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Pyramidal neurons are the most common neurons in the cerebral cortex. Understanding

how they differ between species is a key challenge in neuroscience. We compared

human temporal cortex and mouse visual cortex pyramidal neurons from the Allen

Cell Types Database in terms of their electrophysiology and dendritic morphology. We

found that, among other differences, human pyramidal neurons had a higher action

potential threshold voltage, a lower input resistance, and larger dendritic arbors. We

learned Gaussian Bayesian networks from the data in order to identify correlations

and conditional independencies between the variables and compare them between the

species. We found strong correlations between electrophysiological and morphological

variables in both species. In human cells, electrophysiological variables were correlated

even with morphological variables that are not directly related to dendritic arbor size or

diameter, such as mean bifurcation angle andmean branch tortuosity. Cortical depth was

correlated with both electrophysiological and morphological variables in both species,

and its effect on electrophysiology could not be explained in terms of the morphological

variables. For some variables, the effect of cortical depth was opposite in the two

species. Overall, the correlations among the variables differed strikingly between human

and mouse neurons. Besides identifying correlations and conditional independencies,

the learned Bayesian networks might be useful for probabilistic reasoning regarding the

morphology and electrophysiology of pyramidal neurons.

Keywords: partial correlation, inter-species, multivariate, basal, dendrites, allen cell types

1. INTRODUCTION

A key challenge in neuroscience is to understand how pyramidal neurons differ across species
and cortical regions (Elston et al., 2001; Jacobs and Scheibel, 2002; Benavides-Piccione et al., 2006;
Bianchi et al., 2013; Mohan et al., 2015; Gilman et al., 2017; Luebke, 2017). They are often compared
in terms of their dendritic morphology, since it directly influences neuronal computation (Häusser
et al., 2000; Segev and London, 2000; Spruston, 2008). Compared to rodents, human pyramidal
neurons’ dendrites are larger (Mohan et al., 2015; Benavides-Piccione et al., 2020; Mihaljević et al.,
2020a) and have more synaptic connections per cell (DeFelipe et al., 2002; DeFelipe, 2011), while
layers 2 and 3 are easily distinguished in the human and, combined, are thicker than the mouse
layer 2/3 (Elston et al., 2001; DeFelipe et al., 2002). Dendritic morphology also varies across cortical

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.580873
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.580873&domain=pdf&date_stamp=2021-02-18
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bmihaljevic@fi.upm.es
https://doi.org/10.3389/fninf.2021.580873
https://www.frontiersin.org/articles/10.3389/fninf.2021.580873/full


Mihaljević et al. Comparing Neurons With Bayesian Networks

regions within a single species (Benavides-Piccione et al., 2002,
2006; Ballesteros-Yáñez et al., 2010; Amatrudo et al., 2012;Mohan
et al., 2015; Rojo et al., 2016; Deitcher et al., 2017), although
more so in primates than in rodents (Elston, 2003; Gilman et al.,
2017; Luebke, 2017). For example, the pyramidal neurons of the
monkey visual cortex have smaller basal dendrites than those of
its prefrontal cortex, while there is no significant difference in the
mouse (Gilman et al., 2017). Deitcher et al. (2017) found that
the morphology of human pyramidal neurons also varies with
the somatic distance from the pia while that of mouse neurons
does not.

In terms of electrophysiology, Gilman et al. (2017) found
that mouse visual cortex pyramidal neurons have a lower action
potential threshold voltage, shorter action potential rise time,
and longer fall time than those of the rhesus monkey, yet
found no significant difference in subthreshold features such
as time constant and input resistance. Kalmbach et al. (2018),
on the other hand, found differences in input resistance and
membrane resting potential between human and mouse L2/3
pyramidal neurons, with the degree of difference varying with
the somatic distance from the pia. Human cortical neurons
have lower membrane capacitance (Eyal et al., 2016) and higher
onset rapidity of action potentials than those of adult mouse
pyramidal neurons (Testa-Silva et al., 2014). Like morphology,
the electrophysiology of pyramidal cells differs across cortical
areas (Amatrudo et al., 2012) and age (Zhang, 2004; Elston and
Fujita, 2014) and may also vary with somatic distance from the
pia within L2/3. In particular, Kalmbach et al. (2018) found such
an effect on subthreshold features, including membrane potential
and input resistance, in both human and mouse neurons, while
Deitcher et al. (2017) found no effect of cortical depth on
electrophysiology in human cells (they did not consider the
electrophysiology of mouse neurons).

It is well-established that dendritic geometry strongly affects
the action potential firing pattern of neurons. For example,
given an identical distribution of ion channels over different
cortical neuron types, smaller cells tend to spike, whereas
larger ones tend to burst (Mainen and Sejnowski, 1996), while
computational models suggest that such spiking versus bursting
behavior depends on the ratio of somatic surface to dendritic
surface (Mason and Larkman, 1990). Also, action potential is
accelerated in neurons with larger dendritic surface area (Eyal
et al., 2014), which is a likely explanation for the differences
in spike onset between human and mouse, given that human
dendrites are larger. Computational modeling by Amatrudo
et al. (2012) showed that morphological differences between
primary visual and prefrontal cortex cells can largely account for
differences in passive properties but not in action potential firing
nor the synaptic response, thus suggesting differences in active
channel conductances. Indeed, the RNA for HCN1, a major pore-
forming subunit of h-channels, is ubiquitous in human but not
in mouse layers L2/3 (Zeng et al., 2012), and Kalmbach et al.
(2018) found that h-channels contribute more prominently to
the physiological properties of human pyramidal neurons than
to those of the mouse. The differences in h-channel expression,
however, could not explain the strong dependence of these
electrophysiological properties on cortical depth (Kalmbach
et al., 2018), suggesting that one would need to account other

factors, including morphology, in order to explain some of the
observed cortical depth dependence and inter-species differences.

There have, nonetheless, been relatively little quantitative
analyses of how the different electrophysiological and
morphological variables correlate with each other and how
do these correlations vary between species. An exception is
Gilman et al. (2017), who found that larger neurons had a lower
input resistance. These analyses were limited to estimating the
linear correlation between pairs of variables. This ignores the
effect of covariates as well as the conditional (in)dependencies
among variables. In other words, relationships often involve
more than two variables and thus require a multivariate model;
for example, dendritic diameter may be independent of spiking
behavior, but when modeled as an exponential function of the
distance from the soma, its decay rate is significantly lower for
spiker neurons than for bursters and plateauers (Washington
et al., 2000). Pairwise analyses can thus be complemented
by using multivariate graphical models (Whittaker, 2009)
and by quantifying conditional (in)dependencies with partial
correlation coefficients. One type of graphical models that is
useful for modeling conditional independencies are Bayesian
networks (Pearl, 1988; Koller and Friedman, 2009). These
models, based on directed acyclic graphs, let us visualize the
probabilistic relationships between the variables and are thus
useful for exploratory analyses (Bhushan et al., 2019). Their
applications in neuroscience (Bielza and Larrañaga, 2014;
Bielza and Larrañaga, 2020) include interneuron classification
(Mihaljević et al., 2014, 2015; Mihaljević et al., 2019) and the
generation of synthetic dendritic branches (López-Cruz et al.,
2011).

In this paper, we compare layer 2/3 human temporal cortex
and mouse visual cortex pyramidal neurons from the Allen
Cell Types Database (http://celltypes.brain-map.org/) in terms
of their electrophysiology and dendritic morphology, while
assessing the effect of cortical depth on their features. The Allen
Cell Type Database cells are unique in that they have been
quantified in terms of electrophysiology and morphology, with
a standardized procedure for both species. We learn from data
Gaussian Bayesian networks in order to identify correlations
and conditional independencies between the variables. We
learn these networks from three different subsets of our
data: (a) from electrophysiological variables alone; (b) from
morphological variables alone; and (c) from electrophysiological
and morphological variables combined. For each data subset, we
learn a Bayesian network per species, which yields a total of six
networks; for subset (c), we also show correlation networks (see
section 2.6).

The rest of this paper is structured as follows. Section 2
describes the data set, the variables, and analysis methodology.
Section 3 provides the results. We discuss our findings in
section 4.

2. MATERIALS AND METHODS

2.1. Data
We used adult human and adult mouse neurons from the Allen
Cell Type Database. Human cells were acquired from donated ex
vivo brain tissue. We used all excitatory (spiny) cells from layers
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2 and 3 of the temporal (human) and visual (mouse) cortex that
had a reconstructed morphology. Our sample consisted of 42
human cells from the temporal cortex and 21 mouse cells from
the visual cortex.

2.2. Electrophysiological Variables
The Allen Cell Type Database provides pre-computed
electrophysiological features. These features were derived
from high temporal resolution data on membrane
potential measurements (in current-clamp mode) obtained
with a standardized patch clamp protocol. We used 11
electrophysiological features provided by Allen Cell Type
Database, covering subthreshold and suprathreshold features
of the cells, including those relative to action potentials. Below
we list these features along with brief descriptions (see also
Table 1 for their mean values), while we refer the reader to the
technical white paper by the Allen Cell Type Database for details
(http://help.brain-map.org/download/attachments/8323525/
CellTypes_Ephys_Overview.pdf).

Subthreshold features were computed as follows: resting
potential (rest): average pre-stimulus membrane potential
across all the long square responses; input resistance
(resistance): the slope of a linear fit of minimummembrane
potentials during the responses onto their respective stimulus
amplitudes for long square sweeps with negative current
amplitudes that did not exceed 100 pA; time constant (tau):
exponential curve fit between 10% of the maximum voltage
deflection (in the hyperpolarizing direction) and the minimum
membrane potential during the response, and the time constants
of these fits were averaged across steps to estimate the membrane
of the cell.

All action potential waveforms were evoked by a long square
(1 s) current step stimulus. The waveforms of the first action
potentials were collected from each cell and aligned on the time
of their thresholds. Action potential features were computed as
follows: threshold (threshold): the level of injected current
at threshold; peak (peak): maximum value of the membrane

TABLE 1 | Per-species mean ± standard deviation for each electrophysiological

variable, along with the p-value of the t-test.

Variable Human Mouse p-value

rest (mV) −71.77 ± 3.75 −77.69 ± 4.06 < 0.001

resistance (M �) 83.96 ± 54.31 151.61 ± 68.86 < 0.001

tau (ms) 27.43 ± 9.01 20.02 ± 9.87 0.006

threshold (pA) 203.33 ± 100.21 186.67 ± 115.94 0.578

peak (mV) 46.31 ± 4.77 37.30 ± 8.68 < 0.001

amplitude (mV) 99.36 ± 7.35 91.07 ± 9.07 0.001

up down ratio 3.65 ± 0.81 3.70 ± 0.83 0.822

rise time (µs) 0.56 ± 0.06 0.49 ± 0.06 < 0.001

fall time (ms) 0.08 ± 0.17 0.14 ± 0.28 0.355

latency (s) 0.08 ± 0.03 0.06 ± 0.02 0.001

f-i curve (spikes/(s × pA)) 0.08 ± 0.05 0.14 ± 0.08 0.004

<0.001 means that the p-value is below 0.001.

potential during the action potential; amplitude (amplitude):
difference between the action potential trough and the action
potential peak, where the trough is the minimum value of
the membrane potential between the peak and the next action
potential; upstroke/downstroke ratio (up down ratio): the
ratio between the absolute values of the action potential peak
upstroke and the action potential peak downstroke, where the
upstroke is the maximum value of dV/dt between the threshold
and the peak, and peak downstroke is the minimum value of
dV/dt between the peak and the trough; rise time (rise time):
time from threshold to the peak; fall time (fall time): time
from peak to the trough.

Additional suprathreshold features were computed as follows:
latency (latency): time between the start of the stimulus until
the first spike; “f-i curve” (f-i curve): slope of a straight line
fit to the suprathreshold part of the curve of frequency response
of the cell versus stimulus intensity for long square responses.

2.3. Morphological Variables
The Allen Cell Type Database provides 3D neuron morphology
reconstructions. These were obtained by filling the cells with
biocytin and serially imaged to visualize their morphologies.
Detailed description of the reconstruction protocol is provided
in the Allen Cell Type Database morphology overview technical
whitepaper (http://help.brain-map.org/download/attachments/
8323525/CellTypes_Morph_Overview.pdf).

We computed nine features of both basal and apical
dendrites. Of these features, four are arbor-level features, whereas
five are branch- or bifurcation-level features. We computed
the features with the open-source NeuroSTR library (https://
computationalintelligencegroup.github.io/neurostr/). Below we
list these features along with brief descriptions (see also
Table 2 for their mean values). The variable names provided
in parenthesis correspond to basal dendrite variables; the
corresponding variable of the apical dendrite is denoted with an
a prefix: for example, a.distance instead of distance.

The branch-level features were averaged across all bifurcations
or branches of an arbor and were computed as follows: average
branch length (length): sum of the lengths of all compartments
of a branch, averaged over all bifurcation points; average path
distance (distance): sum of the lengths of all compartments’
length starting from the dendrites’ insertion point into the
soma up the bifurcation point, averaged over all bifurcation
points; average branch tortuosity (tortuosity): ratio of
branch length and the length of the straight line between the
beginning and the end of a branch, averaged over all branches;
average remote bifurcation angle (angle): shortest planar angle
between the vectors from the bifurcation to the endings of
the daughter branches, averaged across all bifurcations; average
branch diameter (diameter).

Arbor-level features were computed as follows: height
(height): difference between the maximum and minimum
values of Y-coordinates of the dendrites; width (width):
difference between the maximum and minimum values of X-
coordinates of the dendrites; depth (depth): difference between
the maximum and minimum values of Z-coordinates of the
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TABLE 2 | Per-species mean ± standard deviation for each morphological

variable, along with the p-value of the t-test.

Variable Human Mouse p-value

distance (µm) 133.00 ± 63.00 63.00 ± 5.00 < 0.001

length (µm) 81.00 ± 15.00 44.00 ± 6.00 < 0.001

tortuosity 1.15 ± 0.05 1.14 ± 0.05 0.518

angle (rad) 1.01 ± 0.14 1.13 ± 0.18 0.012

diameter (µm) 0.33 ± 0.12 0.27 ± 0.06 0.009

height (µm) 403.00 ± 262.00 192.00 ± 22.00 < 0.001

width (µm) 423.00 ± 147.00 227.00 ± 48.00 < 0.001

depth (µm) 114.00 ± 26.00 62.00 ± 17.00 < 0.001

total_length (µm) 5008.00 ± 3108.00 1867.00 ± 540.00 < 0.001

a.distance (µm) 285.00 ± 64.00 147.00 ± 26.00 < 0.001

a.length (µm) 99.00 ± 15.00 55.00 ± 12.00 < 0.001

a.tortuosity 1.13 ± 0.05 1.14 ± 0.04 0.653

a.angle (rad) 0.89 ± 0.12 1.20 ± 0.17 < 0.001

a.diameter (µm) 0.36 ± 0.12 0.28 ± 0.06 0.003

a.height (µm) 596.00 ± 213.00 262.00 ± 81.00 < 0.001

a.width (µm) 525.00 ± 146.00 274.00 ± 85.00 < 0.001

a.depth (µm) 122.00 ± 27.00 85.00 ± 31.00 < 0.001

a.total_length (µm) 5352.00 ± 1838.00 1480.00 ± 702.00 < 0.001

<0.001 means that the p-value is below 0.001.

dendrites; total length (totallength): sum of branch length
of all the branches of the dendrites.

The Allen Cell Type Database provided the depth of each cell’s
soma (rel depth) relative to pia and white matter. There were
both superficial and deep cells in both species; although deep cells
were better represented in the mouse sample, whereas superficial
ones in the human sample (see Figure 1).

2.4. Bayesian Networks
A Bayesian network (BN) (Koller and Friedman, 2009) B allows
us to compactly encode a joint probability distribution over
a vector of n random variables X by exploiting conditional
independencies among triplets of sets of variables in X (e.g.,
X is independent of Y given Z). A BN consists of a directed
acyclic graph (DAG) G and a set of parameters θ [B = (G, θ)].
The vertices (i.e., nodes) of G correspond to the variables in
X, while its directed edges (i.e., arcs) encode the conditional
independencies among X. A joint probability density fG(x)
encoded by B, where x is an assignment to X, factorizes as a
product of local conditional densities,

fG(x) =
n

∏

i=1
fG(xi | paG(xi)),

where paG(xi) is an assignment to variables PaG(Xi), the set
of parents of Xi in X according to G. G induces conditional
independence constraints for fG(·), derivable from the basic
constraints that each Xi is independent of its nondescendents
in G given PaG(Xi). For example, for any pair of variables X,Y
in X that are not connected by an arc in G there exists a set
of variables Z in X (disjoint from {X} and {Y}) such that X

and Y are independent conditionally on Z [i.e., fG(X,Y | Z) =
fG(X | Z)fG(Y | Z)]. Similarly, for any pair of variables X,Y in X

that are connected by an arc in G there is no set Z such that X and
Y are independent conditionally on Z. These constraints extend
to nodes not connected by an arc in G and the structure G thus
lets us identify conditional independence relationships among
any triplet of sets of variables X, Y , and Z in X. For example,
in the DAG X → Y → Z we only have one independence: X
is independent of Z conditional on Y ; X and Y , X and Z, and Y
and Z are not marginally independent. The Markov blanket of
Xi is the set of variables MB(Xi) such that Xi is independent of
X \MB(Xi) conditional on MB(Xi). The Markov blanket of Xi is
easily determined from G as it corresponds to the parents, the
children, and the spouses (other parents of the children of Xi) of
Xi in G.

The parameters θ specify the local conditional densities fG(xi |
paG(xi)) for each variable Xi. When X contains only continuous
variables, as in our case, a common approach is to let fG(x) be a
multivariate normal density. The local conditional density for Xi

is fG(xi | paG(xi)) = N (xi;βi0 + βT
i paG(xi), σ

2
i ). There is thus a

different vector of coefficients
(

βi0,β
T
i , σ

2
i

)

for each Xi.

Two or more DAGs can encode the same set of conditional
independencies. A set of such equivalent DAGs can be uniquely
represented with a completed partially directed graph (CPDAG).
An edge between X and Y is directed in the corresponding
CPDAG only if it is identically oriented in every equivalent DAG;
it is undirected otherwise.

2.5. Learning Bayesian Networks From
Data
Learning a Bayesian network B from a data set D = {x1, . . . , xN}
of N observations of X involves two steps: (a) learning the DAG
G and (b) learning θ , the parameters of the local conditional
distributions. There are two main approaches to learning G from
D (Koller and Friedman, 2009): (a) by testing for conditional
independence among triplets of sets of variables (the constraint-
based approach); and (b) by searching the space of DAGs in
order to optimize a score such as penalized likelihood (the score-
based approach). While seemingly very different, conditional
independence tests and network scores are related statistical
criteria (Scutari et al., 2019). For example, when considering
whether to include the arc Y → X into a graph G, the
likelihood-ratio test of conditional independence of X and Y
given PaG(X) and the Bayesian information criterion (Schwarz,

1978) (BIC) score are both functions of log
P(X|PaG (X),Y)
P(X|PaG (X))

. They

differ in computing the threshold for determining independence:
the former relies on the distribution of the statistic under the
null model (i.e., conditional independence), whereas the latter
is based on an approximation to the Bayes factor between the
null and alternative models. Besides using different criteria, the
constraint-based and score-based approaches also differ in model
search, that is, in terms of the sets X, Y , and Z that they choose
to test conditional independence. The score-based approaches
tend to be more robust (Koller and Friedman, 2009), as they may
reconsider previous steps in the search by removing or reversing
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FIGURE 1 | Histograms and density plots of the cells’ relative (to pia and white matter) cortical depth. Depths close to 0 denote superficial cells. Vertical lines denote

rough estimates of the boundaries of L4 in the two species, given by the cortical depth of the most superficial L4 cell that we observed among Allen Cell Type

Database neurons.

previously added arcs. We thus followed a score-based approach
in this paper.

2.5.1. Confidence in Network Structure

A difficulty for inferring the network structure is that the number
of data instances is relatively small compared to the number of
variables, especially for the mouse data set. This might result
in many different high-scoring structures and thus reduces the
confidence in a particular learned structure. In order to paliate
this, we use the bootstrap-based (Efron, 1979) approach by
Friedman et al. (1999) to filter out arcs that are likely to be
spurious. In particular, we begin by taking B samples from the
empirical distribution and apply our learning algorithm on each
sample to produce B Bayesian networks. The confidence in the
arc X → Y , p(X → Y), is then estimated as the fraction of times
that X→ Y appears in the B networks. We then consider that all
arcs X → Y with p(X → Y) + p(X ← Y) ≤ t, where t is some
threshold, are spurious and thus blacklist themwhen learning the
definitive network structure.

A reasonable threshold t might be 0.5, so that we discard
all arcs which we find more likely to be spurious than not. By
experimenting with synthetic data, we found, indeed, that the
confidence estimates of nonspurious arcs were never below 0.48.
On the other hand, the confidence estimates for spurious arcs
tended to be inflated, with a maximum of 0.86 and the third
quartile around 0.5. We thus used t = 0.7 as it provided none or
few false positives in our experiments while yielding reasonably
few false negatives.

We found that the above procedure filtered out most of the
possible arcs in each of the six networks, leaving few candidate
arcs for the definitive structure learning. Note that we considered

both X → Y and X ← Y in order to compute the confidence
in a direct link between X and Y . This is because we found
that arc directions were rarely established with confidence and
we thus filter out arcs that have insufficient confidence in the
directions combined.

2.6. Marginal and Partial Correlation
Coefficients
For Gaussian variables, the partial correlation coefficient ρXY|Z
of X and Y given all other variables Z = X \ {X,Y} equals
the correlation between the residuals RX = X − fX(Z) and
RY = Y − fY (Z), where fX(Z) is a linear regression of X onto
Z and likewise for fY (Z). The ρXY|Z can be computed directly
from the inverse of the joint covariance matrix 6, ρXY|Z =
− �XY√

�XX�YY
, where � = 6−1. By estimating � from data, we

estimate pairwise conditional independencies, since ρXY|Z = 0
(and thus �XY = 0) if and only if X and Y are independent
conditional on Z. One way to estimate� is by learning a Bayesian
network from the data. Namely, for standardized variables X,
� = (I−B)S−1(I−B)T (Aragam and Zhou, 2015), where B is the
matrix containing the network’s parameters with each β i in one
column, B =

[

β1| · · · |βn

]

, and S the diagonal matrix containing
variances of local conditional distributions Sii = σ 2

i . The estimate

is then �̂B = (I − B̂)Ŝ−1(I − B̂)T , where ·̂ denotes the empirical
estimate. Note that the Bayesian network provides an estimate of
� even when the empirical correlation matrix 6̂ is not invertible
(e.g., when n > N).

The heavy regularization of Bayesian networks with bootstrap
blacklisting shrinks many marginal correlations correlation
coefficients ρ in the correlation matrix associated with the
Bayesian network, 6̂B = �̂−1

B
to 0. We thus report correlation
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coefficients derived from the empirical 6̂, rather than those
derived from the 6̂B . Note that marginal correlations are easily
seen on a correlation network, an undirected graph that has an
arc between X and Y if the absolute value of their correlation is
above some threshold.

2.7. Comparing Bayesian Networks
We used the Hellinger distance (Pardo, 2018) in order to
quantify the difference between Bayesian network structures
of the two species. This is a bounded metric for probability
distributions, with a value of 0 for identical distributions and
a maximum distance of 1. As such, it also depends on the
parameters of the Bayesian network; for example, it can be
high for two normal distributions with identical structures with
very different means, meaning that we could have a large
distance simply due to inter-species differences in the variables’
magnitudes (Tables 1, 2). We thus isolated the effect of inter-
species differences in the means by re-fitting the parameters
of one of the distributions before the comparison. Namely, we
re-fit the parameters of the human Bayesian network on the
mouse data before comparing it to the mouse Bayesian network;
likewise, we re-fit the parameters of the mouse Bayesian network
on the human data before comparing it with the original human
Bayesian network. This means that we report two Hellinger
distance values, one from each (human and mouse) data set.
Note that the means of the compared distributions are always the
same, as they are estimated from the same data set. The Hellinger
distance H is a function of the estimated covariance matrices

only, H(B1,B2) =






1−

det
(

6̂B1

)1/4
det

(

6̂B2

)1/4

det

(

6̂B1
+6̂B2
2

)1/2







1/2

, where det

denotes a matrix determinant.

2.8. Settings
We used B = 2, 000 bootstrap samples for estimating arc
confidence and blacklisted all arcs with an estimated confidence
below 0.7. We then learned network structures by using the
tabu algorithm (Glover and Laguna, 2013), implemented in
the bnlearn R package (Scutari, 2010; R Core Team, 2015), to
optimize the BIC score. The tabu algorithm is a local search
that efficiently allows for score-degrading operators by avoiding
those that undo the effect of recently applied operators; we used
a tabu list of size 30 and allowed for up to 30 iterations without
improving network score.

3. RESULTS

We first look at electrophysiological (section 3.1) and
morphological features (section 3.2) separately, and then at
joint Bayesian networks and correlation networks for both
electrophysiological and morphological features (section 3.3).

3.1. Electrophysiology
All variables except for threshold, up down ratio, and
fall time differed significantly between the species (Table 1).
Human neurons had lower a resistance, higher time
constant (tau), rest potential, peak action potential voltage,

amplitude and latency, and a longer action potential
rise time.

The human and mouse BNs uncovered relevant correlations
and independencies among the variables. In the human BN
(Figure 2A), the Markov blanket of rel depth consisted of
threshold and up down ratio, while it was marginally
correlated with all variables except for latency, fall time,
and rise time. In particular, rel depth had a strong
positive marginal (0.59) and partial correlation with up down
ratio (0.53) and a strong negative one with threshold
(−0.40). This is contrary to the results of Deitcher et al. (2017)
who found that human electrophysiological features such as
input resistance and membrane time constant were independent
of depth in the human L2/3 pyramidal neurons of the temporal
cortex and, on the other hand, is partially consistent with the
results of Kalmbach et al. (2018) (see section 4). Variables fall
time, rise time, and latency were each uncorrelated
with all other variables, f-i curve was independent of
all other variables given resistance, as were tau given
threshold and amplitude given peak. All other variables
had Markov blankets of size two or larger, with the largest being
that of threshold with five variables. The strongest partial
correlations were those between peak and amplitude (0.78)
and resistance and f-i curve (0.64). See Figure 2A for
non-zero all partial correlation coefficients.

In the mouse BN (Figure 2B), rel depth was correlated
with up down ratio and peak, amplitude, and fall
time, while its Markov blanket contained only up down
ratio. Contrary to the human BN, its marginal (−0.84) and
partial (−0.54) correlation with up down ratio was strongly
negative. rise time was uncorrelated with other variables,
and resistance and threshold were independent of all
other variables given f-i curve. The remaining variables had
Markov blankets of size two or larger, with the largest being
that of f-i curve with four variables. The strongest partial
correlations were those between peak and amplitude (0.94),
and latency and rest (−0.70). See Figure 2B for all nonzero
partial correlation coefficients.

Overall, the human and mouse BNs were strikingly different,
with only two common arcs in their CPDAGs (resistance—
f-i curve and peak—up down ratio). No variable had
an identical Markov blanket in the two graphs and Hellinger
distances on human and mouse data sets, respectively, were 0.44
and 0.61. While the magnitudes of threshold, fall time,
and up down ratio did not differ significantly between the
species (Table 1), the BNs show that their correlations with
other variables did. A rare common feature of the two BNs
was the strong positive partial correlation between amplitude
and peak.

3.2. Morphology
All variables, except for tortuosity, differed significantly between
the two species (Table 2). Human dendrites were larger, had
longer and thicker branches and, especially in apical dendrites,
sharper bifurcation angles. Deitcher et al. (2017), on the contrary,
report similar branch diameter in human and mouse neurons.
The average human apical arbor was 3.6 times longer than the

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2021 | Volume 15 | Article 580873

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
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FIGURE 2 | Completed partially directed graphs (CPDAGs) of the Bayesian

networks for electrophysiological features of human (A) and mouse (B) cells.

Arc width is proportional to the absolute value of the partial correlation (shown

next to the arc) between the nodes. Arcs corresponding to negative partial

correlations plotted with dashed lines. Proximity between two nodes is

unrelated to the magnitude of partial correlation.

mouse one, while the average human basal arbor was 2.7 times
longer. This is more pronounced than the 3.2-fold and 2.1-fold
differences that Mohan et al. (2015) observed for apical and basal
dendrites, respectively, of human and mouse temporal cortex
pyramidal neurons.

In the human BN (Figure 3A), rel depth had only
a.height in its Markov blanket, while it was also correlated
with a.distance, a.length, and length but independent
of the remaining variables, including a.totallength
(marginal correlation coefficient ρ = 0.34) and totallength
(ρ = 0.03). Thus, while the height of the apical arbor increased
significantly with depth from the pia, total arbor length did not.
These results are contrary to those of Deitcher et al. (2017), who
found strong correlations between depth from the pia and a
number of apical and basal variables, including basal dendrites’
total length (ρ = 0.50) and apical arbor width (0.48). We found
that most basal dendrites’ variables were positively correlated
with the corresponding apical variable, with the exceptions being
the bifurcation angles and the distance from soma. The diameter
was particularly consistent, with ρ = 0.94 between diameter
and a.diameter.

In the mouse BN (Figure 3B), the Markov blanket of
rel depth contained totallength, a.totallength,
and a.height, while it was marginally correlated also

with diameter, a.height, a.width, a.distance, and
a.diameter. This is contrary to the results that Deitcher
et al. (2017) observed on temporal cortex mouse cells, as
they found no significant change in morphological features
with increasing depth. While a.height increased with
rel depth, a.totallength decreased strongly with rel
depth, both marginally (ρ = −0.83) and conditionally on
all other variables (ρXY|Z = −0.66). We observed the same,
yet slightly weaker, effect for basal dendrites (ρ = −0.73 and
ρXY|Z = −0.40 with totallength). Thus, deeper mouse cells
had smaller apical and basal arbors and, perhaps surprisingly,
this was in spite of them having higher apical arbors. As in
human cells, basal variables were often correlated with the
corresponding apical variables. Unlike in the human, cells with
larger basal dendrites tended to have thicker branches (ρ =
0.43) while a.angle had a negative partial correlation with
a.diameter.

Overall, the human and mouse BNs were strikingly different,
with only one common arc in their CPDAGs (tortuosity—
a.tortuosity ). Only a.tortuosity had an identical
Markov blanket in the two graphs. The Hellinger distances
were larger than for electrophysiological variables, with a value
of 0.87 on the human data set and 0.75 on the mouse
data set.

3.3. Electrophysiology and Morphology
The correlation networks (Figure 4) and the Bayesian networks
(Figure 5) show many correlations between electrophysiological
and morphological variables.

In human cells, all electrophysiological variables except for
latency, fall time, and rest were marginally correlated
with at least one morphological variable (Figures 4A, 5A).
Besides features related to arbor size, electrophysiological
variables were also correlated with branch-level features such
as the mean bifurcation angle. While up down ratio was
strongly correlated with features of apical arbor size (e.g., ρ =
0.53 with a.totallength), these correlations were explained
away by the cortical rel depth and hence up down ratio
was independent in the BN, conditional on its Markov blanket,
of all morphological variables. Interestingly, peak decreased
strongly (ρ = −0.52) with a.tortuosity and this effect
persisted after conditioning on the remaining variables (ρXY|Z =
−0.17). Inputresistancewas negatively correlated with basal
and apical arbor size (e.g., ρ = −0.50 with a.totallength
and ρ = −0.44 with totallength). While it is already
known that resistance decreases with dendritic size
(Gilman et al., 2017), we found that it decreased additionally
(ρXY|Z = −0.30) with basal arbor width after accounting
for totallength. As in Figure 2A, rise time was
independent of all electrophysiological variables; it was, however,
correlated with morphological ones. In particular, rise time
decreased with apical a.totallength (ρ = −0.48, ρXY|Z =
−0.49) and increased with basal bifurcation angle (ρ =
0.37, ρXY|Z = −0.32). The Markov blanket of rel depth
contains up down ratio, threshold, as in Figure 2A, as
well as a.height, as in Figure 3A. Since rel depth is
not independent of the electrophysiological variables given the
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FIGURE 3 | Completed partially directed graphs (CPDAGs) of the Bayesian networks for morphological features of human (A) and mouse (B) cells. Basal nodes are in

green and apical nodes are in dark green. Arc width is proportional to the absolute value of the partial correlation (shown next to the arc) between the nodes. Arcs

corresponding to negative partial correlations plotted with dashed lines. Proximity between two nodes is unrelated to the magnitude of partial correlation.

morphological ones, Figure 5A shows that the correlation of
rel depth with the electrophysiological variables cannot be
explained as an indirect effect of the differences in morphology
with respect to cortical depth, and instead corresponds to an
effect of cortical depth on electrophysiology that is not explained
by our morphological variables.

In mouse cells, there were also many marginal correlations
between electrophysiological and morphological variables, with
16 arcs between electrophysiological and morphological features
in the correlation network (Figure 4B) and 3 in the Bayesian
network (Figure 5B). Overall, electrophysiological variables
were correlated with features of arbor size but not with
branch level features such as bifurcation angles and tortuosity.
In particular, the strongest marginal correlations were those
between latency and a.totallength (ρ = 0.64),
a.width and peak (ρ = 0.61), length and resistance

(ρ = 0.56), a.width and amplitude (ρ = 0.58). While
many electrophysiological variables strongly decreased with rel
depth (e.g., ρ = −0.72 with peak), these variables were
independent of rel depth conditional on up down ratio.
As in the human BN, the Markov blanket of rel depth
included a.height and up down ratio. Thus, as in human
cells, the effect of cortical depth on the electrophysiology was
not explained by depth-related differences in morphology. While
resistance did decrease with apical and basal arbor size, the
effect was somewhat weaker than in human cells (ρ = −0.48 with
a.totallength).

Overall, the two BNs were different, with only four
common arcs in their CPDAGs. No variable had an identical
Markov blanket in the two Bayesian networks. The Hellinger
distances were 0.91 and 0.85 on the human and mouse data
sets, respectively.
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Mihaljević et al. Comparing Neurons With Bayesian Networks

FIGURE 4 | Correlation networks for electrophysiological and morphological features of human (A) and mouse (B) cells. Showing only arcs between morphological

and electrophysiological variables as well arcs to/from rel depth and with an absolute correlation above 0.4 for human cells and 0.5 for mouse cells. These

threshold values were well above the 0.05 significance level and thus correspond to strong correlations. Morphological nodes are shown in green, with apical nodes in

dark green; electrophysiological nodes in orange.
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Mihaljević et al. Comparing Neurons With Bayesian Networks

FIGURE 5 | Completed partially directed graphs (CPDAGs) of the Bayesian networks for electrophysiological and morphological features of human (A) and mouse

(B) cells. Morphological nodes and the arcs between them shown in green, with apical nodes in dark green; electrophysiological nodes and the arcs between them in

orange. Arc width is proportional to the absolute value of the partial correlation (shown next to the arc) between the nodes. Arcs corresponding to negative partial

correlations plotted with dashed lines. Proximity between two nodes is unrelated to the magnitude of partial correlation.

3.4. Dependence on Cortical Depth
We found that the negative correlation of rel depth and
a.totallength in mouse neurons can be explained by
the difference in length between cells located below a rel
depth of 0.28 and those above it, as the deep cells had
notably shorter apical arbors. In particular, a.totallength
actually increased slightly with rel depth in both subgroups
(ρ = 0.16 among deep cells and ρ = 0.17 among

the non-deep cells, Figure 6) while the combined correlation
was negative (ρ = −0.83). Likewise, rel depth was
weakly correlated with a.width, diameter, resistance,
threshold, and f-i curve within the subgroups yet
strongly correlated overall (Figure 6). Thus, rather than varying
smoothly with cortical depth, the observed dependences were
fully or partially explained by the difference between deep and
nondeep cells. On the contrary, rel depth was negatively
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FIGURE 6 | Electrophysiological (left) and morphological (right) variables’ correlation with somatic cortical depth for all mouse cells (red), those located below a rel

depth of 0.28 (deep) and those above it (superficial). Variables arranged by increasing overall correlation with rel depth, with horizontal lines at −0.5 and 0.5

separating the strong correlations that are shown in Figure 4.

correlated with latency in both subgroups yet not globally
(Figure 6). For length as well as most action potential
variables, the overall correlation was slightly stronger than among
nondeep cells and notably stronger than among deep cells. For
morphological variables unrelated to arbor size (e.g., angle and
tortuosity), the correlation was rather consistent between
the subgroups as well as globally. The correlation coefficients
were largely similar between deep and nondeep cells, with a
mean absolute difference of 0.26 and a maximum of 0.47 among
electrophysiological variables (latency) and 0.65 among
morphological variables (a.angle). Note that the subgroup
estimates have high variance as there were 10 deep and 11
nondeep cells.

Kalmbach et al. (2018) found that the cross-species differences
in rest and resistance were depth dependent, with more
difference among the most superficial L2 cells and the deepest
L3 cells and less in the middle of L2/3. We did not formally
test for such an effect, as there were too few mouse cells
so as to bin them into groups according to cortical depth.
However, visual inspection did not suggest such a dependence
for the electrophysiological variables; instead, for most variables
we observed a consistent difference across the L2/3 (one
example is rest, Figure 7). An exception is up down ratio,
which indeed differed only in the superficial and deep sections
(Figure 7). In particular, up down ratio was higher among
superficial mouse cells than among superficial human cells; it
then decreased with rel depth for mouse cells yet increased
for human ones, and thus did not differ between the two species
toward the middle of L2/3 and was higher for human cells in the
deep part of L2/3. Note that the means of up down ratio in
the two species are similar and thus the t-test found no significant
difference (Table 1).

4. DISCUSSION

We found strong differences between the electrophysiology and
morphology of human and mouse pyramidal neurons, both in
terms of the variables’ magnitudes and in terms of correlations
between the variables, as evidenced by the differences in their
Bayesian networks. In particular, the Hellinger distances ranged
from 0.44 on electrophysiological variables to 0.91 on combined
morphological and electrophysiological variables. While the
maximal distance between two distributions is 1. We note that
we compared Gaussian distributions with identical means.

We found strong correlations between electrophysiological
and both apical and basal morphological variables in both
species. In human cells, electrophysiological variables were not
only correlated with morphological variables that are directly
related to dendritic arbor size or diameter, but also to branch-
level variables such as mean bifurcation angle and mean
tortuosity. For some variables, we observed an opposite effect of
cortical depth in the two species. We also found a strong effect of
cortical depth on bothmorphology and electrophysiology in both
species. In particular, the upstroke/downstroke ratio (up down
ratio) increased with normalized cortical depth in human cells
(ρ = 0.59) yet strongly decreased in mouse cells (ρ = −0.84).
Likewise, while the length of the basal and apical arbors increased
or stayed constant with cortical depth in human cells, it decreased
strongly in mouse cells (ρ = −0.83 with a.totallength
and ρ = −0.74 with totallength); notably, this was in
spite of the apical height increasing with depth in mouse cells
(ρ = 0.58). While Kalmbach et al. (2018) reported an effect of
cortical depth on rest and resistance, we also report it
for action potential properties such as up down ratio. We
also showed that the correlation of electrophysiological features
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FIGURE 7 | Scatter plots of rest (left) and up down ratio (right) with respect to rel depth.

with cortical depth could not be explained in terms of the
morphological variables. Overall, the effect of cortical depth
differed between two species, perhaps reflecting differences in
laminar organization of layers L2 and L3 between the two species.
Our results suggest that, except regarding up down ratio,
the cross-species differences are not depth dependent and that
they hold across the depth of L2/3.

Our results regarding the effect of cortical depth are largely
contrary to those by Deitcher et al. (2017), who found
that electrophysiological features such as input resistance and
membrane time constant were independent of depth in the
human L2/3 pyramidal neurons of the temporal cortex (they did
not assess the effect of cortical depth on electrophysiology in the
mouse). Regarding morphology, they found that the size of the
dendritic arbor increases with cortical depth in human pyramidal
neurons but found no effect in mouse pyramidal neurons. Our
results are, on the other hand, partially consistent with the results
of Kalmbach et al. (2018). They found a positive correlation
between rest and the rel depth in both species and a
positive correlation between resistance and rel depth
among mouse cells yet a negative one among human cells, albeit
they could not confirm it in subsequent experiments, with a
fixed membrane potential, for mouse cells. We confirmed the
positive correlation with rest (ρ = 0.37 in both species), albeit
weaker and only significant for the human cells, as well as the
significant positive correlationwithresistance inmouse cells
(ρ = 0.49), yet only found a nonsignificant positive correlation
in human cells (ρ = 0.13).

A possible explanation for our differences with the results by
Deitcher et al. (2017) is that we had more electrophysiologically
characterized human cells (42 vs. 25) and more morphologically
characterized mouse cells (22 vs. 14), thus probably covering
a wider range of somatic cortical depths and including the
most superficial and deepest cells (Figure 1); indeed, this is the

explanation proposed by Kalmbach et al. (2018) regarding a
similar discrepance with Deitcher et al. (2017) in terms of cortical
depth dependence of electrophysiology. Another difference in
mouse cells is that we studied the visual cortex while (Deitcher
et al., 2017) and Kalmbach et al. (2018) studied the temporal
cortex. We note also that the patch clamp protocols were not
identical in the three studies; however, it would not explain the
differences with Deitcher et al. (2017) in the observed effect of
cortical depth on morphology.

Our Bayesian networks are representative as long as the two
samples are homogeneous, in the sense that the dependencies
among variables are consistent across the cells of each sample.
This may not be the case for mouse cells; for example, the
correlation of latency and a.angle with rel depth
varied between deep and nondeep L2/3 neurons, although
that might be due to chance given the small sample sizes.
Nonetheless, most deep cells indeed had distinctly smaller
arbors and it is possible that at least some of them are star
pyramidal neurons (Staiger et al., 2004); some of these L4 cells
are also found in deep L2/3 in the Allen Cell Type Database.
This depth-related difference in size could also be related to
the distinction between profuse-tufted and slim-tufted neurons:
Deitcher et al. (2017) noted that slim-tufted neurons tend to
be located deeper in L2/3, although the separation was not as
clear-cut as in our case. Nonetheless, when looking for two
clusters with k-means and hierarchical clustering we obtained
nothing similar to the distinction between deep and nondeep
mouse cells.

Provided that our assumption of a multivariate Gaussian
distribution of the variables holds, the learned Bayesian networks
can be useful beyond identifying the independencies and
correlations between variables. For example, they would allow
for probabilistic reasoning regarding the morphology and
electrophysiology of pyramidal neurons. For example, we could
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set the morphological variables to particular values and study the
conditional distribution of electrophysiological variables. One
might also use them for multioutput regression (Borchani et al.,
2015), for example to predict the values of electrophysiological
variables from those of the morphological variables.
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Mihaljević, B., Benavides-Piccione, R., Bielza, C., DeFelipe, J., and Larra naga,

P. (2015). Bayesian network classifiers for categorizing cortical GABAergic

interneurons. Neuroinformatics 13, 192–208. doi: 10.1007/s12021-014-9254-1
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