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Many articles have used voice analysis to detect Parkinson’s disease (PD), but few

have focused on the early stages of the disease and the gender effect. In this article,

we have adapted the latest speaker recognition system, called x-vectors, in order to

detect PD at an early stage using voice analysis. X-vectors are embeddings extracted

from Deep Neural Networks (DNNs), which provide robust speaker representations

and improve speaker recognition when large amounts of training data are used. Our

goal was to assess whether, in the context of early PD detection, this technique

would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral

Coefficients—Gaussian Mixture Model) and, if so, under which conditions. We recorded

221 French speakers (recently diagnosed PD subjects and healthy controls) with a

high-quality microphone and via the telephone network. Men and women were analyzed

separately in order to have more precise models and to assess a possible gender effect.

Several experimental and methodological aspects were tested in order to analyze their

impacts on classification performance. We assessed the impact of the audio segment

durations, data augmentation, type of dataset used for the neural network training, kind of

speech tasks, and back-end analyses. X-vectors technique provided better classification

performances than MFCC-GMM for the text-independent tasks, and seemed to be

particularly suited for the early detection of PD in women (7–15% improvement). This

result was observed for both recording types (high-quality microphone and telephone).

Keywords: Parkinson’s disease, x-vectors, voice analysis, early detection, automatic detection, telediagnosis,

MFCC, deep neural networks

1. INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s
disease and affects approximately seven million people worldwide. Its prevalence in industrialized
countries is around 0.3% and increases with age: 1% of people over the age of 60 and up to 4%
of those over 80 are affected (De Lau and Breteler, 2006). The prevalence of PD has doubled
between 1990 and 2016, which may be explained by the rise in life expectancy, better diagnoses
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and environmental factors. This disease results in motor
disorders worsening over time caused by a progressive loss of
dopaminergic neurons in the substantia nigra (located in the
midbrain). The standard diagnosis is mainly based on clinical
examination. Usually the diagnosis is made when at least two of
the following three symptoms are noted: bradykinesia (slowness
of movement), rigidity, and tremors at rest. Unfortunately, these
motor symptoms appear once 50–60% of dopaminergic neurons
in the substantia nigra (Haas et al., 2012) and 60–80% of their
striatal endings (Fearnley and Lees, 1991) have degenerated.
That is why detecting PD in the early stages remains a big
challenge, in order to test treatments before the occurrence of
large irreversible brain damage, and later to slow down, or even
stop, its progression from the beginning.

Voice impairment is one of the first symptoms to appear.
Many articles have used voice analysis to detect PD. They
observed vocal disruptions, called hypokinetic dysarthria,
expressed by a reduction in prosody, irregularities in phonation,
and difficulties in articulation. The classification performances
(accuracy rate) using voice analysis ranged from 65 to 99% for
moderate to advanced stages of the disease (Guo et al., 2010;
Rustempasic and Can, 2013; Shahbakhi et al., 2014; Ozkan,
2016; Gómez-Vilda et al., 2017; Ali et al., 2019; Avuçu, 2020).
Fewer studies focused on early detection of PD through voice.
Moreover, they usually worked on rather small databases (around
40 subjects) and analyzed men or mixed-gender groups (Rusz
et al., 2011, 2015b; Novotný et al., 2014; Orozco-Arroyave et al.,
2016a). Recently, PD detections using telephone networks have
been carried out, from controls and early PD subjects selected by
neurologists (Jeancolas et al., 2019), as well as from self-selected
participants at any stage of the disease (Arora et al., 2019).

Different classification methodologies have been explored to
detect PD using voice analysis. The first studies used global
features, such as the number of pauses, the number of dysfluent
words, the standard deviation (SD) of pitch and of intensity,
along with averaged low-level perturbations, such as shimmer,
jitter, voice onset time, signal to noise ratio, formants, or
vowel space area, which are reviewed in Jeancolas et al. (2016).
The authors usually performed a feature selection, keeping
statistically significant features and removing the redundancies.
Finally, selected features were fed to classifiers, such as Support
Vector Machines (SVM) (Gil and Johnson, 2009; Little et al.,
2009; Rusz et al., 2011, 2015a; Sakar et al., 2013, 2017; Novotný
et al., 2014), k-nearest neighbors (Sakar et al., 2013, 2017),
decision trees (Mucha et al., 2017), multilayer perceptrons
(Gil and Johnson, 2009), probabilistic neural networks (Ene,
2008), or minimax classifiers with gaussian kernel density
(Rusz et al., 2013).

Another type of features, which has been used in the field of
speaker recognition for decades, is the Mel-Frequency Cepstral
Coefficients (MFCCs) (Bimbot et al., 2004) (for abbreviations and
definitions see Table 1). These short-term features, calculated
on (20–40 ms) windows, characterize the spectral envelope, and
reflect the shape of the vocal tract (composed of three connected
cavities: pharyngeal, oral, and nasal). Several muscles and
articulators, such as the pharyngeal constrictor muscles, tongue,
lips, jaw, larynx, soft palate, and larynx location, modulate the

TABLE 1 | List of abbreviations.

Abbreviation Definition

PD Parkinson’s disease

HC Healthy control

SD Standard deviation

MFCC Mel-frequency cepstral coefficients

GMM Gaussian mixture model

MDS-UPDRS Movement disorder society sponsored

revision of the unified Parkinson’s disease

rating scale

LLH Log-likelihood

DNN Deep neural network

TDNN Time delay neural network

LDA Linear discriminant analysis

PLDA Probalistic linear discriminant analysis

DDK Diadochokinesia

EER Equal error rate

DET Detection error tradeoff

shapes, volumes, and the coupling of these cavities, giving a
specific timbre to the sound. This results in a particular spectral
envelope, described by the MFCCs. Thus, MFCCs extracted
throughout the vocal tasks, capture information related to
articulation and phonation.

Over the past 15 years, MFCCs have appeared in the detection
of vocal pathologies, such as dysphonia (Dibazar et al., 2002;
Godino-Llorente and Gómez-Vilda, 2004; Malyska et al., 2005).
The use of MFCCs for PD detection was introduced in Tsanas
et al. (2012). Since then, many studies have used MFCCs for
PD detection (Arias-Vergara et al., 2017; Naranjo et al., 2017;
Vaiciukynas et al., 2017; Drissi et al., 2019; Fang et al., 2020)
or PD monitoring (Grosz et al., 2015; Schuller et al., 2015;
Orozco-Arroyave et al., 2016b).

Several statistical analyses and classifiers can be applied on
MFCC features. For instance, if MFCC dispersion is low within
classes, generally due to a poor phonetic variety, one can simply
consider the MFCC averages (in addition to other features). This
is generally the case for sustained vowel tasks (Tsanas et al.,
2012; Jafari, 2013; Benba et al., 2014, 2016; Orozco-Arroyave
et al., 2015a; Hemmerling et al., 2016) or when phonetically
similar frames are selected (Orozco-Arroyave et al., 2014, 2015b,
2016a). Authors often add to the means some other statistics like
the standard deviation, kurtosis (flattening measurement), and
skewness (asymmetrymeasurement) in order to gain a little more
information. These features are then fed into classifiers such as
SVMs, multilayer perceptrons, or decision trees.

If frames are acoustically very different (such as during
reading or free speech tasks), additional precision is required
to describe the MFCC distribution. One possible modeling
technique uses vector quantization (Kapoor and Sharma, 2011;
Benba et al., 2014). Another more precise way is to model the
MFCC distribution with a Gaussian Mixture Model (GMM).
GMM can model the MFCC distribution of the PD and control
groups. Likelihood scores of test subjects’ MFCCs against the
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two GMM models (PD and control) are then calculated (Moro-
Velázquez et al., 2018; Jeancolas et al., 2019). GMM can also
model the MFCC distribution of each subject. The means of
the Gaussian functions (forming a “supervector”) are then fed
into a classifier such as SVM (Bocklet et al., 2013). When not
enough speech data is available to train the GMM models,
which mainly occurs when GMMs are used to model each
subject (rather than a group), GMMs can be adapted from
Universal Background Models (UBM) previously trained with
a bigger dataset (Reynolds et al., 2000; Bocklet et al., 2013).
More than that, a more recent speaker recognition technique,
called i-vectors, has been adapted for PD detection (Garcia
et al., 2017; Moro-Velázquez et al., 2018). This approach consists
in removing the UBM mean supervector and projecting each
supervector onto a lower dimensional space, called the total
variability space. Intra-class variability is then often handled
by means of discriminant techniques, like Linear Discriminant
Analysis (LDA), or Probabilistic Linear Discriminant Analysis
(PLDA). In PD detection this results in compensating the
speaker, channel, and session effects. In López et al. (2019), the
authors compared the i-vectors system with another MFCC-
based speaker representation, using Fisher vectors, and found
superior PD detection performance for the latter.

Over the last few years, with the increase of computing
power, several Deep Neural Network (DNN) techniques have
emerged in PD detection. Some studies applied Convolutional
Neural Networks on spectrograms (Vásquez-Correa et al., 2017;
Khojasteh et al., 2018; Zhang et al., 2018). Others used DNNs
to extract phonological features from MFCCs (Garcia-Ospina
et al., 2018), or to detect directly PD from global features
(Rizvi et al., 2020).

In the present study, we adapted a brand-new text-
independent (i.e., no constraint on what the speaker says) speaker
recognition methodology, introduced in Snyder et al. (2016).
This approach consists in extracting embedding features (called
x-vectors) from a DNN taking MFCCs as inputs.

According to the authors, the advantages of x-vectors are that
they capture well the characteristics of speakers that have not
been seen during the DNN training, that they provide a more
robust speaker representation than i-vectors (Snyder et al., 2017),
and that they improve speaker recognition, provided that a large
amount of training data is available (Snyder et al., 2018b).

In 2018, the same authors adapted the x-vector method to
language recognition (Snyder et al., 2018a) and outperformed
several state-of-the-art i-vector systems.

Recently, we proposed an adaptation of x-vectors for PD
detection in Jeancolas (2019). Since then, another work has
used x-vectors for PD detection (Moro-Velazquez et al., 2020).
In this paper we made different experimental choices. Unlike
(Moro-Velazquez et al., 2020), we focused on PD detection at
an early stage, and performed the classifications on high-quality
recordings on the one hand and on telephone recordings on
the other hand. We also tested different types of speech tasks
(text-dependent and text-independent) and different datasets
for the DNN training, in order to assess their impact on PD
detection. In order to achieve the best performance, we also
considered men and women separately. This is usually done

in speaker recognition and has been proved to enhance vocal
pathology detections involving MFCC features (Fraile et al.,
2009). Moreover, this allowed us to analyze the effect of gender
on PD detection.We also made different methodological choices.
We studied the effect of important x-vectors methodological
aspects, such as the audio segment durations and data
augmentation. Finally we assessed the advantage of considering
an ensemble method for the classification. For each condition,
we compared different classifiers: cosine similarity (with and
without LDA) and PLDA, which are commonly used with x-
vectors, and as a baseline, the MFCC-GMM technique we used
in Jeancolas et al. (2019).

2. MATERIALS AND METHODS

2.1. Databases
2.1.1. Participants
A total of 221 French speakers were included in this study:
121 PD patients and 100 healthy controls (HC). All PD
patients and 49 HC were recruited at the Pitié-Salpêtrière
Hospital and included in the ICEBERG cohort, a longitudinal
observational study conducted at the Clinical Investigation
Center for Neurosciences at the Paris Brain Institute (ICM).
An additional 51 HC were recruited to balance the number
of PD and control subjects. All patients had a diagnosis of
PD, according to the United Kingdom Parkinson’s Disease
Society Brain Bank (UKPDSBB) criteria, <4 years prior to the
study. HC were free of any neurological diseases or symptoms.
Participants had a neurological examination,motor and cognitive
tests, biological sampling, and brain MRI. PD patients were
pharmacologically treated and their voices were recorded during
ON-state (<12 h after their last medication intake). Data from
participants with technical recording issues, language disorders
not related to PD (such as stuttering) or when a deviation
from the standardized procedure occurred, were excluded
from the analysis. The ICEBERG cohort (clinicaltrials.gov,
NCT02305147) was conducted according to Good Clinical
Practice guidelines. All participants received informed consent
prior to any investigation. The study was sponsored by Inserm,
and received approval from an ethical committee (IRBParis VI,
RCB: 2014-A00725-42) according to local regulations.

2.1.2. High-Quality Microphone Recordings
Among the 217 participants kept for the analysis, 206 subjects
including 115 PD (74 males, 41 females) and 91 HC (48 males,
42 females) performed speech tasks recorded with a high-quality
microphone. Information about age, time since diagnosis, Hoehn
and Yahr stage (Hoehn and Yahr, 1967), Movement Disorder
Society-sponsored revision of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) III score (Goetz et al., 2007) (OFF
state) and Levodopa Equivalent Daily Dose (LEDD) are detailed
in Table 2. The microphone was a professional head mounted
omnidirectional condenser microphone (Beyerdynamics Opus
55 mk ii) placed approximately 10 cm from the mouth.
This microphone was connected to a professional sound card
(Scarlett 2i2, Focusrite) which provided phantom power and pre-
amplification. Speech was sampled at 96,000 Hz with 24 bits
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TABLE 2 | High-quality microphone database information.

Number Age (years) Disease duration (years) H & Y MDS-UPDRS III LEDD (mg)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD mean ± SD

PD 115 63.8 ± 9.3 2.6 ± 1.5 2.0 ± 0.1 32.5 ± 7.0 392 ± 266

M 74 63.7 ± 9.3 2.5 ± 1.4 2.0 ± 0.1 34.1 ± 7.0 415 ± 298

F 41 63.9 ± 9.3 2.7 ± 1.5 2.0 ± 0.0 29.6 ± 5.8 352 ± 191

HC 91 59.1 ± 10.0 – 0.0 ± 0.3 4.8 ± 3.5 –

M 48 58.9 ± 10.7 – 0.0 ± 0.0 4.6 ± 3.7 –

F 43 59.3 ± 9.2 – 0.1 ± 0.4 4.9 ± 3.4 –

Total 206 61.7 ± 9.8 – 1.5 ± 0.9 24.8 ± 13.9 –

TABLE 3 | Telephone database information.

Number Age (years) Disease duration (years) H & Y MDS-UPDRS III LEDD (mg)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

PD 101 63.5 ± 9.0 2.6 ± 1.4 2.0 ± 0.1 32.4 ± 7.0 387 ± 272

M 63 63.7 ± 9.0 2.5 ± 1.4 2.0 ± 0.1 34.2 ± 6.9 403 ± 311

F 38 63.3 ± 9.3 2.7 ± 1.5 2.0 ± 0.0 29.5 ± 6.1 359 ± 194

HC 61 62.6 ± 8.5 – 0.0 ± 0.3 4.9 ± 3.5 –

M 36 63.1 ± 9.3 – 0.0 ± 0.0 4.6 ± 3.5 –

F 25 61.8 ± 7.4 – 0.1 ± 0.5 5.3 ± 3.6 –

Total 162 63.2 ± 8.9 – 1.4 ± 0.9 23.9 ± 14.1 –

resolution and a frequency range of 50 Hz–20 kHz. ICEBERG
participants were recorded in consultation rooms in the Clinical
Investigation Center of the Paris Brain Institute or in the
Sleep Disorders Unit of the Pitié-Salpêtrière hospital in Paris.
Additional HC were recorded in quiet rooms in their own house
or at their office with the same recording devices. Speech tasks
were presented in a random order to the participants via a
graphical user interface. The tasks which are analyzed in the
present study are: reading (1 min), sentence repetition (10 s),
free speech (participants were asked to talk about their day
during 1 min) and fast syllable repetitions (1.5 min), also called
diadochokinesia (DDK) tasks. Details about speech task content
are presented in Annex 1.

2.1.3. Telephone Recordings
Most of the participants, 101 PD (63 males, 38 females) and 61
HC (36 males, 25 females) also carried out telephone recordings.
Information about age, time since diagnosis, Hoehn and Yahr
stage, MDS-UPDRS III score (OFF state), and LEDD are detailed
in Table 3. Participants called once a month an interactive
voicemail (IVM, from NCH company), connected to a SIP
(Session Initiation Protocol) server (ippi), with their own phone
(mobile or landline). Audio signal was compressed with G711
codec and transformed into PCM16 audio files by IVM. Finally,
speech files were sampled at 8,000 Hz with 16 bits resolution,
and a frequency bandwidth of 300–3,400 Hz. We set up the
voicemail to automatically make the participants carry out a set

of speech tasks when they called. Participants performed different
numbers of recording sessions (from 1 to 13 with an average of 5)
depending on when they started and stopped. The tasks that we
analyzed in this study were: sentence repetition (20 s), free speech
(1 min) and DDK tasks (1 min). For practical reasons, only audio
instructions were given during the phone calls. Therefore no
reading tasks were performed. Details about speech task content
are presented in Annex 1, and transmission chain and encoding
are described in Annex 2.

2.2. Methods
2.2.1. Baseline: MFCC-GMM Methodology
In this section we present our MFCC-GMM baseline framework.
This method, based on Gaussian mixture models fitting cepstral
coefficients distributions of each class, has been used for decades
in speaker recognition and was recently adapted for early PD
detection (Jeancolas et al., 2019).

2.2.1.1. Preprocessing and MFCC Extraction
The first preprocessing regarding our high-quality microphone
recordings was spectral subtraction (Boll, 1979). The aim of
this denoising technique was to compensate for the mismatched
recording locations by removing additive and stationary noises.
We applied it with the Praat software (Boersma, 2001), using the
5 s long silence recorded at the end of each participant’s session
for the calibration. Regarding the telephone recordings, spectral
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FIGURE 1 | MFCC-GMM training phase: GMM training from MFCCs of each training group. The different colors of the GMM represent the different gaussian functions

that compose it. The final GMM (gray curve) models the MFCC distribution of one training group (either male PD, female PD, male control, or female control). VAD,

voice activity detection; CMS, cepstral mean subtraction; EM, expectation-maximization.

subtraction was not performed because acoustic environments of
PD subjects and HC were alike.

We then extracted the log-energy and 19 MFCCs, using
the Kaldi software (Povey et al., 2011), on 20 ms overlapping
windows, with a 10 ms step. For the high-quality recordings, the
23 Mel-spaced triangular filters covered a frequency range of 20–
7,000 Hz. As for the telephone recordings, the frequency range
of the filters was 300–3,700 Hz. More details about the MFCC
extraction methodology can be found in Jeancolas (2019). The
first derivatives (Deltas) and second derivatives (Delta-Deltas)
were then computed and added to the feature vectors, in order
to provide additional speech dynamic information.

Once the MFCCs and their deltas were extracted, we carried
out Vocal Activity Detection (VAD), based on the log-energy, in
order to remove silent frames.

Finally, to complete denoising, a cepstral mean subtraction
(Quatieri, 2001) was performed on 300 ms sliding windows,
reducing linear convolutional channel effects on both databases.

2.2.1.2. Distribution Modeling With Gaussian Mixture

Models
We split the databases into three groups per gender: one group
of PD subjects and one group of controls for training, and a
third group for testing, containing all the remaining PD and
control participants. In the laboratory setting database, we took
36 PD and 36 HC for the male training groups and 38 PD and
12 HC for the male test group. As for women, we considered
30 PD and 30 HC for training and 11 PD and 13 HC for
testing. For the telephone database, we selected 30 PD and
30 HC for the male training groups and 33 PD and 6 HC
for the male test group. For females we used 20 PD and 20
HC for training and 18 PD and 5 HC for the test. In order
to have accurate and generalizable classification performances,
the splits were repeated 40 times with the ensemble method
described below.

During the training phase, we built multidimensional GMMs,
with the Kadi software, to model the MFCC distributions of
each training group (see Figure 1). The means, SD, and weights
of the Gaussians (characterizing the GMMs) were estimated via
an Expectation-Maximization algorithm. The optimal number

of Gaussian functions depends on the quantity of speech data
used for training. We chose 20 Gaussian functions for the present
analyses on the high-quality microphone database and 50 for the
telephone database, as more sessions per subject were available.

2.2.1.3. Classification
For each test subject we calculated the log likelihood (LLH) of
their MFCCs compared to the two GMM models corresponding
to their gender. We first computed one log-likelihood per frame
(after silence removal) of the test subjects’ MFCCs against the two
models, then we took the average over all the frames. Thus, the
likelihood was guaranteed to be independent of the number of
frames. A sigmoid function was then applied to the difference of
these means (the log-likelihood ratio), so as to produce a score
ranging from 0 to 1 per test subject (see Figure 2). A score closer
to 1 indicated that the participants being tested could likely be
associated to the PD condition, and a score closer to 0 that they
could likely be associated to the HC condition.

2.2.1.4. Validation and Ensemble Method
Ensemble methods are techniques that create multiple models
(in our case 40 × 2 GMMs) and then combine them to improve
classifications or regressions. Ensemble methods usually produce
more accurate solutions than a single model would (in our case
one PD GMM and one HC GMM). That is why we chose to carry
the final classification with an ensemble method. More precisely,
we performed a repeated random subsampling aggregation
(Bühlmann and Yu, 2002; Maillard et al., 2017), which is a type
of bootstrap aggregation (Breiman, 1996) without replacement.
We ran 40 times the GMM modeling and classification phases,
each time with a different random split of participants between
the training and test groups. The numbers of subjects per group
were the ones previously stated. At the end of the 40 runs, all the
subjects were tested about ten times. For each subject, we finally
averaged the classification scores obtained during the runs when
they belonged to the test group (see Figure 3).

The choice of this ensemble method was based on
several elements:
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FIGURE 2 | MFCC-GMM test phase: the test subjects’ MFCCs are tested against a PD GMM model and a HC GMM model. The sigmoid of the log-likelihood ratio

provides the classification score. VAD, voice activity detection; CMS, cepstral mean subtraction; LLH, log-likelihood.

FIGURE 3 | Final classification using the repeated random subsampling

aggregation ensemble method. If the subject j belonged to the test group

during the run k, Sjk is his/her intermediate classification score for this run. The

final classification score 3j of the subject j is the average of his/her

intermediate scores Sjk over the runs when he/she belonged to the test group.

• First of all, regarding the sampling technique, we chose
repeated random subsampling rather than k-fold or
Leave-one-subject-out (which are more common) because it
allowed us to have the same number of PD andHC subjects for
training. This led to same training conditions for the PD and
HC GMMs, like same optimal number of Gaussians, therefore
fewer hyperparameters and a reduced risk of overfitting.

• We then chose to carry the final classificationwith an ensemble
method because they are known to decrease the prediction
variance, usually leading to a better classification performance
(Friedman et al., 2001).

• Regarding the type of aggregation, we chose to average the
scores rather than use a majority vote type because it is the
technique which is known to minimize the variance the most
(Friedman et al., 2001).

• The error calculated on the final scores (of out-of-bag type)
is known to be a good unbiased estimate of the real (or
generalized) error, namely the one we would have if we tested
an infinity of other new subjects on our aggregated model.

In section 3.7, we compared the classification performance of the
aggregated model with the performance of the single model. The
real (or generalized) performance of the single model (the one we
would have if we tested an infinity of other new subjects against
one PD GMM and one HC GMM trained with our current
database) was estimated by the performance of the repeated
random subsampling cross-validation (i.e., the average of the
classification performance of each run). In all other sections we
used the aggregated model for the classification.

2.2.2. X-Vector Methodology
In this section we present the x-vector system we adapted from
the latest speaker recognition method (Snyder et al., 2018b). X-
vectors are fixed-length representations of variable-length speech
segments. They are embeddings extracted from a DNN taking
MFCC vectors as input, and are known to capture well speaker
characteristics, even when the speakers have not been seen during
the DNN training. Once the x-vectors had been extracted, we
classified them according to the PD status of the related speaker,
with different classification methods (cosine similarity, LDA +
cosine similarity, and PLDA).

2.2.2.1. DNN Training
Since DNN training usually requires a lot of data, we used a DNN
trained on large speaker recognition databases and available
online (http://kaldi-asr.org/models.html).

For the analysis of our telephone recordings, we considered
the pretrained DNN SRE16 model, described in Snyder et al.
(2018b). This DNN was trained on 5,139 subjects from the
Linguistic Data Consortium catalog databases, including the
Switchboard (Phase1,2,3 and Cellular 1,2), Mixer 6 andNIST SRE
corpora. These databases contain telephone conversations and
data recorded with a microphone, with English as the dominant
language. Some data were directly sampled at 8 kHz, and the 16
kHz sampled recordings were then downsampled to 8 kHz.

For the analysis of our high-quality microphone recordings,
we used the voxceleb model, trained on the voxceleb database
(Nagrani et al., 2017). Data came from video interviews of 7330
celebrities posted on Youtube. Audio data was sampled at 16 kHz.

Finally, data augmentation, as described in section 2.2.2.3, was
applied to all these DNN training datasets.

These DNNs were trained in the context of speaker
identification (see Figure 4), meaning the weights corresponding
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FIGURE 4 | DNN diagram: training phase. The DNN was trained in the context of speaker identification. The goal was to identify speakers among the N training

subjects (5,139 subjects for SRE16 and 7,330 for voxceleb) using their MFCCs extracted from 25 ms frames of a [2–4 s] audio segment (containing T frames). The

statistics pooling layer aggregates the output of the TDNN network across the audio segment. The outputs of the last layer (softmax layer) are the probabilities that the

audio segment belonged to each training speaker. X-vectors are the embeddings extracted from the first segment-level layer of the DNN. They are a representation of

the audio segment and are a representation of a speaker when they are averaged over different audio segments of the same speaker.

to the DNN different neurons were estimated so as to
discriminate and identify the speakers among the training
subjects (5,139 subjects for SRE16 and 7,330 for voxceleb) from
their audio inputs. Inputs were the log energy and MFCCs
extracted every 10 ms, from 25 ms windows of 2–4 s audio
segments. For the SRE16 model, 23 MFCCs were extracted with
a Mel filterbank range of 20–3,700 Hz. For the voxceleb model,
30 MFCCs were extracted with a filterbank range of 20–7,600 Hz.
As for the MFCC-GMM analysis, a voice activity detection and
cepstral mean subtraction were performed. This time, Deltas and
Delta-Deltas were not computed because the temporal context
was already taken into account in the temporal delay part of
the DNN.

The architecture of the DNN is detailed in Table 4. The neural
networks were composed of three parts:

– A set of frame-level layers taking MFCCs as inputs. These
layers composed a Time Delay Neural Network (TDNN)
taking into account a time context coming from neighboring
frames.

– A statistics pooling layer aggregating the outputs (taking
the mean and SD) of the TDNN network across the audio
segment. The output of this step was a large-scale (3,000
dimensions) representation of the segment.

TABLE 4 | DNN architecture.

Layer Frames Input dim Output dim

Frame-level 1 5 5×K 512

Frame-level 2 9 1,536 512

Frame-level 3 15 1,536 512

Frame-level 4 15 512 512

Frame-level 5 15 512 1,500

Pooling T 1,500×T 3,000

Segment-level 6 T 3,000 512

Segment-level 7 T 512 512

softmax T 512 N

X-vectors are extracted at layer segment-level 6 before the Rectified Linear Unit (ReLU)

activation function. T is the number of frames composing the input segment. K

corresponds to the number of input features for one frame, K = 24 for the telephone

recordings (23 MFCCs + log energy) and K = 31 for the high-quality recordings (30

MFCCs + log energy). N is the number of speakers used for training, N = 5,139 for

the SRE16 DNN and N = 7,330 for the voxceleb DNN.

– The last part was a simple feed forward network composed
of two segment-level layers taking as input the result of the
pooling layer, reducing its dimensionality to 512 (providing
the so-called x-vectors), and ending with a softmax layer. The
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FIGURE 5 | Reference x-vectors: x-vectors are computed for all the training subjects using their MFCCs, then averaged within the training groups (male PD, female

PD, male control, and female control) in order to have one average x-vector per group. VAD, voice activity detection; CMS, cepstral mean subtraction; DNN, deep

neural network.

softmax layer yielded the probability of the input segment
coming from each speaker in the training database.

Language mismatch between DNN training and x-vector
extraction is not an issue: x-vectors have been reported to
be robust to this domain mismatch in speaker recognition
(Snyder et al., 2017).

For the results presented in section 3.6, we trained a DNN
with our own data (telephone recordings). The only difference in
the DNN architecture was the size of the softmax layer output,
which was two. Indeed, here the DNN was trained directly
to discriminate PD subjects from HC (two classes) instead of
discriminating between speakers (N classes).

2.2.2.2. X-Vector Extraction
In order to extract the x-vectors for each subject of our databases
we had to extract the MFCCs in the same way as it was done
for the pretrained DNN. We extracted the log energy and 23
MFCCs every 10 ms for our telephone recordings (like the
SRE16 model) and 30 MFCCs with log energy for our high-
quality recordings (like the voxceleb model). For the high-quality
microphone recordings, we first had to downsample them to 16
kHz (from 96 kHz), in order to match the sampling frequency
used for the DNN training. Moreover, for this database as for
the MFCC-GMM analysis, we carried out spectral subtraction
to compensate for mismatched background noises. Voice activity
detection and cepstral mean subtraction were also performed on
both databases, as done for the SRE16 and voxceleb models and
for our MFCC-GMM analysis.

X-vectors were then extracted for each subject. They were
defined as the 512-dimensional vector extracted after the first
segment-level layer of the DNN, just before the Rectified Linear
Unit (ReLU) activation function.

Even if the audio segment tested did not belong to any
speaker used to train the DNN, the x-vectors extracted could be
considered as a representation of this segment and captured the
speaker characteristics (Snyder et al., 2018a). Back-end analyses
could then be carried out to classify the x-vectors corresponding
to our participants, according to their PD status.

The audio segments used for the DNN training had a
duration of 2–4 s (after silence removal). The DNN could be
used to extract x-vectors from new unseen audio segments
with durations comprised between 25ms and 100 s. The audio
segments of our database shorter than 25 ms were removed and
the one longer than 100 s were divided into fragments smaller

than 100 s. X-vectors corresponding to these fragments were
then averaged.

We assessed the impact of matched segment durations
between training and test in section 3.1. For all the other
experiments we chose to divide our audio files into 1–
5 s segments.

2.2.2.3. Data Augmentation
In recent studies, speaker recognition using i-vectors and x-
vectors has been enhanced by augmenting the data (Snyder et al.,
2018b) for the DNN and PLDA trainings. Data augmentation
consisted in duplicating the data, superposing an additive noise
and reverberation effects on data copies. This led to increased
quantity and diversity of samples available for the training.
In our analyses, data augmentation was performed during the
DNN training and we assessed its effect on the LDA and PLDA
trainings. We used four different types of data augmentation:

– Reverberation: a reverberation was simulated by taking the
convolution of our data with a Room Impulse Response (RIR)
of different shapes and sizes, available online (http://www.
openslr.org/28).

– Additive noise: different types of noise, extracted from the
MUSAN database (http://www.openslr.org/17), were added
every one second.

– Additive music: musical extracts (from the MUSAN database)
were added as background noise.

– Babble: three to seven speakers (from the MUSAN database)
were randomly selected, summed together, then added to our
data.

The MUSAN and RIR NOISES databases were sampled at 16
kHz, so we downsampled them to 8 kHz for the telephone
recordings analysis.

At the end, two out of the four augmented copies were
randomly picked and added to our training database, multiplying
by three its size.

2.2.2.4. Back-End Analyses
Once the x-vectors were extracted for each subject, the x-vectors
of the PD training group and the x-vectors of the HC training
group were averaged in order to have one average x-vector
representing each class, for each gender (see Figure 5).

Classification of test subjects was done by comparing their
x-vectors to the average x-vectorPD and x-vectorHD, using a
similarity measure. The difference between these two similarity
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FIGURE 6 | x-vector test phase: x-vectors are computed for each test subject from their MFCCs, then compared to the average x-vectorPD and x-vectorHC. For the

comparison we used cosine similarity (alone or after LDA projection) and PLDA. The sigmoid of the difference between similarity scores provides the classification

score. VAD, voice activity detection; CMS, cepstral mean subtraction; DNN, deep neural network.

measures was then calculated and normalized with a sigmoid
function, providing a classification score between 0 and 1 per x-
vector (see Figure 6). When there were several audio segments
for a test subject, i.e., several x-vectors, the average of the
classification scores of all the x-vectors was calculated. All the
participants were split into training and test groups the same way
as for the MFCC-GMM analysis.

Several methods exist to measure similarity between vectors.
We compared three methods often used with i-vectors and x-
vectors: cosine similarity, cosine similarity preceded by LDA,
and PLDA.

2.2.2.4.1. Cosine Similarity and Linear Discriminant Analysis
Cosine similarity is a simple measure of similarity between two
vectors which consists in calculating the cosine of the angle
between the two vectors.

In order to reduce intra-class variability and raise inter-class
variability, discriminant analyses can be added to the back-end
process. We supplemented the previous cosine similarity with
a two-dimensional LDA, consisting in finding the orthogonal
basis onto which the projection of x-vectors (extracted from
our training groups) minimized intra-class variability while
maximizing inter-class variability. The cosine similarity was then
computed within this subspace.

2.2.2.4.2. Probabilistic Linear Discriminant Analysis
Discriminant analysis can also be performed in a probabilistic
way. PLDA was introduced in 2007 for face recognition (Prince,
2007) with i-vectors. We adapted it to PD detection, with
x-vectors instead of i-vectors, and classes defined by the PD
status of the participants (presence or absence of PD) instead of
the speaker identity. We decomposed each x-vector x into: (i)
an average component µ, computed on all the training subjects;
(ii) a class-specific part F.h, which describes the inter-class
variability; (iii) a speaker and session related part G.w, which
describes the intra-class variability; (iv) and a residual term ǫ,
assumed to be Gaussian with zero mean and diagonal covariance
6 (see Equations 1, 2).

x = µ + F.h+ G.w+ ǫ (1)

with ǫ = N (0,6) (2)

The columns of matrix F provide a basis for the class-specific
characteristics, with vector h the position of the subject in this

TABLE 5 | PD vs. HC classification EER (in %) obtained with different segment

lengths for the x-vectors extraction.

Classifier Mismatched Matched

x-vec + cos 41 39

x-vec + LDA + cos 36 32

x-vec + PLDA 36 33

The classification was performed using the sentence repetition tasks of the male

telephone recordings. [1–5 s] segments were used for training and either [25 ms–100 s]

(mismatched) or [1–5 s] (matched) segments for test. X-vectors were classified in various

ways: with cosine similarity (alone and with LDA) and with PLDA. Bold numbers indicate

the best EER for each classifier.

subspace. The columns of matrix G provide a basis for the intra-
class characteristics, with vector w the position of the speaker
in this subspace. During the training phase, µ, F, G, and 6

are estimated. During the test phase, x-vectors of test subjects
are compared to x-vectorPD and x-vectorHC by assessing the
probability that they share the same class identity variable h

(see Garcia-Romero and Espy-Wilson, 2011 for the details of the
calculation method).

PLDA was preceded by an LDA in order to reduce the x-
vector dimension.

2.2.2.5. Validation and Ensemble Method
For the final classification and the validation we kept the
ensemble method used for the MFCC-GMM analysis and
described in section 2.2.1.4.

3. RESULTS

In the following section we present the results of the x-vector
analysis compared to the MFCC-GMM one for both genders
and for both recording types (high-quality and telephone).
We analyzed the effect of the audio segment durations, data
augmentation, gender, type of classifier (for each speech task),
dataset used for DNN training, and the choice of an ensemble
method. More details about the MFCC-GMM analysis (men
only) can be found in Jeancolas et al. (2019), in particular
regarding the comparison of high-quality microphone vs.
telephone recordings, as well as speech task effects. Performances
were measured with the Equal Error Rate (EER), i.e., the error
rate corresponding to the threshold for which false positive ratio
is equal to false negative ratio (i.e., sensitivity equal to specificity),
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TABLE 6 | PD vs. HC classification EER (in %) obtained with different classifiers: MFCC-GMM baseline, and x-vectors combined either with cosine similarity (alone and

with LDA) or with PLDA, with and without data augmentation.

High-quality microphone Telephone

Males Females Males Females

Repet Monol Repet Monol Repet Monol Repet Monol

MFCC-GMM 22 26 42 45 35 36 42 40

x-vec + cos 32 35 51 41 39 33 49 43

x-vec + LDA + cos 22 27 39 32 32 35 34 34

x-vec + augLDA + cos 24 25 34 30 33 33 39 33

x-vec + PLDA 24 28 39 35 33 36 34 36

x-vec + augPLDA 25 25 33 30 31 33 37 33

The datasets used are male and female high-quality microphone and telephone recordings. Analyzed tasks are free speech (monolog) and sentence repetitions (combined with readings

for high-quality microphone recordings). Bold numbers indicate the best EERs for each dataset.

and Detection Error Tradeoff (DET) curves, using the Matlab
software. The comparison between performances was expressed
in percentage points (absolute difference).

3.1. Impact of Segment Duration
In order to have enough x-vectors for the LDA and PLDA
training, we segmented our training audio files into 1–5 s
segments. For the test phase, we compared two conditions. In
the first condition, we considered a large variety of segment
durations, from 25 ms to 100 s (in order to stay in the DNN
compatible limits as explained in section 2.2.2.2). The durations
of these test segments were not matched with the ones used for
the DNN training (segment durations comprised between 2 and
4 s) nor with the ones used during our classifier training phase
(durations from 1 to 5 s). In the second condition, we divided
all our audio files into 1–5 s segments. Test segment durations
were then matched with training segment durations. Results for
both duration conditions, obtained from the sentence repetition
tasks of male telephone recordings, are presented in Table 5 for
the three classification methods (cosine similarity alone, with
LDA, and PLDA). EER ranged from 36 to 41% for the condition
with mismatched segments, and were improved by around 3%
points for the condition with 1–5 s matched test segments (EER
ranging from 32 to 39%), for the three classifiers. For the next
experiments, we kept matched segment durations.

3.2. Comparison of Back-End Analyses
Classification of x-vectors with cosine similarity combined with
LDA performed as well as PLDA, and were globally better
than cosine similarity alone, whatever the recording condition
(telephone or high-quality microphone) or speech task (see
Tables 6, 7). These discriminant analyses led to a classification
EER of up to 22% in males and 32% in females, with
improvements of up to 15% in females, compared to cosine
similarity alone. This improvement due to the discriminant
analysis was observed in both genders but was predominantly
sharper in women.

3.3. Impact of Data Augmentation
In this section we assessed the impact of augmenting the LDA
and PLDA training data. Results obtained with and without data

TABLE 7 | PD vs. HC classification EER (in %) obtained with different databases

for the DNN training: the SRE16 database and our male telephone database (DDK

tasks).

Classifier SRE16 DNN Our DNN

MFCC-GMM 25 25

x-vec + cos 35 47

x-vec + LDA + cos 29 29

x-vec + augLDA + cos 30 39

x-vec + PLDA 30 30

x-vec + augPLDA 30 38

Bold numbers indicate the best EER for each classifier.

augmentation for the LDA and PLDA training are detailed in
Table 6 for the free speech and sentence repetition tasks and in
Table 7 for the DDK task. We observed an improvement when
using data augmentation for the free speech task for both genders,
both types of microphone and both LDA and PLDA. In men,
we obtained a 2–3% improvement with data augmentation for
the free speech, compared to without data augmentation, leading
to a respective EER of 25% with the high-quality microphone
and 33% with the telephone. In women, the improvement
ranged from 1% (with LDA from telephone recordings) to 5%
(with PLDA from high-quality recordings) leading to respective
EER of 33 and 30%. No consistent improvement due to
data augmentation was found for sentence repetition tasks or
DDK tasks.

3.4. X-Vectors vs. MFCC-GMM
Comparison and Speech Task Influence
In this section we compared the classification methodologies
using x-vectors with the more classic MFCC-GMM classification.

We already showed that data augmentation for the LDA
and PLDA training improved classification for the free speech
task but not for the text-dependent tasks. Therefore, for the
comparison between MFCC-GMM and x-vectors, we used for
the latter, cosine similarity combined with augmented LDA for
the free speech task, and not augmented LDA for the sentence
repetition and DDK tasks.
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FIGURE 7 | DET curves of female classification PD vs. HC, using the free speech task, recorded with the high-quality microphone (A) and with their telephone (B).

Comparison of classifiers performances: MFCC-GMM (baseline) and x-vectors combined either with cosine similarity (alone and with LDA) or with PLDA. LDA and

PLDA are performed with data augmentation.

For both recording conditions and both genders, we observed
improved classification performances with x-vectors, compared
to MFCC-GMM, for the free speech task (see Table 6).

This improvement with x-vectors (compared to MFCC-
GMM) was more pronounced in women (7% increase with
telephone and 15% with high-quality microphone, compared
to 1–3% in men). Detection Error Tradeoff (DET) curves in
Figure 7 illustrate this classifier comparison in women.

Table 6 also shows an overall improvement with x-vectors
for the sentence repetition and reading tasks but in a less
consistent way.

Finally, results from the very specific DDK task (tested with
male telephone recordings) are presented in Table 7. With this
task, PD detection reached better performances using MFCC-
GMM (EER = 25%) than with x-vectors (EER= 29–30%).

3.5. Gender Differences
MFCC-GMM and x-vector classifiers were trained separately for
each gender, in order to study gender effect on early PD detection.

With the MFCC-GMM classification method, the female
group showed poor PD detection performances: EER ranged
from 40 to 45%, compared with 22–36% for men (see Table 6).

Interestingly, x-vectors when combined with a discriminant
analysis (LDA or PLDA) clearly improved female classification
performances, with an EER comprised between 30 and 39%.
Nevertheless the female performances did not reach PD detection
performances in males, whether obtained with the MFCC-GMM
technique or with x-vectors (the best EER reached 22% with both
methods in males).

3.6. Comparison With DNN Trained With
Our Database
In order to make the DNN more suitable for the particular
type of DDK tasks, we carried out an additional experiment,
training this time the DNN with DDK tasks from our own
database. The subjects used for the DNN training were the same

TABLE 8 | PD vs. HC classification EER (in %) obtained with the aggregated

model compared to the single model.

Classifier Task Aggregated Single

MFCC-GMM DDK 25 28

x-vec + LDA + cos Repet 32 35

x-vec + augLDA + cos Monol 33 35

x-vec + PLDA Repet 33 35

x-vec + augPLDA Monol 33 35

Bold numbers indicate the best EER for each classifier.

as those used for the constitution of the average x-vectorPD and
x-vectorHC and the LDA and PLDA training. The remaining
subjects were used for the test. The results obtained are presented
in Table 7. We noticed an 8–10% performance degradation when
data augmentation was applied on the LDA and PLDA training.
As for the results obtained with cosine similarity & LDA and with
PLDA, without data augmentation, they were similar to those
obtained with the previous pretrained DNN (EER ranging from
29 to 30%).

3.7. Aggregated Model vs. Single Model
In order to test the advantage of the ensemble method we used,
we compared its performances with the results obtained with
the corresponding single model. To estimate the performance
of the single model, we fulfilled a classic random subsampling
cross-validation. We averaged the DET curves from each run
and calculated the EER corresponding to the average DET curve.
We used male telephone recordings and considered the most
appropriate tasks for each classifier. The performances obtained
are detailed in Table 8 and compared to an excerpt from Table 6.
With both MFCC-GMM and x-vector classifiers we observed a
2–3% improvement for the aggregated model, compared to the
single model (EER = 32–33% for the aggregated model and 35%
for the single model).
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4. DISCUSSION

According to the literature, the latest speaker recognition system,
called x-vectors, provides more robust speaker representations
and better recognition, when a large amount of training data
is used. Our goal was to assess if this technique could be
adapted to early PD detection (from recordings done with a high-
quality microphone and via telephone network) and improve the
detection performances. We compared a x-vector classification
method to a more classic system based on MFCCs and GMMs.

We recorded 221 French speakers (PD subjects recently
diagnosed and healthy controls) with a high-quality microphone
and with their telephone. Our voice analyses were based on
MFCC features. The baseline consisted in modeling the PD and
HC distributions with two GMMs. For the x-vector technique,
MFCCs were used as inputs of a feed-forward DNN from which
embeddings (called x-vectors) were extracted then classified.
Since DNN training usually requires a lot of data, we used a
DNN trained on large speaker recognition databases. All the
analyses were done separately for men and for women, in order
to avoid additional variability due to gender, as well as to study a
possible gender effect on early PD detection. We varied several
experimental and methodological aspects in order to analyze
their effect on the classification performances.

4.1. Influence of Segment Duration
We observed that using short audio segments that were
matched between training and test provided better results (3%
improvement). The improvement may be due to the matching
durations between training segments and test segments, or to the
fact that the classification was performed on more test segments
(because they were shorter on average). This would compensate
for the fact that taken separately, long segments have been
shown to be better classified than short segments in speaker and
language recognition (Snyder et al., 2017, 2018a).

4.2. Comparison of Back-End Analyses
We compared different back-end analyses used with x-vectors.
We noticed that the addition of LDA clearly improved the
cosine similarity classification and performed as well as a PLDA
classifier. This can be explained by the fact that discriminant
analyses reduce intra-class variance and increase inter-class
variance, highlighting differences due to PD. This improvement
due to the addition of discriminant analyses was even more
pronounced in women (up to 15% improvement), whose
voices are known to contain more variability (i.e., higher
intra-class variance).

4.3. Influence of Data Augmentation
We found that augmenting data for the training of LDA and
PLDA led to an improved classification for the free speech
task (2–3% improvement) but not for text-dependent tasks (like
sentence repetition and DDK). This can be explained by the
fact that data augmentation, while increasing the training audio
quantity, added phonetic variability which may have damaged
the specificity of the phonetic content of the text-dependent
tasks (like sentence repetitions, reading or DDK tasks). Data

augmentation seems to bemore suited for text-independent tasks
(like free speech).

4.4. X-Vectors vs. MFCC-GMM
Comparison and Speech Task Influence
The comparison with the MFCC-GMM classification showed
that x-vectors performed better for the free-speech task, which
is consistent with the fact that x-vectors were originally
developed for text-independent speaker recognition. An overall
improvement with x-vectors also appeared for the sentence
repetition and reading tasks but in a less consistent way.
This may be explained by the fact that GMMs captured well
the specificity of text-dependent phonetic content. Indeed the
reduction of phonetic content inter-subject variability made
easier the isolation of the variability due to the disease, at
least for the high-quality recordings. For telephone recordings
there were no reading task, and the free speech task lasted
much longer than sentence repetitions. This may compensate
the expected improvement due to the constant phonetic content.
Moreover, the participants carried out the telephone recordings
by themselves without any experimenter to make them do the
task again when not well executed. So mistakes or comments
occurred during the telephone sentence repetitions, increasing
a bit the variability of their phonetic content. As for x-vector
classification, another aspect has to be taken into account.
DNNs were trained with public databases with a very wide
variability in the phonetic content, making the x-vector extractor
not particularly suited to tasks with fixed phonetic content.
Very specific tasks, like DDK, resulted in better performances
with GMMs. Lower results with x-vectors for this task may
be due to the DNN training, which was from recordings of
conversations, containing wider variety of phonemes than DDK
tasks (composed of vowels and stop consonants only). Thus,
DDK specificity was not exploited by the DNN, resulting in a loss
of discriminating power when using x-vectors.

4.5. Gender Effect
For all classifiers we noticed an important gender effect, with
better performances for male PD detection. Several reasons may
explain these gender differences. First of all, previous studies
have reported wider female MFCC distributions, with more
variability, making MFCC based classifications more difficult in
women (Fraile et al., 2009). Tsanas et al. also noticed that MFCC
features were more suited to monitor PD evolution in men
than women (Tsanas et al., 2011). This may explain the worse
classification performances with the MFCC-GMM classifier in
women. X-vectors, combined with LDA or PLDA, handled the
MFCC variability and led to a 7–15% improvement (compared
to MFCC-GMM) for the classification in women. This was
probably due to the fact that these discriminant analyses reduced
intra-class variance, and thus tackled the MFCC variability
issue in women. Nevertheless, even though LDA and PLDA
reduced the classification performance gap between genders,
it did not suppress it entirely. The remaining differences may
be explained by other factors. First, a less pronounced brain
atrophy (Tremblay et al., 2020) and less network disruptions
(Haaxma et al., 2007) have been observed in the first stages of
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PD in women. In addition, the onset of symptoms is delayed
on average by 2 years in women compared to men (Haaxma
et al., 2007). A possible protective role of estrogen on PD
has often been suggested to explain gender differences in early
PD manifestations. Besides we can notice in our age-matched
database a lower UPDRS III motor score in PD women as
compared to PD men (see Tables 2, 3). A second factor possibly
leading to gender differences in PD detection through voice, is
that speech neural circuits have been reported to be different
in men and women (Shaywitz et al., 1995; Dorion et al., 2000;
Clements et al., 2006; de Lima Xavier et al., 2019; Jung et al.,
2019). These circuits may therefore be differently affected in PD,
leading to different types or degrees of vocal impairments.

4.6. Influence of the Dataset Used for the
DNN Training
In order to make the DNN more specific to DDK tasks, we
carried out an additional analysis by training it this time with
our database (from DDK tasks). We noticed a clear performance
degradation when data augmentation was applied on the LDA
and PLDA trainings. This is consistent with the fact that data
augmentation, while adding noise, impairs the specificity of the
DDK phonetic content. Results obtained with cosine similarity
+ LDA and PLDA, without data augmentation, were similar to
those obtained with the previous pretrained DNN. Our DNN
training was certainly more specific but perhaps suffered from
insufficient data quantity, which could explain why it did not
outperform the pretrained DNN, confirming the importance of
including a large quantity of data for the DNN training.

4.7. Influence of Ensemble Method
Finally, we observed a 2–3% improvement in the classification,
when the ensemble method was used, for both MFCC-GMM
and x-vectors classifiers. This demonstrates the interest of using
ensemble methods for PD detection using voice.

4.8. Limitations
One of the limitations of this study is that our classifications
were based only on cepstral features, which cannot capture all
voice impairments due to PD. Indeed, articulatory impairments
due to PD, like vowel dedifferentiation (due to an amplitude
reduction of tongue and lips movements) and imprecise
consonant articulation (e.g., vocal tract not completely closed
during stop consonant pronunciations and bad coordination
between laryngeal and supralaryngeal muscles) have an impact
on the different spectral envelopes over time, so they are well
captured by the different MFCC vectors. Nevertheless, MFCCs
do not describe well several phonatory disruptions due to PD
(such as pitch and intensity instability and voice hoarseness),
nor abnormal pauses, or prosodic and rhythmic disruptions
encountered in PD. For that, one should prefer global features to
quantify them, as the ones stated in the introduction. A fusion
of a classification based on these features, with the x-vector
approach we presented in this paper, should improve the PD
detection performances.

It is also worth highlighting that a comparison of our classifier
performances with the literature remains difficult. Indeed, as
far as we know, our results were the first obtained in early

PD detection: (i) in women based only on voice; (ii) using
recordings from the telephone channel (if we do not count our
last conference paper on MFCC-GMM classification; Jeancolas
et al., 2019); (iii) in French (if we still do not count; Jeancolas
et al., 2019) and language has an impact on PD detection. A
reliable comparisonwould require working on the same database,
or at least with approximately the same number of subjects (with
same gender), the same recording protocol, the same disease
stage and the same language. Another aspect to take into account
is the participant selection, and exclusion criteria. In our case,
PD patients and controls were examined and selected by a
neurologist, with definite inclusion and exclusion criteria, but
in some studies they were self-selected without any checking
of their medical condition (Arora et al., 2019). This has the
advantage of facilitating the collection of big databases but has
the inconvenient of less accurate labeling. Finally, our PD patients
were recorded while they were on medication (ON-state), which
reduced some speech impairments, making the classification
more difficult than if they were on OFF-state.

An additional limitation of our work is that x-vectors were
conceived for text-independent speaker recognition, whereas
some of our tasks are text-dependent. Moreover, the use of
complex artificial neural networks in the feature extraction
process makes the reasons for score improvements difficult
to understand and the physiopathology underlying PD speech
impairments difficult to interpret. This fact affects the production
and testing of new hypotheses.

Finally it would also be interesting to test other distance
measures (such as the Euclidean or Mahalanobis distance or the
Jensen-shannon divergence) to compare the x-vectors of the test
subjects with the average x-vectorPD and x-vectorHD. Indeed the
cosine similarity we used is a very common metrics in speaker
recognition, to compare x-vectors between themselves or even
i-vectors, but might not be the most accurate metric in this case.

5. CONCLUSION AND FUTURE WORKS

The aim of the study was the discrimination between subjects
with early stage Parkinson and healthy controls, thanks to a
new speech analysis technique, adapted from recent findings
in speaker recognition. We compared the efficacy of this
method (called x-vectors) with the more classical MFCC-GMM
technique, and varied several experimental and methodological
aspects to determine the optimal approach.

We found that the x-vectors optimal methodological
procedure for early PD detection consisted in using short and
matched audio segments, adding discriminant analysis (LDA or
PLDA) to the back-end process, augmenting the training data for
the text-independent tasks, and using an ensemble method for
the final classification. This resulted in better performances for
early PD detection with x-vectors, compared with the MFCC-
GMM technique, for the text-independent speech tasks. This
improvement was observed for both genders, but this x-vector
technique seems to be particularly suited to early PD detection
in women, with 7–15% point improvement. The improved
classification results with x-vectors, from text-independent tasks,
were obtained with both professional microphone recordings
and telephone recordings. This validated the x-vector approach
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for PD detection, using both high-quality recordings performed
in a laboratory setting and low-quality recordings performed at
home and transmitted through the telephone network.

In future work we will focus on other embeddings (e.g., d-
vectors; Variani et al., 2014), which are also extracted using
DNN trained with cepstral coefficients, but more suited to text-
dependent tasks. We will also study high-level features related to
other PD vocal disruptions, such as phonation, prosody, pause
duration and rhythmic abilities, and combine them with this
analysis (more related to articulation disorder), in order to gather
all the information we can on early PD voice and improve
the detection.
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Acoustic assessment of voice and speech disorders in Parkinson’s disease
through quick vocal test. Mov. Disord. 26, 1951–1952. doi: 10.1002/mds.
23680

Rusz, J., Cmejla, R., Tykalova, T., Ruzickova, H., Klempir, J., Majerova, V.,
et al. (2013). Imprecise vowel articulation as a potential early marker of
Parkinson’s disease: effect of speaking task. J. Acoust. Soc. Am. 134, 2171–2181.
doi: 10.1121/1.4816541
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ANNEX

Annex 1 : Vocal Task Content
High-Quality Recordings
Vocal tasks performed during the laboratory setting recordings
and analyzed in the present study were: readings, sentence
repetitions, a free speech and fast syllable repetitions. They were
presented in a random order to the participants via a graphical
user interface.

• Reading: a short text, a dialogue and 2 short sentences (1
question and 1 exclamatory sentence). The text contains all the
phonemes of the French language. the dialogue and sentences
were written in a common language level (with no subject-verb
reversal) in order to emphasize prosody (which is impaired
in PD).

– Text:
“Au loin un gosse trouve, dans la belle nuit complice, une
merveilleuse et fraîche jeune campagne. Il n’a pas plus de
dix ans et semble venir de trés loin. Comment il en est arrivé
là, ça l’histoire ne le dit pas.”

– Dialogue:

— Tu as eu des nouvelles de Ludivine récemment? Elle ne
répond plus à mes messages depuis quelques temps.

— Je l’ai aperçue par hasard au parc hier. Tu ne devineras
JAMAIS ce qu’elle faisait!

— Vas-y raconte!
— Elle courait autour du stade à CLOCHE-PIED et avec

un BANDEAU sur les yeux!
— Ha la la! Comment c’est possible de ne pas avoir peur du

ridicule à ce point?
— À mon avis elle aime juste bien se faire remarquer.

– Short sentences:
– Tu as appris la nouvelle?
– C’est pas possible!

• Sentence repetitions: 2 questions and 2 exclamatory sentences
given in an audio example. One of the two questions and one
of the two exclamatory sentences were the same as for the
reading (to allow for an exact comparison between reading
and repetition).

– “Tu as appris la nouvelle?”
– “C’est pas possible!”
– “Tu sais ce qu’il est devenu?”
– “Il n’aurait jamais dû faire ça!”

• Free speech: participants were asked to talk about
their day during one minute. This task provided a
text-independent dataset.

• Diadochokinesia (DDK): fast syllable repetitions without
breathing (/pa/, /pu/, /ku/, /pupa/, /paku/, /pataka/, /badaga/,
/patiku/, /pabiku/, /padiku/). All DDK tasks were performed
once, except for /pataka/ which was performed twice.
The consonants were stop consonants, because they are
particularly impaired in PD. The vowels were those which
form the vocalic triangle.

Telephone Recordings
Vocal tasks performed during the phone calls and analyzed in the
present study were: sentence repetitions, a free speech and fast
syllable repetitions. All the instructions were audio and given by
the interactive voice server.

• Sentence repetitions: 3 questions and 3 exclamatory sentences
with a common language level (with no subject-verb reversal)
in order to emphasize the prosody (impaired in PD), as well
as 2 declarative sentences for the comparison. Some sentences
were the same as for the high-quality recordings.

– “Tu as appris la nouvelle?”
– “C’est pas possible!”
– “Tu sais ce qu’il est devenu?”
– “Il n’aurait jamais dû faire ça!”
– “Tu as bien raison!”
– “Comment il s’appelle déjà?”
– “Les chiens aiment courir après les ballons.”
– “Un carré est un rectangle particulier.”

• Free speech: participants were asked to talk about
their day during one minute. This task provided a
text-independent dataset.

• Diadochokinesia (DDK): fast syllable repetitions without
breathing (/pa/, /pu/, /ku/, /pupa/, /paku/, /pataka/). All
DDK tasks were performed once. The consonants were stop
consonants, because they are particularly impaired in PD.
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Annex 2 : Transmission Chain of the
Telephone Recordings

FIGURE A1 | Transmission chain of the telephone recordings. GSM, Global System for Mobile Communications; AMR, Adaptive Multi-Rate; PSTN, Public switched

telephone network; PCM, Pulse-code modulation; IP, Internet Protocol; IVM, interactive voicemail from NCH company.
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