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Objective: To supply the attending doctor’s diagnosis of the persisting of cerebral small
vessel disease and speed up their work effectively, we developed a “deep learning
system (DLS)” for cerebral small vessel disease predication. The reliability and the
disease area segmentation accuracy, of the proposed DLS, was also investigated.

Methods: A deep learning model based on the convolutional neural network was
designed and trained on 1,010 DWI b1000 images from 1010 patients diagnosed with
segmentation of subcortical infarction, 359 T2∗ images from 359 patients diagnosed
with segmentation of cerebral microbleed, as well as 824 T1-weighted and T2-FLAIR
images from 824 patients diagnosed with segmentation of lacune and WMH. Dicw
accuracy, recall, and f1-score were calculated to evaluate the proposed deep learning
model. Finally, we also compared the DLS prediction capability with that of 6 doctors
with 3 to 18 years’ clinical experience (8 ± 6 years).

Results: The results support that an appropriately trained DLS can achieve a high-
level dice accuracy, 0.598 in the training section over all these four classifications on
30 patients (0.576 for young neuroradiologists), validation accuracy is 0.496 in lacune,
0.666 in WMH, 0.728 in subcortical infarction, and 0.503 in cerebral microbleeds. It is
comparable to attending doctor with a few years of experience, regardless of whether
the emphasis is placed on the segmentation or detection of lesions with less time-
spending compared with manual analysis, about 4.4 s/case, which is dramatically less
than doctors about 634 s/case.

Conclusion: The results of our comparison lend support to the case that an
appropriately trained DLS can be trusted to the same extent as one would trust an
attending doctor with a few years of experience, regardless of whether the emphasis is
placed on the segmentation or detection of lesions.

Keywords: cerebral small vessel diseases (CSVD), deep learning system (DLS), categorizing, subcortical
infarction, white matter hyperintensity, launce, cerebral microbleed, diagnosis-assistance
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INTRODUCTION

The Cerebral Small Vessel Disease (CSVD) is an umbrella
term covering a variety of abnormalities related to small blood
vessels in the brain, which can be caused by many diseases,
such as plaque accumulation in the small vessel, small vessel
inflammation, and persisted chronic damage in the small vessel
(hypertension) (Go et al., 2012; Rincon and Wright, 2014).
Consequently, it could lead to irreversible consequences such

as stroke, dementia, mood disturbance, and gait problems.
The CSVD can be diagnosed by medical professionals based
on magnetic resonance imaging (MRI) (Noguchi et al., 1997;
Greenberg et al., 2009; Debette and Markus, 2010). Signs of
CSVD on conventional MRI include lacunes, white matter
hyperintensities (WMH), recent small subcortical infarcts,
prominent perivascular spaces, cerebral microbleeds, and
atrophy (Wardlaw et al., 2013). CSVD has been suggested to be
an essential source of morbidity associated with ischaemic and

FIGURE 1 | Flowchart of the patients’ distribution in training and clinical evaluation. The distribution and classification of all samples in each step was used for the
model training, and clinical evaluation steps.
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hemorrhagic stroke, dementia, and depression (Pantoni, 2010).
So it is critical to define the severity of CSVD by a quantitative
assessment from MRI, which is relevant to the risk of stroke.
However, the severity of CSVD is mainly evaluated by manual
semi-quantitative or qualitative methods at present, which is
time-consuming, laborious, and subjective (Rensma et al., 2018).

Nowadays, the deep convolutional neural networks (CNN)
has proven to be useful and effective in medical applications,
such as the classification (Mohsen et al., 2018) and segmentation
(Havaei et al., 2017) of brain tumor problem as well as various
vessel diseases (Dou et al., 2016; Ghafoorian et al., 2017). Besides,
computers are immune to fatigue or emotions and can function
24 h daily. Moreover, a high-quality automatic segment can
probably help doctors to speed up their diagnosis, and hence
allowing more patients to be processed. In recent studies, deep
learning has applied in stroke imaging data in areas including
automated featurization, image segmentation, and multimodel
prognostication (Huang et al., 2010; Misra et al., 2010; Kamnitsas
et al., 2015; Stier et al., 2015). One of the significant strengths
of deep learning is that there is no obvious solution that could
be obtained manually, such as the prediction of poststroke
MRI fluid-attenuated inversion recovery (FLAIR) changes given
acute diffusion-weighted imaging‘(DWI) maps (Stier et al., 2015).
Currently, the application of deep learning in CSVD is seldom
reported. Several deep learning models for segmentation have
been applied in three-dimensional images and worked well
(Kamnitsas et al., 2017; Aslani et al., 2019). Nevertheless, two-
dimensional data is commonly used in clinical practice.

To supply people with consistent and efficient CSVD area
segmentation systems and help the young doctors to speed
up their workflow, we developed a DLS for automatic area
segmentation. Furthermore, to check the reliability of this
system, we seek to investigate the relative performance between
the proposed DLS system and human doctors on detecting
and locating four types of CSVD (lacune, WMH, subcortical
infarction and cerebral microbleeds) using T1-weighted, T2∗,
T2-FLAIR, and DWI b1000 sequences. Prominent perivascular
spaces and atrophy were not included in the DLS system, for
they are difficult to make a reasonable manual evaluation in
conventional two-dimensional images. Specifically, we compare
the performance of the proposed DLS with the average
performance of six doctors. Accurate lesion segmentation and
identification can guarantee objective and accurate quantitative
evaluation. The purpose of this study is to validate whether an
appropriately-trained DLS can be trusted to the same extent as
one would trust a doctor with a satisfying experience. Then the
system may be applied to quantify the lesion load of CSVD and
further to help establish the risk factor prediction model.

MATERIALS AND METHODS

Standard Protocol Approvals, and
Patient Consents
All the patients provided consent for access to the image
data in this study. This study was approved by the ethics

committee of the Beijing Tiantan Hospital and fulfilled the
Helsinki Declaration.

Data Quality Control
For the image quality evaluation, the three-point scale was
applied: 1, “poor” (limited image quality that affects diagnosis);
2, “good” (minor artifacts or mildly reduced signal-noise
ratio with no effects on diagnosis); and 3, “excellent” (no
artifacts and optimal). Only scale 2 or 3 were allowed to
be included in this study. More details of manufacturer and
resolution information in Supplementary Figure 1.

Image Dataset
We obtain 1500 anonymized patients data from Beijing Tiantan
hospital and other 12 hospitals across China which are included

FIGURE 2 | Example cases of Cerebral Small Vessel Disease (CSVD) MRI A.
Classical MRI of CSVD including lacune, white matter hyperintensity (WMH),
subcortical infarction, cerebral microbleed.

TABLE 1 | The definitions of imaging characteristics for CSVD on MRI.

Lacunes White matter
hyperintensity

subcortical
infarct

Cerebral
microbleed

DWI ↓/↔ ↔ ↑ ↔

T1 ↓CSF-like ↓/↔ ↓ ↔

T2-FLAIR ↓/↔ ↑ ↑ ↔

T2∗-weighted
GRE

↓/↔ if haemorrhage ↔ ↔ ↔

Diameter 3 to 15 mm Variable ≤20 mm 2 to 10 mm

↑ signal increased, ↓ signal decreased,↔ equal signal.

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2020 | Volume 14 | Article 17

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00017 May 20, 2020 Time: 16:1 # 4

Duan et al. DLS for Masking CSVD

in The Third China National Stroke Registry (CNSR-III). The
MRI data include T1 weighted image (T1WI), T2∗, T2-FLAIR,
DWI b1000 and TOF-MRA., The inclusion criteria of patients
were: (Rincon and Wright, 2014) Age older than 18 (Go
et al., 2012) Ischemic stroke or Transient ischemic attack (TIA)
(Greenberg et al., 2009) Informed consent from patient or
legally authorized representative (Primarily spouse, parents, adult
Children, otherwise indicated) (Debette and Markus, 2010) The

TABLE 2 | Clinical symptom distribution in the evaluation dataset (n = 30).

Lacune White matter
hyperintensity

subcortical
infarct

Cerebral
microbleed

Positive symptom 30 27 29 30

Negative symptom 0 3 1 0

presence of one CSVD sign or more on MRI (Kamnitsas et al.,
2015). Patients who had other abnormalities such as hemorrhage
or brain tumor on MRI and well-defined macro-vascular stenosis
on MRA were excluded.

In total, we have 824 T1-weighted and T2-FLAIR images
from 824 patients with segmentation of lacune and WMH, 1,010
DWI b1000 images from 1010 patients with segmentation of
subcortical infarction, as well as 359 T2∗ images from 359 patients
with segmentation of cerebral microbleed. Each volumetric MRI
has a vertical spacing of between 6 and 8 mm. For each image, the
spacing along the x- and y-direction varies from 0.36 to 1.44 mm
between consecutive pixels. The distribution of pixel spacings
for each dataset are shown in Figure 1. Instead of resizing the
images to ensure a uniform pixel spacing, we train the model
to be scale-invariant within the reasonable range of resolutions
encountered in MRI.

FIGURE 3 | Multiple-label classification of CSVD, and Performance analysis of the model in the training stage. (A) Multiple-label classification of CSVD. (B–E) Model
performance in training accuracy and validation accuracy.
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FIGURE 4 | The Structure of the DLS used for CSVD detection and segmentation. Each Encoder block contains one or more convolution steps followed by
max-pooling for downsampling. Each time the feature maps are downsampled, the number of output channels is increased. Each Decoder block comprises one
deconvolution (transpose convolution) operation that upsamples the size of the feature maps and correspondingly reduces the number of output channels.

The segmentation labels for patients with lacune, WMH,
subcortical infarction, or cerebral microbleed are endorsed by
two radiologists with 12 years of clinical experience. The lacunes
were mainly labeled on T1WI (CSF-like hypointensity) with
referred to T2-FLAIR. The segmentation labels with WMH
were based on T2-FLAIR. The subcortical infarction was labeled
on DWI b1000 images. The segmentation labels with cerebral
microbleed were labeled on T2∗-weighted GRE, with other
sequences as reference. All the segmentation character of MRI
illustrated in Tables 1, 2 and Figure 2.

Evaluation Dataset and Reference
Standard
The evaluation dataset comprises 30 patients, with T1-weighted,
T2∗, T2-FLAIR, and DWI b1000 sequences available for each

TABLE 3 | Dice accuracy at pixel-wise criteria and F1 score for four CSVDs.

Our model Doctors

Dice Accuracy (Pixel-wise) 0.598 0.576

Region F1 score 0.725 0.691

Dice accuracy at pixel-wise criteria and F1 score for four CSVDs of 30 patients
according to the predictions made by six doctors (Neuroradiologists) and by our
model, concerning the reference standard. In the pixel-wise evaluation, the images
and masks have a resolution of 224 × 224 pixels.

patient. All these patients’ clinical diagnosis must meet the
inclusion criteria and each patent’s image must have 2 to 4 signs
of CSVD, and all of these patients are independed from the
previous dataset.

We define the ground truth location of these four possible
diseases according to the diagnosis and segmentation label by
three senior physicians, with all giving their consensus. These
three physicians who set the reference standard on the 30 patients
are top expects on radiology in our hospital with 12, 13, and
15 years of experience, respectively.

Credentials of Doctors Performing
Segmentation on the Evaluation Dataset
After training on 1,500 patients MRI obtained from hospitals,
we make predictions on 30 patients chosen by a hospital
doctor randomly among patients who had T1-weighted, T2∗,
DWI and FLAIR sequences in their records. The reference
standard is prescribed unanimously by three senior doctors as
described previous.

The six doctors in the evaluation test independently
performing segmentation on the evaluation dataset
include three resident physicians, each with three years
of experience, an attending physician with nine years of
experience, and two chief physicians with 14 and 18 years of
experience, respectively. All the doctors included in the tests
are neuroradiologists.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2020 | Volume 14 | Article 17

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00017 May 20, 2020 Time: 16:1 # 6

Duan et al. DLS for Masking CSVD

FIGURE 5 | Mask result of lacune in the study, including Raw data, Ground truth, Doctor mask and DLS mask result. (A) showed multiple lacunes in the regions of
bilateral paraventricular and semi-oval center, represented as well-defined CSF-like hypointensity on T1WI. The four rows are raw data, ground truth, doctor’s
segmentation label and segmentation prediction from DLS, respectively. (B) showed the comparison of accuracy ratio of segmentation label from doctors with 95%
confidence interval and DLS.

To ensure that the doctors are evaluated in their best state, they
are requested to perform the segmentation to the best of their
abilities, without any constraint on time or duration.

Setting up of the Deep Learning
Algorithm
The proposed DLS system which consists of four segementor
subsystems was trained to learn features from MRI, extracted
from four different types of CSVD diseases. To increase the rate
of convergence of the network during training, preprocessing was
done on each MRI to standardize them across various acquisition
parameters. The histogram peaks were normalized and aligned
based on the white matter content in the MRI.

The training set was consisted of 1500 patients with
conventional MRI T1W, T2∗, T2-FLAIR, DWI b1000 image
data, including Lacuna data (n = 824 volumetric scans, 98.3%
positive cases) and WMH data (n = 824 volumetric scans,

98.3% positive cases), subcortical infarction data (n = 1010
volumetric scans, 85.15% positive cases), Cerebral microbleed
data (n = 359 volumetric scans, 41.78% positive cases)
(Figures 1, 3A). Each disease was trained independently by
one segmentor subsystem of the DLS system. Each training
was stopped when the training accuracy was greater than 98%
and diverged from validation accuracy by more than 15%, as
we think that at such time, the DLS has reached the optimal
performance (Figure 3).

During the inference stage, patient’s MRI sequences are fed
to the DLS system as input. Each segementor subsystem grabs
its own sequences from the DLS system’s input and give a
segmentation prediction of a certain disease. Before giving a
final output of the DLS, the four segmentation predictions are
combined in a way such that WMH, lacune and subcortical
infarction are multually exclusive in the pixel level. Please
note that it’s a multi-label classification problem in the image
or patient level.
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FIGURE 6 | Mask result of WMH in the study, including Raw data, Ground truth, Doctor mask and DLS mask result. (A) showed hyperintensity in bilateral white
matter regions of paraventricular and the frontal and parietal lobe on T2-FLAIR. The four rows are raw data, ground truth, doctor’s segmentation label and
segmentation prediction from DLS. (B) showed the comparison of accuracy ratio of segmentation label from doctors with 95% confidence interval and DLS.

Network Architecture
The proposed, end-to-end, DLS was composed of four segmentor
networks (Figure 4). The preprocessing steps consisted of
padding to square, resizing, and normalizing. Each segmentor
network takes one or more MRI sequences as input and outputs
a binary segmentation mask on a corresponding sequence.

All four segmentor networks are based on the widely-used
U-Net architecture (Ronneberger et al., 2015; Havaei et al., 2016),
and each of them predicts the mask of the disease area of one of
four CSVD introduced above. For example, segmentor network
#1 is used to detect brain subcortical infarction. It takes DWI
b1000 as input and outputs a segmentation mask of subcortical
infarction area. Those four segmentor networks are trained
and validated independently, which allows the network to be
optimized for detecting the CSVD, and are combined to perform
the disease area prediction. For each patient, the volumetric MRI
are separated into two dimensional images and, after certain
preprocessing steps, fed to the DLS to generate masks of diseases

area. During the postprocessing steps, the generated WMH
mask is subtracted by the generated subcortical infarction mask,
because subcortical infarction has a similar signal property to
WMH on T2-FLAIR. For the same reason, the generated WMH
mask is also subtracted by the generated lacune mask. Then, the
generated lacune mask is subtracted by the generated subcortical
infarction mask. Finally, the two dimensional segmentation
predictions from our model are concatenated to obtain a
complete three dimensional segmentation predictions of the
patient (More detailed information in Figure 4).

Algorithm for Segmented Images
To evaluate the performance of proposed segmentation
networks, the commonly used metric known as the dice score
(accuracy) was used (Sudre et al., 2017). The dice score is
computed for each patient, and the arithmetic mean is taken.

A Free Response Operating Characteristic (FROC) analysis
can be obtained in this study (Bandos et al., 2009). Due to binary
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FIGURE 7 | Mask result of subcortical infarction in the study, including Raw data, Ground truth, Doctor mask and DLS mask result. (A) The represented images
showed multiple recent subcortical infarcts, represented as hyperintensity on DWI in regions of left corpus callosum, bilateral paraventricular and semi-oval center.
The four rows are raw data, ground truth, doctor’s segmentation label and segmentation prediction from DLS, respectively. (B) Showed the comparison of accuracy
ratio of segmentation label from doctors with 95% confidence interval and DLS.

rather than probabilistic diagnoses from doctors, rendering the
comparison between our model and the doctors irrelevant.
Adapting the concept of treating each lesion equally, we do
away with the probabilistic element of FROC and compare
the F1 score, of our model’s predictions after thresholding
(Goutte and Gaussier, 2005).

Moreover, Region-wise F1 score also applied in this study, it
provides another avenue for us to answer the research question
of how the predictions made by a deep learning model compares
with that of human doctors (Goutte and Gaussier, 2005).

Another evaluation metric as a less demanding alternative
to the dice score was applied in this study. We discretize
the reference mask as well as predictions into square grids
with spacing approximately equal to the square root of
the image dimensions. Each patch, which may be viewed
as bins mapped from a neighborhood of pixels, will be
classified positive for the disease as long as at least one

pixel in that patch is positive, or be classified negative
otherwise. This is equivalent to performing a max-pooling
followed by resizing back to the original number of pixels.
In the limit where the patch is equal to the image size, the
segmentation problem becomes converted to a multiple-label
classification problem.

Statistical Analysis
The SPSS Statistics 23.0 software package for Windows (IBM
Corp., Armonk, NY) was performed for statistical analyses.

RESULTS

It can be observed that our model possibly releases a prediction
more faithful to the reference standard, compared to that of
the doctors taking part in the clinical evaluation, regardless of
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FIGURE 8 | Mask result of cerebral microbleed in the study, including Raw data, Ground truth, Doctor mask and DLS mask result. (A) showed cerebral microbleed
lesions in the right insula and right thalamus, represented as hypointensity on T2*WI. The four rows are raw data ground truth, doctor’s segmentation label and
segmentation predation from DLS, respectively. (B) showed the comparison of accuracy ratio of segmentation label from doctors with 95% confidence interval and
DLS.

whether the emphasis is placed on the segmentation or the
detection of lesions. Where detailed pixel-level segmentation of
lesions is required, our model’s dice accuracy of 59.8% is over
two percentage points better than the doctors’ dice accuracy of
57.6% (Table 3). If the focus is on detect the presence of lesions,
our model provides an average F1 score of over 72.5%, more than
three percentage points over the doctors’ 69.1% (Table 3).

Considering each of the four CSVD individually, the dice
accuracy, as well as region-wise F1 score achieved by our
model, is higher than that of the doctors in the segmentation

of lacune, WMH and subcortical infarction, as can be verified
from Table 4 and Figures 5–8. Given that our model, as well
as the doctors, perform best on the segmentation of subcortical
infarction. Depending on how we define success in terms of
pixel-wise segmentation or the detection of lesions, and the
tolerance for uncertainties of a few pixels, our model, attains
a score with 0.728 in dice accuracy and 0.859 in region-
wise F1 score, which is consistently similar to the doctors’
score with 0.714 in dice accuracy and 0.839 in region-wise F1
score (Tables 4, 5).
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TABLE 4 | Comparison of dice accuracy for different CSVDs.

Lacune White matter
hyperintensity

Infarction Cerebral
microbleed

Doctor A 0.298 0.614 0.717 0.549

Doctor B 0.578 0.670 0.747 0.715

Doctor C 0.506 0.579 0.758 0.613

Doctor D 0.354 0.521 0.754 0.672

Doctor E 0.412 0.596 0.690 0.514

Doctor F 0.388 0.509 0.615 0.456

Average 0.423 0.582 0.714 0.586

Our model 0.496 0.666 0.728 0.503

Comparison of dice accuracy for different CSVDs of 30 patients according to the
predictions made by six doctors (Neuroradiologists) and by our model, concerning
the reference standard.

TABLE 5 | Comparison of region-wise F1 score for different CSVDs.

Lacune White matter
hyperintensity

Infarction Cerebral
microbleed

Doctor A 0.375 0.660 0.817 0.785

Doctor B 0.676 0.722 0.905 0.897

Doctor C 0.633 0.661 0.905 0.809

Doctor D 0.41 0.668 0.921 0.797

Doctor E 0.518 0.603 0.836 0.662

Doctor F 0.536 0.518 0.652 0.623

Average 0.525 0.639 0.839 0.762

Our model 0.683 0.644 0.859 0.713

Comparison of region-wise F1 score for different CSVDs of 30 patients according
to the predictions made by six doctors (Neuroradiologists) and by our model, with
respect to reference standard. Each lesion is treated equally regardless of size, and
the prediction is classified as a true positive when one or more pixel overlaps with
the reference standard.

For each patient, our DLS system probably can process the
images and output a volumetric prediction on the location of
four CSVD diseases (lacune, WMH, subcortical infarction and
cerebral microbleed) within a mean duration of 4.4 seconds
(Table 6). The mean time used by each of the six doctors to
draw masks of a single patient to produce a volumetric prediction
ranges from 330 s to over 1,000 s. Compared to the segmentation
independently made by six doctors, the predictions made by our
model are over a hundred times faster and attained a higher
dice accuracy and region-wise F1 score on average. Our DLS can
suggest the diagnosis and draw the segmentation masks for over
a hundred patients in the average time used by a doctor to do the
same for one patient.

DISCUSSION

In this paper, by using T1-weighted, T2∗, T2-FLAIR, and DWI
b1000 images, we trained a DLS to draw the presented diseases
area of lacune, WMH, subcortical infarction, and cerebral
microbleed. We compare its performance with that of six doctors,
using the reference standard set unanimously by three senior
doctors. The results are evaluated based on the classical dice
score, a modified patch-wise dice score, which allows for minor

TABLE 6 | Credentials of doctors and time spent on the segmentation
of 30 patients.

Experience Job title Average time spent patient
(in seconds, n = 30)

Doctor A 3 years Resident Physician 1094/case

Doctor B 9 years Attending Physician 662/case

Doctor C 18 years Chief Physician 594/case

Doctor D 14 years Chief Physician 418/case

Doctor E 3 years Resident Physician 718/case

Doctor F 3 years Resident Physician 330/case

Average 8 years 636/case

Our model 4.4/case

Credentials of doctors (Neuroradiologists) and time spent on the segmentation of
30 patients, including the drawing of segmentation masks, compared with the time
required by our model to perform image processing and prediction.

uncertainties in the neighborhood of a few pixels, as well as the
region-wise F1 score, which may be a more suitable indication
of success in the detection of lesions. The results show that our
model can diagnose and draw the segmentation masks of multiple
CSVDs more reliably, and over a hundred times faster than
doctors with an average experience of eight years.

This indicates that if patients trust the segmentation set by
a panel of three senior doctors, they have reason to prefer the
advice of our model over the opinion of an average doctor
with few years of experience. It is also worthy to note that
all six doctors are from Beijing Tiantan Hospital, which is a
leading hospital in China and hosts one of the most extensive
neurosurgical bases in China. Hence, these doctors are likely to
be more rigorously trained than doctors from an average hospital
in less affluent parts of China.

The results of our comparison support to the case that
appropriately trained DLS can be trusted to the same extent
as one would trust a doctor with a few years of experience,
regardless of whether the emphasis is placed on the segmentation
or detection of lesions. However, we want to emphasize that the
proposed DLS is not aimed to replace doctors but meant to serve
as a guide to doctors, where inconspicuous anomalies detected by
the computer will warrant a closer look.

Limitation
In what follows, we discuss the limitations of our work and
recommend possible improvements. First, as the testing dataset
gets larger, the DLS is likely to have superior performance.
However, it should be noted that, while all annotations made in
the dataset have been endorsed by an associate chief physician
with at least 10 years of experience, they are initially prepared
by junior doctors with relatively less experience. Given that
our model has been trained on these data, it is more likely
to make predictions similar to these doctors rather than the
senior doctors prescribing the reference standard. Had the model
been trained on a vast number of images annotated by those
senior doctors, its segmentation will likely bear a much closer
resemblance to theirs.

Second, our model is compared against the performance of
six doctors from a single country, and their average performance
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may not be representative of the average performance of all
doctors globally. More doctors from a variety of hospitals and
across different countries can be sought to participate in the
clinical evaluation. Additionally, more patients can also be added
to the evaluation dataset, so the results of our model, as well as
the doctors, can be analyzed with greater certainty.

Third, our model is trained primarily to diagnose only four
types of small vessel diseases. Therefore, our results cannot
be generalized to compare the reliability of a DLS relative to
the overall proficiency of a practicing doctor. Moreover, we
do not deny the fact that our model is unable to propose a
treatment, unlike a human doctor. Our study can be extended
to train models capable of predicting a wide variety of medical
anomalies. Besides, artificial intelligence is now progressing
toward treatment planning and may be able to recommend
solutions to their diagnosis in the future.

We reiterate that the purpose of this study is not to assert
that DLS is more reliable than doctors. Instead, it is to propose
that an adequately trained deep learning model can supplement
the diagnosis of an attending doctor, and that one may heed its
advice in the same way as one would respond to the words of
a trained doctor.

CONCLUSION AND CONTRIBUTIONS

This study is a preliminary study focusing on lesion segmentation
and identification. Previous studies showed the individual
feature of CSVD is associated with incident ischemic and
hemorrhagic stroke, dementia, and depression. Combinations
of two features were more strongly associated with stroke
than any specific feature (Pantoni, 2010; Go et al., 2012). So
our model covered different types of lesions. According to
the current results, the model can obtain lesion recognition
at the level of attending physicians, which can significantly
reduce the repetitive labor of physicians. For the further
clinical application, with the help of this system, it may
help clinical doctor fast categorizing and masking cerebral
small vessel disease less time consuming, laborious, and
subjective. Based on our DLS model, not only the location
of the disease can be determined by the segmentation
mask, but also the volume of lesions, which is critical
in dosage prescription or clinical decision support systems
(Belard et al., 2017).
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