one inferior
olive cell (IO). Table 1 summarizes the total numbers of neurons
for a tile. These numbers were set based on previous experimental
data (Lange, 1974, 1975; Ito, 1984; Harvey and Napper, 1991;
Heckroth, 1994). Neurons were modeled as conductance-based
leaky integrate-and-fire units. Parameters were set based on our
previous studies. Table 2 summarizes each neuron’s parameters.
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TABLE 1 | Numbers of neurons per tile (1mm2) in each cerebellar layer.

Numbers Experimental data (neuron density)

ST 4,096 18,695 neurons/mm3 (Ito, 1984)

BA 1,024 6,577 neurons/mm3 (Ito, 1984)

PC 1,024 330-650 neurons/mm2 (Lange, 1975; Ito, 1984; Harvey
and Napper, 1991)

GR 819,200 1.75-2.8×106 neurons/mm3 (Lange, 1975; Ito, 1984)

GO 1,024 629-740 neurons/mm3 (Lange, 1974)

DCN 1,024 21,078 neurons/mm3 (Heckroth, 1994)

IO 1

Pons 1,024

Lange (1974, 1975), Ito (1984), and Harvey and Napper (1991) report anatomical
data in various species. In the table, we refer to the cat data of the references,
because the present model was based on the cat data, as in previous models
(Yamazaki and Nagao, 2012; Yamazaki et al., 2019). Heckroth (1994) reports data
in the mouse. ST, stellate cell; BA, basket cell; PC, Purkinje cell; GR, granule cell;
GO, Golgi cell; DCN, deep cerebellar nucleus cell; IO, inferior olive cell.

Anatomical connections among neurons were made
according to the known anatomical structure (Eccles et al.,
1967; Apps and Garwicz, 2005; Barmack and Yakhnitsa, 2008a).
In the MONET simulator, connections were set as a two-
dimensional Gaussian with parameters of the projection area and
connection probability. Table 3 summarizes setting of connection
probability at peak and sigma of a two-dimensional Gaussian
function. Notably, implementing connections via parallel fibers
needs special care, because parallel fibers do not extend radially
but rectangularly. The parallel fiber connections were set by
providing the width (pre_width), the length (post_width),
and connection probability as in Supplementary Figure S3.
Table 4 summarizes the parameters. Neurons have synapses
with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and N-methyl-D-aspartate (NMDA) or γ-aminobutyric
acid type A (GABAA) and γ-aminobutyric acid type B (GABAB).
Synapse dynamics were described by alpha functions. The time
constants are summarized in Table 5. Each synaptic connection
has its connection weight. The weight values are summarized in
Table 6.

Numerical Simulation of the Cerebellar
Model
First, we examined the resting state activity of the model in
response to spontaneous mossy fiber input signals of 8 Hz. We
measured the scalability of the simulation described below. Then,

TABLE 3 | Intra-regional connection for two-dimensional Gaussian function.

Pre GO IO Pons

Post GR PC GR

Probability at peak 0.04 1 1

Sigma (µm) 200 350 25

References Crowley et al.,
2009; Hull and
Regehr, 2012

Eccles et al.,
1967; Ito, 1984

Eccles et al., 1967;
Ito, 1984

ST, stellate cell; BA, basket cell; PC, Purkinje cell; GR, granule cell; GO, Golgi cell;
DCN, deep cerebellar nucleus cell; IO, inferior olive cell.

as a benchmark test to confirm the network dynamics consistent
with experimental data, we performed a computer simulation
of a simple cerebellum-dependent eye movement control task
called OKR. The OKR is an eye movement reflex, which is
induced by slow movement of the whole visual field image on
the retina. The cerebellum issues the motor command for eyes
to move to the same direction with the visual field movement,
so that the blur in the retinal image is reduced (Shutoh et al.,
2006). In the OKR, the cerebellum receives the information of
the moving speed of the visual world from nucleus reticularis
tegmenti pontis (NRTP), and issues the motor command from
vestibular nucleus (VN) cells. In our model, NRTP was composed
of 32 × 32 cells aligned on two-dimensional grids. For NRTP
cells, we set the membrane time constant, threshold, reset value,
resting membrane potential, and absolute refractory period to
40 ms,−60 mV,−70 mV,−70 mV, and 1 ms, respectively. A two-
dimensional Gaussian function was used for connection from
NRTP cells to GRs. The connection probability at peak and sigma
of the two-dimensional Gaussian function were set to 0.1 and
75, respectively. On the other hand, PCs project to VN cells. The
VN was composed of 32 × 32 cells aligned on two-dimensional
grids. We fed sinusoidally modulating I_ex into NRTP cells. I_ex
of PCs and VN cells were set to 24 and 40 nA, respectively. We
set synapse weights as shown in Supplementary Table S1. The
other parameters were the same as the cerebellar network model
described above.

Analysis of Spike Patterns of Granule
Cells
A characteristic feature of our cerebellar model is spatiotemporal
combinatorial encoding of mossy fiber input signals by

TABLE 2 | Neuron parameters.

ST BA PC GR GO DCN IO Pons

Membrane time constant (ms) 10 10 10 7.2 12 10 10 10

Threshold (mV) −55 −55 −50 −35 −50 −40 −50 −50

Reset value (mV) −70 −70 −70 −70 −70 −70 −70 −70

Resting membrane potential (mV) −70 −70 −70 −58 −70 −70 −70 −70

I_ex (nA) 0 0 22 0 0 32 50 24

Absolute refractory period (ms) 1 1 1 1 1 1 1,500 1

ST, stellate cell; BA, basket cell; PC, Purkinje cell; GR, granule cell; GO, Golgi cell; DCN, deep cerebellar nucleus cell; IO, inferior olive cell.
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TABLE 5 | Time constants for synapses.

Synapse Time constant (ms)

AMPA 2

NMDA 100

GABAA 2

GABAA (GO to GR) 10

The parameters were set based on our previous studies (Yamazaki and
Nagao, 2012; Yamazaki et al., 2019). AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; NMDA, N-methyl-D-aspartate; GABAA, γ-aminobutyric
acid type A; GO, Golgi cell; GR, granule cell.

population activity of a number of granule cells via random
inhibitory connections with Golgi cells in the granular layer
(Yamazaki and Tanaka, 2005, 2007a,b; Yamazaki and Nagao,
2012). In response to sustained mossy fiber signals, granule cells
reveal different temporal activity patterns. The cells undergo
random repetition of transitions between burst and silent states.
The burst state is sustained for tens to hundreds of milliseconds.
Because different granule cells show different temporal activity
patterns, the population of active granule cells changes gradually
in time (Supplementary Figure S4A). To quantify the gradual
change of the active granule cell population, we employ a measure
called “similarity index” defined previously.

We assume that the simulation time is discretized with
temporal resolution dt (=0.1 ms). Let fi (t) be the spike activity
of model GR i at time t (ms), thus fi (t) = 1 (GR i elicits a spike at
time t), fi (t) = 0 (otherwise). Then, let zi (t) be the temporal trace
of the activity of GR i (i.e., EPSPs on a PC) decayed exponentially
with time constant τPC as follows (Yamazaki and Tanaka, 2007b):

zi (t) =
1

τPC

t∑
s=0

exp
(
−
t − s
τPC

)
fi (s) (1)

where τPC was set at 50 ms. Here, the sum with respect
to s is a discretized version of temporal integration over s
with dt. We defined the similarity index SI (1t) as follows
(Yamazaki and Tanaka, 2007b):

SI (1t) =
1
T

T∑
t=0

∑
i zi (t) zi (t +1t)√∑

i z
2
i (t)

√∑
i z

2
i (t +1t)

(2)

where T represents the temporal duration to calculate the
similarity. Here again, the sum with respect to t denotes a
discretized version of temporal integration over t with 1t.
We set T at 2 s. The similarity index basically calculates the
normalized autocorrelation for two GR populations at time t
and t + 1t over t. The numerator calculates the correlation,
whereas the denominator normalizes the value between 0 and 1.
In other words, this index represents how the two GR populations
separated by 1t are similar on average. If the value is 1, the
populations are identical, whereas if it is 0, they are completely
different. Section Supplementary Material S1 provides a more
detailed explanation.
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Measuring Scaling Property
Weak scaling and strong scaling are two important measures
to quantify the performance of numerical simulation. In weak
scaling, we increase the size of the neural network model (i.e.,
the numbers of neurons and synapses) while increasing the
number of compute nodes involved, where the computational
load per node is kept the same. Perfect weak scaling yields
that the computational time remains unchanged across any
network size. In other words, weak scaling ensures that we
can simulate arbitrarily large-scale network models as long as
sufficient computational power is provided. This way, human-
scale or even larger simulations are possible. On the other
hand, in strong scaling, the number of compute nodes is varied
while fixing the network size. Perfect strong scaling yields that
the computational time halves by doubling the computational
power. In other words, strong scaling ensures that the computer
simulation can be faster as more computational power is adopted.

To accomplish human-scale simulation, the weak scaling
property is important. Therefore, we examined the weak scaling
property of our simulation.

RESULTS

Network Dynamics
In the cerebellar network model, GRs in the granular layer receive
external input from Pons cells (Figure 1B). First, we examined
the network dynamics in response to spontaneous discharge in
the Pons, which were firing at 8 Hz. In the spontaneous discharge
condition, the average firing rate of STs, BAs, PCs, GRs, GOs,
and DCNs were 14, 14, 55, 1.9, 0.10, and 27Hz, respectively.
In Table 7, we compared the simulated firing rates and the
experimental data in rodents.

Next, we carried out a simulation in Pons cells issuing spikes
in a high frequency, which were firing at 50 Hz. Figure 2A
shows a raster plot of GRs in response to constant strong input
signals in the Pons. GRs repeatedly emitted spikes in bursts at

random time intervals, then stopped suddenly. Different GRs
showed different temporal activity patterns. To confirm the
property, we calculated the similarity index by Eq. 2 and plotted
it in Figure 2B. The similarity index monotonically decreases
as 1t increases. The result suggests that the population of
active GRs changes gradually and slowly with time, and any
population would appear only once during a cycle of the input
signals (see Supplementary Material S1). This activity pattern
emerged from the random recurrent inhibitory network, which
was composed of GRs and GOs. These data reproduced the
reservoir-like activity pattern of GRs demonstrated in previous
studies (Yamazaki and Tanaka, 2007a).

Finally, we performed a computer simulation of the OKR.
In the OKR, the cerebellar cortex receives two input signals
(Figure 3A). Visual motion information is transmitted from the
retina to the GRs through mossy fibers via NRTP. Information
of retinal slip is transmitted to PCs through climbing fibers via
the IO. The activity of VN cells that are the only output cells of
the cerebellum correspond to eye movement (Figure 3A). We fed
sinusoidally modulating external current like the visual motion
pattern of Figure 3A into NRTP cells. NRTP cells exhibited
sinusoidally modulating firing rates similar to a visual motion
pattern (data not shown). Figure 3B shows the raster plot of GRs
in response to the input signals in NRTP cells. We found that GRs
exhibited a reservoir-like activity pattern. Figures 3C,D show the
firing rate of PCs and VN cells, respectively. PCs modulated the
firing rate out of phase with the firing rate of NRTP cells. The
result corresponds to Figure 3A of a previous study by Yamazaki
and Nagao (2012). In that figure, the modulation range of the
firing frequency in PCs at the 100th cycle was 50–80 Hz. Our
current simulation had the same modulation range as seen in
previous study (Yamazaki and Nagao, 2012). The neural activity
of PCs during the OKR has been recorded in various animals. The
following shows the modulation ranges of the firing frequency
in PCs in each study; 30–50 Hz (rabbit, Figure 3C in Nagao,
1988), 40–100 Hz (monkey, Figure 3C in Sato and Noda, 1992),
20–100 Hz (cat, Figure 2A in Kitama et al., 1999), 40–100 Hz

TABLE 6 | Synaptic weights.

Postsynaptic neuron

ST BA PC GR GO DCN IO Pons

Presynaptic neuron

ST 0.02 0.05

BA 0.02 0.1

PC 0.01 0.0025

GR 0.00145 0.00145 0.0013 AMPA

0.0008

NMDA

0.00017

GO 3.0

DCN

IO 0.1

Pons 0.5

ST, stellate cell; BA, basket cell; PC, Purkinje cell; GR, granule cell; GO, Golgi cell; DCN, deep cerebellar nucleus cell; IO, inferior olive cell.
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TABLE 7 | Firing rates during resting state.

Simulated
firing rates

Experimental data in rodents

ST 14Hz 14.9Hz (Blot et al., 2016), 20Hz (Jelitai et al., 2016)

BA 14Hz 14.9Hz (Blot et al., 2016), 20Hz (Jelitai et al., 2016)

PC 55Hz 48.9Hz (Blot et al., 2016), 66.9Hz (Jelitai et al., 2016)

GR 1.9Hz 0.12Hz (Powell et al., 2015), 0.14Hz (Jelitai et al.,
2016), 1.9Hz (Chen et al., 2017)

GO 0.10Hz 2–25Hz (Holtzman et al., 2006), 7.53Hz (Dugué et al.,
2009)

DCN 27Hz 10Hz (Menardy et al., 2019), 36.6Hz (LeDoux et al.,
1998)

The experimental data indicate the average firing rates reported in the reference,
except for Holtzman et al. (2006). For Holtzman et al. (2006), it is shown as the
firing frequencies in the range. ST, stellate cell; BA, basket cell; PC, Purkinje cell;
GR, granule cell; GO, Golgi cell; DCN, deep cerebellar nucleus cell.

(mouse, Figure 3A in Yoshida et al., 2007). The simulation result
in this study is within the range of the results in the animal
studies. Furthermore, VN cells modulated the firing rate out of
phase with the firing rate of PC cells due to disinhibition. This
result corresponds to Figure 3B in a previous study by Yamazaki
and Nagao (2012). In that figure, the modulation range of the
firing frequency in VN cells at the 100th cycle was 30–90 Hz.
In this simulation, the modulation range of the firing frequency
in VNs was 20–50 Hz. Because the MONET simulator does not
implement the plasticity rule, we did not investigate OKR gain
adaptation. This issue will be discussed as a limitation in section
“Discussion.” Because activity of IO cells plays an important role
in adaptation and is also too low, we did not feed sinusoidally
modulating external current into the IO; therefore, we ignored
inputs from retinal slip in this study.

Weak Scaling Property
We measured computational time while varying the number of
compute nodes from 1,024–4,096 to 10,000–40,000 and finally
82,944, and while increasing the network size of the cerebellar
network model. Thus, we analyzed the weak-scaling property
of the cerebellar network model (Figure 4A). With 1,024 and
4,096 nodes, we changed the seed of the random number and
carried out five simulations. Due to limited resources, it was
not possible to carry out several simulations on more than
10,000 nodes. For each node, we obtained a computational time
of 456, 459, 429, 425, and 578 s, respectively (blue squares,
Figure 4A). The computational time did not increase until
40,000 nodes. However, at 82,944 nodes, the computational time
increased by 1.5×. Nevertheless, this represents a good scaling
property in this model.

The computational time was calculated for membrane
potentials (neuron computational time), calculation of synaptic
inputs (synapse computational time), and communication
via network to exchange spike information among different
computational nodes (communication time). Figure 4A shows
each computational time at each node. From 1,024 to 82,944
nodes, there were no increases in neuron and synapse
computational times; however, there was an increase in

FIGURE 2 | Spike patterns of granule cells (A) Activity pattern of 1,024
granule cells chosen randomly in response to constant input signals for
2,000 ms. Horizontal axis is time (ms) and vertical axis is neuron number. Each
dot represents a spike. (B) Similarity index for the spike patterns of granule
cells.

communication time at 82,944 nodes. The increase in the total
computational time at 82,944 nodes was due to the increase in
communication time. Note that an increase in communication
time was observed under some setting conditions at 1,024
and 4,096 nodes. In the MONET simulator, the cerebellar
two-dimensional sheet is partitioned into regular square tiles
and assigned to compute nodes on the K computer. There is
a possibility that the tiles that require communication were
distantly assigned to compute nodes. Therefore, the assignment
may influence the communication time. The issue related to
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FIGURE 3 | A computer simulation of the optokinetic response (OKR). (A) Schematics of the cerebellar neural circuitry for OKR. Note that input from NRTP cells to
vestibular nucleus cells and retinal slip are ignored in this simulation of the OKR. NRTP, nucleus reticularis tegmenti pontis. (B) Activity pattern of 1,024 granule cells
chosen randomly in response to input signals of OKR for 2 s. Horizontal axis is time (s) and vertical axis is neuron number. Dot represents a spike. (C) Firing rate of
Purkinje cells. (D) Firing rate of vestibular nucleus cells. In (C,D), data of firing rate show the mean of 1,024 cells (dots). Lines show fitting the data with cosine
functions. Horizontal axis is time (s) and vertical axis is firing rate (spikes/s).

optimally assigning tiles to compute nodes will be addressed in
section “Discussion.”

Using the full nodes (82,944 nodes) of the K computer, the
total number of neurons in the human-scale cerebellar network
model was 68,627,284,992 (approximately 68 billion), which is
comparable to the human cerebellum (Herculano-Houzel, 2009).
Furthermore, in the human-scale cerebellar network model, the
total number of synapses was 5,389,950,000,000 (approximately
5.4 trillion). Finally, we examined the occupying memory for the
human-scale cerebellar network model. In the K computer, each
node has 16 GB of DRAM memory. In the simulation of the
human-scale cerebellar network model, up to 9.6 GB of memory
per node was occupied, then the total memory was 0.80 PB
(9.6 GB per node× 82,944 nodes).

We further examined the breakdown of computational time.
Figure 4B shows a pie chart of the different components of
the computational time with 1,024 nodes, which took 416 s
to simulate 1 s of biological time. The neuron, synapse, and

communication times were 35, 54, and 11%, respectively. The
cerebellar network model for Figures 4A,B received constant
strong inputs, indicating high activity in the whole network.
Next, we sought to investigate the computational time when
the activity in the whole network was low. We hypothesized
that a lower activity state in the network model corresponded
to spontaneous discharge. Therefore, we created a cerebellar
network model with spontaneous discharge and performed the
simulation with 1,024 nodes. The cerebellar network model
with spontaneous discharge took 403 s to simulate 1 s of
biological time, which was decreased compared with the
cerebellar network model that received constant strong inputs
(416 s). Figure 4C shows a pie chart of the different ratios
of computational time per component. The neuron, synapse,
and communication computational times were 47.9, 51.9, and
<1%, respectively. The communication time in the cerebellar
network model with spontaneous discharge was negligible
compared with the cerebellar network model receiving constant
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mean ± standard deviation. The horizontal axis is shown in log-scale. (B) A pie chart of the components of computational time with 1,024 nodes. (C) A pie chart of
the components of computational time with 1,024 nodes for the cerebellar network model with spontaneous discharge.

strong inputs. This was due to fewer emitted spikes in the
cerebellar network model with spontaneous discharge; therefore,
communication among nodes was reduced substantially. These
results suggest that the MONET simulator implements efficient
communication mechanisms.

DISCUSSION

Computer Simulation of a Human-Scale
Cerebellar Network Model
In this study, we built a cerebellar network model based on
electrophysiological and anatomical data and carried out the
simulation on the K computer using the MONET simulator. We
carried out computer simulation of resting-state activity driven

by spontaneous mossy fiber input signals as well as network
dynamics during OKR. In the latter, we reproduced a reservoir-
like activity pattern of granule cells and observed similar activity
patterns in animal experiments (Yamazaki and Nagao, 2012).
We also confirmed a good weak-scaling property from 1,024 to
82,944 computational nodes on the K computer. Using the full
nodes (82,944 nodes) of the K computer, we were able to simulate
a human-scale cerebellar model composed of approximately
68 billion neurons.

What can be done with such human-scale cerebellar
simulation? Various potential usages are considered. Regarding
its functional roles, the cerebellum is divided into functional
modules called microcomplexes (Ito, 1984; Apps and Garwicz,
2005; Apps et al., 2018). A recent study using fMRI has
demonstrated that the human cerebellum has functional
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parcellations in various tasks (King et al., 2019). It is
assumed that even simple reflexive motor task such as
OKR involve multiple microcomplexes of neural activity.
Furthermore, a recent study in mice reports that performance
of complex cognitive tasks involves widespread regions of the
cerebral cortex (Pinto et al., 2019). Because the cerebellum
interacts with those cortical regions (Buckner et al., 2011;
Guell et al., 2018) in complex tasks in humans, it is
assumed that widespread regions of the cerebellum engage
with widespread cortical regions. Therefore, to explore how
multiple regions in the human cerebellum interact to accomplish
tasks, large-scale cerebellum simulation and even human-
scale whole-brain simulation will be useful. Meanwhile, the
connectome data from the human brain have been made
available gradually. To incorporate human connectome data,
a human-scale network model will be necessary. Once we
succeed in adopting the human-level connectome data, we
would reproduce the cerebellar activity during human-specific
cognitive tasks. Eventually, a human-scale cerebellar model will
be part of the human-scale whole brain simulation, which will
be discuss later.

Current Limitations and Future
Extensions
Although the present model is built based on known
electrophysiological and anatomical data (Yamazaki and
Nagao, 2012) and the size is unprecedented, several important
features are missing. In the cerebellum, the plasticity at
parallel fiber-Purkinje cell synapses plays prominent roles
(Marr, 1969; Albus, 1971; Ito, 2001; Ito et al., 2014; Yamazaki
et al., 2015; Yamazaki and Lennon, 2019). Moreover, there
are various forms of synaptic plasticity distributed within the
cerebellum (D’Angelo, 2014). Related to this plasticity, detailed
synapse dynamics involving receptors and transporters such as
metabotropic glutamate receptors and Ca2+ channels are also
missing. Because these receptors and transporters contribute
to the signaling processes in dendrites (Tank et al., 1988; Eilers
et al., 1995; Ito, 2001, 2002), multi-compartment neuron models
rather than single-compartment models used in this study must
be taken into account. These are the future extensions that
we aim to address.

Another limitation of the present simulation is the
computational time. Even the simple simulation of resting
state activity took 578 times more time than the wall clock
time. This means that a computer simulation of cerebellar
activity for just 1 min takes almost 10 h to complete. Such a
slow computational time significantly constrains our research.
For example, cerebellum-dependent motor learning takes at
least a few hours or even days (Shutoh et al., 2006). Computer
simulation of such learning is practically impossible. To
accelerate computer simulation, special-purpose hardware for
parallel computing such as graphics processing units (GPUs)
provide tremendous computational power for cerebellum
simulation. Yamazaki and Igarashi (2013) built a spiking network
model of the cerebellum with 0.1 million neurons on GPU, and
succeeded in simulating 1 s of biological time within 1 s of wall

clock time (real-time simulation). Later, Yamazaki et al. (2019)
employed the supercomputer Shoubu, which was composed of
1,024 PEZY-SC processors, and built a cat-scale cerebellar model
with one billion spiking neurons enabling real-time simulation.
Some cerebellar models are demonstrated in adaptive robot
control (Garrido et al., 2013; Casellato et al., 2015). The next-
generation Japanese flagship supercomputer, Fugaku, will have
100 times more computational capability than the K computer.
The MONET simulator on Fugaku will be able to accomplish
real-time simulation. Pursuing real-time simulation is another
future extension.

Scaling property is also an issue. The MONET simulator
successfully simulated the cerebellar network model with
perfect weak scaling property until 40,000 nodes. However,
the computational time increased with 82,944 nodes. This
increase was due to a large increase in communication
time. There are some possible causes for this increase in
communication time. First, mapping the cerebellar two-
dimensional sheet on the three-dimensional space of compute
nodes interconnected by Tofu in the K computer influences
communication time. There is a possibility that continuity
between neighboring tiles is not preserved in the placement
of the tiles on nodes. Therefore, distantly placed tiles may
increase the communication time because of unnecessary
distant communication and communication conflicts,
especially when using large numbers of nodes. This may
be relieved by mapping the sheets on the compute nodes
while preserving their continuity. Second, there may be
an increase in node synchronization latency. Subtle load
unbalancing between nodes due to fluctuating neural activity
may occur with small numbers of nodes; however, its effect
on total elapsed times will increase as the number of nodes
increases because synchronization requires a longer time for
larger numbers of nodes. This problem might be solved in a
supercomputer with a different topological network, such as a
fat tree. Optimizing the simulator for Fugaku will be another
important extension.

Comparison With Other Large-Scale
Models
Modern supercomputers allow cerebellar researchers to build
large-scale network models. The present model is at one end of
the spectrum: the network size is large, but the neuron model is
simple (i.e., point neurons). At the other end, the neuron model
is elaborated (i.e., multi-compartment neurons), but the network
size is not so large. Several researchers have built models with the
latter makeup. Solinas et al. (2010) reported that center-surround
receptive fields for granule cells as a spatiotemporal filter
emerged from the network dynamics with Golgi cells. Billings
et al. (2014) investigated the capability of lossless sparse encoding
within the granular layer. Cayco-Gajic et al. (2017) examined
information capacity of parallel fiber inputs on a Purkinje cell.
Sudhakar et al. (2017) demonstrated synchronized oscillation
between granule cells and Golgi cells in the granular layer.
Multi-compartment neuron models make the network model
more realistic, whereas due to the heavy computational load, the
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network size cannot be large. In fact, multi-compartment
neuron models are used to study detailed intracellular
dynamics of a single neuron (De Schutter and Bower, 1994a,b;
Roth and Häusser, 2001; Steuber et al., 2007; Zang et al., 2018).
Thus, there is a trade-off between the network size and the details
of single neurons. To address this problem, Casali et al. (2019)
proposed a scaffold cerebellar model, which aims to compromise
the network size and neuron models.

On the cerebral cortical simulation, Izhikevich and Edelman
reported a simulation of a thalamocortical circuit that has
hundred billion neurons and almost one quadrillion synapses
(Izhikevich, 2005; Izhikevich and Edelman, 2008), but the
details were not described. Using the K computer, Kunkel
et al. (2014) and Jordan et al. (2018) built a balanced
random cortical network model composed of 80% excitatory
and 20% inhibitory integrate-and-fire neurons using the NEST
simulator (Gewaltig and Diesmann, 2007). These studies used
the full nodes of the K computer, and in Jordan et al.
(2018), the model was composed of 1.51 billion neurons and
16.8 trillion synapses, which is one tenth of the number
of neurons in the human cortex (Herculano-Houzel, 2009).
However, the model took approximately 800 s to simulate
1 s of the biological time. Using the MONET simulator,
Igarashi et al. (2019) built a cortex model with 6.04 billion
neurons and 24.5 trillion synapses, which is one third of the
human cortex, on 63,504 nodes of the K computer, and the
simulation took 322 s for simulation of 1 s biological time.
Because the MONET simulator exhibits a good weak-scaling
property (Igarashi et al., 2019), the simulator would simulate
the cortex model of the same size with Jordan et al. (2018)
twice times faster.

Besides these previous studies, ours is the first report of a
cerebellar network model showing realistic behaviors with a good
weak scaling property up to the human scale. In particular, the
weak scaling property was realized by the crystallized anatomical
structure of the cerebellum, which seems optimal for the tile-
based decomposition method adopted in the MONET simulator.

Toward Building a Whole-Brain Network
Model
The cerebellum is interconnected with other brain regions;
the cerebral cortex and cerebellum form the cerebro-cerebellar
communication loop (Kelly and Strick, 2003; Bostan et al.,
2013; Proville et al., 2014; Voogd, 2014). In this loop, cerebellar
outputs reach the primary motor and premotor cortex through
the thalamus. Further, the cerebellum receives information
from the primary motor and premotor cortex through the
pons. Recent studies have demonstrated that the cerebellar-
thalamo-cortical system plays an important role in motor
control (Viaro et al., 2017; Nashef et al., 2018, 2019) and
motor learning (Tanaka et al., 2018). A recent study also
demonstrated that the cortico-cerebellar loop contributes to
cognitive processes (Gao et al., 2018). In immobile animals,
synchronization between cerebellar local field potentials (LFPs)
and sensorimotor cortical LFPs within the theta frequency
range has been shown (Courtemanche and Lamarre, 2005). To

understand brain function, we need to consider interaction with
multiple brain regions. We have developed a spiking neural
network model of the primary motor cortex (Igarashi et al., 2019)
and thalamus (unpublished data) using the MONET simulator.
This simulator can connect the cerebellar network and thalamo-
cortical network models (unpublished data). Our cerebellar-
thalamo-cortical network model might advance understanding
of the functional interaction of the cerebral cortex and
cerebellum, and the mechanism of synchronization. In addition,
previous studies have demonstrated that the cerebellum and
basal ganglia are interconnected (Hoshi et al., 2005; Bostan
et al., 2010, 2013; Bostan and Strick, 2018). Recent studies
have also demonstrated that the cerebellar output influences
the neuronal activity of the basal ganglia and basal ganglia-
dependent behavior (Chen et al., 2014; Xiao et al., 2018).
To examine roles of these inter-regional communications in
both motor and cognitive functions, a whole-brain model
will be necessary.

Furthermore, the brain has multiple learning systems.
Particularly, the cerebral cortex, cerebellum, and basal ganglia
are considered unsupervised, supervised, and reinforcement
learning system, respectively (Doya, 1999, 2000). Recently,
Yamazaki and Lennon (2019) have proposed that the cerebellum
is a reinforcement learning machine. These studies suggest
that multiple learning systems (supervised and reinforcement
learning systems) are driven in parallel in the cerebellum. Large-
scale cerebellum and whole-brain simulations would allow us
to explore how multiple learning systems work in parallel
in the cerebellum and even in the whole-brain. In addition
to neurons, experimental evidence on the role of glia cells
are accumulating (Ben Haim and Rowitch, 2017). It would
be interesting to incorporate neurons and glia cells into the
human-scale cerebellum and whole-brain model. We believe that
simulations of the models will bring new insights.

CONCLUSION

We built a cerebellar network model based on
electrophysiological and anatomical data on the K computer
using the MONET simulator. The cerebellar network model
with the MONET simulator reproduced the activity pattern of
granule cells and the OKR simulation as shown by the previous
cerebellar network model. Moreover, the MONET simulator
showed good weak scaling for our cerebellar network model.
Eventually, we demonstrated a human-scale cerebellar network
model simulation. These results serve as a fundamental step
toward human-scale whole-brain simulations and contribute
to our exploration of the computational mechanisms in the
human cerebellum.
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