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Research on undersampled magnetic resonance image (MRI) reconstruction can

increase the speed of MRI imaging and reduce patient suffering. In this paper, an

undersampled MRI reconstruction method based on Generative Adversarial Networks

with the Self-Attention mechanism and the Relative Average discriminator (SARA-GAN)

is proposed. In our SARA-GAN, the relative average discriminator theory is applied

to make full use of the prior knowledge, in which half of the input data of the

discriminator is true and half is fake. At the same time, a self-attention mechanism is

incorporated into the high-layer of the generator to build long-range dependence of the

image, which can overcome the problem of limited convolution kernel size. Besides,

spectral normalization is employed to stabilize the training process. Compared with

three widely used GAN-based MRI reconstruction methods, i.e., DAGAN, DAWGAN,

and DAWGAN-GP, the proposed method can obtain a higher peak signal-to-noise ratio

(PSNR) and structural similarity indexmeasure(SSIM), and the details of the reconstructed

image are more abundant and more realistic for further clinical scrutinization and

diagnostic tasks.

Keywords: MRI, reconstruction, deep learning, compressive sensing, neuroinformatics, artificial intelligence, GAN

INTRODUCTION

MRI can carry out the non-invasive examination of the internal tissues of the human body, so
it is widely used in clinical pathological examination and diagnosis (Liang and Lauterbur, 2000;
Kabasawa, 2012). However, the excessive scanning time of MRI limits its clinical application, and
this problem is particularly prominent for high-resolution imaging. Therefore, how to reduce k-
space sampling (Duyn et al., 1998) and shortenMRI acquisition time has become a research focus in
this field. Compressed sensing (CS) (Lustig et al., 2008, 2010) is a conventional method for solving
this problem, it uses the compressibility and sparsity of the signal to reduce k-space sampling and
achieve fast imaging. At present, the methods surrounding compressed sensing for fast MRI mainly
include non-Cartesian CS (Haldar et al., 2011; Wang et al., 2012), combination parallel imaging
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with CS (Murphy et al., 2012; El Gueddari et al., 2019; Shimron
et al., 2020), and CS-based on dictionary learning (Ravishankar
and Bresler, 2010; Huang et al., 2014; Du et al., 2019; Cao
et al., 2020). Although the above-mentioned methods based on
compressed sensing have achieved good results, they all rely on
the prior knowledge extracted from the image, which limits the
use of the above methods to a certain extent.

In recent years, deep learning (LeCun et al., 2015) methods
have been successfully applied in many fields. In particular,
with the emergence of convolutional neural networks, made
it show great performance in computer vision. At present,
many MRI reconstruction methods based on deep learning
have been proposed (Boyd et al., 2011; Sun et al., 2016; Wang
et al., 2016; Aggarwal et al., 2018; Zhu et al., 2018; Akçakaya
et al., 2019; Lee et al., 2020). In 2016, Wang et al. (2016)
first applied deep learning methods to the acceleration of
MRI imaging. They employed an offline CNN to realize the
mapping of undersampled zero-filled MRI and fully sampled k-
space data and achieved good reconstruction effectively. Deep
learning based MRI reconstruction methods can be roughly
divided into unrolling-based approaches and those not based on
unrolling (Liang et al., 2020). Among them, the unrolling-based
method usually expands the CS-based iterative reconstruction
algorithm into a deep network, so that the parameters in
the reconstruction algorithm can be learned by the network.
Sun et al. (2016) proposed the ADMM-Net defined over data
flow graphs, which were derived from the iterative procedures
in the Alternating Direction Method of Multipliers (ADMM)
algorithm (Boyd et al., 2011) for optimizing a general CS-
based MRI mode, and it significantly improved the baseline
ADMM algorithm and achieved high reconstruction accuracies
with fast computational speed. The framework proposed by
Aggarwal et al. (2018), termed as MOdel-based reconstruction
using Deep Learned priors (MODL), merged the power ofmodel-
based reconstruction schemes with deep learning. Their model
provided improved results, despite the relatively smaller number
of trainable parameters. Themethods not unrolling-basedmainly
uses deep networks to learn themapping between under-sampled
data and fully sampled data to achieve reconstruction. Zhu et al.
(2018) proposed a unified framework—automated transform
by manifold approximation (AUTOMAP), it constructed a
supervised learning task to learn the mapping between sensor
domain and image domain from training data. Besides, Robust
artificial-neural-networks for k-space interpolation (RAKI)
(Akçakaya et al., 2019) was proposed for image reconstruction by
training convolutional neural networks on ACS data. Compared
with the traditional linear k-space interpolation-based method,
this method had better anti-noise performance.

The Generative Adversarial Networks (GAN) (Goodfellow
et al., 2014) proposed by Goodfellow was a novel deep generative
model, which introduced the idea of game theory and improved
the fitting ability of the network through the competitive
learning of generator and discriminator. In 2016, Radford
et al. proposed Deep Convolutional Generative Adversarial
Networks (DCGAN) to apply convolutional neural networks
to unsupervised learning (Radford et al., 2016). By applying
convolutional neural networks to generators and discriminators,

the network could learn a hierarchy of representations from
object parts to scenes. At present, GAN and its variants have
achieved excellent performance in image-to-image translation
(Zhu et al., 2017), image super-resolution (Ledig et al., 2017),
and others. In recent years, since its good data representation
capabilities, GAN have also been used for MRI fast imaging
(Arjovsky et al., 2017; Yang et al., 2017; Jiang et al., 2019;
Kwon et al., 2019) and super-resolution (Chen et al., 2018;
Lyu et al., 2019; Mahapatra et al., 2019). Yang et al. (2017)
applied conditional GAN to MRI reconstruction and proposed
the De-Aliasing Generative Adversarial Networks (DAGAN)
model. Compared with conventional methods, the DAGAN
model achieved a better reconstruction effect and retained more
perceptible details. Wasserstein GAN (Arjovsky et al., 2017) is a
variant of the original GAN, by replacing the Jensen-Shannon
divergence in the original GAN with Wasserstein distance, it
stabilizes the learning process and solves the problem of mode
collapse. Jiang et al. (2019) proposed a de-aliasing fine-tuning
Wasserstein generative adversarial network (DA-FWGAN) for
MR imaging reconstruction. The DA-FWGAN could provide
reconstruction with improved peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM).

Although the current MRI reconstruction methods based on
deep learning can better learn the mapping relationship between
undersampling MRI and full sampling MRI, the reconstruction
effect still has a lot of room for improvement. Firstly, most
GANs use convolutional layers to build their generators. Due
to the limited size of the convolution kernel, the network
can only focus on the dependencies of the information in the
local receptive field (Luo et al., 2016), but it cannot establish
the long-range dependencies of the image, which leads to the
inaccurate reconstruction of the image details and texture. Self-
Attention Generative Adversarial Networks (SA-GAN) (Zhang
et al., 2019) proposed by Zhang et al. solved this problem by
introducing a self-attention mechanism and constructing long-
range dependency modeling. The self-attention mechanism was
used for establishing the long-range dependence relationship
between the image regions. To enhance the image details and
improve the quality of reconstructed MRI, the local dependence,
and the global dependence of the image were combined.
Secondly, the discriminator did not make full use of the prior
knowledge that half of the input data is true and half is fake
(Jolicoeur-Martineau, 2018). When the generated data is real
enough, the discriminator can directly distinguish the generated
data into real data, which results in the insufficient performance
of the discriminator and the training of the generator cannot be
continued. Alexia Jolicoeur-Martineau used the prior knowledge
to induce a “relative discriminator” (Jolicoeur-Martineau, 2018),
which estimated the probability that the given real data was more
realistic than a randomly sampled fake date.

In this paper, we propose a novel MRI reconstruction method,
termed as SARA-GAN, which combines the self-attention
mechanism and the relative discriminator. The generator is
designed as a structure, composing of down-sampling block,
residual block, and up-sampling block. Among them, in the
up-sampling block, we add a self-attention layer to capture
the global information of the image. Besides, the discriminator
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FIGURE 1 | The overall structure of the proposed SARA-GAN method.

uses the CNN structure and introduces the idea of relative
discrimination to construct a relative average discriminator. At
the same time, we also apply spectral normalization on the
generator and discriminator to stabilize the training process.
The novelties of our proposed SARA-GAN model have been
summarized as follows

(a) Given the traditional convolutional structure that can only
focus on the local dependency of the image, we add
a self-attention layer to the high-layer of the generator
network. The self-attention mechanism can calculate the
correlation degree between image pixels and build long-
range dependencies so that the reconstructed image can
demonstrate more details.

(b) The theoretical formula of the original GAN-based methods
ignores the prior information of the discriminator’s
input data. In our SARA-GAN model, we use relative
average discriminator to transform the absolute true
or false discrimination into relative true or false. In
doing so, our SARA-GAN model can make full use of
the prior information, and therefore can improve the
discriminator performance.

(c) In our SARA-GAN, the generator adopts a residual network
structure, in which multiple residual blocks are cascaded and
multiple skip connections are incorporated to reduce the loss
of original features in the convolution calculation. At the
same time, this can avoid poor performance of the generator
in the initial training stage; therefore, the training procedure
can be more efficient.

(d) We also apply the spectral normalization to the network
parameters of the generator and the discriminator to satisfy
the Lipschitz constraint, thereby stabilizing the training of
our GAN-based SARA-GANmodel.

METHODS

Figure 1 shows the overall structure of our proposed SARA-
GAN. We obtain the k-space data of the fully sampled MRI
through Fourier transform, then undersampled the k-space data,
and perform inverse Fourier transform to obtain the image-
domain undersampled MRI. The generator is used to learn

the mapping relationship between undersampled MRI and full-
sampled MRI. The discriminator is a binary classifier, used to
judge whether the reconstructed image is true or false. The
combined loss function incorporates the pixel loss, the perceptual
loss, and the frequency-domain loss based on the adversarial loss.
The pixel loss and the perceptual loss can constrain GAN training
on the image content. The frequency-domain loss provides
additional constraints for the data consistency in the k-space. The
pre-trained VGG16 network is used to extract features from the
fully sampled MRI and the reconstructed MRI respectively, and
the two sets of features are compared to obtain the perception
loss. The discriminator and the combined loss function guide the
training of the generator together.

Network Structure
Generator Model

The generator model is composed of a down-sampling block,
residual block, and up-sampling block. The three convolutional
layers in the down-sampling block are used to extract image
features. The residual block contains 7 residual blocks, and
each residual block contains two convolutional layers. The
up-sampling block consists of three transposed convolutional
layers, which are used to expand the feature map and generate
reconstructed MRI. We use spectral normalization on the
generator network and choose the PReLU (He et al., 2015)
function as the activation function. Besides, we introduce the
self-attention module in the up-sampling block to build the
long-range dependency of the image, as shown in Figure 2.

Discriminator Model

The discriminator model is an 11-layer CNN network, which
uses leaky ReLU as the activation function. The last layer is the
dense layer, and the sigmoid function is used as the activation
function to output the discriminatory results of the discriminator,
as shown in Figure 3. We also use spectral normalization in
the discriminator.

Self-Attention Module
To overcome the problem that the network cannot learn long-
range global dependencies caused by the limited size of the
convolution kernel, we add the self-attention (Zhang et al.,
2019) into the up-sampling block of the generator, as shown in
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FIGURE 2 | The generator model.

FIGURE 3 | Discriminator model.

Figure 2. In the self-attention module, the output feature map
of the last residual block x with the channel number C of the
previous convolution layer is input to three convolution layers
with a kernel of 1× 1 and the channel numbers of C/8, C/8 and
C respectively, to obtain the feature space f (x),g(x) and h(x)

f (x) = Wf x, (1)

g(x) = Wgx, (2)

h(x) = Whx. (3)

Then the transpose of f (xi) is multiplied by g(xj), and the weight
is normalized by the Softmax function to obtain βj,i

sij = f (xi)
Tg(xj), (4)

βj,i =
exp

(

sij
)

N
∑

i=1
exp

(

sij
)

, (5)

whereβj,i is an attention map that indicates the extent to which

the model attends to the ith location when synthesizing the jth

region. The output of the self-attention layer is defined as

oj = v

[

N
∑

i=1

βj,ih(xi)

]

, v(xi) = Wvxi (6)

In the above formula, Wf , Wg ,Wh, and Wv are the weight
matrices of the 1× 1 convolutional layer. To allow the generator
learns the local dependence of the image as well as the long-range
global dependence, we multiply the output of the self-attention
layer oj by a weight coefficient γ and add it to the input feature
map xi to obtain the final output of the self-attention module yi

yi = γ oi + xi. (7)

Among them, γ is a learnable parameter and is initialized to 0. Its
function is to enable the network to learn the proportion of the
global dependency on the feature map.

Relative Average Discriminator
In the original GAN model, the generator accepts random
noise, and then generates a false image and inputs it to the
discriminator. The discriminator gives the probability that the
input image belongs to the real image. The two compete with
each other and learn together. Finally, the generator learns
the probability distribution of the real image, making the
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discriminator unable to distinguish between the real image and
the generated image, and then achieves Nash equilibrium.

Specifically, in the problem of MRI image reconstruction,
x is defined as the fully sampled MRI image, and z is the
undersampled zero-filled MRI image. The theoretical formula of
the original GAN is:

maxLD = Ex∼ Pdata(x)

[

logD(x)
]

+Ez∼ Pz(z)

[

log
(

1− D(G(z))
)]

, (8)

minLG = Ez∼ Pz(z)

[

log
(

1− D(G(z))
)]

, (9)

where Pdata(x) is the fully sampled MRI image distribution, Pz(z)
is the undersampled zero-filled MRI image distribution. The
optimization process of the original GAN is essentially to reduce
the Jensen–Shannon divergence (JSD) between Pdata(x) and Pz(z)

JSD(Pdata||Pz) =
1

2
(log(4)+max

D
Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))]). (10)

When D(x)=D(G(z))= 1
2 , JSD(Pdata||Pz) gets the minimum value

0. Therefore, ideally, when the generator generates sufficiently
real samples, the discriminator cannot distinguish between true
and false samples and should output a probability value of 0.5.
However, in actual training, the above formula may cause the
expected output of the discriminator D to be 1. This is because
the original GAN theoretical formula ignores a priori knowledge,
for instance, in a minibatch, half of the samples’ input to the
discriminator are real data and the other half are generated data.

We use the relative average discriminator (Jolicoeur-
Martineau, 2018) and believe that the discriminator should
estimate the probability that the given full sampling MRI is more
realistic than the reconstruction MRI, on average, by making
full use of the above prior knowledge. Therefore, the theoretical
formula after using the relative average discriminator in our
work is

minLD = −Ex∼Pdata

[

log
(

D(x)
)]

−Ez∼Pz

[

log
(

1− D(G(z)
)]

, (11)

minLG = −Ez∼Pz

[

log
(

D(G(z))
)]

−Ex∼Pdata

[

log
(

1− D(x)
)]

, (12)

D(x) = sigmoid(C(x)− Ez∼PzC(G(z)))

D(G(z)) = sigmoid(C(G(z))− Ex∼PdataC(x)), (13)

where C(·) is the output of the discriminator network.

Spectral Normalization
Miyato et al. (2018) proposed to apply spectral normalization
(SN) to the discriminator network to stabilize GAN training. In
this study, we also use spectral normalization in the weights of
the generator network and discriminator network. The spectral
normalization method uses the spectral norm on the parameter
matrix of the discriminator and generator network, so that the
network satisfies the Lipschitz constraint, thereby smoothing the
network parameter to stabilize training.

Loss Function
The loss function is used to evaluate the gap between the
reconstructed image and the fully sampled image, which is
the optimization object of the GAN. The smaller the loss
function value, the smaller the gap between the reconstructed
image and the fully sampled image, and the better the
reconstruction effect. A reasonable loss function can provide
accurate gradient information for network training, thereby
improving reconstruction performance. We use a combined loss
function that combines perceptual loss, pixel loss, frequency
domain loss, and adversarial loss to comprehensively evaluate the
fitting ability of the network.

The pixel loss Lpixel and frequency domain loss Lfrequency are
based on Mean Square Error(MSE), can be defined as follows

min
G

Lpixel(G) =
1

2
‖xt − xu‖

2
2 , (14)

min
G

Lfrequency(G) =
1

2

∥

∥yt − yu
∥

∥

2

2
, (15)

where xt and xu are fully sampled and reconstructed MR images
in the image domain, respectively. yt and yu correspond to the
frequency domain data of xt and xu, respectively. The perceptual
loss and adversarial loss are defined as

min
G

Lperceptual(G) =
1

2

∥

∥fVGG16(xt)− fVGG16(xu)
∥

∥

2

2
, (16)

min
G

L
adversarial

= −Ez∼pz

[

log
(

D(G(z))
)]

−Ex∼pdata

[

log
(

1− D(x)
)]

, (17)

where fVGG16 represents the VGG16 network (Russakovsky et al.,
2015), D(·) represents the relative average discriminator.

Therefore, the final total loss function can be expressed as

Ltotal = αLpixel + βLfrequncy + γ Lperceptual + Ladversarial, (18)

where α, β and γ are the weight parameter of each loss function.

EXPERIMENTS

Experimental Setup
The datasets used in this article are downloaded from the
Diencephalon Challenge (https://www.synapse.org/#!Synapse:
syn3193805/wiki/217780) in the public repository of the
MICCAI 2013 grand challenge. The MRI data acquisition
method is MPRAGE, the scanning matrix size is 256 × 256
× 287, and the resolution is 1 × 1 × 1mm. We randomly
selected 130 3D neuro-MRI images from the data set to verify
the proposed SARA-GANmodel. In the experiments, 70 samples
(15,816 effective 2D MRIs) were used as the training set, 30
samples (5,073 effective 2D MRIs) were used as the validation
set, and 30 samples (5,198 effective 2D MRIs) were used as
the test set. In order to enhance the network performance, we
applied data augmentation to the training dataset, including
flipping (left to right), rotating ±20 degrees, shifting 10% along
the x-axis and y-axis, random zooming between 0.9 times and
1.1 times, random brightness changes, and the random elastic
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FIGURE 4 | The two different under sampling masks. (A) 1D Gaussian mask and (B) 2D Gaussian mask.

transformation with alpha of 255 × 3 and sigma of 255 ×

0.10. We use TensorFlow 1.12.0 and Python framework to
program, and train the proposed model on a TeslaV100-SXM2
GPU under a CentOS system environment. Two undersampling
modes, including 1-dimensional Gaussian distribution and 2-
dimensional Gaussian distribution, three sampling rates of 10,
20, and 30% (Corresponding to 10×, 5×, and 3.3× acceleration
factors respectively) were used for obtaining undersampling
MRI.We train the model separately for each sampling mode. The
samplingmodes are shown in Figure 4. The contrast experiments
were carried out under the above conditions.

The input and output image size of the generator is 256 ×

256, batch size set to 16. We set the learning rate of the generator
and the discriminator to 0.0001 and 0.0002, respectively, so that
the generator and the discriminator can learn simultaneously.
Since loss items in the combined loss are inconsistent on the
number scale; therefore, we use hyperparameters α, β and γ to
balance them into a similar scale to make the final loss function
more accurate. The hyperparameters α, β , and γ in the combined
loss function are set to 15, 0.1, and 0.0025, respectively. The
choice of these hyperparameters were tuned empirically for better
reconstruction performance.

We use the Adam optimizer with Gradient Centralization
(Yong et al., 2020) to optimize the loss function, and set the
exponential decay rate for the 1st moment estimates (β1) to 0.5,
and the exponential decay rate for the 2nd moment estimates
(β2) to 0.999. To prevent over-fitting, we use the normalized
mean square error (NMES) as an indicator to evaluate the
fitting effect of the network on the validation set every epoch.
After the network is trained for 30 epochs, the training is
terminated, and the optimal model with the smallest NMSE
is saved.

Reconstruction Quality Evaluation
In our experiment, the peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) were used as
evaluation indexes of the reconstructed image. PSNR and SSIM
are defined as following

PSNR = 10log10











2552

MN
M
∑

i=1

N
∑

j=1

(

yi,j − xi,j
)2











, (19)

where x represents the full sampling MRI, y represents the
network reconstructed MRI, i and j represent the coordinates of
image pixels, andM,N represents the size of the image.

SSIM =

(

2µxµy + C1

) (

2σxy + C2

)

(

µ2
x + µ2

y + C1

) (

σ 2
x + σ 2

y + C2

) (20)

whereµx andµy represent the means of image x and y, σx and σy
represent the variances of image x and y, respectively.

RESULTS

We compared three GAN-based MRI reconstruction models,
i.e., DAGAN, DAWGAN, DAWGAN-GP, and the compared
methods all used the best parameter settings. Figures 5, 6

show the reconstruction effect of a typical MRI for the 10-fold
accelerated k-space data masked with the Gaussian distribution
using a different method. We chose to zoom in on a specific
area of the MRI to compare the reconstruction details. From
the local enlarged image, we can conclude that the reconstructed
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FIGURE 5 | The reconstructed MRI for the 10-fold accelerated k-space data masked with the 1D Gaussian distribution by using different GAN-based methods.

(A) Fully-sampled MRI, (B) DAGAN, (C) DAWGAN, (D) DAWGAN-GP, (E) SARA-GAN, (F) 1D mask, (G) DAGAN(error), (H) DAWGAN(error), (I) DAWGAN-GP(error),

and (J) SARA-GAN(error).

FIGURE 6 | The reconstructed MRI for the 10-fold accelerated k-space data masked with the 2D Gaussian distribution by using different GAN-based methods.

(A) Fully-sampled MRI, (B) DAGAN, (C) DAWGAN, (D) DAWGAN-GP, (E) SARA-GAN, (F) 2D mask, (G) DAGAN(error), (H) DAWGAN(error), (I) DAWGAN-GP(error),

and (J) SARA-GAN(error).

image obtained by the DAGANmethod loses most of the texture
information. DAWGAN and DAWGAN-GP perform slightly
better than DAGAN, but there is still a big gap compared with

full sampling MRI. Compared with the other three GAN-based
methods, our method can restore more texture details, and the
texture edge is clearer. The second line of Figures 5, 6 shows the
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reconstruction error map of different algorithms, and the color
of pixels indicates the reconstruction error of the corresponding
position. It can be seen that the reconstruction error of our
method is less than that of other methods, indicating that the
reconstructed MRI is closer to the full sampling MRI. Table 1
shows the quantitative comparison of the reconstruction effects
of different methods. We calculate the average PSNR and SSIM
of each method on the test set to evaluate the reconstruction
performance of the model. Except for the first row in the table,
our results are close to the DAWGAN-GP method. In the other
undersampling modes, our method obtains higher PSNR and
SSIM. The average PSNR is improved 0.04 dB ∼ 0.96 dB over
the DAWGAN-GP and the corresponding SSIM improvements
are 0.0003 ∼ 0.0008. In order to illustrate the performance of
the proposed method, we estimate the statistical significancy
using the Wilcoxon rank sum test (p < 0.05 indicates the
significant difference). We find that except for 10% 2D Gaussian
sampling experiment we have a similar performance between
DAWGAN-GP and SARA-GAN (p= 0.1849), other experiments
have demonstrated that our SARA-GAN has outperformed other
methods significantly (most p-values are <0.001).

With the increase of the acceleration factor, the reconstruction
effect of either method becomes worse. At the same time,
the reconstruction effect of 2-dimensional Gaussian sampling
mode is obviously better than that of 1-dimensional Gaussian
sampling. This is because the brain MRI has fewer texture
details than natural images. The main information of brain MRI
is concentrated in the low-frequency part of k-space, and the
Gaussian samplingmode happens to also mainly collects the low-
frequency part. Therefore, with the increase of sampling rate and
sampling dimension, the information of the low-frequency part
is more collected, so the reconstruction effect is also improved.

The real MRI sampling process often contains random noise.
To simulate the real scene and evaluate the anti-noise ability of
themodel, we added 30 and 40 dBGaussian white noise to the test
set MRI and retested the above methods. Tables 2, 3 respectively
show the reconstruction results of different algorithms on the
test set with 30 and 40 dB Gaussian white noise. It can be seen
from the table that, the average PSNR is improved by 0.004
∼ 0.841 dB over the DAWGAN-GP and the corresponding
SSIM improvements are about 0.0004 ∼ 0.0008. Despite the
addition of a certain intensity of noise, our method still obtains
a good reconstruction effect and is better than other GAN-
based methods. This shows that our method has good anti-noise
performance and the potential for practical application.

DISCUSSION

The main purpose of this study is to accurately reconstruct
clear MR images from under-sampled MRI k-space data,
thereby accelerating MR imaging. The experimental results
have demonstrated that the proposed SARA-GAN method can
obtain high-quality reconstructed MRI, even in the presence
of noise. In the SARA-GAN method, we propose to use
the relative average discriminator instead of the original
discriminator, and the self-attention mechanism to achieve
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TABLE 2 | The average reconstruction performances of different methods on the test set with 30dB noise.

DAGAN DAWGAN DAWGAN-GP Proposed

Mask: 1D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 33.4169 0.9364 34.8801 0.9582 35.0774 0.9450 35.3201 0.9535

Sample rate: 20% 38.9860 0.9742 39.2584 0.9600 40.5054 0.9805 41.4684 0.9878

Sample rate: 30% 38.0020 0.9279 39.4411 0.9579 40.7167 0.9825 41.5242 0.9886

Mask: 2D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 39.1818 0.9775 39.5594 0.9827 40.5227 0.9859 40.5901 0.9861

Sample rate: 20% 40.3423 0.9807 40.1344 0.9843 41.6388 0.9890 41.7555 0.9895

Sample rate: 30% 42.5157 0.9907 42.3948 0.9901 42.6534 0.9919 43.0708 0.9922

The bold value means that the experimental result value is the best.

TABLE 3 | The average reconstruction performances of different methods on the test set with 40dB noise.

DAGAN DAWGAN DAWGAN-GP Proposed

Mask: 1D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 33.9782 0.9527 35.3805 0.9648 36.2549 0.9711 36.2590 0.9703

Sample rate: 20% 40.0935 0.9849 41.3256 0.9880 42.3872 0.9918 42.9586 0.9926

Sample rate: 30% 40.3222 0.9828 41.6212 0.9878 42.6548 0.9924 43.1355 0.9928

Mask: 2D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 39.6494 0.9797 40.2391 0.9843 41.1332 0.9874 41.5031 0.9879

Sample rate: 20% 41.4073 0.9852 41.0897 0.9866 42.8114 0.9910 43.2453 0.9918

Sample rate: 30% 44.1260 0.9931 44.0760 0.9929 44.5119 0.9944 45.3533 0.9949

The bold value means that the experimental result value is the best.

TABLE 4 | The influence of self-attention mechanism and SN on PSNR and SSIM of the reconstructed image.

RA-GAN SARA-GAN(NoSN) SARA-GAN

Mask: 1D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 35.9669 0.9686 35.6708 0.9669 36.3926 0.9713

Sample rate: 20% 42.8805 0.9924 42.9769 0.9925 43.2054 0.9929

Sample rate: 30% 42.7548 0.9920 43.1507 0.9927 43.3522 0.9931

Mask: 2D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 41.1679 0.9867 40.5628 0.9848 41.6323 0.9881

Sample rate: 20% 43.0552 0.9912 42.1689 0.9894 43.4991 0.9920

Sample rate: 30% 44.7239 0.9940 44.3378 0.9932 45.7536 0.9951

The bold value means that the experimental result value is the best.

global reference. Compared with the other state-of-the-art
GAN-based MRI reconstruction methods, such as DAGAN,
DAWGAN, DAWGAN-GP, our SARA-GAN method can
provide outstanding reconstruction performance and generate
MRI images with a stronger integrity, more details, and higher
evaluation indices.

The convolution operation on CNN can only work in the
local domain of the convolution kernel, whichmakes the network
miss a lot of global information. The self-attention mechanism
is proposed to solve the above problem by capturing long-
range interactions. In this study, we apply the self-attention

mechanism in the up-sampling block of the generator to combine
local and global spatial information. To evaluate the impact
of the self-attention mechanism on network reconstruction, we
removed the self-attention layer in the up-sampling block of the
generator and conducted training and testing under the same
experimental conditions. The average PSNR and SSIM of the
test set are shown in Table 4. As can be seen from the table, in
all under-sampling modes, the self-attention mechanism affects
improving the quality of reconstructed MRI images. The average
PSNR is improved 0.32 ∼ 1.03 dB and the corresponding SSIM
improvements are 0.0005∼ 0.0027.
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FIGURE 7 | The visual influence of self-attention mechanism on the reconstructed image. Proposed RASA-GAN (PSNR: 33.5931) and Proposed (NoSA) RA-GAN

(PSNR: 32.9152).

FIGURE 8 | The convergence curve of the PSNR vs. the Epoch number in the case of a 30% sampling rate with the 1D Gaussian mask. Training and validation.

In order to verify the visual effect of the long-range
dependence constructed by the self-attention mechanism on the
reconstructed MRI, we selected a typical MRI and enlarged the
texture-rich regions locally, as shown in Figure 7. Observation
shows that the brain texture in the left picture is rich in detail
and structural information is relatively complete. Comparing
the enlarged image of the same area, the left image has a
clear texture boundary and relatively complete color blocks,
while the right image has blurry borders, and the color blocks
are somewhat broken. Therefore, under the action of the self-
attention mechanism, the integrity of reconstructed MRI is
stronger and the visual effect is improved.

We also apply spectral normalization to the parameter matrix
of the generator and discriminator.

Spectral normalization makes the parameter matrix meet 1-
Lipschitz continuity by applying the spectral norm to the network
parameters, which limits the network gradient change, thereby
making the training process more stable. We have conducted
the convergence analyses in every epoch by using SARA-GAN
and SARA-GAN without SN methods in the case of the 30%
sampling rate with a 1D Gaussian mask. As shown in Figure 8,
the convergence of SARA-GAN method is more stable than
SARA-GAN without the SN method. Table 4 also shows the
experimental results of SARA-GAN without the SN method on
the test set. It can be seen that SN significantly improves the
quality of network reconstruction MRI. Under the same number
of iterations, due to the improvement of training stability, the
method with SN can achieve a more optimized state.
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CONCLUSION

In this study, a new MRI reconstruction method, named SARA-
GAN, was proposed to reduce k-space sampling and accelerate
MRI imaging. Our method combines the self-attention
mechanism with relative average discriminator. Compared with
other GAN-based methods, such as DAGAN, DAWGAN, and
DAWGAN-GP, the experimental results show that our method
can obtain more accurate reconstructedMRI with a higher PSNR
and SSIM. Especially through the long-range global dependence
constructed by the self-attention mechanism, the proposed
method can reconstruct images with more realistic details and
stronger integrity. At the same time, the proposed method has
a certain ability of noise tolerance and short reconstruction
time. It provides a promising approach to speed up
the MRI.
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