
ORIGINAL RESEARCH
published: 14 October 2020

doi: 10.3389/fninf.2020.522000

Frontiers in Neuroinformatics | www.frontiersin.org 1 October 2020 | Volume 14 | Article 522000

Edited by:

Andrew P. Davison,

UMR9197 Institut des Neurosciences

Paris Saclay (Neuro-PSI), France

Reviewed by:

Sandra Diaz Pier,

Helmholtz Association of German

Research Centers (HZ), Germany

Petruţ Antoniu Bogdan,

The University of Manchester,

United Kingdom

*Correspondence:

Nathalie Azevedo Carvalho

nathalie.azevedo-carvalho@inria.fr

Received: 20 December 2019

Accepted: 31 August 2020

Published: 14 October 2020

Citation:

Azevedo Carvalho N,

Contassot-Vivier S, Buhry L and

Martinez D (2020) Simulation of Large

Scale Neural Models With

Event-Driven Connectivity Generation.

Front. Neuroinform. 14:522000.

doi: 10.3389/fninf.2020.522000

Simulation of Large Scale Neural
Models With Event-Driven
Connectivity Generation
Nathalie Azevedo Carvalho 1*, Sylvain Contassot-Vivier 2, Laure Buhry 1 and

Dominique Martinez 2

1Université de Lorraine, CNRS, Inria, LORIA, Nancy, France, 2Université de Lorraine, CNRS, LORIA, Nancy, France

Accurate simulations of brain structures is a major problem in neuroscience. Many

works are dedicated to design better models or to develop more efficient simulation

schemes. In this paper, we propose a hybrid simulation scheme that combines

time-stepping second-order integration of Hodgkin-Huxley (HH) type neurons with

event-driven updating of the synaptic currents. As the HH model is a continuous model,

there is no explicit spike events. Thus, in order to preserve the accuracy of the integration

method, a spike detection algorithm is developed that accurately determines spike

times. This approach allows us to regenerate the outgoing connections at each event,

thereby avoiding the storage of the connectivity. Consequently, memory consumption is

significantly reduced while preserving execution time and accuracy of the simulations,

especially the spike times of detailed point neuron models. The efficiency of the method,

implemented in the SiReNe software1, is demonstrated by the simulation of a striatum

model which consists of more than 106 neurons and 108 synapses (each neuron has a

fan-out of 504 post-synaptic neurons), under normal and Parkinson’s conditions.

Keywords: brain simulation, Hodgkin-Huxley neurons, time-stepping method, event-driven connectivity

generation, Runge-Kutta method, Parkinson’s disease, large scale networks

1. INTRODUCTION

Major projects such as Blue Brain (Markram, 2006), the Human Brain Project (Einevoll et al., 2019),
the BRAIN Initiative or Mindscope (Hawrylycz et al., 2016), aim at simulating a brain or brain
structures. The simulation of brain structures demands not only computing resources but also a
lot of memory to store the connectivity that grows as the power 1.4 of the number of neurons (see
Figure 1). Then, the simulation of the human brain would require ≈ 100 terabytes just for storing
the Boolean connectivity pattern (connection/no connection). Therefore, large-scale simulations
of realistic cortical networks have been undertaken by using supercomputers with huge memory
space (Izhikevich and Edelman, 2008; Migliore et al., 2006; Chatzikonstantis et al., 2019; Eliasmith
and Trujillo, 2014).

Here, we propose a hybrid approach that combines a time-stepping approach for the numerical
part of the simulation with an event-driven updating of the synaptic currents for complexHodgkin-
Huxley (HH) type neurons. This approach is particularly well-suited to studies of real-time
neural mechanisms requiring high accuracy, such as pathological behaviors like the Parkinson’s
disease. Our event-driven approach completely avoids the storage of the connectivity pattern by
regenerating the connectivity on the fly, when needed, after spiking events. This event-driven

1Source code is available at: https://sirene.gitlabpages.inria.fr/sirene.

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.522000
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.522000&domain=pdf&date_stamp=2020-10-14
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nathalie.azevedo-carvalho@inria.fr
https://doi.org/10.3389/fninf.2020.522000
https://www.frontiersin.org/articles/10.3389/fninf.2020.522000/full
https://sirene.gitlabpages.inria.fr/sirene

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

FIGURE 1 | Number of synapses Ns vs. number of neurons Nn for different animal species (vertebrates and invertebrates). The best fit is for the power law Ns = N1.4
n

(red line) and not for Ns = Nn (black line), as claimed in Lansner and Diesmann (2012), or the full connectivity Ns = N2
n (blue line). All fits are consistent in the sense that

Ns = 0 for Nn = 0.

generation of the connectivity makes use of pseudo-random
generators and consistent seeds. The exact computation of spike
times is not possible for HH neurons because the model is
continuous and the membrane voltage is approximated by time-
stepping methods on discrete time (Koch and Segev, 1998).
Moreover, when the membrane potential crosses threshold twice
during one time-step (the first crossing is upward and the second
one is downward), the spike may be missed. A failure to detect a
spiking event may cause dramatic changes on the behavior of the
system, especially in the case of event-driven connectivity.

In this paper, we consider an event-driven connectivity
generation within time-stepping schemes of Runge-Kutta 2
midpoint type. We develop a spike detection method for
HH neurons, that accurately determines the spike timings so
that the accuracy of the second-order Runge-Kutta methods
(RK2) is preserved when connectivity is generated at spiking
events. By avoiding the connectivity storage, our method is
intended to simulate large-scale models made of Hodgkin-
Huxley type neurons on a single computing node. Indeed,
the limited memory consumption pushes back the necessity to
use multiple machines, whose induced communications often
reduce the overall performance. Yet, computing performance
is not neglected in our approach as a parallel multi-threaded
version has been developed in order to take advantage of multi-
core/many-core machines.

Our approach is implemented in the SiReNe software whose
accuracy and efficiency are exhibited in a series of experiments
among which is the simulation of the striatum structure at the rat
scale, i.e., with more than 106 neurons.

In the next section, we demonstrate the originality and interest
of our approach in respect to related works. The different

methods used in our neural simulator are presented in section 3.
Then, validation and performance analysis are provided in
section 4. Section 5 draws a general conclusion and proposes a
list of future works.

2. RELATED WORKS

2.1. Event-Driven Connectivity Generation
In neuroscience studies, one often simulates a snapshot of a
network over a short period of time with fixed parameters, e.g.,
for comparing normal vs. pathological neural configurations.
In such a context, the causal mechanisms (e.g., plasticity
mechanisms) of neural evolution from normal to pathological
states is not relevant. Thereby, connectivity storage is not
mandatory and can be advantageously replaced by dynamic
generation. Originally, the idea of event-driven connectivity
generation has been proposed in the case of abstract neurons
for which spike timing is exactly known, i.e., rule-based artificial
cell units, or finite state machines (Lytton and Stewart, 2006).
This approach has then been applied with integrate-and-fire
(IF) neurons, i.e., quadratic IF (Izhikevich and Edelman, 2008)
and leaky IF over GPU hardware (Knight and Nowotny,
2020).

To the best of our knowledge, the event-driven connectivity
generation approach has never been developed for Hodgkin-
Huxley neurons. Our event-driven connectivity generation
makes use of pseudo-random generators and consistent seeds.
The principle of pseudo-randomly generating the connectivity
through an event-driven approach has been reused in a recent
US patent (Lipasti et al., 2019). Yet, the LFSR (Linear-Feedback
Shift Register) nature of the pseudo-random number generator

Frontiers in Neuroinformatics | www.frontiersin.org 2 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

(PRNG) used in their approach is not statistically strong as
it does not pass classical linear tests provided in TestU01
(L’Ecuyer and Simard, 2007) which is a reference in the
domain. Moreover, a single PRNG is used to perform all
the dynamic data generations, leading to additional time and
memory consumption.

2.2. Spike Detection
Traditionally, event-driven strategies are applied at the neuron
level (Makino, 2003; Brette, 2006, 2007; Tonnelier et al., 2007;
Rochel and Martinez, 2003; Mattia and Del Giudice, 2000; Ros
et al., 2006; Morrison et al., 2007; Rhodes et al., 2018). In
pure event-driven strategies the spike timings are analytically
given and are calculated with an arbitrary precision (up to the
machine precision). This scheme allows for an exact simulation
where no spike is missed. Yet, only a limited class of simplified
neuron models of integrate-and-fire (IF) type is amenable to
exact simulations. Thus, more complex neuron models are
simulated on discrete times by using time-stepping methods,
e.g., the second order RK2 algorithm. Nevertheless, aligning
the spike times on the time grid leads to an accuracy of order
one, as for example in Lipasti et al. (2019). For IF neurons,
the determination of the spike times by linear interpolation is
needed to preserve the order 2 of the RK2 method (Hansel et al.,
1998; Shelley and Tao, 2001). In contrast to IF neurons, HH
neurons do not have an explicit threshold so that determining the
spike times by threshold crossing, as in Lobb et al. (2005), or by
linear interpolation, as for IF neurons, will lead to low accuracy.
Here, we show that for HH neurons, a quadratic interpolation
(e.g., Bézier curves) is required to be consistent with the order
2 of the RK2 method. In contrast to Morrison et al. (2007) in
which quadratic and cubic interpolations are considered, it is not
necessary to use more than a quadratic interpolation. Actually,
cubic (and higher-order) interpolation should be avoided as it
implies additional computation cost for no gain in accuracy
(Hansel et al., 1998).

2.3. Parallel Computation
Many studies have been done about the use of parallelism
in neural simulations (Kunkel et al., 2012; Lansner and
Diesmann, 2012; Kunkel et al., 2014; Jordan et al., 2018).
Yet, most of them use connectivity storage, implying a huge
memory consumption and the resort to distributed parallelism.
By using event-driven connectivity generation, the memory
requirements are significantly reduced and it becomes possible
to simulate very large networks on a single computing node.
In such a context, distributed parallelism is interesting merely
for the increased computational power it offers, as compared
to a single many-core node. However, it is worth noting that
distributed parallelism implies additional overhead due to data
communications between machines, which may significantly
reduce the interest of the distribution. Consequently, we propose
in this paper a multi-threaded parallel version of event-driven
updating and connectivity generation that can run efficiently on
a single multi-core node.

Algorithm 1: Simulation scheme

1 foreach time step t do
2 Update the neurons states according to their internal

state and input currents at time t
3 Detect spiking neurons
4 foreach spiking neuron do

5 Update its post-synaptic currents for time t +1t

3. METHODS

In the following sections, we present the different types of
simulation schemes: the common time-stepping approach, the
event-driven connectivity generation, as well as the spike
detection method we developed. Then, we describe the striatum
model and use it to test the different methods. Finally, we present
the implementation in the SiReNe software.

3.1. General Simulation: Time-Stepping
In the time-stepping approach, the state variables
of the neurons are updated at each time-step
(1t = 0.005ms in our simulations). As the dynamics of the
neurons is highly non-linear and sharply varies, the choice of
the time-step must be thoroughly considered. In Figure 2, we
observe that when the time-step is too large (e.g., 0.05ms) the
simulation results are incorrect. With a time-step of 0.03ms, the
potential curve begins to take the right shape, and it gets more
accurate with smaller time-steps.

The ordinary differential equations of the Hodgkin-Huxley
neurons type (HH) are solved by an explicit iterative temporal
discretization method, i.e., Runge-Kutta 2 (RK2) in our case.
The RK2 method is a second-order method leading to an error
O
(

1t2
)

of order two.
In classical time-stepping simulations, the synaptic current

of each neuron is updated at each time-step. The pre-synaptic
neurons are used at each step (Lytton et al., 2008) to perform
the updating of the synaptic current. However, this approach is
very time consuming and, most of the time, partly useless, as only
spiking neurons generate post-synaptic currents. We propose in
the next section a hybrid simulation scheme with event-driven
post-synaptic updating that avoids useless computations.

3.2. Event-Driven Connectivity Generation
and Post-synaptic Updating
In the hybrid simulation scheme that we propose, an event-
driven strategy is applied at the connectivity level. The idea is
to be more pro-active by changing the order of the synaptic
updating process. Instead of computing the state of the synaptic
currents at time t according to previous time t−1t, the updating
scheme executes the steps given in Algorithm 1.

The advantage of this method is to update the post-synaptic
neurons of only the firing neurons, whereas in classical time-
stepping simulations, pre-synaptic neurons of all neurons are

Frontiers in Neuroinformatics | www.frontiersin.org 3 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

FIGURE 2 | Time-stepping simulation of a single MSN neuron with different time-steps 1t = 0.05, 0.03, 0.01 and 0.005ms (plot of the first action potential).

systematically updated, even those that have not fired recently.
So, this event-driven updating scheme can significantly reduce
the overall computations when only a fraction of the neurons
fires in the same time-step. Moreover, this method can be
combined to a pseudo-random generation of the connectivity,
that significantly reduces the memory cost of the simulation.

3.2.1. Event-Driven Generation of the Connectivity
In order to avoid the storage of the entire connectivity of the
neural system, and thereby to limit the memory consumption,
the set of post-synaptic neurons as well as the intrinsic
synaptic parameters (peak conductance,...) can be pseudo-
randomly generated after each spike (Lytton et al., 2008).
Synaptic parameters are defined for each synaptic model, and
individuation can be obtained either by a specific computation
based on the neuron number or by the addition of noise.

The pseudo-random nature of the generation ensures that
the generated sequence is reproducible for a same seed. Thus,
the connectivity of a neuron stays the same during the entire
simulation as long as the same seed is used for that neuron. Also,
the use of distinct seeds and internal PRNG states between the
neurons implies that the connectivity is different from a neuron
to one another. Consequently, when a neuron fires, its post-
synaptic connections are pseudo-randomly generated according
to its corresponding random seed and internal PRNG state, and
the synaptic current of each post-synaptic neuron is updated.

In this context, the number of post-synaptic neurons of
every neuron is fixed at the simulation initialization. This
number can be provided by the user, either as an absolute value
or through a connection density. Then, there is a need for
an algorithm that uniformly draws M elements (post-synaptic
neurons) from the integers set [1,N] (all possible candidates)
without repetition. One practical solution is to sequentially parse
the set of candidates and to perform a pseudo-random selection
according to a probability defined in function of the number rc

of remaining candidates and the number rs of elements still to
be selected. Therefore, when considering candidate neuron i, the
probability to select i is given by P(i) = rs

rc
. It can be checked

that, by construction, this value is defined in [0, 1]. Also, the
probability distribution of the selected connections obtained by
this process is definitely uniform. In fact, for drawing the M
elements, other solutions are possible that are theoretically more
accurate in terms of probabilities. Indeed, the smallest value of
k reals randomly drawn in the interval [x, 1] (0 ≤ x ≤ 1) is
theoretically given by 1 − (1 − R)1/k × (1 − x), where R is a
random real number in [0, 1]. Then, an additional step is required
to obtain integer values. Obviously, such a method is much more
computationally expensive than the one we use. Indeed, our
choice is a good compromise between computation efficiency and
distribution quality of the candidates selection.

In its current form, our simulator uses different types of
neurons, such as excitatory vs. inhibitory neurons within the
same neural group or distinct neurons belonging to different
groups. A type of synapse is thus defined (with peak conductance
and time constant parameters) between two types of neurons
(source type and destination type). Consequently, the memory
storage devoted to the synapses scales at most as the square of
the number of neuron types and not as the square of the number
of neurons. Also, a neuron in one group may be connected
to any neurons in its own group and in the other groups. Its
post-synaptic connections are generated by selecting for each
post-synaptic group of the neuron, the number of post-synaptic
neurons defined by the connection density between the neuron
group and that particular post-synaptic group. Then, the parsing
and pseudo-random selection process described above is applied
independently to each post-synaptic group, using the pseudo-
random draw presented in Algorithm 2.

In this algorithm, the function Seed() generates a unique
seed from the neuron number. Although this is not mandatory,
it may be designed to ensure a minimal distance between seeds

Frontiers in Neuroinformatics | www.frontiersin.org 4 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

Algorithm 2: Pseudo-random connectivity generation

Input : NeuronNum is the neuron from which
post-synaptic neurons are generated

Input : NbNeuronsPostGroup is the total number of
neurons in the post-synaptic group

Input : NbToSelect is the number of post-synaptic
neurons to select

Output: List of selected neurons

1 State← InitPRNG(Seed(NeuronNum))
2 List← ∅
3 NbSelected← 0
4 for i← 0 to NbNeuronsPostGroup− 1 do
5 rc ← NbNeuronsPostGroup− i
6 rs← NbToSelect − NbSelected
7 if RandomReal(State)× rc < rs then

// RandomReal() returns a value in [0,1]
8 List← List ∪ {i}
9 NbSelected← NbSelected + 1

10 end

11 end

of neurons with similar connectivity parameters, in order to
avoid similarities in the distances between selected post-synaptic
neurons. The function InitPRNG() initializes the internal state
of the PRNG so that distinct states are produced from distinct
seeds. Then, the internal state is used and updated in function
RandomReal() that draws a random value in [0, 1]. Also, the
list of selected post-synaptic neurons is not stored in memory
in practice, but the corresponding synaptic currents are directly
updated on the fly. When the post-synaptic group is the same
as the neuron group, the neuron NeuronNum can be excluded
from the list of post-synaptic neurons in order to avoid autapses.
In such a context, the loop in line 4 must be divided in two loops,
according to the neuron indices that are lower or greater than
NeuronNum.

Finally, in order to get a good distribution quality of the PRNG
while preserving the performance constraint (generation speed),
a fast and robust generator must be chosen. In our simulator,
the Lehmer64 generator is used (derived from Lehmer, 1951),
as it is one of the fastest generator that passes the Big Crush of
TestU01 (L’Ecuyer and Simard, 2007), a battery of statistical tests
that is a reference for quality evaluation of PRNGs. Moreover, as
this PRNG works on 64 bits, it provides 264 ≈ 1019 seeds, which
is much more than the number of neurons in the human brain
(≈ 1011).

3.2.2. Event-Driven Computation of Synaptic Currents
Time evolution of the synaptic conductance gjk between pre-
synaptic neuron j and post-synaptic neuron k is modeled by the
following differential equation

dgjk

dt
= −

gjk

τjk
(1)

with τjk, the time constant of the synapse. Integrating the
equation between t (current time) and tsp (spike time) leads to

gjk (t) = ḡjk exp

(

−
t − tsp

τjk

)

(2)

with ḡjk = gjk
(

tsp
)

, the peak conductance. The total synaptic
current Isyn,k for neuron k is the sum of the contributions of the
pre-synaptic neurons j and all their pre-synaptic spikes

Isyn,k (t) =
∑

j

gjk(t)
(

Vk − Ejk
)

=
∑

j

ḡjk
(

Vk − Ejk
)

nj
∑

i=1

exp

(

−
t − tspi

τjk

)

︸ ︷︷ ︸

Factjk

(

tspnj

)

(3)

where Ejk is the reversal potential of the synapse from neuron j to
k and Vk is the membrane potential of the neuron k. The number
of spikes received from neuron j is denoted nj and tspi represents

the firing time of the ith spike. Factjk is updated at each event (i.e.,
when neuron j emits a spike) as follows

nj ←− nj + 1

Factjk ←− Factjk + exp

(

−
t − tspnj+1

τjk

)

(4)

3.3. Event Detection
Spikes are detected when the membrane potential exceeds a given
threshold. In classical methods, the firing time is then aligned to
the time-step. Yet, this trivial detection method leads to an error
O (1t) that is not consistent with the RK2 method (Hansel et al.,
1998). From a numerical point of view, the firing time should be
at the maximum of the membrane potential. Herein, we propose
two interpolation methods to obtain a more accurate estimation
of the firing time. The former is based on the intersection between
two linear interpolations and the latter is based on a Bézier curve.
As shown in section 4, only the latter leads to an error O

(

1t2
)

that is consistent with the RK2 method.

3.3.1. Intersection Between Linear Interpolations
Here, the spike time tS is found at the intersection between two
lines deduced from the membrane potential derivatives at the
time-step frontiers (Figure 3A). In our case, the slopes of the two
lines are defined by the derivatives dV0/dt and dV1/dt where V0

and V1 are the membrane potential at t and t +1t, respectively.
Note that when the time-step is small enough, the top value of the
spike takes place inside a time-step whose derivatives at start and
end times (t and t +1t) are positive and negative, respectively.

If we define b0 = V0 −
dV0
dt

t and b1 = V1 −
dV1
dt (t +1t), the

equation of the two lines can be written as

y =
dVi

dt
x+ bi with i ∈ {0, 1} , ∀x ∈ [t, t +1t] (5)

Frontiers in Neuroinformatics | www.frontiersin.org 5 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

FIGURE 3 | (A) Spike time t̂S obtained by lines intersection issued from derivatives at t and t+1t (full green line). (B) Spike time t̂S detected with the maximum of a

quadratic Bézier curve (full green line) defined between t = t0 and t+1t = t2. In both figures, the reference time spike tS is obtained with 10−7 simulation time-step

(dashed red line).

where y ∈ R. The spike time estimate t̂S found at the intersection
of the two lines is given by

t̂S =
b1 − b0

dV0

dt
−

dV1

dt

(6)

Although this method provides good results in some cases, it
has not been selected for use in our simulator as it is not
accurate enough in general. As a consequence, we have chosen
a method of higher order that makes a more meaningful use of
the three points given above (intersection and the two time-step
boundaries), by interpreting the two derivatives at t and t+1t as
the tangents of a quadratic Bézier curve.

3.3.2. Bézier Curve
The Bézier curve of order two is a polynomial curve specified
by three points P0, P1, and P2 that define the tangents P0P1 and
P1P2, respectively at starting point P0 and ending point P2. Its
parametric form B (x) with x ∈ [0, 1] is given by

B (x) = (1− x)2 P0 + 2 (1− x) x P1 + x2 P2 (7)

As illustrated in Figure 3B, the spike time t̂S is estimated from the
interpolation of the membrane potential with a quadratic Bézier
curve, the points Pi = (ti,Vi), with i ∈ {0, 1, 2}, are defined
at times ti and potentials Vi. The end points of the curve, P0
and P2, are given by the potentials V0 and V2 at times t0 = t
and t2 = t + 1t. The point P1 is defined as the intersection of
the two lines following the derivatives in P0 and P1, similarly to

section 3.3.1. The time t1 is determined as t̂S in Equation (6), and
V1 is deduced from Equation (5) and (6), as

V1 =
b2

dV0

dt
− b0

dV2

dt
dV0

dt
−

dV2

dt

(8)

Once P0, P1, and P2 are obtained, t̂S is analytically computed as
the time at which the Bézier curve reaches a null derivative (curve
peak), i.e.,

t̂S =
(

1− x̂
)2

t0 + 2 x̂
(

1− x̂
)

t1 + x̂2t2 (9)

where x̂ ∈ [0, 1] is defined such that dB
dx
(x̂) = 0, leading to

x̂ =
V0 − V1

V0 − 2V1 + V2
. The particular case where V0 − 2V1 +

V2 = 0 does not occur in practice as it would mean that the
spike extremum is constant over the time step. Indeed, the Bézier
interpolation is performed only when the derivatives at the time
step bounds are not null.

3.4. Simulated Striatum Model
The striatum is a brain structure presumably involved in
generating pathological β-oscillations observed in Parkinson’s
disease (McCarthy et al., 2011; Corbit et al., 2016). The striatum
is composed in its vast majority (≈ 95%) of Medium Spiny
Neurons (MSN) (Kemp and Powell, 1971; Corbit et al., 2016).
Our MSN model equations and the ionic channel are derived
from the (McCarthy et al., 2011) model.

Frontiers in Neuroinformatics | www.frontiersin.org 6 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

The voltage V at each time-step is described by:

Cm
dV

dt
= − ḡKn

4 (V − EK)
︸ ︷︷ ︸

IK

− ḡNam
3h (V − ENa)

︸ ︷︷ ︸

INa

− ḡMp (V − EK)
︸ ︷︷ ︸

IM

−ḡL (V − EL)− Isyn + Iapp
(10)

where Cm is the membrane capacitance, ḡX is the maximal
conductance of ion X. The values h, m, n, and p are
the respective gating variables of the different ions channels
(activation/inactivation). Also, EX is the reversal potential of the
ion channel X. The fast potassium current IK has four activation
gates and no inactivation gate. The sodium current INa has three
activation gates and one inactivation gate. M-current is a non
inactivating potassium current which has one activation gate
and no inactivation gate. The leak current is denoted by IL.
The synaptic current Isyn is a GABAa inhibitory current given

in Equation (3) with Ejk = −80mV and ḡjk is between 0.1
N mS

and 0.6
N mS, where N is the number of synaptic connections. The

applied current Iapp is a step current, i.e., at the beginning it is
−10µA and at t = 500ms it goes up to 0.4µA. We also add a
uniform noise between−b and b to the applied current.

Since the idea of our article is to promote the simulation
of large-scale networks, we focus on the simulation of the rat’s
MSN network at scale one. This network is composed of about
1.3 million neurons (Oorschot, 1996). We consider that a MSN
neuron is surrounded by≈ 2800 otherMSNneurons and that the
connection density in this neighborhood is of 18%, as in Taverna
et al. (2008) and Lindahl and Hellgren Kotaleski (2017)),
i.e., the number of post-synaptic neurons per MSN would
be≈ 504 neurons.

We thus simulate a MSN model of 1.3 million neurons with
504 connections per neuron. To demonstrate the efficiency of
our simulation approach, we compare our results to McCarthy
et al. (2011), during a 4 s biological time simulation. In all our
simulations, the time-step is fixed to 1t = 0.005ms and the
Bézier’s curve is used to interpolate the spike times. The Local
Field Potential (LFP) is the sum of the synaptic currents of
each neuron at each time-step (McCarthy et al., 2011). The
LFP power spectrum was deduced from a standard Fourier
Transform Function.

Further tests are done to compare classical time-stepping
and event-driven updating approach, in terms of memory
consumption and execution times. In this context, we
simulate 100, 500, 1 000, 5 000 and 10 000 neurons for 100ms
biological time.

Finally, a last experiment is done to evaluate the performance
of the parallel multi-threaded version with OpenMP. We
compare execution times for a 1 s biological simulation time with
10 000MSN neurons as a function of the number of threads (1, 2,
4, 8, 16, and 32).

3.5. Software Implementation in SiReNe
SiReNe (“Simulateur de Réseaux de Neurones,” “Neural Network
Simulator” in English) software, is a C program that has been
developed in our laboratory for several years. Originally, it is

a pure time-stepping simulator, but it has been extended with
the event-driven updating method presented in this paper. So,
it is now able to simulate large neural networks either with a
classical time-stepping method, or with the event-driven one.
In both approaches, the non-linear differential equations of the
HH model are updated with the help of the RK2 integration
method. After updating all state variables, it is checked whether
the neurons have fired. The potential of the neuron has to cross
a threshold during this time-step and the derivatives of the
potential at times t and t + 1t must be respectively positive
and negative. In order to detect the spikes, the time delay of
each neuron has to be larger than the time-step, otherwise some
spikes may be missed. In the pure time-stepping version, the pre-
synaptic currents are systematically retrieved for every neuron,
whereas in the event-driven version, neurons are updated first,
then only the post-synaptic connections of the spiking neurons
are generated and their currents are updated. Figure 4 shows the
general algorithmic scheme of the SiReNe software.

In addition, two variants were implemented, with or
without storage of the neurons connectivity. The most efficient
combination of time-stepping approach and connectivity
management, according to execution time as well as memory
consumption, is the event-driven (spike-driven) approach with
connectivity generation.

Finally, parallel multi-threading has been added
via the OpenMP API. The parallel strategy mainly
consists in distributing the computations related to the
neurons over the threads. In particular, parallelism is
exploited in the computation of the derivatives, the
spike detections and the synaptic current updates.
For the parallel generation of neuron connections, it is
mandatory to use a thread-safe random generator. Thus, we have
added the required software layer over the random generator
described in section 3.2.1.

3.6. Experimental Context
The simulations presented below have been done on a Dell
R720 server under Linux Debian 4.9 amd64 with 2 Intel(R)
Xeon(R) CPU E5-2640 v2 @ 2.00 GHz with 8 cores each, and
128GB RAM. Times are measured with the OpenMP function
omp_get_wtime() and the program is compiled with gcc
6.3.0 and the -O3 optimization level. All simulations presented
in this section are done in sequential (one thread) save for the
ones related to the performance evaluation of the parallel version
(multiple threads).

4. RESULTS

4.1. Order of the Method
The order of the simulation method is estimated on the last
spike of a 20ms simulation fired by a single neuron over
repeated trials (Nt = 10) with random initialization. We
simulate different time-steps between 1t = 5e−5ms and 1t =
0.01ms. Three different methods are evaluated. In addition
to the lines intersection (RK2Lines) and the maximum of
Bézier curve (RK2Bezier) described in section 3.3, we add the
simplest method in which the spike is aligned to the time-step

Frontiers in Neuroinformatics | www.frontiersin.org 7 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

FIGURE 4 | Schematic representation of the SiReNe software (implemented in C).

(RK2Threshold) when the threshold is exceeded. A complete list
of the simulation parameters related to this experiment (named
Method order) is given in Supplementary Material.

Although the RK2 numerical scheme is used, the simulation
order is not systematically two, as it depends on the spike
detection method (Hansel et al., 1998). As there is no analytical
solution to calculate the error of our model, we use as reference
a simulation with a very small time-step 1t = 1e−7ms. Indeed,
for such small time-step, the error can be considered negligible.
Thereby, in this context the error over the spike time (ǫt) is
defined as

ǫt =
1

Nt

Nt∑

i=0

| t̂i − ti | (11)

where Nt is the number of trials, t̂i is the time of the last spike
of the neuron within the simulated period for a given 1t, and
ti is the corresponding time for the reference simulation with
1t = 1e−7ms.

The error ǫt over the spike time is depicted in Figure 5 for
the three interpolation methods as a function of the time-step
1t (log scales). For each method, linear regression provides a
line whose slope represents its order. Indeed, RK2Threshold
and RK2Lines are first order methods (error is O (1t)). The
RK2Bezier detection method is more accurate and preserves
the order two of the original RK2 integration method (error is
O
(

1t2
)

).

4.2. Performance Comparison of the
Different Methods
As described before, two distinct simulation approaches are
available in SiReNe: the classical time-stepping approach and
the event-driven updating one. In addition, it is possible
either to store the connectivity or to generate it on-demand.
When combining those two aspects, we obtain four algorithmic
variants. In order to determine which of the four approaches
is the most efficient, we compare them in terms of memory
consumption and execution time. Also, in order to compare our
simulator to a reference from the community, we add simulations
obtained with BRIAN2, which is one of the most used simulator
for spiking neurons (Goodman and Brette, 2008).

In Figure 6 (resp. Figure 7), memory consumption (resp.
execution time), are given as a function of the size of a MSN
network with 100% of connectivity (A) or 30% of connectivity (B)
during 100ms biological time. The five compared approaches are
the classical Time-Stepping approach with connectivity Storage
(TS-S), the same approach with connectivity Generation (TS-
G), the Event-Driven updating with connectivity Storage (ED-S),
the same approach with connectivity Generation (ED-G), and
the approach used in the BRIAN2 simulator. A complete list
of the simulation parameters related to this experiment (named
Memory and time) is given in Supplementary Material.

From these results, it appears that storing the connectivity
is definitely inappropriate, as it sharply increases the memory
consumption (Figure 6). As expected, the method with storage
has a memory consumption that scales in a polynomial way with
the number of neurons while the scaling is linear for the method
without storage.

Frontiers in Neuroinformatics | www.frontiersin.org 8 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

FIGURE 5 | Error ǫt over spike time in function of time-step 1t, for the three spike detection methods.

FIGURE 6 | Memory consumption as a function of the size of a MSN network with 100% of connectivity (A) or with 30% connectivity (B) during 100ms biological

simulation, for the TS-S, TS-G, ED-S, and ED-G simulation approaches and the BRIAN2 simulator.

Concerning the performance, we observe a relationship
between the execution time and the number of neurons. The
time varies as a power of the number of neurons that is
t ∝ nk, where t is the execution time, n the number of
neurons and k the exponent of the power law. In Figure 7,
the slopes of the ED-S, ED-G methods and BRIAN2 are of
order one (k = 1), whereas for the other two methods the
slopes are of order two (k = 2). It means that the execution
time increases linearly for ED-S, ED-G, and BRIAN2 and
quadratically for the two other methods. Nevertheless, BRIAN2
has a significantly larger simulation time compared to the ED-
methods. The ED-S and ED-G methods have similar simulation
times. However, for full connectivity (Figure 7A), we observe a
slight gain in execution time with the non-storing version that
comes from the possibility to avoid the on-demand generation
in that particular case. When the connection probability is
less than 1 (Figure 7B), the connectivity generation induces a

slight overhead on the execution time. However, we observe
that this overhead tends to decrease when the number of
neurons increases.

For a last comparison between SiReNe and Brian, we
implemented in SiReNe the COBAHH network model described
in article (Brette, 2007). The COBAHH model is a network of
4,000 excitatory-inhibitory neurons (80% excitatory and 20%
inhibitory Hodgkin-Huxley-type neurons with full connectivity).
In Brette (2007), this benchmark model was simulated in Brian

with Euler integration (0.01 ms step-size) and the spikes were
detected by threshold crossing at –20 mV with 3 ms refractory
period and alignment of the crossing events on the step-size.
Although this detectionmethod associated with Euler integration
leads to a precision of order one, we implemented them in
SiReNe for a fair comparison with Brian. We simulated this
benchmark model for 1 s of biological time on the same machine
(Dell R720 server, section 3.6) for both Brian and SiReNe. The

Frontiers in Neuroinformatics | www.frontiersin.org 9 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

FIGURE 7 | Execution time as a function of the size of a MSN network with 100% of connectivity (A) or with 30% connectivity (B) during 100ms biological simulation,

for the TS-S, TS-G, ED-S, and ED-G simulation approaches and the BRIAN2 simulator.

FIGURE 8 | Memory consumption (A) and execution time (B) as a function of the number of threads for the simulation of a MSN network with 10 k neurons (504

incoming connections per neuron) during 1 s biological time.

simulation time is more or less the same, ∼ 1 min. The memory
consumption was 18 MB for SiReNe vs. 375 MB for BRIAN.

4.3. Parallel Computing Performance
In order to evaluate the performance of the parallel multi-
threaded version of SiReNe, the memory consumption and
execution times are measured as a function of the number
of threads for the best approach (event-driven). The test case
is the simulation of 10 000 MSN neurons with 504 incoming
connections each, during a biological time of 1 s. A complete list
of the simulation parameters related to this experiment (named
Parallel performance) is given in Supplementary Material.

As can be seen in Figure 8A, although the memory
consumption increases slightly with the number of threads, it
stays very limited. Indeed, the additional consumption with 32
threads compared to 1 thread is smaller than 3Mb (less than 12%
of the initial consumption). This comes from the fact that only
the conductance factors between neurons (see Equation 4) are
duplicated to support their concurrent updates by the threads.
Concerning the execution time, we observe in Figure 8B a
significant decrease when the number of threads increases. This
result shows that the parallel version provides a significant gain of

time. However, the time decrease is less important than expected,
leading to moderate speed-ups for large numbers of threads (≥
16), and a faster decrease of the parallel efficiency (speedup over
the number of threads) than expected (see Figure 9). This is due
to the irregular inter-dependencies between neurons, that induce
irregularmemory access patterns, penalizing the parallel accesses.
This issue deserves a complete detailed study that is planed as a
future work.

4.4. Simulation of the Striatum Model
Before going on to the simulation of the striatum, we
simulate three different sizes of neural networks (500, 1,000,
and 2,000 neurons) and we compare the average number of
spikes per neuron and the simulation time as a function of
connectivity. A complete list of the simulation parameters related
to this experiment (named Network comparison) is given in
Supplementary Material. In Figure 10, we can see that for a
sparse connectivity, the neural network has an asynchronous
regime and for a dense connectivity, the neural network has a
synchronous regime. For the respective neural network sizes,
abrupt transitions of the number of spikes can be observed at

Frontiers in Neuroinformatics | www.frontiersin.org 10 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

different percentages of connectivity. The simulation times are
quite stable when the connectivity varies.

For the comparison of the results with (McCarthy et al., 2011),
two types of plots are produced: the raster plot of the spiking
neurons and the power spectral density of the LFP model. The
former displays the set of spiking neurons at each time step. The
latter draws the LFP power as a function of the spiking frequency.

The test case is a MSN network with 1.3 million neurons,
simulated during 4 s biological time, either under normal or

FIGURE 9 | Speedup and efficiency of a 1 s biological time simulation of 10 k

MSN neurons with 504 incoming connections, as a function of the number of

threads.

Parkinson conditions. The simulation time is 10 h per second
of biological time with a time-step of 0.01 ms. The memory
allocation is less than 1 GB. The normal conditions correspond
to an applied input Iapp = 1.19µA and a maximal M-
current conductance ḡM = 1.34ms. To obtain Parkinson
conditions, ḡM is decreased to 1.1ms. A complete list of
the simulation parameters related to this experiment (named
Reference (striatum)) is given in Supplementary Material.

The raster plot in Figure 11A shows a MSN
simulation under normal conditions. The average
spiking rate for the neurons is 0.94± 0.63Hz, which
is coherent with the average MSN spiking rate in vivo
(1.1 ± 0.18Hz, Kish et al., 1999 and 0.96 ± 0.03Hz, McCarthy
et al., 2011). Figure 11B shows the simulation of a parkinsonian
striatum. As expected, there is a pathological synchronization of
the neurons, which is representative of Parkinson’s disease. The
average spiking rate raises up to 3.71± 1.03Hz (2.11 ± 0.43Hz
in Kish et al., 1999 and 4.9 ± 0.15Hz in McCarthy et al., 2011).
The mean firing rates are significantly different between healthy
and Parkinson conditions (p < 1e − 3, t-test). Concerning the
LFP spectrum, it can be seen that we obtain similar qualitative
behaviors than those reported in McCarthy et al. (2011)
under normal and parkinsonian conditions. In Figure 12A

(normal conditions), a small peak can be observed (max
of 30 dB at 17Hz), revealing a weak synchronized state. In
Figure 12B (Parkinson’s conditions), the LFP reaches higher

β band oscillations (≈80 dB at 23Hz), which is representative

of Parkinson’s pathological oscillations with strong neural
synchronization (McCarthy et al., 2011).

FIGURE 10 | Three different neural networks are simulated, i.e., 500, 1,000, and 2,000 neurons. The average number of spikes per neuron and simulation time are

compared as function of the connectivity. For a sparse connectivity, we observe an asynchronous regime [raster plot indicated with (AS)]. For dense connectivity, we

observe synchronous regime [raster plot indicated with (S)]. An abrupt transition occurs at a certain percentage of connectivity.

Frontiers in Neuroinformatics | www.frontiersin.org 11 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

FIGURE 11 | Raster plot of the large MSN test case for neurons in interval [100,000 : 100,100]. Spiking neurons at each time-steps under normal conditions (A) and

Parkinson’s conditions (B) for the simulation of a MSN network at scale 1 of the rat, during 4 s biological time.

FIGURE 12 | LFP power in function of the frequency under normal conditions (A) and Parkinson’s conditions (B) for the simulation of a MSN network at scale 1 of the

rat, during 4 s biological time.

The similar behavior of our simulations to those of McCarthy
et al. (2011) (increase in MSN spiking frequency and LFP β

power in Parkinson’s state) validates the event-driven updating
version of the SiReNe software to simulate large-scale networks
(> 106 neurons in our case vs. 100 neurons for McCarthy et al.,
2011). It has to be mentioned that no comparison could be done
with Brian2 for such a large network, as it exceeds the memory
capacity of our server (128 GB RAM) to store the connectivity.

5. CONCLUSION

An event-driven updating approach for the simulation of neural
networks has been presented. It mainly consists in updating
post-synaptic currents only for spiking neurons, thus reducing
the computational cost. Moreover, the addition of a pseudo-
random generation of the neurons connectivity allows for a
significant reduction of memory cost, passing from O(n2) to
O(n) complexity, for n neurons in the system. Finally, two
interpolationmethods (linear intersection and Bézier curve) have
been compared for the computation of spike times.

A set of experiments has been conducted to evaluate the
validity of the approach as well as its accuracy and performance.
The validity is confirmed by a comparison to the reference
work of McCarthy et al. (2011) modeling a basal ganglia MSN
network in healthy and Parkinsonian conditions. Concerning
the accuracy, we conclude that to preserve the order 2 of
the Runge-Kutta method, it is mandatory to use an order 2
interpolation method of the spike times. In our case, we have
opted for quadratic Bézier curves as they are controlled by the
tangents at end points and they have limited computational cost.
Finally, the performance study is 2-fold. It shows that the event-
driven updating approach is not only faster than the classical
time-stepping one, but that it has a better performance scaling
according to the number of neurons. Also, the connectivity
generation seems to have a limited impact on the performance,
especially when the number of neurons increases.

One limitation in the event-driven connectivity generation
concerns the inclusion of plasticity rules, such as STDP (Spike-
Time Dependent Plasticity). Indeed, such rules are difficult to
implement in an event-driven strategy because the synaptic
conductances have to be stored in order to be updated at each

Frontiers in Neuroinformatics | www.frontiersin.org 12 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

spike time, which would cause a large increase in memory
consumption. However, in many neuroscience studies, the
plasticity is not a crucial key-point as a snapshot of a neural
network is simulated over a short period of time in order to
analyze its functional behavior rather than its evolution. This is
true in the simulations of our Striatum network, as pathological
oscillations in the Parkinson state are not obtained from synaptic
plasticity but by changing the intrinsic M-channel conductance
of the MSN neurons (McCarthy et al., 2011). Other limitations of
the current version of SiReNe, like the event-driven generation
of distance-dependent connectivity or synaptic delays, are less
difficult to tackle and should be addressed with a limited impact
over performance.

Another contribution concerns the overall numerical methods
used to simulate Hodgkin-Huxley based neuron models. This
type of neurons is sensitive to the time-step value because with
large time-steps (> 10−2ms), the significance of the derivatives
used to deduce next step values are much weaker than with
small time-steps (10−7ms) (Moore and Ramon, 1974). In fact,
when there is no sharp variation of the membrane potential
inside a time-step, the derivative at the beginning is close to
the average value of derivatives inside the step, leading to a
good approximation at the end of the step. However, when the
potential sharply varies, typically when the neuron is spiking,
the derivative at the beginning of the step is much lower than
the average value of the derivatives inside the step, leading to an
underestimation of the potential at the end of the step. In order
to stretch the limits induced by this problem, a specific process
is under consideration for inclusion in the SiReNe software.
Although a complete study is necessary to fully evaluate the gain
and interest of such corrective process, preliminary experiments
show promising results. A future work will be dedicated to
this subject.

In this paper, the main features of the event-driven updating
and connectivity generation have been studied. The combination
of this approach with time-stepping numerical integration of the
Hodgkin-Huxley equations forms a very pertinent solution to
efficiently and accurately simulate large neural networks with
limited computing resources (single server). However, there is
still room for improvements and extensions. As a few examples,
the reduction of irregular memory accesses in the multi-threaded
version, extensions of the parallel version to support multiple
machines and/or GPUs, the inclusion of distance-dependent
connectivity, synaptic delays as well as the corrective process
of the numerical method when using large time-steps would
deserve further studies. All those aspects will be considered as
future works.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

NA, SC-V, LB, and DM contributed to the conception of the
simulator. NA, SC-V, and DM contributed to the development
of the Sirene software. NA conducted the experiments to validate
the models. All authors contributed to manuscript revision, read,
and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2020.522000/full#supplementary-material

REFERENCES

Brette, R. (2006). Exact simulation of integrate-and-fire models

with synaptic conductances. Neural Comput. 18, 2004–2027.

doi: 10.1162/neco.2006.18.8.2004

Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential

currents. Neural Comput. 19, 2604–2609. doi: 10.1162/neco.2007.19.10.2604

Chatzikonstantis, G., Sidiropoulos, H., Strydis, C., Negrello, M., Smaragdos,

G., De Zeeuw, C. I., and Soudris, D. J. (2019). Multinode implementation

of an extended hodgkin–huxley simulator. Neurocomputing 329, 370–383.

doi: 10.1016/j.neucom.2018.10.062

Corbit, V. L., Whalen, T. C., Zitelli, K. T., Crilly, S. Y., Rubin, J. E., and

Gittis, A. H. (2016). Pallidostriatal projections promote β oscillations in a

dopamine-depleted biophysical network model. J. Neurosci. 36, 5556–5571.

doi: 10.1523/JNEUROSCI.0339-16.2016

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M.,

et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.

doi: 10.1016/j.neuron.2019.03.027

Eliasmith, C., and Trujillo, O. (2014). The use and abuse of large-scale brain

models. Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009

Goodman, D. F. M., and Brette, R. (2008). Brian: a simulator for spiking neural

networks in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Hansel, D., Mato, G., Meunier, C., and Neltner, L. (1998). On numerical

simulations of integrate-and-fire neural networks. Neural Comput. 10, 467–

483. doi: 10.1162/089976698300017845

Hawrylycz, M., Anastassiou, C., Arkhipov, A., Berg, J., Buice, M., Cain, N., et al.

(2016). Inferring cortical function in the mouse visual system through large-

scale systems neuroscience. Proc. Natl. Acad. Sci. U.S.A. 113, 7337–7344.

doi: 10.1073/pnas.1512901113

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian

thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598.

doi: 10.1073/pnas.0712231105

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops

to exascale computers. Front. Neuroinform. 12:34. doi: 10.3389/fninf.2018.

00034

Kemp, M., and Powell, T. (1971). The structure of the caudate nucleus of the cat:

light and electron microscopy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262,

383–401.

Kish, L. J., Palmer, M. R., and Gerhardt, G. A. (1999). Multiple single-unit

recordings in the striatum of freelymoving animals: effects of apomorphine and

d-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats.

Brain Res. 833, 58–70.

Knight, J., andNowotny, T. (2020). Larger GPU-accelerated brain simulations with

procedural connectivity. bioRxiv [priprint]. doi: 10.1101/2020.04.27.063693

Koch, C., and Segev, I. (1998). Methods in Neuronal Modeling: From Ions to

Networks. Cambridge, MA: MIT Press.

Kunkel, S., Potjans, T. C., Eppler, J. M., Plesser, H. E. E., Morrison, A., and

Diesmann, M. (2012). Meeting the memory challenges of brain-scale network

simulation. Front. Neuroinform. 5:35. doi: 10.3389/fninf.2011.00035

Frontiers in Neuroinformatics | www.frontiersin.org 13 October 2020 | Volume 14 | Article 522000

https://www.frontiersin.org/articles/10.3389/fninf.2020.522000/full#supplementary-material
https://doi.org/10.1162/neco.2006.18.8.2004
https://doi.org/10.1162/neco.2007.19.10.2604
https://doi.org/10.1016/j.neucom.2018.10.062
https://doi.org/10.1523/JNEUROSCI.0339-16.2016
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1016/j.conb.2013.09.009
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1162/089976698300017845
https://doi.org/10.1073/pnas.1512901113
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.3389/fninf.2018.00034
https://doi.org/10.1101/2020.04.27.063693
https://doi.org/10.3389/fninf.2011.00035
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Azevedo Carvalho et al. Simulation With On-Demand Connectivity Generation

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J.,

et al. (2014). Spiking network simulation code for petascale computers. Front.

Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078

Lansner, A., and Diesmann, M. (2012). “Virtues, pitfalls, and methodology

of neuronal network modeling and simulations on supercomputers,” in

Computational Systems Neurobiology, ed N. Le Novère (Dordrecht: Springer),

283–315.

L’Ecuyer, P., and Simard, R. (2007). Testu01: a c library for empirical testing

of random number generators. ACM Trans. Math. Softw. 33, 22:1–22:40.

doi: 10.1145/1268776.1268777

Lehmer, D. H. (1951). “Mathematical methods in large-scale computing units,”

in Proceedings of a Second Symposium on Large Scale Digital Calculating

Machinery, Vol. 26 (Cambridge: Annals of the Computation Laboratory,

Harvard Univ), 141–146.

Lindahl, M., and Hellgren Kotaleski, J. (2017). Untangling basal ganglia

network dynamics and function: role of dopamine depletion and inhibition

investigated in a spiking network model. eNeuro 3:ENEURO.0156-16.2016.

doi: 10.1523/ENEURO.0156-16.2016

Lipasti, M., Nere, A., Hashmi, A., and Wakerly, J. (2019). Efficient and Scalable

Systems for Calculating Neural Network Connectivity in an Event-Driven Way.

US10339439B2, US patent. Talchemy Corporation.

Lobb, C., Chao, Z., Fujimoto, R., and Potter, S. (2005). “Parallel event-driven neural

network simulations using the hodgkin-huxley neuronmodel,” in Workshop on

Principles of Advanced and Distributed Simulation (PADS’05) (Monterey, CA).

Lytton, W. W., Omurtag, A., Neymotin, S. A., and Hines, M. L. (2008). Just in

time connectivity for large spiking networks. Neural Comput. 20, 2745–2756.

doi: 10.1162/neco.2008.10-07-622

Lytton, W. W., and Stewart, M. (2006). Rule-based firing for network simulations.

Neurocomputing 69, 1160–1164. doi: 10.1016/j.neucom.2005.12.066

Makino, T. (2003). A discrete-event neural network simulator for general neuron

models. Neural Comput. Appl. 11, 210–223. doi: 10.1007/s00521-003-0358-z

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160.

doi: 10.1038/nrn1848

Mattia, M., and Del Giudice, P. (2000). Efficient event-driven simulation of large

networks of spiking neurons and dynamical synapses. Neural Comput. 12,

2305–2329. doi: 10.1162/089976600300014953

McCarthy, M. M., Moore-Kochlacs, C., Gu, X., Boyden, E. S., Han, X.,

and Kopell, N. (2011). Striatal origin of the pathologic beta oscillations

in parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 108, 11620–11625.

doi: 10.1073/pnas.1107748108

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006).

Parallel network simulations with NEURON. J. Comput. Neurosci. 21:119.

doi: 10.1007/s10827-006-7949-5

Moore, J. W., and Ramon, F. (1974). On numerical integration of the hodgkin

and huxley equations for a membrane action potential. J. Theor. Biol. 45,

249–273.

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007).

Exact subthreshold integration with continuous spike times in

discrete-time neural network simulations. Neural Comput. 19, 47–79.

doi: 10.1162/neco.2007.19.1.47

Oorschot, D. E. (1996). Total number of neurons in the neostriatal, pallidal,

subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological

study using the cavalieri and optical disector methods. J. Comp. Neurol. 366,

580–599.

Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A.,

et al. (2018). sPyNNaker: a software package for running PyNN simulations on

SpiNNaker. Front. Neurosci. 12:816. doi: 10.3389/fnins.2018.00816

Rochel, O., and Martinez, D. (2003). “An event-driven framework for the

simulation of networks of spiking neurons,” in European Symposium on

Artificial Neural Networks (ESANN) (Bruges).

Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., and Agís, R. (2006).

Event-driven simulation scheme for spiking neural networks using lookup

tables to characterize neuronal dynamics. Neural Comput. 18, 2959–2993.

doi: 10.1162/neco.2006.18.12.2959

Shelley, M. J., and Tao, L. (2001). Efficient and accurate time-stepping schemes

for integrate-and-fire neuronal networks. J. Comput. Neurosci. 11, 111–119.

doi: 10.1023/A:1012885314187

Taverna, S., Ilijic, E., and Surmeier, D. J. (2008). Recurrent collateral connections

of striatal medium spiny neurons are disrupted in models of parkinson’s

disease. J. Neurosci. 28, 5504–5512. doi: 10.1523/JNEUROSCI.5493-

07.2008

Tonnelier, A., Belmabrouk, H., and Martinez, D. (2007). Event-driven simulation

of nonlinear integrate-and-fire neurons. Neural Comput. 19, 3226–3238.

doi: 10.1162/neco.2007.19.12.3226

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Azevedo Carvalho, Contassot-Vivier, Buhry and Martinez. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 14 October 2020 | Volume 14 | Article 522000

https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1523/ENEURO.0156-16.2016
https://doi.org/10.1162/neco.2008.10-07-622
https://doi.org/10.1016/j.neucom.2005.12.066
https://doi.org/10.1007/s00521-003-0358-z
https://doi.org/10.1038/nrn1848
https://doi.org/10.1162/089976600300014953
https://doi.org/10.1073/pnas.1107748108
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1162/neco.2006.18.12.2959
https://doi.org/10.1023/A:1012885314187
https://doi.org/10.1523/JNEUROSCI.5493-07.2008
https://doi.org/10.1162/neco.2007.19.12.3226
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Simulation of Large Scale Neural Models With Event-Driven Connectivity Generation
	1. Introduction
	2. Related Works
	2.1. Event-Driven Connectivity Generation
	2.2. Spike Detection
	2.3. Parallel Computation

	3. Methods
	3.1. General Simulation: Time-Stepping
	3.2. Event-Driven Connectivity Generation and Post-synaptic Updating
	3.2.1. Event-Driven Generation of the Connectivity
	3.2.2. Event-Driven Computation of Synaptic Currents

	3.3. Event Detection
	3.3.1. Intersection Between Linear Interpolations
	3.3.2. Bézier Curve

	3.4. Simulated Striatum Model
	3.5. Software Implementation in SiReNe
	3.6. Experimental Context

	4. Results
	4.1. Order of the Method
	4.2. Performance Comparison of the Different Methods
	4.3. Parallel Computing Performance
	4.4. Simulation of the Striatum Model

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

