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Editorial on the Research Topic

Reproducibility and Rigour in Computational Neuroscience

1. INTRODUCTION

Independent verification of results is critical to scientific inquiry, where progress requires that
we determine whether conclusions were obtained using a rigorous process. We also must know
whether results are robust to small changes in conditions. Modern computational approaches
present unique challenges and opportunities for these requirements. As models and data
analysis routines become more complex, verification that is completely independent of the
original implementation may not be pragmatic, since re-implementation often requires significant
resources and time.Model complexity also increases the difficulty in sharing all details of themodel,
hindering transparency.

Discussions that aim to clarify issues around reproducibility often become confusing due to
the conflicting usage of terminology across different fields. In this Topic, Plesser provides an
overview of the usage of these terms. In previous work, Plesser and colleagues proposed specific
definitions for repeatability, replicability, and reproducibility (Crook et al., 2013) that are similar
to those adopted by the Association for Computing Machinery (2020). Here, Plesser advocates
for the lexicon proposed by Goodman et al. (2016), which separates methods reproducibility,
results reproducibility, and inferential reproducibility—making the focus explicit and avoiding
the ambiguity caused by the similar meanings of the words reproducibility, replicability, and
repeatability in everyday language. In the articles associated with this Topic, many authors use
the terminology introduced by Crook et al. (2013); however, in some cases, opposite meanings for
reproducibility and replicability are employed, although all authors carefully define what theymean
by these terms.

2. TOPIC OVERVIEW

Although true independent verification of computational results should be the goal when possible,
resources and tools that aim to promote the replication of results using the original code are
extremely valuable to the community. Platforms such as open source code sharing sites and model
databases (Birgiolas et al., 2015; McDougal et al., 2017; Gleeson et al., 2019) provide the means for
increasing the impact of models and other computational approaches through re-use and allow
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for further development and improvement. Simulator-
independent model descriptions provide a further step toward
reproducibility and transparency (Gleeson et al., 2010; Cope
et al., 2017; NineML Committee, 2020). Despite this progress,
best practices for verification of computational neuroscience
research are not well-established. Benureau and Rougier describe
characteristics that are critical for all scientific computer
programs, placing constraints on code that are often overlooked
in practice. Mulugeta et al. provide a more focused view, arguing
for a strong need for best practices to establish credibility and
impact when developing computational neuroscience models for
use in biomedicine and clinical applications, particularly in the
area of personalized medicine.

Increasing the impact of modeling across neuroscience
areas also requires better descriptions of model assumptions,
constraints, and validation. When model development is driven
by theoretical or conceptual constraints, modelers must carefully
describe the assumptions and the process for model development
and validation in order to improve transparency and rigor. For
data driven models, better reporting is needed regarding which
data were used to constrain model development, the details
of the data fitting process, and whether results are robust to
small changes in conditions. In both cases, better approaches
for parameter optimization and the exploration of the sensitivity
of parameters are needed. Here we see several approaches
toward more rigorous model validation against experimental
data across scales, as well as multiple resources for better
parameter optimization and sensitivity analysis.

Viswan et al. describe FindSim, a novel framework for
integrating experimental datasets with large multiscale models
to systematically constrain and validate models. At the network
level, considerable challenges remain over what metrics should
be used to quantify network behavior. Gutzen et al. propose
much needed standardized statistical tests that can be used
to characterize and validate network models at the population
dynamics level. In a companion study, Trensch et al. provide
rigorous workflows for the verification and validation of
neuronal network modeling and simulation. Similar to previous
studies, they reveal the importance of careful attention to
computational methods.

Although there are many successful platforms that aid
in the optimization of model parameters, Nowke et al.
show that parameter fitting without sufficient constraints or
exploration of solution space can lead to flawed conclusions
that depend on a particular location in parameter space. They
also provide a novel interactive tool for visualizing and steering
parameters during model optimization. Jȩdrzejewski-Szmek
et al. provide a versatile method for the optimization of
model parameters that is robust in the presence of local
fluctuations in the fitness function and in high-dimensional,
discontinuous fitness landscapes. This approach is also applied to
an investigation of the differences in channel properties between
neuron subtypes. Uncertainty quantification and sensitivity
analysis can provide rigorous procedures to quantify how
model outputs depend on parameter uncertainty. Tennøe
et al. provide the community with Uncertainpy, which is a
Python toolbox for uncertainty quantification and sensitivity

analysis, and also provide examples of its use with models
simulated with both NEURON (Hines et al., 2020) and NEST
(Gewaltig and Diesmann, 2007).

Approaches and resources for reproducibility advocated
by Topic authors cross many spatial and temporal scales,
from sub-cellular signaling networks (Viswan et al.) to whole-
brain imaging techniques (Zhao et al.). We discover that the
NEURON simulation platform has been extended to include
reaction-diffusion modeling of extracellular dynamics, providing
a pathway to export this class of models for future cross-
simulator standardization (Newton et al.). We also see how
reproducibility challenges extend to other cell types such as
glia as well as subcortical structures (Manninen et al.). At
the network level, Pauli et al. demonstrate the sensitivity of
spiking neuron network models to implementation choices, the
integration timestep, and parameters, providing guidelines to
reduce these issues and increase scientific quality. For spiking
neuron networks specifically geared toward machine learning
and reinforcement learning tasks, Hazan et al. provide BindsNET,
a Python package for rapidly building and simulating such
networks for implementation on multiple CPU and GPU
platforms, promoting reproducibility across platforms.

And finally, Blundell et al. focus on one approach to
address the challenges for reproducibility that arise due to
increasing model complexity, which relies on high-level
descriptions of complex models. These high-level descriptions
require translation to code for simulation and visualization,
and the use of code generation to automatically translate
description into efficient code enhances standardization.
Here, authors summarize existing code generation pipelines
associated with the most widely-used simulation platforms,
simulator-independent multiscale model description languages,
neuromorphic simulation platforms, and collaborative model
development communities.

3. OUTLOOK

In this Research Topic, researchers describe a wide range of
challenges for reproducibility and rigor, as well as efforts to
address them across areas of quantitative neuroscience. These
include best practices that should be employed in implementing,
validating, and sharing computational results; fully specified
workflows for complex computational experiments; a range of
tools supporting scientists in performing robust studies; and a
carefully defined terminology. In view of the strong interest in the
practices, workflows, and tools for computational neuroscience
documented in this Research Topic, and their availability to the
community, we are optimistic that the future of computational
neuroscience will be increasingly rigorous and reproducible.
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