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Despite the acceleration of knowledge and data accumulation in neuroscience over the

last years, the highly prevalent neurodegenerative disease of AD remains a growing

problem. Alzheimer’s Disease (AD) is the most common cause of dementia and

represents the most prevalent neurodegenerative disease. For AD, disease-modifying

treatments are presently lacking, and the understanding of disease mechanisms

continues to be incomplete. In the present review, we discuss candidate contributing

factors leading to AD, and evaluate novel computational brain simulation methods

to further disentangle their potential roles. We first present an overview of existing

computational models for AD that aim to provide a mechanistic understanding

of the disease. Next, we outline the potential to link molecular aspects of

neurodegeneration in AD with large-scale brain network modeling using The Virtual

Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation

neuroinformatics platform. Finally, we discuss how this methodological approach may

contribute to the understanding, improved diagnostics, and treatment optimization of AD.

Keywords: Alzheimer’s disease, The Virtual Brain, brain simulation, multi-scale brain modeling, connectomics

INTRODUCTION

Every second senior with age above 90 years suffers from Alzheimer’s disease (AD) or another
dementia (Robinson et al., 2018a). The US’s mortality rate for people with this neurodegenerative
disease exceeds that of breast cancer and prostate cancer combined (Alzheimer’s Association, 2019).
Beyond the impact on patients’ and their families’ life circumstances, neurodegenerative diseases
have an enormous economic impact and hence pose a massive societal burden. The Alzheimer’s
Association’s latest report estimates the annual medical and care costs attributed to AD in the
US at $290 billion in 2019 (Alzheimer’s Association, 2019). By 2050, this number is expected to
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rise as high as $1.1 trillion (Alzheimer’s Association, 2018).
It is stated in the same report that early diagnosis at the
stage of mild cognitive impairment (MCI) could save up to
$7.9 trillion in cumulated medical and care costs by the year
2050. While the prevalence of AD, the most common type of
neurodegenerative disease (Robinson et al., 2018a; Alzheimer’s
Association, 2019), increases, the underlying disease mechanisms
are still not understood. No disease-modifying treatment exists
for AD.

Despite the collection of large data sets and major advances
in high throughput computational methods, theoretical
frameworks that link the many pieces of observations together
can aim to infer novel insights about the underlying causes (Ritter
et al., 2013; Schirner et al., 2018; Solodkin et al., 2018; McIntosh
and Jirsa, 2019). The brain has multiple organization levels (e.g.,
molecular, cellular, ensemble- and region-level), including both
feedback and feedforward interactions between and within those
different levels (Solodkin et al., 2018). These dependencies are
non-linear, leading to emergent phenomena—features of the
system that cannot be understood by the simple “sum” of its
parts (Ritter et al., 2013). Small perturbations in such non-linear
systems can have enormous, widespread consequences. In the
brain, interactions traverse many spatial and temporal scales,
thus focusing on one scale can underestimate the emergent
phenomena at other scales. Integrative brain modeling allows for
the analysis of these multiple scales in parallel (Schirner et al.,
2018), while computational neuroscience provides mathematical
tools as the analysis of structured flows on manifolds (McIntosh
and Jirsa, 2019) to understand the underlying dynamics.

A mechanistic understanding of AD could open new horizons
for early diagnostics and cause-targeting treatments. Recent
pharmacological clinical trials testing substances such as anti-
Amyloid-beta (Gilman et al., 2005; Lannfelt et al., 2008;
Winblad et al., 2012; Farlow et al., 2015; Sevigny et al., 2016;
Vandenberghe et al., 2017; Panza et al., 2019), tau-protein
targeting (Yanamandra et al., 2015; Bachurin et al., 2017; Jadhav
et al., 2019), and immune-modulating substances used for
rheumatoid arthritis (Jaturapatporn et al., 2012; Chou et al., 2016)
have experienced significant setbacks (Panza et al., 2019). The
development of novel therapeutics would benefit from theoretical
and computational approaches (Hofmann-Apitius et al., 2015;
Selkoe and Hardy, 2016; Solodkin et al., 2018).

We hypothesize that an important contribution to
understanding and curing AD lies in characterizing the
features and processes that control emergent phenomena in
the brain. A deep understanding of state-of-the-art biological
research on AD and detailed knowledge of computational
brain modeling tools are essential to reach this goal. In this
review, we summarize current findings of AD pathogenesis
from genomics to connectomics—describing the contribution
of the classic hallmark proteins as well as current research on
the Notch-1 pathway, neurotransmitters, polygenetic factors,
neuroinflammation, and neuroplasticity. In the second part,
we present various previous approaches to computational
modeling of AD disease mechanisms and discuss their benefits
and disadvantages. The last part describes The Virtual Brain
(www.thevirtualbrain.org) as a multiscale brain simulation

platform that enables linking molecular signaling cascades with
large-scale brain simulation. An overview of the structure of this
article is given by the flowchart in Figure 1.

BACKGROUND

Historical Considerations
While dementia is nowadays a descriptive term for (acquired)
severely impaired cognitive function due to a brain disease,
dementia has historically been understood as a mainly
physiological loss of mental function in the elderly (Schorer,
1985). Psychiatrists had therefore contrasted cognitive disorders
of young people (“dementia praecox”), classified today as
schizophrenia, for example, with dementia in old people,
“dementia senilis”—i.e., the classification of dementia was
dependent on the age at which the cognitive impairment
occurred (Kendler, 2009). A profound challenge to this concept
was posted in 1907 by an observation of Alois Alzheimer.
His patient, Auguste D., had characteristic psychopathology
of dementia senilis rapidly progressing—at an early age of 56
years (Alzheimer, 1907, 1911). Based on his observations of an
“unusual disease,” a new neurologic and psychiatric research
field emerged. Various mechanisms, risk factors, etiologic
components (i.e., underlying causes such as neurotoxic proteins,
risk-modifying genes, etc.), and comprehensive classifications of
cognitive disorders were developed.

Interestingly much later in 2013 (Müller et al., 2013), it was
shown that Auguste D. suffered from an early-onset variant of
Alzheimer’s dementia—a truly “unusual” and rare disease as one
of the monogenetic forms with a mutation in the presenilin gene
1 (PSEN1) (Müller et al., 2013). Nevertheless, the primary cause
of AD and also criteria for its diagnosis still remain unclear.
Even the disease-defining biochemical findings of pathology in
AD, represented by Amyloid-beta (Aβ40 and Aβ42, hereafter
Abeta) and phosphorylation of Tau protein (TAU for tubulin-
associated unit or by the Greek letter τ , hereafter Tau; for a
review, see Bloom, 2014), remain controversial as causative of
disease trajectory and cognitive symptoms. Nevertheless, their
presence during pathogenesis is undisputable (Jellinger, 1997;
Hyman et al., 2012; Nelson et al., 2012).

Definition and Diagnostic Criteria
Nosology is the discipline of disease classification based on
the underlying mechanisms. In this sense, a disease class can
only be assigned if the respective disease’s underlying etiology
has been established. Otherwise, we speak of a “syndrome”
or “disorder” (Jack et al., 2018). The dementia syndrome
encompasses a broad array of different possible etiologies of
cerebral or systemic origin (Wallesch and Förstl, 2012; Robinson
et al., 2018a). Clinically it presents as a set of signs and symptoms.
The affected neurocognitive domains are the higher cortical
functions: memory, language, attentional processing, executive
functions, and visuospatial domains. Different diagnostic criteria
are currently used for the diagnosis of AD.

Among the most commonly used diagnostic criteria is the
1984 National Institute of Neurological and Communicative
Disorders and Stroke and Alzheimer’s Disease and Related
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FIGURE 1 | Flowchart for the structure of this article.

Disorders Association (NINCDS-ADRDA) definition of possible
and probable AD purely by clinical (e.g., daily-life impairments)
and neuropsychological criteria without further diagnostic
evaluation by technical means (McKhann et al., 1984). At the
core of this definition are the presence and slow progression of
cognitive decline in two or more cognitive domains, including
memory, and the absence of alternative causes of dementia. The
2011 revision of these criteria further specified that impairment
in activities of daily living is necessary for the diagnosis of
dementia (McKhann et al., 2011).

In clinical practice, a diagnosis is mainly made based on the
definition of probable AD according to NINCDS-ADRDA and
by excluding possible other causes of dementia (Blennow et al.,
2006). A challenge with this purely symptomatic definition is
posed by the various phenomenological forms of AD (Wallesch
and Förstl, 2012). Clinical symptoms and neurodegeneration
occur on a continuum. They can vary tremendously between
patients. The most common phenotype of AD is the slowly
progressive amnestic variant. However, it is not uncommon for
language disorders, disorientation, apraxia, or neuropsychiatric
signs such as affective symptoms to appear first, while memory
deficits do not seem to be predominant. This heterogeneity in
phenotypes can have various causes, such as educational and
social factors, the individual brain’s structural vulnerability, or the
patient’s cognitive “reserve” (Stern, 2012).

The clinical definition of AD is further complicated by
the overlap of symptoms with those of other dementias and
comorbidities that can influence the clinical presentation. For
example, if the patient also suffers from depression, possibly
caused by beginning cognitive decline, this mood disorder itself
can impact memory. And if patients also have Parkinson’s
disease—do they then necessarily have so-called Parkinson’s
dementia? Or do they suffer from AD and Parkinson’s disease
at the same time? Or has the neurodegeneration caused by
Parkinson’s disease diminished the cognitive reserve, which leads
to the clinical onset of AD?

Unlike the original NINCDS-ADRDA classification, the
current 2018 National Institute of Aging and Alzheimer’s

Association (NIA-AA) diagnostic definition is based on the
presence of Abeta and Tau proteins in cerebrospinal fluid or
positron emission tomography (PET) and atrophy indicating
neurodegeneration in brain imaging. The NIA-AA definition
introduces the so-called AT(N) classification to standardize
biomarker findings in AD: therein A stands for positive
Abeta biomarkers, T for phospho-Tau biomarkers, and N for
Neurodegeneration markers in cerebrospinal fluid (total Tau
burden) or atrophy shown in magnetic resonance imaging
(MRI). Positive biomarkers are marked with a “+”-sign. As
neurodegeneration is not specific for AD, N is usually placed
in parentheses. The disease’s cognitive dimension is defined
separately and can be added to the classification as the letter C
in its extension AT(N)(C). This definition is primarily intended
for research and not used in routine clinical practice (Jack
et al., 2018). It is debated whether this definition may prevent
shifting scientific attention to other relevant candidate factors
contributing to AD—which might lead to missing mechanistic
cascades beyond Abeta and Tau proteins (Gauthier et al.,
2018).

While the NINCDS-ADRDA definition only considers
cognitive symptoms, the NIA-AA definition does not consider
cognitive symptoms in their core AT(N) classification (Jack et al.,
2018). Therefore, possible, more specific classifications could
be “Alzheimer’s disease with dementia” or “Alzheimer’s disease
with mild cognitive impairment” instead of the currently used
term “Alzheimer’s dementia,” which merges both AD pathologic
changes and dementia syndromes (Jack et al., 2018).

Even though clinical classification for probable AD (McKhann
et al., 1984) and research frameworks as the definition of AD by
dementia with A+T+N+ biomarkers exist (Jack et al., 2018),
only examination of invasively obtained tissue samples either
from living individuals by biopsy or post-mortem at autopsy can
provide a definitive diagnosis of AD—by proving the presence
of neuritic plaques (with Abeta) or neurofibrillary tangles (with
Tau). Autopsy is preferred to highly invasive in vivo interventions
for a definitive diagnosis of AD, due to the lack of causal
disease-modifying treatment options. The confirmation rate of
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clinically diagnosed AD by autopsy was calculated in a meta-
analysis with a sensitivity of 85.4% and specificity of 77.7% (Cure
et al., 2014). However, even neuropathological examination of
brain tissue as the state-of-the-art gold standard method for AD
diagnosis often reveals several protein-related pathologies, i.e.,
those representing the typical picture for AD plus others that
have been associated with different neurodegenerative diseases
(Robinson et al., 2018b).

Possible prodromal stages of dementia, e.g., mild cognitive
impairment (MCI) and subjective cognitive decline, do not meet
clinical criteria for a dementia syndrome because patients do not
have deficits in their activities of daily living. In MCI, cognitive
deficits are measurable but still do not affect activities of daily
living (Petersen et al., 2014). In the case of subjective cognitive
decline, it is not possible to objectively measure the deficits in
neuropsychological examinations, but patients notice cognitive
deficits themselves (Rabin et al., 2015). These states may in some
cases be phase transitions of disease progression to dementia.
In combination with other factors, they may help to assess an
individual’s risk of developing manifest dementia (Cheng et al.,
2017).

Diagnosis is often an important question for patients and their
families—even without helpful therapeutic interventions because
it provides more certainty regarding the prognosis of the disease
and the development of care plans. However, it is often unclear
to what extent distinct types of dementia and related disorders
contribute to cognitive impairment (Ashraf et al., 2016; Leyhe
et al., 2017).

Epidemiology
Neurodegeneration is a continuum where several factors, such
as proteinopathies, vascular and immunological changes, are
likely to interact (Robinson et al., 2018b). Within the spectrum
of dementias, the most common dementia is due to AD,
followed by vascular dementia and mixed dementia which
is a combination of AD and vascular dementia (American
Psychiatric Association, 2013) (Figure 2, data from Robinson
et al., 2018a). Frontotemporal dementias and Parkinsonian
syndromes, particularly Lewy-body dementia and Parkinson’s
dementia, occur with lower prevalence than AD (Robinson et al.,
2018a). A systematic overview of themost common and clinically
important dementias is presented in Figure 3. Dementias can
occur due to primary neurodegenerative diseases, i.e., AD, mixed
dementia, frontotemporal and Lewy-body dementia, and due to
secondary dementias linked to vascular changes, immunology,
infections, and other diseases (Figure 3). Nevertheless, this
differentiation is a simplification, as many secondary dementias
arise from neurodegenerative processes during the disease course
of primarily non-neurodegenerative diseases. A well-known
example is the neurodegenerative course in late stages of multiple
sclerosis (Bermel, 2017).

The relevance of a correct diagnosis of the specific form
of dementia results from the different treatment strategies
and prognoses related to different types of dementia. Some
possible causes of dementia are curable, such as normal
pressure hydrocephalus, metabolic disorders, and immunologic
or infectious causes. While presently no disease-modifying

therapy for any primary neurodegenerative disease exists
(Alzheimer’s Association, 2019), future therapies, as well as
ongoing symptomatic and more experimental studies, may
benefit from a careful patient stratification. This is particularly
important for approaches that aim to model AD mechanisms
with patient data, as the resulting model will only be as specific
to AD as the patients’ assigned correct (and strict) diagnosis. An
overview of the experimental therapies that are in development
for AD can be found in Table 1. For the established treatments
for other dementia causes, we refer to Table 2.

The population over 80 years of age is the group in which
the prevalence of dementia is increasing most rapidly (Fiest
et al., 2016). While different pathogenic pathways have been
hypothesized for AD and vascular dementia, it is increasingly
acknowledged that both diseases share many risk factors (Love
and Miners, 2016). However, interactions of Abeta in AD with
vascular factors [e.g., altered blood-brain barrier permeability
caused both by microvascular changes and Abeta deposition
(Santos et al., 2017)] can be differentiated from cerebral amyloid
angiopathy (Banerjee et al., 2020), a distinct vascular disease
caused by amyloid, which we will not discuss further here.

An increased rate of cerebrovascular disease manifestations
and thus a higher incidence of vascular dementia correlates with
lifestyle and atherogenic risk factors such as physical activity
(Lindsay et al., 2002; Larson et al., 2006), diabetes mellitus
(Pasquier et al., 2006), and hypercholesterinemia (Shepardson
et al., 2011a,b), which are also risk factors for AD (Reitz
et al., 2011; Love and Miners, 2016). However, mechanisms
whereby these factors mediate their impact, have been debated
(Santos et al., 2017). One hypothesis is that microvascular lesions
remain undiscovered, leading to a failure to diagnose vascular
or mixed dementia. Another possibility is the involvement of
metabolic pathways in the pathogenesis. Notably, the most
important genetic risk factor in the general population is
apolipoprotein E (APOE) E4 hetero- or monozygotic, an allele
of a metabolic gene that also modulates atherosclerotic risk
(Suri et al., 2013; Mahley, 2016). Especially in the elderly,
the prevalence of both atherosclerosis and neurodegeneration
increases exponentially and could likely affect the same
individuals (Rohn, 2014). Although the role of metabolic factors
is not clear, epidemiological approaches have shown that up to
one-third of cases attributed to AD might be preventable by
addressing these modifiable risk factors (Norton et al., 2014).
However, this evidence comes from amere observational method
using the population-attributable risk. This statistical method
describes the fraction of the incidence of a disease attributed to
one particular risk factor. While this index allows an estimation
of the effect that might follow removing the risk factor, as a result
of an observational study, it precludes establishing a clear causal
relation between observed risk factors and the disease (Siegerink
and Rohmann, 2018). For example, if the definition of AD in
the underlying observational study is inconsistent and therefore
contains also other disease entities as mixed dementia, the
population-attributable risk would be related to mixed dementia
as well as to AD itself. Therefore, reducing atherosclerotic risk
factors might affect themixed dementia patients instead of “pure”
AD cases.
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FIGURE 2 | Basic epidemiology of different types of dementia. Data and p-values from Robinson et al. (2018a). Shown is an elderly cohort (n = 185) with a mean age

of 97.7 years in an autopsy study. On the left, we see the prevalence of the cognitive states within this cohort at the time of death. More than half of the people

suffered from dementia in this age group, while a quarter suffered from mild cognitive impairment (MCI), and another quarter had no cognitive disturbances. On the

right, the clinical diagnosis (ante mortem) for the subpopulation that suffered from dementia is shown. Alzheimer’s Disease (AD) is the most prevalent form of

dementia; however, mixed forms and other primary neurodegenerative dementias as synucleinopathies or frontotemporal lobar degeneration (FTLD) spectrum also

play a role as well as vascular dementia (VD). In the post mortem analysis, the full cohort showed at least partial AD-related pathologic changes: 100% had

neurofibrillary tangles of at least Braak stage I, and 63% had neuritic plaques. The mean Braak stage was in the dementia group 4.1, in the non-dementia group 3.2 (p

< 0.001). However, the dementia group also showed a significant higher Lewy-body pathology (p = 0.018) and transactive response DNA-binding protein 43 kDa

(TDP-43) pathology (p < 0.001) as well as a higher rate of definitive cerebrovascular disease (p = 0.016). These findings indicate that in particular in the “super old,”

different neuropathologic changes are probably concomitant and contribute to the development of cognitive decline in dementia—in contrast to the concept of “pure”

AD as an isolated neurodegenerative disease.

BRAIN ALTERATIONS IN ALZHEIMER’S
DISEASE: FROM GENES TO BRAIN
NETWORKS

Genetics
Early-onset AD can be a familial disease with rare structural
variants or copy number variants in genes that regulate Abeta
production and clearance. For example, structural variants in
the Amyloid beta precursor protein gene (APP) affect post-
translational processing of APP by secretases leading to excess
Abeta in early-onset AD. The presenilin 1 (PSEN1) and presenilin
2 (PSEN2) genes form the active component of the γ -secretase
complex. It is critical for processing APP and other type-I
integral membrane proteins, including members of the Notch
signaling pathway and receptor tyrosine-protein kinase erbB-4
(ERBB4) (Sannerud et al., 2016). Autosomal dominant mutations
of PSEN1 and PSEN2 affect endopeptidase and carboxypeptidase
activity, leading to longer and more toxic forms of Abeta
peptides (Ertekin-Taner, 2007; Lanoiselée et al., 2017). Other
environmental and genetic factors may contribute to the etiology
of early-onset AD (Sun et al., 2017).

In contrast, late-onset AD is a complex genetic disease in
which rare structural variants and common variants, mostly
identified by genome-wide association studies, play an influential
role in etiology. The heritability of late-onset AD is estimated

to be high, with ∼50% (Pedersen et al., 2004; Ridge et al.,
2016)—yet environmental factors are likely to be additionally
important (Grant et al., 2002; Wainaina et al., 2014). The single
nucleotide polymorphism based heritability estimates are usually
high in AD, at∼25–30% (Cuyvers and Sleegers, 2016), compared
to other complex genetic brain disorders (Speed et al., 2017;
Visscher et al., 2017). APOE E2/E4 polymorphisms alone explain
∼25% of the single nucleotide polymorphism-based heritability,
while common single nucleotide polymorphisms explain the
remaining 5–7% (Cuyvers and Sleegers, 2016; Ridge et al.,
2016; Kunkle et al., 2019). The most recent three genome-
wide association studies have identified 40 independent risk
loci (Marioni et al., 2018; Jansen et al., 2019; Kunkle et al.,
2019). The majority of these loci have functions in three main
pathways: lipid metabolism, microglial activation, and APP
processing (Andrews et al., 2020). Notably, many of these loci
contain functionally relevant single nucleotide polymorphisms
that impact expression in AD-associated cortical tissues and
correlate with the so-called expression of quantitative trait loci
(Kunkle et al., 2019).

Protein Level
Two of the most relevant proteins associated with the
pathogenesis of AD are Abeta and phosphorylated Tau. Abeta
is a human protein that—due to an abnormally cleaved
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FIGURE 3 | Mind map of the dementia syndrome and its differential diagnoses. The possible etiologies are widely spread across cerebral and systemic diseases. It is

important to mention that Alzheimer’s Disease (AD) is the most common form of dementia, but AD is not trivial to diagnose, in particular, if it requires to forgo some

invasive tests in the elderly. However, the exact diagnosis is of enormous relevance because some possible causes of dementia are curable, such as normal pressure

hydrocephalus, metabolic disorders, and immunologic or infectious causes. In the clinic, most patients are diagnosed with AD, vascular dementia, Lewy-body

dementia, frontotemporal dementia, or a mixed form thereof (Figure 2). None of the primary neurodegenerative diseases can be treated in a causal and

disease-modifying way, besides the treatment of vascular dementia with general atherosclerosis therapy. Their leading proteinopathy sorts the neurodegenerative

diseases—caused by Abeta, Tau, prion protein, transactive response DNA binding protein 43 kDa (TDP-43), and alpha-synuclein (Wallesch and Förstl, 2012). Protein

images modified from http://www.ebi.ac.uk/. FTD-TDP, frontotemporal degeneration caused by TDP-43; PPA, primary progressive aphasia; FTD-ALS, frontotemporal

degeneration with amyotrophic lateral sclerosis; LATE, limbic-predominant age-related TDP-43 encephalopathy; CJD, Creutzfeldt-Jakob’s disease; GSS,

Gerstmann-Sträußler-Scheinker (syndrome); CAA, cerebral amyloid angiopathy; PCA, posterior cortical atrophy; M. Pick, Pick’s Disease.

configuration—aggregates in neuritic plaques leading to its
(neuro-)toxic effects (Klunk et al., 2007; Jack et al., 2009;
Villemagne et al., 2009). It can be found both intra- and
extracellularly (Hardy and Selkoe, 2002; Walsh and Selkoe,
2007; Selkoe and Hardy, 2016). It has been suggested that the
hyperphosphorylation of Tau protein develops as a consequence
of the aggregation of Abeta (Blennow et al., 2006). However,
phosphorylated Tau is also present in other neurodegenerative
diseases not associated with Abeta deposition (Kovacs, 2015).
Immunohistochemical analysis of brain tissue, which is more
sensitive than standard microscopical tissue examination, reveals
up to 92–100% of Tau in people who died with neurodegenerative
disorders at a mean age of 71 years, in contrast to Abeta with
20–57% (Robinson et al., 2018b). All subjects who met the

official clinicopathological criteria for AD [ADNPC, defined
as the presence of Abeta plaques, neurofibrillary tangles, and
neuritic plaques (Montine et al., 2012)] in standard microscopy
also showed Abeta and Tau in immunohistochemistry (Robinson
et al., 2018b). However, in the same group of patients, two other
protein pathologies were measured: alpha-synuclein (SNCA,
associated with several diseases of the Parkinson spectrum)
was present in 41–55% and transactive response DNA-binding
protein 43 kDa (TDP-43, associated with amyotrophic lateral
sclerosis and frontotemporal dementia) in 33–40% of patients
(Figure 3) (Robinson et al., 2018b). Therefore, “pure” AD was
a rare case in this cohort as 65–70% of confirmed AD patients
suffered at least from one other neurodegenerative comorbidity
(Robinson et al., 2018b).
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TABLE 1 | Ongoing developments for AD treatment and therapies.

Possible

disease-modifying

treatment

Substance example Results References

α secretase activators Etazolate, Epigallocatechin

gallate

Safety, Aβ aggregation↓ Vellas et al., 2011; Schneider et al., 2014

β secretase inhibitors Pioglitazone, rosiglitazone,

AZD3293

Safety, Plasma Aβ concentration↓cognitive

benefit for diabetic patients in an

observational study, until now no

prospective clinical effect

Geldmacher et al., 2011; Read et al., 2014;

Schneider et al., 2014; Heneka et al., 2015a,b;

Cebers et al., 2017; Galimberti and Scarpini,

2017

γ secretase modulators Tarenflurbil, EVP-0962 No clinical effect Green et al., 2009; Morimoto, 2010; Schneider

et al., 2014

γ secretase inhibitors Semagacestat, Avagacestat Skin cancer↑, infections↑, no clinical effect Coric et al., 2012; Tong et al., 2012; Schneider

et al., 2014

Aβ aggregation inhibitors PBT2, Tramiprosat,

Scylloinositol

CSF Aβ ↓, PiB PET↓, no clinical effect Lannfelt et al., 2008; Faux et al., 2010;

Schneider et al., 2014

Aβ active immunotherapy Anti-Aβ vaccines AN1792,

CAD-106

Meningoencephalitis (AN1792), positive

antibody response, no clinical effect

Gilman et al., 2005; Winblad et al., 2012;

Schneider et al., 2014; Farlow et al., 2015;

Vandenberghe et al., 2017

Aβ passive immunotherapy Solanezumab,

Bapineuzumab

Safety, questionable cognitive effect of

Solanezumab

Schneider et al., 2014; Siemers et al., 2016;

Mo et al., 2017; Honig et al., 2018

τ phosphorylation inhibitors Lithium, valproate High toxicity, CSF τ ↓, and questionable

cognitive effect of Lithium

Hampel et al., 2009; Forlenza et al., 2011;

Schneider et al., 2014

τ fibrillization inhibitors Methylene blue, davunetide τ production ↓, possible cognitive effect of

davunetide

Morimoto et al., 2013; Schneider et al., 2014

Macro-/Micronutrients Polyunsaturated fatty acids No clinical effect Freund-Levi et al., 2006, 2009; Quinn et al.,

2010; Schneider et al., 2014

Phosphodiesterase inhibitors Cilostazol Possible cognitive effect Arai and Takahashi, 2009; Schneider et al.,

2014

Tyrosine kinase inhibitors Masitinib unclear Schneider et al., 2014; Folch et al., 2015

Statines Simvastatin, atorvastatin Unclear cognitive effects, CSF

phopsho-τ ↓

Sano et al., 2011; Schneider et al., 2014; Li

et al., 2017

Insulin Intranasal insulin FDG PET effect, possible cognitive effect Craft et al., 2012; Schneider et al., 2014

NGF intracerebral application Neurotrophic growth factor CSF effects, gene expression effects,

possible cognitive effect in the subgroup

Wahlberg et al., 2012; Tuszynski et al., 2015;

Eyjolfsdottir et al., 2016

Deep brain stimulation n.a. Possible cognitive effects, highly invasive,

ethical issues

Hardenacke et al., 2013; Salma et al., 2014;

Nardone et al., 2015; Bittlinger and Muller,

2018; Lv et al., 2018

Transcranial brain stimulation n.a. Unclear effects Freitas et al., 2011; Floel, 2014; Nardone et al.,

2014, 2015; Rowan et al., 2014; Lefaucheur

et al., 2017

Parts of the table are modified from Schneider et al. (2014), Oertel (2017), and Young et al. (2018). Aβ, amyloid beta protein; CSF, cerebrospinal fluid; PiB PET/FDG PET, Pittsburgh

Compound B/fluordeoxyglucose positron emission tomography; τ , tau protein.

Amyloid-Beta
The deposition of Abeta typically follows a particular
spatiotemporal pattern in the progression of AD. An illustration
of this distribution, initially described by Braak and Braak
(1991), can be seen in Figure 4. The course can be divided
into three general stages (Braak and Braak, 1991, 1997; Taylor
and Probst, 2008). Stage A develops along the perirhinal and
entorhinal cortices. Stage B involves the hippocampus proper and
neighboring regions like the posterior gyrus parahippocampalis.
Stage C also encompasses a wide distribution of neocortical
areas. Table 3 lists the brain regions that are specific to each
amyloid stage.

One possible explanation of the pathogenic deposition of
Abeta is a maladaptive change in its processing, regulated by

a group of secretases and other enzymes. We give only a
brief overview here. APP is a transmembrane protein whose
function has been associated with neural development and
synaptic plasticity (Korte, 2019). It can be processed into different
subdomains. One possible way is the subsequent procession by
the α-secretase and the γ-secretase, called the non-amyloidogenic
pathway (Blennow et al., 2006). This “physiological” pathway
does not lead to Abeta fragments (with β-helix), which can
later aggregate to plaques, but APP is transformed into a
protein subdomain with α-helix configuration (Blennow et al.,
2006). In another “pathological” pathway, APP is processed
to soluble Abeta with a β-helix configuration by the β-
secretase (and afterwards again by the γ-secretase). The β-
helices allow molecules to aggregate into Abeta oligomers and
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TABLE 2 | Potentially curable causes of dementia syndromes (Wallesch and Förstl, 2012; Day, 2019).

Curable dementia cause Diagnostic tool Therapy

Major depression Clinical Psychotherapy, anti-depressive pharmacotherapy

Nutritive deficiency (Vitamine B12, D, folic acid) Blood Substitution

Infections (lues, borreliosis, viral) CSF, Blood, clinical, imaging Anti-infectious

Normal-pressure hydrocephalus Imaging, tab test Ventriculoperitoneal shunt

Autoimmune encephalitis CSF, imaging Immunosuppression, plasmapheresis

Vasculitis CSF, imaging, angiography Immunosuppression

Macroangiopathy Imaging Risk factor management, thrombendarteriectomy

Microangiopathy Imaging Risk factor management

Hypothyreosis Blood Substitution

Niemann-Pick type C Blood (genetics, oxysterols) Enzyme substitution

Epileptic encephalopathy EEG, ex juvantibus Anticonvulsive drugs

CSF, cerebrospinal fluid; EEG, electroencephalography.

FIGURE 4 | Visual representation of Abeta and Tau stages according to Braak and Braak (1991, 1997), and Braak et al. (2006). The darker color indicates a higher

load of this protein in the respective brain area. The regions are listed in Tables 3, 4.

afterwards polymers which become insoluble and deposit in the
extracellular space, forming the so-called Abeta plaques. This
pathway’s activation leads to decreased Abeta concentration in
cerebrospinal fluid because its insoluble configuration cannot
be measured therein (Blennow et al., 2006; Olsson et al., 2016).
The imbalance between these two pathways, represented by the
activity of α- and the β-secretase, is suggested to play a major role

in the pathogenesis of AD and is currently the target of various
experimental treatment strategies (Coric et al., 2012; Tong et al.,
2012; Ortega et al., 2013; Hsiao et al., 2019; Xia, 2019) (Table 1
and Figure 5).

Another important feature, linked not only to the protein
metabolism of Abeta but also to neural development, is the
notch receptor 1 (NOTCH1) pathway (Pierfelice et al., 2011; Brai
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TABLE 3 | Stages of amyloid deposition (Braak and Braak, 1991, 1997; Braak

et al., 2006).

Amyloid deposition—

Stage A Stage B Stage C

Polar and orbitofrontal

prefrontal cortex; polar,

inferior, central, and

ventral temporal cortex

As stage A, additional:

hippocampus and gyrus

parahippocampalis,

amygdala, posterior and

anterior insula, subgenual

and retrosplenial cingulum,

ventrolateral prefrontal

cortex

As stage B, additional

global neocortical

dissemination

et al., 2015; Marathe and Alberi, 2015). NOTCH1 is a membrane
protein that plays a major role as the transcription factor for both
its intracellular- and extracellular domain (Brai et al., 2016). The
processing of NOTCH1 to its subdomains is performed by the
γ-secretase—the same secretase involved in the amyloidogenic
and non-amyloidogenic pathway of APP processing (Brai et al.,
2016). APP and NOTCH1 are co-substrates in the extracellular
domain of the γ-secretase (Marathe and Alberi, 2015; Brai et al.,
2016). NOTCH1 is found in Abeta plaques, and its intracellular
signaling is reduced in AD (Brai et al., 2016).

Tau Protein
In the absence of any additional neuropathological factors in
several dementias, phosphorylated Tau may play a major role
in the degenerative process of so-called primary tauopathies.
This group includes, e.g., progressive supranuclear palsy (Cope
et al., 2018), corticobasal degeneration, and the spectrum of
frontotemporal dementia (including Pick’s disease) (Kovacs,
2015). In contrast, in secondary tauopathies, Tau seems to
be involved in the pathogenesis only when other factors are
present, as, e.g., in prion diseases and chronic traumatic
encephalopathy (Kovacs, 2015) (Figure 3). From this point of
view, AD has a unique context because it is neither classified
as a primary tauopathy (due to the concomitant presence of
Abeta) nor is the amyloid pathology ultimately linked to Tau’s
hyperphosphorylation. However, phosphorylated Tau density
correlates better with the severity of cognitive decline than the
accumulation of Abeta itself (Riley et al., 2002; Bennett et al.,
2005). Hence, there is controversy about the role of Tau protein
in AD as either an independent disease factor or an indicator of
general neurodegeneration derived from the neurotoxic effects of
amyloid deposition. Clinical trials, based on anti-Tau-antibodies
and -vaccines, modulators of Tau aggregation, and antisense
oligonucleotides targeting its gene the microtubule associated
protein tau (MAPT), are currently ongoing for AD patients
(Yanamandra et al., 2015; Jadhav et al., 2019) (Table 1).

Tau protein pathology is complex and involved in several
neurodegenerative processes (Kovacs, 2015; Guo et al., 2017;
Cope et al., 2018). Different forms of neurodegeneration lead
to the deposition of Tau (Spires-Jones et al., 2017), which can
be measured in the cerebrospinal fluid (Ossenkoppele et al.,
2015). In general, the phosphorylation homeostasis of the Tau

protein is maintained by a series of kinases. A turn of this
equilibrium toward hyperphosphorylation of Tau protein shows
two consequential effects: first, Tau loses its natural function
of microtubule stabilization followed by disturbed axonal
transportation of vesicles, leading to disturbed axonal signal
transmission. Second, the hyperphosphorylated Tau protein
polymerizes to insoluble filaments and big tubular aggregates,
the so-called neurofibrillary tangles. The brain’s clearance system
is unable to eliminate these aggregates leading to inflammatory
processes and, eventually, neuronal death (Blennow et al., 2006).
These phenomena have been observed using three methods: (i)
microscopy of neuronal tissue with neurofibrillary tangles, (ii) an
increased concentration of the hyperphosphorylated Tau section
in the cerebrospinal fluid, and (iii) non-invasive nuclear imaging
methods that trace Tau protein (flortaucipir PET) (Cope et al.,
2018). Because of its two main effects, namely neuronal death
and axonal dysfunction, Tau leads to a disconnection of the
affected regions in the brain network. This has been measured
in regions with high binding of flortaucipir PET tracing the Tau
protein (Cope et al., 2018). However, the Tau protein is a better
marker in diagnostics for the severity of cognitive dysfunction
than Abeta in AD (Degerman Gunnarsson et al., 2014). The local
neurotoxic effects of Tau can be linked to network disruption and
an increased clinical score of apathy symptoms (Kitamura et al.,
2018).

The stages of Tau deposition (defined by post mortem
histopathological criteria), similar to Abeta stages, are called
Braak Tau deposition stages (Braak and Braak, 1991, 1997;
Braak et al., 2006), and show a characteristic spatiotemporal
pattern formation in the course of typical AD. The patterns of
post mortem neuropathological and nuclear imaging findings
are illustrated in Table 4. For this reason, most patients with
“typical” AD show early Tau depositions years before the
onset of symptoms in the medial temporal lobe. The so-called
transentorhinal stage consists of stages I and II and concerns
the transentorhinal cortex in the ventromedial temporal lobe,
and later the entorhinal cortex in the lamina granularis externa
(Lamina II). This prodromal stage is followed by a further
spreading into the limbic lobule (stages III and IV, involving
mainly the hippocampus and the temporal allocortex) and finally
into the neocortex (stages V and VI) (Braak and Braak, 1991,
1997; Braak et al., 2006). The six stages of this dissemination
process of Tau deposition fall into three functional stages (i.e.,
transentorhinal/entorhinal, limbic, and neocortical), and have a
high correlation to the cognitive decline of an individual AD
patient (Riley et al., 2002; Bennett et al., 2005). Only a few
amyloid plaques and often no clinical symptoms can be observed
in this first functional category. In detail, the non-obligatory
prodromal stage of AD is characterized by an MCI, which often
converts to the full clinical presentation of dementia and has,
thus, a significant correlation to higher Braak Tau deposition
stages (Riley et al., 2002; Bennett et al., 2005). In the limbic
stage, the Tau deposition is strongly associated with clinical
symptoms of MCI stage (e.g., memory function, verbal fluency,
impairments of daily life activities) (Riley et al., 2002). In the
highest functional stage, which concerns the neocortex, most
patients have amnestic impairment (Braak and Braak, 1991, 1997;
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TABLE 4 | Braak stages of Tau deposition (Braak and Braak, 1991, 1997; Taylor and Probst, 2008).

Tau deposition stage Anatomic region 18F-AV-1451 PET Diagnosis (PET)

I Trans-entorhinal Transentorhinal cortex, perirhinal cortex (medial temporal

lobe)

Entorhinal cortex, Hippocampus, Parahippocampal

cortex (Cho et al., 2016)

MCI

II Entorhinal cortex (lamina II)

III limbic Hippocampus, temporal allocortex

IV Neocortical association fields next to the hippocampus Isocortical spreading, particular differences to MCI in the

precuneus, prefrontal, temporal, and inferior parietal

cortex (Cho et al., 2016)

AD

V Isocortical Neocortex, spreading to dorsolateral

VI Primary sensory and motor areas

18F-AV-1451 PET, 18F-flortaucipir positron emission tomography; MCI, mild cognitive impairment.

Taylor and Probst, 2008). Similarly, the Tau protein deposition
traced by flortaucipir PET correlates with the clinical presence
of MCI as well as with AD and with cognitive performance
(Cho et al., 2016).

There seems to be a high correlation in general of Tau
and amyloid deposition patterns described above; however, it is
worth mentioning that the three stages of amyloid deposition
described by Braak and Braak (Braak and Braak, 1991, 1997;
Taylor and Probst, 2008), A, B, and C, do not strictly coincide
with the Tau deposition stages I–VI. The six stages of Tau
deposition follow a stricter distribution course and show some
overlap with the amyloid deposition stages, in particular, within
the ventromedial temporal allocortices and pro-isocortices and
later temporoparietal neocortices (Tables 3, 4 and Figure 4). The
effects of both pathologies differ to a larger extend, for instance,
in the specificity to AD, to neurodegeneration in general,
or to cognitive functions (Van Hoesen and Solodkin, 1994).
However, the “macro sequence” of archicortex—mesiotemporal
cortex—temporoparietal neocortex is the same, and the impaired
cognitive domains in AD (memory and visuoconstruction) are
associated with those regions.

Neurotransmitters
Of interest in AD pathogenesis are especially two transmitter
systems: the cholinergic and the glutamatergic systems.
Acetylcholine is one of the essential neurotransmitters in the
brain. Its functions are pleiotropic: acetylcholine is a fundamental
transmitter in the peripheral vegetative nervous system and
neuromuscular transmission. In the brain, acetylcholine is
involved in many functional systems but particularly involved
in the modulation of synaptic signaling (Van der Zee et al.,
2011). The dysfunction of the cholinergic system is relevant in
the pathogenesis of AD, as acetylcholine is essential for memory
consolidation (Ferreira-Vieira et al., 2016). Anti-dementia drugs
work as inhibitors of the acetylcholine esterase, increasing the
concentration of acetylcholine in the synaptic gap, leading
to slightly improved memory function (Ferreira-Vieira et al.,
2016). Cholinergic effects have been shown to be involved
in learning processes in the hippocampal formation by the
enhancement of synaptic modification and selective presynaptic
inhibition of synaptic transmission in different regions and
layers (Hasselmo and Schnell, 1994). The beneficial effect of
acetylcholine on memory encoding is probably mediated by

strengthened synaptic modification, afferent input and spiking
behavior (Hasselmo, 2006). On a functional level, cholinergic
modulation has been linked to working memory for novel
stimuli (Hasselmo and Stern, 2006). It has been hypothesized
that synaptic connections exist for previously familiar stimuli
(such as words or numbers) (Hasselmo and Stern, 2006),
which makes working memory of these stimuli independent
of cholinergic modulation (Crow and Grove-White, 1973;
Broks et al., 1988). Moreover, acetylcholine is involved in
excitability modulation in AD. While memory performance
during task functional MRI can be correlated with activation
of medial temporal lobe regions as the hippocampus and gyrus
parahippocampalis, it was shown that stronger recruitment
of those regions is associated with cognitive decline in MCI
patients (Dickerson et al., 2004). The underlying hypothesis
stated that hyperactivation could be seen as a compensatory
effect due to hippocampal atrophy (Dickerson et al., 2004).
Similarly, task functional MRI in cognitively still unimpaired
PSEN1 mutation carriers revealed increased activation of the
right anterior hippocampus compared to non-carrier controls,
many years before the estimated disease onset of familial
AD (Quiroz et al., 2010). This can be brought into context
with the role of cholinergic suppression in learning and AD.
Runaway synaptic modification describes the phenomenon
of exponential gain in synaptic connection strength, caused
by activity evolving across already strengthened connections
(Hasselmo, 1994). It can be seen as a natural consequence of
Hebbian rules (Morris, 1999), but it interferes with learning
processes, wherein only a selective subset of connections
should be strengthened (the pattern to learn), while other
existing strong connections should remain stable (Hasselmo,
1994). Cholinergic presynaptic inhibition of transmission
along associative fibers offers a mechanism to protect from
runaway synaptic modification during learning (Hasselmo
and Bower, 1992). However, when hyperactivity in AD is
introduced, it leads to more runaway synaptic modification,
while vice versa, the strengthening of undesired networks
can lead to more hyperactivity in a vicious circle (Hasselmo,
1994). The continuous presence of hyperactivation can further
lead to excitotoxic effects (Hynd et al., 2004). Excitotoxicity
refers to calcium-mediated toxic effects due to a sudden
increase in glutamatergic transmission. Ashford and Jarvik
hypothesized already in 1985 a preferential affection of
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FIGURE 5 | Overview of contributing factors in AD and potential intervention strategies. Shown are only the most important factors, which are also described in more

detail in this article’s main text. In the upper left corner, we see the neurovascular system. Both characteristics of blood vessels (e.g., atherosclerosis and endothelial

dysfunction) (Love and Miners, 2016), as well as aspects of the blood-brain barrier (Sweeney et al., 2018), play a role in AD. A particular aspect here is the role of

neural immunity, both with the brain-own microglia cells and the effect of systemic immune cells, e.g., mediated by antibodies (Heneka et al., 2015a,c). On the upper

right corner, we see an illustration of the multiscale network structure of the brain. Stimulation approaches as deep brain stimulation (DBS), transcranial magnetic

stimulation (TMS), and transcranial direct current stimulation (tDCS) act on the larger scale of a network-level; nevertheless, the actual changes happen on the level of

synapses. Also, transmitter interventions develop their effects mainly at the micro-scale of synapses. In the lower right corner, basic molecular pathways in the extra-

and intracellular space of a neuron are shown. We focused here on the processing of the two hallmark proteins Abeta and Tau, as well as the Notch-1 pathway, which

is involved in memory (Marathe and Alberi, 2015) and plasticity (Brai et al., 2015). We illustrate the APP procession by the amyloidogenic or non-amyloidogenic way

and its interaction with Notch-1 processing and, second, in the axon, the hyperphosphorylation and aggregation of Tau. A more detailed description of the named

treatment strategies presently under development is provided in Table 1. NGF, nerve growth factor; Abeta, amyloid-beta; p-tau, phosphorylized Tau protein; APP,

amyloid precursor protein; APPα, APP in alpha-helix configuration; NECD, Notch extracellular domain; NICD, Notch intracellular domain.

highly neuroplastic connections with neurofibrillary tangles
(Ashford and Jarvik, 1985), which has been further supported
by a wide range of genetic and environmental AD risk
factors that are associated with increased plasticity (Mesulam,
2000).

The concept of excitotoxicity is moreover essential for other
transmitter systems as glutamate. Anti-dementia drugs that are
no inhibitors of the acetylcholine esterase—mainly the N-methyl-
D-aspartate (NMDA) receptor antagonist memantine—decrease
glutamatergic transmission in the synaptic cleft. Glutamatergic
dysfunction is also related to neuroinflammation and plasticity.

Neuroimmunology
Besides the cascades of Abeta and Tau, another important
hallmark in AD pathogenesis is the role of neuroinflammation
and autoimmunity. One of the difficulties in understanding
AD pathogenesis is that intrinsic proteinopathic dysfunction
alone does not necessarily lead to neurodegeneration and
cognitive decline. Such impairments are more likely to be
caused by various toxic intermediate mechanisms, as discussed
before. One potentially important but poorly understood
mechanism is neuroinflammation. Neuroinflammation is a
relevant factor in the pathogenesis of dementia because it
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is always the last part of the pathogenic cascade and leads
directly to neuronal death (Heneka et al., 2015a). However, it
is not clear how the modulation of inflammation can affect
the process of neurodegeneration. Clinical trials have shown
contradictory results. For instance, the long-term administration
of non-steroidal anti-inflammatory drugs showed positive
preventive effects and can hence reduce the a priori risk
for AD (Wang et al., 2015). However, in contrast to those
observational studies, prospective trials with steroids and other
immunosuppressive drugs have not shown significant effects, and
neither have randomized controlled studies with non-steroidal
anti-inflammatory drugs (Jaturapatporn et al., 2012). A case-
control study in patients with rheumatoid arthritis (who have a
slightly higher risk for AD) showed a significant reduction of AD
incidence by 70% (adjusted Odds ratio of 0.30, p = 0.02) if the
patients were treated with the tumor necrosis factor α inhibitor
etanercept (Chou et al., 2016), as long as it was well tolerable
(Butchart et al., 2015). As the etiology and differential diagnosis
of dementia is often unclear, the label of AD could cover up
a relevant percentage of autoimmunological neural phenomena
that could be treated with high-dose and long-time corticosteroid
therapies (Pruss and Lennox, 2016). Cerebral immunology is
complex, as it involves the organ-specific immunological cell type
of microglia. An appropriate discussion would go beyond this
review’s scope, and we would like to refer the interested reader
to the following review on neuroimmunology and AD (Heneka
et al., 2015c).

Imaging
Anatomical Magnetic Resonance Imaging
MRI offers a commonly used technique to screen for biomarkers
in vivo. As described, the pathogenetic pattern of AD consists
of the accumulation of amyloid plaques and neurofibrillary
tangles. Volumetric assessment of gray matter loss in MRI has
been identified to correlate with the distribution and degree
of neurofibrillary tangle accumulation (Csernansky et al., 2004;
Whitwell et al., 2008). Therefore, volumetric MRI can provide
a proxy measurement for regional neurofibrillary tangle load
(Persson et al., 2017).

AD patients have consistently been found to have atrophy
of memory-related structures, including the hippocampus and
other mesiotemporal regions, as well as the precuneus, cingulate,
and the prefrontal areas (Braak and Braak, 1991; Frisoni et al.,
2002; Karas et al., 2004; Shiino et al., 2006; Rosenbloom
et al., 2011). However, non-amnestic symptoms like aphasia,
visuospatial problems, or behavior-predominant dysfunction are
initially present in up to 30% of AD patients (Koedam et al.,
2010; Dickerson et al., 2017). The distribution of neurofibrillary
tangles in those patients with an atypical clinical presentation
is either limbic-predominant, hippocampal-sparing, or not
reported, which is also referred to as the no-atrophy or minimal-
atrophy AD variant (Murray et al., 2011; Persson et al., 2017). A
correlation between these phenomenological subtypes of AD and
volumetric MRI has already been demonstrated (Whitwell et al.,
2012). Multiple studies explored MRI as an in vivo marker of
these AD subtypes (Byun et al., 2015; Hwang et al., 2016; Ferreira
et al., 2017; Persson et al., 2017). Besides the atrophy patterns

of syndrome variants in AD morphology, a few single-region-
based volume reductions have also been identified as potential
biomarkers for AD. A detailed overview of these features is
provided in Table 5.

As a non-invasive in vivo measurement, MRI opens up
the possibility of longitudinal tracking of atrophy and disease
progression of AD. Recent studies investigated volume loss in AD
patients longitudinally (Harrison et al., 2019; Pontecorvo et al.,
2019; Sintini et al., 2019). Regions with reduced baseline gray
matter volume also tend to show more atrophy over time and the
highest atrophy rates are in the temporoparietal regions (Sintini
et al., 2019).

Besides gray matter atrophy, white matter hyperintensities,
which appear on T2-weighted or fluid-attenuated inversion
recovery MRI scans, have a high prevalence among AD patients
(Brickman, 2013). White matter hyperintensities, in general,
can be morphological correlates of microvascular lesions as
well as inflammatory or unspecific changes in aging. Increased
overall hyperintensity volume has been observed 6–22 years
before estimated symptom onset of AD (Lee et al., 2016).
The relationship between white matter hyperintensities and AD
pathology is still an active research field (Graff-Radford et al.,
2019).

Positron Emission Tomography
Nuclear imaging methods allow in vivo acquisition of metabolic
features of the brain by using various radioactively marked tracer
molecules, so-called radionuclides. PET offers a remarkable
possibility of different functional assessments of the brain. The
underlying procedure makes use of β+-emitters: the emitted
positrons of β-decay react with electrons of the tissue in a so-
called annihilation. This leads to the emission of photons, which
can be measured by specific sensors (Phelps, 2000).

Both Abeta and Tau deposits can be detected indirectly by
PET and correspond well to the underlying pathologic changes
at autopsy (Clark et al., 2011; Schöll et al., 2016). Tau tracer
binding in AD is not only increased in regions that are known
to be affected in early Braak stages (Cho et al., 2016; Schöll et al.,
2016; Kitamura et al., 2018; Gordon et al., 2019; Harrison et al.,
2019), but also globally heightened in the cortex (Cho et al., 2016;
Pontecorvo et al., 2019). However, Tau binding is also present in
healthy controls, predominantly located in areas with atrophic
changes (Harrison et al., 2019). Similarly, Abeta tracers show
increased global deposition in the whole brain (Clark et al., 2011;
de Wilde et al., 2018) and in early Braak stage regions (Murray
et al., 2015) (Alongi et al., 2019). However, the percentage of
“Abeta-positive” healthy controls seems higher than for Tau (Jack
et al., 2014; Jansen et al., 2015; Song et al., 2015).

Another important PET measurement is the assessment of
energy metabolism by the usage of marked glucose molecules.
Multiple studies suggest temporoparietal hypometabolism in AD
(Meltzer et al., 1996; Langbaum et al., 2010; Morbelli et al., 2010;
Fukai et al., 2018; Ou et al., 2019), which is already an established
marker for unclear cases of other dementias in clinical practice.
Interestingly, similar to atrophy patterns (Csernansky et al., 2004;
Whitwell et al., 2008), hypometabolism has a strong association
with Tau deposits (Adams et al., 2018). The usage of glucose PET
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TABLE 5 | Overview of brain imaging studies and their results in Alzheimer’s disease for different modalities.

Changes in AD imaging compared

to healthy controls

Imaging

modality

Reference for evidence Contradicting evidence

Global connectome

changes

Decreased global efficiency/longer

characteristic path length

EEG (Stam et al., 2007; de Haan et al., 2009)

MEG (Stam et al., 2009)

fMRI Amnestic MCI (Minati et al., 2014); AD

(Sanz-Arigita et al., 2010; Zhao et al., 2012)

Similar characteristic path length as

controls (Supekar et al., 2008)

sMRI (Lo et al., 2010; Reijmer et al., 2013; Daianu et al., 2015; Zhao et al., 2017) (not

significant); (He et al., 2008; Yao et al., 2010)

Decreased averaged local efficiency sMRI (Reijmer et al., 2013) Increased averaged local efficiency in

fMRI (Zhao et al., 2012)

Decreased global clustering EEG (de Haan et al., 2009)

MEG (Stam et al., 2009) Preserved clustering coefficient in

EEG (Stam et al., 2007)

fMRI Amnestic MCI (Minati et al., 2014); AD

(Supekar et al., 2008; Dai et al., 2019)

Increased global clustering in fMRI

(Zhao et al., 2012); unchanged global

clustering in fMRI (Sanz-Arigita et al.,

2010)

sMRI (Reijmer et al., 2013; Pereira et al., 2016; Dai

et al., 2019) (not significant)

Increased clustering coefficient in

structural MRI (He et al., 2008; Yao

et al., 2010);

Decreased network robustness MEG (de Haan et al., 2012)

Altered modular structure fMRI Amnestic MCI (Minati et al., 2014); AD (Chen et al., 2013; Dai et al., 2019)

sMRI (Pereira et al., 2016; Dai et al., 2019)

Rich club organization affected sMRI (Pereira et al., 2016; Yan et al., 2018; Dai et al., 2019)

Network changes DMN is attacked by AD fMRI (Çiftçi, 2011; Hahn et al., 2013; Dai et al.,

2014, 2019; Bernard et al., 2015; Chen et al.,

2016; Cope et al., 2018)

Increased local efficiency in the DMN

in fMRI (Zhao et al., 2012)

sMRI (Hahn et al., 2013; Zhao et al., 2017; Dai et al., 2019)

The core of the network is most

affected

sMRI, MEG,

and fMRI

(Guillon et al., 2019) Predominantly low-degree regions

outside the core loose connectivity in

structural MRI (Daianu et al., 2015)

Increased connectivity for sensorimotor

system

sMRI, MEG,

and fMRI

(Guillon et al., 2019)

Regional

connectome

changes

Decreased connectivity in the insula fMRI (Chen et al., 2013)

Decreased connectivity in the

posteromedial cortex

fMRI (Xia et al., 2014)

Decreased connectivity in the medial

temporal cortex

fMRI (Burggren and Brown, 2014)

Decreased connectivity in the amygdala fMRI (Yao et al., 2013; Wang et al., 2016)

Decreased connectivity in the

parahippocampal area

sMRI (Solodkin et al., 2013)

Decreased connectivity in frontal

regions

sMRI (Lo et al., 2010) Increased connectivity within frontal

areas in fMRI (Supekar et al., 2008)

Disconnection of the precuneus,

parietal and temporal areas

fMRI Amnestic MC (Minati et al., 2014)

Reduced local clustering for the

hippocampus

fMRI (Supekar et al., 2008)

Decreased connectivity within the

temporal lobe

fMRI (Supekar et al., 2008)

Regional atrophy Atrophy in the hippocampus sMRI Mild dementia stage of AD (Bosscher and Scheltens, 2002; van der Flier et al., 2005);

amnestic MCI (Shi et al., 2009)

Atrophy and thinning of the entorhinal

cortex

sMRI (Bobinski et al., 1999; Dickerson et al., 2001; Teipel et al., 2006; Velayudhan et al.,

2013; Blanc et al., 2015)

Reduction of amygdala volume sMRI (Whitwell et al., 2005; Barnes et al., 2006)

Volume loss in the thalamus sMRI (Callen et al., 2001; Yi et al., 2016)

(Continued)
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TABLE 5 | Continued

Changes in AD imaging compared

to healthy controls

Imaging

modality

Reference for evidence Contradicting evidence

Reduction in caudate nucleus volume sMRI (Rombouts et al., 2000; Madsen et al., 2010)

Atrophy in the nucleus accumbens sMRI (Liu et al., 2010; Yi et al., 2016)

Tau PET Global neocortical Tau binding

increased

18F-AV-1451 (Cho et al., 2016; Pontecorvo et al., 2019)

Early Braak stage Tau binding increased 18F-AV-1451,
11C-PBB3

Entorhinal cortex in MCI (Cho et al., 2016);

Precuneus and lateral parietal in inherited AD

(Gordon et al., 2019); lateral and medial frontal

cortex in AD (Harrison et al., 2019);

orbitofrontal cortex in AD (11C-PBB3) (Kitamura

et al., 2018); middle to high Braak stages

(Schöll et al., 2016)

Increased Tau binding in older healthy

controls’ temporal and retrosplenial

cortex (Harrison et al., 2019)

Tau in network hubs 18F-AV-1451,
11C-PBB3

(Cope et al., 2018; Kitamura et al., 2018) Low consistency between atrophy

and Tau deposition in atypical AD

(18F-AV-1451) (Sintini et al., 2019)

Abeta PET Global Abeta binding increased 18F-AV-45

(Florbetapir)

Visual rating (Clark et al., 2011; de Wilde et al., 2018)

Early Braak stage Abeta binding

increased.

Florbetaben

(18F), 11C-PIB

Inferior frontal cortex and precuneus (Alongi

et al., 2019); striatum in hereditary PSEN1

patients (Klunk et al., 2007) and PSEN1/APP

patients (Villemagne et al., 2009); (Murray et al.,

2015)

Middle to high Braak stages in HC,

but age-related and associated with

ApoE: with 11C-PIB (Jack et al.,

2014), meta-analysis (Jansen et al.,

2015); medial temporal lobe in HC

(Song et al., 2015)

Abeta binding increased in DMN 18F-AV-45

(Florbetapir)

Hubs of DMN including hippocampus (Chang et al., 2015)

Glucose PET (left) temporoparietal hypometabolism 18FDG Left precuneus, posterior cingulate and

superior parietal cortex in MCI-to-AD

converters (Morbelli et al., 2010), bilaterally in

Fukai et al. (2018), and ApoE ε4 carriers

(Langbaum et al., 2010); temporal, angular and

posterior cingular areas (Ou et al., 2019);

frontal, posterior temporal, and parietal cortex

(Meltzer et al., 1996)

Age-related temporal

hypometabolism in HC (Jack et al.,

2014); low sensitivity in a

meta-analysis for differentiation of

MCI converters (Smailagic et al.,

2015)

Hypometabolism associated with Tau 18FDG Hypometabolism only in the presence of Abeta

in Tau-positive regions (Adams et al., 2018)

Hypermetabolism caused by low Tau

burden in the absence of Abeta

(Adams et al., 2018)

EEG, electroencephalography; MEG, magnetoencephalography; fMRI/sMRI, functional/structural magnetic resonance imaging; PET, positron emission tomography; DMN, default mode

network; AD, Alzheimer’s Disease; MCI, mild cognitive impairment.

in clinical routine is limited by its high costs, exposure to ionizing
radiation, and low sensitivity in detecting MCI patients that will
convert to AD (Smailagic et al., 2015).

An overview of PET findings in AD is provided in Table 5.

Connectomics
After discussing the recent advances researching the microscopic
molecular level in AD, we consider a whole-brain perspective at
the macroscopic brain region level. The connectomic approach
is a neuroscientific discipline that analyzes, describes, and uses
(axonal) connectivity measures of the brain (Fornito et al., 2015).
It provides an overview of the disease effects in AD and identifies
global phenomena beyond the impairment of single regions.

In the general framework of brain networks, regions are
represented by nodes, and connections between them (either
structural or functional) are denoted as links or edges (Figure 6
shows an abstract example network). At this level of abstraction,

it is possible to calculate graph-theoretic measures for the
connectome, so-called network metrics (Bullmore and Sporns,
2009). A plethora of different—partly interdependent—metrics
shows changes in AD networks compared to healthy controls. An
overview of these findings is provided in Table 5. Heterogenous
findings for different measurement modalities exist, pointing
toward a widely spanned network disruption in AD on
different scales (Dennis and Thompson, 2014; Stam, 2014). This
heterogeneity can also be explained by different methodological
choices for network construction, e.g., setting different thresholds
for filtering out the most essential connections (van Wijk
et al., 2010; Tijms et al., 2013; van den Heuvel et al., 2017).
In general, however, converging evidence suggests aberrant
functional connectivity (measured by functional MRI) and
abnormal white matter structural connectivity in AD compared
to healthy aging. We review and align the recent literature on
this topic showing multiple local network changes resulting in
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FIGURE 6 | Neurodegeneration in Alzheimer’s Disease (AD) from a network perspective. In this schematic example network, the red links (edges) are being weakened

and progressively disconnected by AD. Preferentially, edges attached to nodes with high degree (hubs) are being targeted (here node A) (Stam et al., 2009; Lo et al.,

2010; Yan et al., 2018). Besides, lower clustering in AD has repeatedly been observed (Brier et al., 2014b; Minati et al., 2014; Pereira et al., 2016; Dai et al., 2019), i.e.,

links involved in triangles are broken off (here, e.g., the link between nodes B and C forming the triangle A-B-C). These two “attacks” of AD on the network lead not

only to a lower clustering coefficient but also evoke a lower efficiency, defined here as the inverse of the global path length. This lower efficiency is demonstrated in the

example network by the shortest path length between the blue nodes D and E before and after the deletion of the red links (before: 4 links, after: 6 links).

the global phenomena of less efficient network communication
for AD patients compared to healthy controls.

Connectomic research provides an important perspective
for understanding the development of cognition and its
decline in dementia. There are various hypotheses about the
network changes in dementia highlighting different aspects of
neurodegeneration (Dennis and Thompson, 2014). One line
of research refers to dementia as a disconnection syndrome
(Brier et al., 2014a), where the loss of neurons and small-
scale connectivity influences the macro-scale in the form
of (structurally and functionally) disconnected brain areas
(Delbeuck et al., 2003; Stam, 2014). This disconnection correlated
with the cognitive and behavioral decline (Stam, 2014) and white
matter pathology in certain areas could be used as a biomarker
for disease progression (Solodkin et al., 2013). This view on AD
as a disconnection syndrome was able to bridge multiple scales
of disease pathology in a coherent way. In recent years, however,
network science studies on AD patients expanded this picture:
widespread increases and decreases of connectivity within the
brain network were observed, pointing toward compensatory
mechanisms or reactions of the network beyond disconnection
(Stam, 2014). Even an early but seminal study conveying the
importance of “small networks studies,” especially related to
the initial disease stages, showed isolation of the hippocampus
from its cortical network connections through initial entorhinal
cortex degeneration via the perforant pathway (Hyman et al.,
1984).

In network science, brain regions with high connectivity
to other regions are called hubs. For both structural and
functional connectivity studies, hub regions have consistently
been identified as the most affected areas by AD (Stam et al.,
2009; Lo et al., 2010; Yan et al., 2018). De Brier et al. showed
that even in preclinical stages of AD, hubs are disrupted, where
hubs were defined here as nodes with the highest betweenness
centrality (a measure for involvement in important pathways)
and the highest participation coefficient (in how far the node

is connected to different modules or subnetworks) (Brier et al.,
2014b). This vulnerability of hubs correlates with a higher Abeta
burden in these hub regions (Cope et al., 2018). A focus of the
disconnection in AD lies on the default mode network, a large-
scale network of regions strongly interconnected in resting state
(Çiftçi, 2011; Hahn et al., 2013; Dai et al., 2014, 2019; Bernard
et al., 2015; Chen et al., 2016; Cope et al., 2018). Although this
phenomenon is also observed in aging (Perry et al., 2015), the
degree of default mode network disruption allows in parts the
distinction between healthy aging and AD (Greicius et al., 2004).
Regarding the functional network, especially the default mode
network is targeted by the AD-caused neurodegeneration (Çiftçi,
2011; Hahn et al., 2013; Dai et al., 2014, 2019; Bernard et al.,
2015; Chen et al., 2016), where the highest Abeta deposition is
also located. The extent of hub disruption correlates significantly
with the cognitive status of a patient (Dai et al., 2014). Thus, it
can be hypothesized that hubs—with their high Abeta deposition
and central role in the overall information flow of the brain
network—facilitate the spreading of the pathological cascade
within the brains of AD patients (Buckner et al., 2009). Aberrant
or decreased functional connectivity has also been observed in
the insula (Chen et al., 2013), posteromedial cortex (Xia et al.,
2014), medial temporal cortex (Burggren and Brown, 2014), and
amygdala (Yao et al., 2013; Wang et al., 2016).

Next to the vulnerability of hubs, a decreased global clustering
coefficient has been reported, showing a loss of connectedness
and important redundancy structures for brain communication
in FC, which consequently also alters the modular structure of
AD patients (Brier et al., 2014b; Minati et al., 2014; Pereira et al.,
2016; Dai et al., 2019). Probably as a global effect of these “local
attacks” on the network (Figure 6), decreased global efficiency
in structural connectivity as well as functional connectivity
networks is often observed in AD patients, which correlates with
cognitive and behavioral decline (Lo et al., 2010; Reijmer et al.,
2013; Dai et al., 2019). Global efficiency is in network science
defined as the inverse of the characteristic path length—with
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shorter pathways between the nodes, the information flow within
the network is more efficient. A less efficient network can still
provide connections between nodes, but they are longer and with
more nodes and edges in-between (Bullmore and Sporns, 2009).

Recent work analyzed a multimodal perspective on AD,
combining diffusion tensor imaging, functional MRI, and
magnetoencephalography measurements in a multilayer network
(Guillon et al., 2019). They found that the core of this multilayer
network, which is likely to contain the hubs, has been most
affected, which establishes hubs’ vulnerability across modalities.
Together, these changes were able to predict the cognitive and
memory impairment of patients (Guillon et al., 2019).

Emerging evidence suggests that in the preclinical stage of
AD, network changes are present in the form of disconnection
on a large scale (Brier et al., 2014b; Daianu et al., 2015; Zhao
et al., 2017). Indeed, functional connectivity and structural
connectivity are now being investigated to better differentiate
AD patients, MCI, and controls, moving toward the goal
of identifying prodromal AD patients and the possibility of
developing early intervention strategies (Phillips et al., 2015;
Pereira et al., 2016; de Vos et al., 2018; Ye et al., 2019). A recent
study suggests altered functional connectivity corresponding
to accelerated aging in preclinical AD (Gonneaud et al.,
2020).

To sum up, both altered global and local connectivity have
been associated with AD. Converging evidence from white
matter diffusion tensor imaging and resting-state functional MRI
studies point toward less efficient network communication in
AD patients compared to healthy aging, especially in the default
mode network.

MODELING OF ALZHEIMER’S DISEASE

As AD is a complex disease that takes place on various scales,
a wide range of models have been developed for its analysis,
e.g., animal disease models (Saito et al., 2014; Weintraub
et al., 2014), cognitive models (Sevush et al., 2003), or disease
progression and classification models (Bhagwat et al., 2018;
Khanna et al., 2018; Koval et al., 2018; Pellegrini et al.,
2018; Golriz Khatami et al., 2019). Mathematical modeling
is an adaptive and creative scientific concept and a core
technique of computational neuroscience. In general, one can
differentiate between approaches focusing on single aspects
of the disease, e.g., biochemical Abeta modeling (George
and Howlett, 1999), and integrative models incorporating
several biomarkers while using multiple scales simultaneously
(Khanna et al., 2018). The latter might provide a more
comprehensive, multimodal view on the disease with its
interacting mechanisms and might be more suitable to reflect
disease pathogenesis. This multiscale approach—also called
“integrative disease modeling” (Younesi and Hofmann-Apitius,
2013)—can combine functional and structural neuroimaging
techniques, cerebrospinal fluid sampling, and genomic data and
analyzes their intercorrelations with computational algorithms
(Golriz Khatami et al., 2019).

A comprehensive understanding of both the underlying
biological processes of AD and the computational framework
of high-performance modeling approaches is necessary to
develop novel models for AD that integrate multiple scales,
modalities, and research disciplines. With increasing technical
possibilities for high-performance computing and growing
hierarchically organized knowledge architectures, this cross-
disciplinary approach holds the potential to overcome some of
the enigmas in AD pathogenesis that might not be revealed on a
single scale applying a single method.

Therefore, in the following sections, we describe existing
computational (brain) models of different scales and outline how
far they can be linked to the biological concepts presented before.

Statistical Disease Prediction Models
Statistical prediction models are mainly descriptive when used
in linear classification tasks. Subjects are assigned to a diagnostic
category (HC, MCI, or AD) based on the input data. But beyond
their practical translational usage as diagnostic tools, prediction
models provide certain decision criteria that can also be of
interest in understanding the underlying disease mechanisms
(Jack and Holtzman, 2013). In addition to those rather simplistic
linear models there are methods such as machine learning
(Moradi et al., 2015; Pellegrini et al., 2018) or Bayesian modeling
(Khanna et al., 2018). All exhibit individual challenges and
advantages regarding data analysis and model interpretation
(Poil et al., 2013).

Machine learning approaches are applied to predict disease
trajectories (predictive modeling) or classify subjects into groups
with highly similar data points (discriminative modeling or
clustering). The latter goal can be reached by supervised a priori
labeling of the training data (e.g., as two classes AD and non-
AD, or as a three-class problem with AD, MCI, and healthy
controls) or by unsupervised clustering without labeling (Golriz
Khatami et al., 2019). Those unsupervised discriminative models
cluster subjects based on the degree of (dis-)similarity between
parameters. This can be quantitatively expressed by statistical
proximity measures (Bock, 2005; Golriz Khatami et al., 2019).

Structural T1-weighted MRI, in conjunction with other
biomarkers, has been considered as a feature for classic machine
learning techniques, such as support vector machines—often
combined with linear discrimination analysis. Pellegrini et al.
(2018) reported in a review that, while patients with AD could
successfully be differentiated from controls, the classification
of subjects with MCI remained unsatisfactory (Pellegrini et al.,
2018). This held also true for the risk prediction of conversion
from MCI to AD. Thus, the classifiers’ clinical relevance remains
relatively low, given that—in practice—it is already possible
to distinguish between controls and AD based on cognitive
performance. A diagnosis before clinically-noticed AD onset is
therefore still missing.

Attempts of facilitating early AD prediction are therefore
building biologically informed models that develop “mechanistic
biomarkers” by aiming at a deeper understanding of AD
pathomechanisms (Selkoe, 2004). To achieve that, a complex
disease knowledge system (i.e., ontology) can be built from
different data sources, and biologically plausible predictors are
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deduced. This contrasts the approaches described above in
which the selection of biomarkers is mainly based on statistical
dependence (e.g., correlations). Mechanistic biomarkers however
resemble biologically plausible concepts instead of merely
relating to the disease by correlation.

Using this approach, biological mechanisms of the
transition from asymptomatic stages or MCI to AD have
been computationally reconstructed to achieve a more accurate
risk prediction (Khanna et al., 2018). By using a predictive
time-to-event model that incorporates multimodal data ranging
from genetic variants to neuroimaging and neuropsychological
assessments, several biological risk factors and their interaction
could be extracted (Khanna et al., 2018). As the model makes
use of a graph-like Bayesian network organization (Khanna
et al., 2018), it opens up new possibilities for the integration
of multiscale and multimodal information to discover more
possible mechanistic biomarkers.

Additionally, information about disease progression can
be extracted from longitudinal patient data to increase the
accuracy of subsequent predictions. For example, Bhagwat
et al. (2018) have modeled AD disease trajectories of patients
with varying cognitive performance at baseline by combining
longitudinal data ofMRI brain volumetry (cortical thickness) and
clinical assessments with genetic information (ApoE ε4 status).
Comparing different algorithms trained on multimodal data
from two time points, a longitudinal predictive neural-network
showed the highest performance, even after validation with a
second untrained data set (Bhagwat et al., 2018).

This longitudinal and multimodal approach of predicting
the individual risk and disease trajectories could thus represent
promising new paths in personalized medicine. Modeling
structural and metabolic changes in different brain areas
concerning the decline in cognitive functions can yield more
sophisticated information about disease progression and its
influencing factors on an individual level (Koval et al., 2018).
Future approaches could also incorporate a broader range
of data modalities from different sources, like the graph-
theoretically-organized database European Brain Research
Infrastructures (EBRAINS) of the Human Brain Project (https://
ebrains.eu, Markram et al., 2011). EBRAINS hosts detailed
data for many brain areas from a variety of modalities, such as
receptor densities (Palomero-Gallagher and Zilles, 2018) or gene
expressions (Yetman et al., 2016). Besides that, the Multimodal
Mechanistic Signatures Database for Neurodegenerative
Diseases (NeuroMMSig, https://neurommsig.scai.fraunhofer.
de, Domingo-Fernández et al., 2017) poses great potential for
mechanistic models. NeuroMMSig, a hierarchically organized
ontology, integrates chemical compounds, genes, proteins,
medical terms, and imaging features into a mechanistic pathway
representation of AD. These pathways (i.e., cause-and-effect
chains of biological concepts or processes) were retrieved
by methods of literature mining and condensed into 125
sub-networks that play a distinct role in the pathophysiology
of AD (Domingo-Fernández et al., 2017). By integrating big
databases like those described, promising new approaches for the
predictions of individual disease trajectories with mechanistic
cause-and-effect models are posed.

Sub-cellular Models
Brain simulation can occur on many different scales, as
the complex topological hierarchy of the brain consists of
many essential components: cortical and subcortical regions,
networks, columns, ensembles, circuits, neurons, synapses,
vesicles, molecules, and genes (compare Figure 5).

Sub-cellular features of AD provide promising input for
computational modeling based on protein interaction and gene
expression. Early AD modeling approaches have focused e.g., on
the deposition process of Abeta (Jarrett et al., 1993; Lomakin
et al., 1997; Pallitto and Murphy, 2001; Ortega et al., 2013).
Moreover, biochemical models account for the interaction
between numerous factors like Abeta, Tau, inflammation, and
different proteases, as well as possible interventions during the
disease course (Proctor and Gray, 2010; Anastasio, 2013, 2014;
Kyrtsos and Baras, 2013; Proctor et al., 2013).

Early studies have used computational modeling to assess
aggregation kinetics for synthetic Abeta-like peptides (Tomski
and Murphy, 1992). Comparably simple biochemical models
allowed a mathematical description of the aggregation process—
as the temporal evolution of Abeta in the form of monomers,
micelles, and fibrils (Lomakin et al., 1997). Subsequently, the
Abeta aggregation theory was enhanced by including more
detailed interactions between different forms of Abeta fibrils
and fitting the model to empirical data (Pallitto and Murphy,
2001). As experimental evidence on Abeta’s toxicity increased, a
particular model was developed that describes disrupted Ca2+

homeostasis and Abeta aggregation as a positive feedback loop
and their interaction in a vicious circle (De Caluwé and Dupont,
2013). Over the last decade, more specific models have included
associations of AD to important gene transcription factors as
p53 (Proctor and Gray, 2010), possible intervention strategies
(Proctor et al., 2013), and genetic risk factors (Kyrtsos and Baras,
2013).

Concepts of sub-cellular modeling are valuable for integrating
multiscalemodels as they describe themolecular hallmarks of AD
in a computationally accessible manner. Molecular pathways can
be “coded” as a network of relations by employing computational
linguistics and semantic frameworks. One possible tool for this
approach is the Biological Expression Language (BEL), which
makes it possible to describe the interaction between proteins,
genes, and other chemical compounds with means of first-order
logic (Madan et al., 2019).

Single-Neuron and Neural-Circuit Models
Besides the subcellular scope, AD models span over different
microscopic scales, ranging from single-cell models (Morse et al.,
2010; Romani et al., 2013; Bianchi et al., 2014; Perez et al., 2016)
to neural circuits (Zou et al., 2011; Abuhassan et al., 2012; Bianchi
et al., 2014; Rowan et al., 2014).

Single-neuron models are often inspired by an experimental
approach, such as a patch-clamp experiment (Chen, 2005),
in the effort of reproducing the observed data (Morse et al.,
2010). Underlying mathematics for those single-cell simulations
may refer to general formulations for neural oscillation models,
as it is the case for Hodgkin-Huxley model (Hodgkin and
Huxley, 1952). Hodgkin and Huxley delivered the first impactful
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mathematical description of electric conductances in a neuron
model in 1952 (Hodgkin and Huxley, 1952). The Hodgkin-
Huxley model is based on experimental recordings on squid
axons: By defining the phospholipid membrane’s capacitance
and the conductance of leak and voltage-gated ion channels,
it enables a realistic approximation of membrane potentials
over time (Hodgkin and Huxley, 1952). However, the model is
computationally expensive, qualifying it mainly for simulations
with either few neurons or small simulation length (Izhikevich,
2004). There seems to be a dilemma between biologically
plausible but comparably inefficient models (e.g., Hodgkin and
Huxley, 1952; Morris and Lecar, 1981; Rose and Hindmarsh,
1989; Wilson, 1999) and very efficient models that lack
plausibility as they show a limited range of possible behaviors
(e.g., the integrate-and-fire or integrate-and-fire-or-burst model;
Smith et al., 2000; Izhikevich, 2004). A possible solution
was supposed by Izhikevich, providing a computationally
efficient model with the ability to produce emergent biological
phenomena as tonic and phasic spiking and bursting, frequency
adaptation, and accommodation (Izhikevich, 2003, 2004).

The mean-field theory can integrate complex systems of a
large number of neurons (Spiegler et al., 2011). The simplification
of the mean field has its origin in physics to describe fluid or gas
behavior without considering individual molecules. In the brain,
it allows simplifying the behavior of a spatially distinct group of
neurons with a similar function (Liley et al., 2002). This group
of neurons is called a neural mass and can be defined on various
scales—e.g., as a brain region, a column, or a neuronal ensemble.
Neural mass models (Wilson and Cowan, 1972; Zetterberg et al.,
1978; Hindmarsh and Rose, 1984; Jansen and Rit, 1995; Wong
and Wang, 2006; Stefanescu and Jirsa, 2008; Sanz-Leon et al.,
2015) have been widely used to define local dynamics in a
large-scale brain network model.

Large-Scale Brain Network Models
The evolution of large-scale computational brain modeling
has accelerated over the past decade. de Haan et al. (2012)
built a model to test the hypothesis that excessive neural
activity leads to neurodegeneration. This model is a large-
scale brain network derived from diffusion MRI, where each
network node holds a neural mass model by Zetterberg
et al. (1978) as its local dynamic model. De Haan and
colleagues simplified the synaptic strength as a function of
neural activity over time (de Haan et al., 2012). As a result,
those connections transmitting higher activity became weakened
after a certain time period. The purpose of implementing this
specific mechanism was to describe a form of excitotoxicity
that leads to degeneration. Here, after a certain period, one
could consecutively observe degeneration in the functional and
structural network topology using graph-theoretical measures.
The authors also observed a loss of spectral power and an
increased sensitivity of hubs, defined as highly connected brain
regions (incoming and outgoing ties) (de Haan et al., 2012). The
authors observed an increase in brain activity and functional
connectivity in the model, similar to empirical findings in
MCI or mild AD stages (de Haan et al., 2012). A subsequent
study by de Haan et al. (2017) tested different “therapeutic”

strategies, like increasing or decreasing the excitability of
excitatory and inhibitory subpopulations of the neural masses
to prevent neurodegeneration in the excitotoxic model. The
most convincing strategy, which could maintain healthy network
features over a long time, was increasing excitability of
excitatory neurons followed by increasing inhibition of inhibitory
neurons. At first glance, this might seem contradictory, but
it suggests the reversal of hyperexcitability by either more
excitation or less inhibition. The authors suggested that
the reason for this phenomenon might be in the network
topology. The best strategies suppress the network hub activities,
which in return may lead to decreased disease propagation.
According to this prediction, neurodegeneration spreads along
the network infrastructure as a kind of “pro-degenerative”
signaling pattern. This can be related to an earlier description
of Hasselmo in 1994. This model (Hasselmo, 1994) provides a
descriptive model of runaway synaptic modification, learning,
and cholinergic suppression that can explain essential findings
of AD: the spatiotemporal pattern of disease progression
along substantial fiber tracts, early memory deficits, and
neurodegeneration due to excessive demands on synaptic
plasticity rather than excitotoxicity. In contrast to the work
by de Haan et al. (2012), which assumes neurodegeneration
as a consequence of hyperactivation, the Hasselmo model
(Hasselmo, 1994) explains an earlier part of the same process,
wherein hyperactivation induces undesired neuroplasticity by
extensive runaway synaptic modification and through this
mechanism causes neurodegeneration and interferes with
learning mechanisms.

Pons and colleagues used another brain network model
for AD (Pons et al., 2010), using the neural mass model of
Jansen and Rit (1995) at each cortical network node, which is
related to the Zetterberg model (Zetterberg et al., 1978). The
authors used electroencephalography recordings that showed
a slowing of the alpha rhythm and an increase in functional
connectivity (using phase lag index) in MCI patients with age,
i.e., the functional connectivity increased from young to old
subjects. Pons et al. were able to describe these observations by
decreasing the maximum postsynaptic potential and increasing
the thalamocortical SCs during simulations.

In another recent modeling study, Demirtaş and colleagues
investigated the blood-oxygen-level-dependent (BOLD) signal
changes due to AD (Demirtaş et al., 2017). This study included
109 subjects from different groups (healthy controls, preclinical
AD, MCI, and AD). Regarding their empirical BOLD signal,
one could observe a decrease in global interactions of AD
patients evaluating first-order circular statistics, that is in the
Kuramoto order parameter, as well as regional differences
in the functional connectivity strengths, compared to the
controls (Demirtaş et al., 2017). Further, functional connectivity
differences were correlated to cerebrospinal fluid biomarkers
like Abeta, total Tau, and phospho-Tau (Demirtaş et al.,
2017). Estimating individual effective connectivity from subject-
specific structural connectivity and functional connectivity
with a heuristic approach, the brain model could replicate
these observed changes (Demirtaş et al., 2017). A supercritical
Andronov-Hopf bifurcation described its local dynamics. In an
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in silico experiment using brain networkmodels based on healthy
subjects’ effective connectivity, Demirtaş et al. systematically
varied the order parameter of the model (Demirtaş et al., 2017).
In this way, they were able to observe the progress of functional
connectivity degeneration. An optimal order parameter was
individually found for each disease stage and group, replicating
best the empirical observed degeneration. This study showed how
changes in regional dynamics could lead to the disintegration
of activity within the anatomical large-scale brain network.
Concurrently, simulations also replicated the finding that the
interaction (measured by Kuramoto order parameter) between
BOLD signals declines with disease progression.

The Virtual Brain Platform
In the following, we focus on The Virtual Brain, a multimodal
and multiscale virtual brain simulation framework (Ritter et al.,
2013; Sanz Leon et al., 2013; Sanz-Leon et al., 2015; Stefanovski
et al., 2016; Solodkin et al., 2018) that holds the potential
to combine different modeling scales of AD research. The
open-source platform of The Virtual Brain is available under
www.thevirtualbrain.org. The Virtual Brain is a standardized
and an established framework that enables large-scale modeling
approaches (as mentioned in the previous section Large-scale
Brain Network Models) on individual patient data including a
wide range of underlying dynamics.

The Virtual Brain uses the structural connectome as its
underlying basis (Sanz-Leon et al., 2015). Most of the neural
mass models (representing the regional activity) implemented
in The Virtual Brain had their origin as a network model
for smaller, distinct networks. But with the development of
connectomics, the networks included were more complex and
elaborate (Dipasquale and Cercignani, 2016). Likewise, the local
dynamic models used in The Virtual Brain were, in principle,
composed of smaller or even single-neuron systems (Wilson
and Cowan, 1972; Zetterberg et al., 1978; Hindmarsh and Rose,
1984; Jansen and Rit, 1995; Wong and Wang, 2006; Stefanescu
and Jirsa, 2008; Sanz-Leon et al., 2015). The Virtual Brain was
designed to simulate whole-brain network dynamics, but it can
also model and simulate separate subnetworks ranging from a
regional level to a few neurons (see Spiegler and Jirsa, 2013 for
the integration hierarchy of The Virtual Brain).

The second important feature of The Virtual Brain that can
assist in AD research is the multiscale character. This term
has been coined to describe the fluid transition of brain scales,
ranging from the macroscale, at which brain regions interact
intra- and inter-hemispherically via long-range connections, to
the microscale of myriads of single neurons, where we have the
knowledge on their electrophysiological properties, receptors,
transmitters, position and wiring in cortical layers, etc. In vivo
measurement techniques at the macroscale offer information
about individual brains, whereas measurements at the micro-
scale are more specific to cell membranes and structures but
cannot sample an entire individual brain. The concept of The
Virtual Brain addresses both scales: on the one hand, the
structural connectivity of the whole brain is the scaffold of The
Virtual Brain, and, on the other hand, the characteristics on
the neural level are represented in the local dynamic models

and their biophysiological parameters (e.g., the Jansen-Rit
model). Modeling the large-scale brain alone may not comprise
microscopical elements, as well as modeling the entire brain
based on every single neuron may be computationally infeasible.

For this reason, the mesoscale has been established (Deco
et al., 2008; Wright and Liley, 2010) and comprises different
components. First, the direct electromagnetic fields between
neighboring regions directly influence each other. In addition,
neural masses, which can cover the anatomical extent of a
functional region or cover the neural mass in a voxel sampled by
an MRI scanner. Depending on the neural mass model, they can
refer to excitatory and inhibitory populations interacting with
each other and through the large-scale network, the connectome,
with distant regions. The interplay of this local circuitry in the
large-scale brain network can produce physiologically plausible
brain activity on a large scale (Honey et al., 2007; Ghosh et al.,
2008; Sotero and Trujillo-Barreto, 2008; Bojak et al., 2010; Jirsa
et al., 2010; Ritter et al., 2013; Sanz-Leon et al., 2015; Kunze et al.,
2016).

The prospect of The Virtual Brain as an interdisciplinary
research framework is that clinical applications and ensuing
technologies may benefit and build on theoretical and
computational predictions, as it has already shown success
in epileptic surgery (Jirsa et al., 2017; Proix et al., 2017). The
Virtual Brain has already been used in a wide range of research
topics, from the modeling of physiological brain phenomena
in healthy participants (Ritter et al., 2013; Sanz Leon et al.,
2013; Spiegler and Jirsa, 2013; Roy et al., 2014), mouse brain
models (Melozzi et al., 2017), to clinical approaches of AD
(Zimmermann et al., 2018; Stefanovski et al., 2019), stroke
(Falcon et al., 2015, 2016), and brain tumors (Aerts et al., 2018).

A study by Zimmermann et al. modeled AD using The Virtual
Brain (Zimmermann et al., 2018). By fitting the model to predict
individual functional connectivity from the underlying structural
connectivity, the authors could show a significant correlation
between the cognitive state of AD patients and the fitted
model parameters of The Virtual Brain (Zimmermann et al.,
2018). As the parameters are surrogates of biophysically relevant
entities such as long-range coupling factors and local interactions
between inhibitory and excitatory neuronal populations, this
enables the non-invasive estimation of intrinsic brain features.

For the field of AD, multimodal data could include, e.g.,
anatomical MRI, the structural connectivity out of diffusion
tensor imaging, and PET imaging data of Glucose metabolism,
Amyloid, and Tau. Our previous study (Stefanovski et al., 2019)
used one of these features, namely Abeta PET, to explore the
mechanisms behind another prominent phenomenon in AD: the
slowing of electroencephalography (Stefanovski et al., 2019). As
a pilot study in the field of molecular-driven large-scale brain
simulations, we modeled local Abeta-mediated hyperexcitability
using brain network modeling with The Virtual Brain, where
regional Abeta burden was derived from PET data. By defining
the local excitation-inhibition balance as a function of local
Abeta burden from PET, fundamental differences between the
AD patients and controls were observed. We showed that a few
regions with moderate or high Abeta burden are transferred
into an altered dynamic state, wherein their activity oscillations
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slowed down. This slowing is mainly presented as a shift from
alpha to theta rhythm. It was propagated throughout the network
and focused on the hubs. Interestingly, local hyperexcitation took
also place in the central parts of the network. Therefore, with
this approach, we were able to reveal a possible pathomechanism
behind electroencephalographic slowing in AD (Stefanovski
et al., 2019).

CONCLUSIONS AND FUTURE
DIRECTIONS

Although our knowledge about the contributing factors in AD
pathogenesis grows, it is still a major challenge in neuroscience
to understand their distinct meaning and interaction. Moreover,
the translation to clinical research is lagging behind. Rather than
exploring isolated mechanisms, the goal should be to integrate
multiscale datasets to reveal complex interactions underlying AD
(Hofmann-Apitius et al., 2015; Iyappan et al., 2016) (Figure 7).

The main reasons for the development of precise and early
diagnosis tools for AD can be summarized as follows:

1. Future treatments. When a disease-modifying treatment for
degenerative dementia will be available, it probably needs to
be performed many years before the clinical and behavioral
manifestation of the disease. This is because pathway changes
in the brain begin decades before the onset of dementia
and lead to irreversible neuronal death. However, one has
to expect that such a treatment has to be taken for many

years and might have severe adverse reactions. Therefore,
high sensitivity for the screening and high specificity of the
diagnosis will be of crucial importance. Moreover, future
trends of personalized treatments can only be performed
with personalized biomarker-profiled patient ’fingerprints’.
For example, a recent analysis has shown that the multimodal
dataset from the Alzheimer’s Disease Neuroimaging Database
(ADNI) can predict the gene expression pattern (as a potential
individualized treatment target) better than the clinical
presentation does (Iturria-Medina et al., 2018).

2. Differential diagnosis. A more precise diagnosis of AD will
lead to the possibility to clarify seemingly atypical cases. Some
etiologies could be identified with prospective treatments.
Moreover, in the future, subtypes of disease entities could
be established, which are currently subsumed under AD,
and assessed by a specific treatment, e.g., autoimmunity
phenomena with immunosuppression or early-onset AD with
anti-Abeta drugs.

3. Patient stratification. It is necessary to identify the right
population to test new treatments. If the diagnosis is not clear
enough, possible effects could be overlaid because of too many
patients with other disease causes, in which the treatment does
not show an effect.

4. Study monitoring. Because the disease’s clinical trajectories
are slow and not easy to measure objectively, it is beneficial
to use biomarkers to monitor drug effects in study settings.

Using computational models for multiscale brain simulations in
future research may lead to improved diagnostics in the early

FIGURE 7 | Potential applications of The Virtual Brain in the investigation of Alzheimer’s Disease (AD). As we outline in this article, computational modeling provides a

powerful tool to link empirical findings from different scales and disciplines to new insights for improved diagnostics and treatments. PET, positron emission

tomography; DBS, deep brain stimulation; tDCS, transcranial direct current stimulation; TMS, transcranial magnetic stimulation.
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stages of dementia, to a more precise prognostic prediction and
differential diagnosis which are the fundamentals of rational
medical treatment of AD patients.
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