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We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation
of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This
algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained
and tested using T1-weighted magnetic resonance imaging (MRI) data from a large
database of 1,832 healthy young adults. An important feature of this approach is the
ability to learn from relatively sparse data, which gives the present algorithm a major
advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted
MRI datasets in which all “visible” PVSs were manually annotated by an experienced
operator. After learning, performance was assessed using another set of 10 MRI scans
from the same database in which PVSs were also traced by the same operator and
were checked by consensus with another experienced operator. The Sorensen-Dice
coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64
(resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1).
Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm3 and
0.95 for PVSs larger than 15 mm3. We then applied the trained algorithm to the rest
of the database (1,782 individuals). The individual PVS load provided by the algorithm
showed a high agreement with a semi-quantitative visual rating done by an independent
expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an
age-matched sample from another MRI database acquired using a different scanner.
We obtained a very similar distribution of PVS load, demonstrating the interoperability of
this algorithm.

Keywords: perivascular space, deep learning, U-net, MRI, brain cohort, segmentation

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2021 | Volume 15 | Article 641600

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.641600
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2021.641600
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.641600&domain=pdf&date_stamp=2021-06-18
https://www.frontiersin.org/articles/10.3389/fninf.2021.641600/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-641600 June 17, 2021 Time: 11:45 # 2

Boutinaud et al. Perivascular Space U-Net-Based Segmentation

INTRODUCTION

With increasing longevity, cognitive impairment, stroke, and
dementia are currently major causes of disability and dependence
in elderly individuals (Seshadri and Wolf, 2007), representing
a huge societal burden. Cognitive impairment and dementia
are mainly the result of a mix of vascular brain injury and
neurodegeneration. Most often, vascular brain injury does not
result in stroke, but manifest as covert small vessel disease
(cSVD), a pathology highly prevalent in elderly individuals
(Schmidt et al., 1999). Small vascular brain injuries of various
types (white matter lesions, lacunes, microbleeds, and enlarged
perivascular spaces) can be detected with brain magnetic
resonance imaging (MRI; Wardlaw et al., 2013) in older
community individuals. These lesions are associated with a risk
of cognitive decline and dementia (review in Debette et al., 2019)
and are now considered imaging markers of cSVD. Thus, there is
considerable interest in assessing the burden of these lesions from
an epidemiological point of view and for the early identification
of individuals at risk of developing severe cognitive deterioration
and/or dementia.

Among these lesions, perivascular spaces (PVSs; Lawrence
and Kubie, 1927), also referred to as Virchow-Robin spaces, are
of particular interest. PVSs are extracellular spaces containing
interstitial fluid or cerebrospinal fluid surrounding cerebral small
penetrating arteries and veins (Patek, 1941). PVSs are formed
during development, accompanying brain angiogenesis (Marin-
Padilla and Knopman, 2011). As such, they are physiological
spaces that, when large enough, can be visible on brain
MRI scans of healthy individuals (Maclullich et al., 2004;
Zhu et al., 2011; Yakushiji et al., 2014). Animal models
have shown evidence that both degenerative and vascular
mechanisms can lead to enlarged PVSs (ePVSs), and several
studies have shown that ePVS is associated with age and
the risk of both cognitive deterioration (Passiak et al., 2019)
and dementia (Zhu et al., 2010b; Francis et al., 2019); ePVS
is also associated with the presence of other cSVD imaging
markers in elderly individuals (Doubal et al., 2010; Zhu et al.,
2010a; Potter et al., 2015; Ramirez et al., 2016). Overall,
ePVS is now considered a hallmark and a very early anomaly
of cSVD, so its assessment has recently become a major
area of interest.

ePVS burden is commonly assessed on T1- or T2-weighted
MR images using visual ratings with semi-quantitative rating
scales (Zhu et al., 2011; Adams et al., 2013; Potter et al., 2015).
However, such visual reading lacks precision and reproducibility,
which limits its usability for longitudinal studies, and leads to
overall loss of analytic power. Therefore, there is a strong need
for quantitative volumetric segmentation methods that could
ideally identify every PVS in each individual as a 3-dimensional
(3D) object in a perfectly reproducible manner. In fact, in the
past few years, there have been several attempts at developing
such automated PVS segmentation methods using broadly two
different approaches, one based primarily on image processing
(Wang et al., 2016; Gonzalez-Castro et al., 2017; Zhang et al.,
2017; Ballerini et al., 2018; Boespflug et al., 2018; Schwartz
et al., 2019; Sepehrband et al., 2019) and the other mainly based

on deep learning (DL) (Lian et al., 2018; Dubost et al., 2019;
Jung et al., 2019; Sudre et al., 2019; Dubost et al., 2020). The
former approach is based on signal enhancement/noise reduction
and/or specifically tailored morphological filters derived from the
precise analysis of a few PVSs. The latter approach is based on a
large set of convolutional filters (at different spatial resolutions)
that extract features relevant for segmenting target objects,
such as PVSs in the image. Such algorithms require a priori
knowledge of the PVS number or locations on a subset of the
input data. Both approaches have drawbacks: image processing
methods are hampered by the large variance of PVS shapes and
the signal-to-noise ratio (SNR), making it difficult to design
a filter that will be optimal for the detection of all kinds of
PVSs. Conversely, DL methods are sensitive to the quality and
amount of a priori knowledge available: in particular, having
a sufficiently large and reliable learning set of PVSs may be
very difficult and cumbersome as it will require having one or
several human operators manually tracing multiple PVSs on
thousands of subjects. Both types of methods suffer from limited
interoperability, as algorithms are usually tuned for the type of
images they are designed or trained with.

Thus, despite several interesting attempts, there is still a need
for an interoperable, and validated algorithm for the detection
and quantification of PVSs in the entire brain volume. In the
present study, we investigated the possibility of implementing
such an approach using a class of DL methods based on
autoencoders (Kingma and Welling, 2013) and U-shaped
networks (U-nets, Ronneberger et al., 2015); a key feature of this
approach is that the algorithm is able to learn from relatively
sparse data, a major advantage over other DL algorithms. Others
have used similar approaches for the PVS detection (Lian et al.,
2018; Dubost et al., 2020). Dubost et al. (2020) presented a weakly
supervised detection method based on U-net architecture that
could be optimized with the PVS count, and applied it to a
large dataset (2,200 subjects) of T2-weighted scans. Lian et al.
(2018) proposed a multi-channel (T2-weighted, enhanced T2-
weighted, and probability map) fully convolutional network and
applied it to a small set (20 subjects) of 3D patches of scans
acquired at 7T. Here, we report a simpler U-net implementation,
based on the T1-weighted (T1w) single-channel input, on a large
database of 3D T1w whole-brain volumes acquired at 3T from
1,832 young adults in the MRi-Share database for Magnetic
Resonance of i-Share that is the Internet-based Student Health
Research enterprise (1Tsuchida et al., 2020). The learning set was
composed of 40 T1w MRI scans from this database in which
all “visible” PVSs were manually annotated by an experienced
operator. After learning, algorithm performance was assessed
using another set of 10 T1w MRI scans from the same database
in which PVSs were also traced by the same operator. Next, we
applied the algorithm to the rest of the MRi-Share database (1,782
individuals) and compared its output to a visual rating given by
a trained rater based on a validated scale. Finally, we applied the
algorithm to the T1w MRI images of age-matched subjects from
the BIL&GIN database (for Brain Imaging of Lateralization by the
Groupe d’Imagerie Fonctionnelle; Mazoyer et al., 2016), acquired

1www.i-share.fr
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from a different scanner; subsequently, we compared the PVS
distribution of both databases.

METHODS

The brain MRI data were taken from the MRi-Share database
(Tsuchida et al., 2020), a subcomponent of i-Share (internet-
based Student Health Research enterprise, www.i-share.fr), a
large prospective cohort study aiming to investigate French
university student health. The MRi-Share database was designed
to allow the investigation of structural and functional brain
phenotypes in a sample of approximately 2,000 young adults
in the post-adolescence period. In the present study, we
included 1,832 i-Share participants who completed the full
MRi-Share brain imaging examination and did not have any
incidental findings on their brain MRI. The study sample
age was 22.1 ± 2.3 years (mean ± SD, range: [18-35],
median = 21.7 years), with a high proportion of women (72%,
1,320 women) as was the case with the rest of the i-Share
cohort. The study was approved by the local ethics committee
(Bordeaux, France).

For the purpose of the present study, we used the T1w scans
acquired from each participant on the same Siemens Prisma 3-
Tesla MRI scanner using a three-dimensional high-resolution
MPRAGE sequence (TR = 2000 ms; TE = 2.03 ms; flip angle = 8◦;
inversion time = 880 ms; field of view = 256 × 256 × 192
mm3; isotropic voxel size = 1 × 1 × 1 mm3, and in-plane
acceleration = 2).

Manual Segmentation and Visual Rating
of PVS
Manual Segmentation of PVS in a Subsample of 50
Participants
Supratentorial PVSs are usually classified based on their location,
either in the basal ganglia (BG) along lenticulostriate arteries or
in the deep white matter (DWM) of the brain. These two types
of PVS are usually rated separately and/or quantified since they
were demonstrated to be differentially associated with SVD and
dementia (Ding et al., 2017), as well as to have different genetic
determinants (Duperron et al., 2018). Accordingly, to train and
evaluate the performance of our detection algorithm, a subset of
50 individuals exhibiting varying amounts of visible PVS either
in the DWM or in the BG were selected from the study sample
by a neuroradiologist (BM) who reviewed the raw T1w images
of the entire dataset. A trained investigator (AT) performed a
voxelwise manual delineation of each PVS on the raw T1w images
of each of these 50 individuals. Manual annotation of each PVS
was performed using Medical Image Processing, Analysis and
Visualization (MIPAV, v7.4.0). Specifically, each axial, coronal,
and sagittal slice from the raw T1w scans from each individual
was reviewed using the 3D view setting of MIPAV to detect
PVSs in the DWM and BG regions. DWM PVSs are typically
visible as tubular shapes, often running perpendicular to the
cortical surface following the orientation of perforating vessels,
whereas those in the BG are visible at the base of the basal
ganglia along lenticulostriate arteries. Based on these shape and

location characteristics, each visible PVS was segmented as best
as possible using the MIPAV pen tool and occasionally expanded
using the MIPAV paint grow tool that can automatically “paint”
every neighboring voxel that has a lower intensity level than
the selected voxel; the distance limitation set for the paint grow
tool was 3 mm. The PVS segmented volume was saved as a
binary mask in the individual native acquisition space. The PVS
annotation procedure was first optimized by having the first ten
MRI datasets reviewed by a second expert (LL) who recorded
all potential disagreements she had, whether false positive or
false negative according to her own opinion, for every dataset.
These discordances were then jointly checked one by one by
the two experts and were resolved by consensus between them.
Subsequently, the remaining 40 MRI datasets were manually
annotated for PVS by the first expert only.

Visual Rating of PVS Burden in All Participants
The global PVS burden estimated with our algorithm was also
compared to a classical visual semi-quantitative assessment. For
this, another investigator (JZ) visually rated the global PVS
burden for each of the 1,832 individuals of the sample using a
previously validated protocol and rating scale (Zhu et al., 2011).
Briefly, for each individual, all axial slices of the T1w images
were first examined to identify the slice containing the largest
amount of PVS (one for DWM and one for the BG). The selected
slice was then used to rate the burden of PVS by the number
of spaces observed on a 4-level severity score as follows: for the
BG, degree 1 when there were < 5 PVSs, degree 2 when there
were≥ 5 and≤ 10 PVSs, degree 3 when there were > 10 PVSs but
they were countable, and degree 4 when there were innumerable
PVS; for cerebral DWM, degree 1 when there were < 10 PVSS in
the entire cerebral white matter, degree 2 when there were ≥ 10
PVSs in the total cerebral white matter but < 10 in the slice
with the largest number of PVSs, degree 3 when there were ≥ 10
and ≤ 20 PVSs in the slice with the most PVSs, and degree 4
when there were > 20 PVSs in the slice with the most PVSs. The
reliability of this visual rating was assessed by having the same
investigator blindly rate two subsets of 60 individuals (one for the
BG and one for DWM, with 40% of individuals common to both
subsets) twice. The kappa concordance coefficients between the
two ratings were 0.81 and 0.77 for DWM and the BG, respectively
(both were significantly different from 0 at p < 10−4), and all
discrepancies between the two ratings were minor, i.e., consisting
of a difference of one scale level.

Segmentation Model Training, Validation,
and Testing
This section details the methodology for the PVS segmentation
model architecture, training, and testing. KNIME 4.0 (Berthold
et al., 2009) was used for the data management workflows,
and Python-based Keras 2.2.42, Scikit-learn (Pedregosa et al.,
2011) and TensorFlow 2.1 (Abadi et al., 2016) were used for
implementing our segmentation model. The algorithms were run
on a Centos computer with a Xeon ES2640, 40 cores, 256 Gb
RAM and two Tesla P100 GPUs with 16 Gb RAM.

2https://keras.io
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Methodology of PVS Segmentation
Defining data subsets for training and testing the PVS
segmentation algorithm
The full dataset of 1,832 T1w volumes was split into 3 non-
overlapping subsets:

• An autoencoder subset (ENCOD), including the 1,782
volumes without manual annotations of PVSs; the T1w
volumes of ENCOD subset was used to train the 3D
convolutional autoencoder (see “Visual Rating of PVS
Burden in All Participants”), and visual rating of this subset
(see “Visual Rating of PVS Burden in All Participants”
above) was also used to assess the model-predicted PVS load
against visual rating (see “Testing the PVS Segmentation
Model of a Large Subset: ENCOD Subset Analysis”).
• A training subset (TRAIN), including 40 of the volumes

with manually annotated PVSs; the TRAIN subset was used
to train and validate the segmentation model.
• A testing subset (EVAL), including the remaining 10

volumes with annotated PVS; the EVAL subset was used to
test the segmentation model.

The 10 T1w volumes of the EVAL subset were selected by an
expert neuroradiologist (BM) to be representative of the full set
of 50 volumes of manually annotated PVSs. This was checked
by comparing the distribution of manually annotated PVSs in
the two subsets.

T1-weighted MRI preprocessing
Prior to training the DL, T1w MRI volumes (N = 1,832)
were preprocessed following a 5-step procedure: 1- tissue
segmentation with FreeSurfer, 2- creation of an intracranial
volume mask (ICV), 3- voxel intensity rescaling, 4- creation of
a brain volume bounding box, and 5- creation of a BG mask.

• First, each T1w volume was segmented using FreeSurfer
v6.03, and the different tissue components were identified.
• Second, an ICV mask was defined as the union of

the gray matter (GM), WM, and cerebrospinal fluid
(CSF) tissue voxels.
• Third, voxel intensity values were linearly rescaled between

0 and 1 by setting the 99th percentile of each subject’s
sample as the maximum. The values greater than 1
were set back to 1.
• Fourth, for each individual, we computed the minimal

bounding box (oriented along the 3 axes of the T1w
acquisition) that included his/her brain volume. In doing
so, we eliminated the neck and some of the background
air signals. The union of the 1,832 individual bounding
boxes (registered using their centers) was then computed
and used to crop each T1w volume. Note that in the
process, T1w volumes were not interpolated but were
only translated by an integer number of voxels since
all individual boxes had the same orientation. This
cropping process led to a 52% data size reduction (from
256 × 256 × 192 voxels to 160 × 214 × 176 voxels),

3https://surfer.nmr.mgh.harvard.edu/

resulting in a gain of a factor of approximately 2 in
computational burden.
• Fifth, since PVS distribution is usually separately examined

when localized in the BG or in the DWM, we created
a basal ganglia mask (BG-mask) for each individual
including the tissue classes identified by FreeSurfer as
thalamus, thalamus-proper, caudate, putamen, pallidum
and accumbens regions. The labels were used to determine
whether a PVS belonged to the BG or the DWM.

Autoencoder and U-net architecture
Our segmentation model used a U-net architecture similar to the
one described in Ronneberger et al. (2015). The main constraints
in our application were (1) the small size of the annotated datasets
available for training and validation (TRAIN set) and (2) the large
volume of data: the model parameters and a batch of volumes had
to fit into the 16 Gb memory of the GPU.

To train the U-net, an autoencoder was first trained on the
large ENCOD set. The convolutional autoencoder and the U-net
share a similar architecture to transfer the weights learned by the
former to the latter. The difference resides in the addition of “skip
connections” in the U-net between the corresponding encoding
and decoding blocks (Figure 1A); the output of the encoding
block is concatenated to the input of the decoding block. We
used a U-net architecture denoted by its main hyperparameters:
the initial number of kernels for the first stage of convolutions
(nb_kernel_init = 8), the number of stages (NStages = 7) and
the number of 3D convolutions for a stage (nConvolutions = 2).
This configuration is referred in the following as the 8.7.2
autoencoder/U-net architecture.

Figure 1B shows the encoding and decoding levels for stage
i of the encoding/decoding architecture. On the encoding side,
the tensors went through 2 convolution blocks. Each convolution
block consisted a 3D convolution with a kernel size of 3 × 3 × 3
that produced 2i kernels, followed by batch normalization (Ioffe
and Szegedy, 2015), and activation using a rectified linear
unit (ReLU) (Glorot and Bengio, 2010). In the autoencoder,
the weights were initialized randomly using a Glorot uniform
initializer (Glorot and Bengio, 2010); in the U-net the weights
were initialized using the trained autoencoder. ReLUs were used
for all activation functions except for the last step of the decoding
block, where a sigmoid was used to return to the initial volume
(for the autoencoder training) or manually annotated mask (for
the U-net training). After the convolution blocks, there was a
2 × 2 × 2 max pooling (Ciresan et al., 2011) and a dropout layer
(Srivastava et al., 2014). We tested an architecture with strided
convolutions instead of max pooling layers (as in Milletari et al.,
2016), but the added parameters produced a model that did not
fit into the GPU without reducing the number of kernels used at
each stage, and the resulting model did not perform better.

On the decoding side, the first layer was a 2 × 2 × 2 nearest
neighbor upsampling. Then, a padding/cropping layer was used
to align the spatial dimensions of the tensor to those in the
encoding block at the same stage. It allowed the subsequent
concatenation of the tensors coming from the encoding block
to those from the decoding layers in the U-net configuration,
and eliminated the need for initial padding or cropping when
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FIGURE 1 | (A) Overall architecture for the convolutional autoencoder (without skip connections) and U-net (with skip connections). On the left, the encoding blocks
are shown. Each block used 3D convolutions to create new features and max pooling operations to downsize the image. On the right are the decoding blocks that
used upsampling and convolutions to reconstruct the image (for the autoencoder configuration) or to create the segmentation probability map (for U-net
configuration with skip connections). (B) Details of stage i of the model architecture.
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the volume had resolutions that were not a power of 2. It was
followed by a symmetric number of convolution blocks as the
encoding side (i.e., 2 in our case), and finally, by a dropout layer.
Unlike the encoding convolutions, the decoding convolutions
were initialized using a Glorot uniform initializer for both the
autoencoder and the U-net.

With our configuration of the 8.7.2 autoencoder/U-net
architecture, the final model had 44 million trainable parameters.
The resulting latent space had 512 dimensions. The Adam
algorithm (Kingma and Welling, 2013) was used with the
default parameters recommended by the authors: beta1 = 0.9,
beta2 = 0.999, and decay = 0.0. The dropout rate used for
both encoding and decoding dropout layers was 0.1. In the
autoencoder, the mean square error (MSE) was used as the loss
function, whereas Keras implementation of the Dice loss was
used as the loss function in the U-net. Note that we tested
different loss functions such as binary cross entropy, focal loss,
tversky loss without seeing any significant performance gain
upon using the dice loss. As we did not have enough computing
resources to systematically explore the hyperparameter space
for each possible configuration, the different hyperparameter
values were chosen based on previous experiences. The most
sensitive hyperparameter was the initial kernel size (larger
was better), and we tried several configurations to balance
it with the batch size while allowing the model and the
batch of volumes to fit in GPU memory, resulting in a
batch size of 2.

PVS Segmentation Model Training and Testing
We first trained the autoencoder by randomly splitting the
ENCOD dataset into 80% training and 20% validation subsets.
We then initialized the U-net segmentation model with the
weights of the first encoding stages and trained it using the
TRAIN set with a 5-fold cross-validation scheme. The input for
the U-Net model was the T1 image, and the output was the
manually annotated mask. Each fold consisted of 80% training
(32 volumes) and 20% (8 volumes) validation, and each subject’s
data appeared only once in the fold validation set and four
times in the fold training set. The repartition in the 5-fold
validation set was manually defined to include a similar pseudo-
uniform distribution of the individual PVS load in each fold.
For each fold, the model with the lowest validation loss was
selected. The five resulting models were used to predict PVS
maps for the EVAL subset, and the five output maps for each
input image were averaged to create the final PVS map called
thereafter the consensus (of the 5 folds) segmentation. Note
that each predicted map was coded in values in the 0 to 1
range. Four metrics were computed to quantify segmentation
algorithm performance on N = 8 validation set for each of
the 5 folds of TRAIN and N = 10 of the EVAL sets. For this
quantification, the prediction maps were binarized with a 0.5
threshold and compared to the manually traced PVS masks
using Dice-loss scores (see “Visual Rating of PVS Burden in All
Participants” above), the true positive rate (TPR) and the positive
predictive value (PPV), as well as their harmonic mean known
as the (Sorensen-) Dice coefficient. The TPR is defined as the
number of predicted PVS voxels that were correctly identified

(true positive, TP), i.e., overlapping with manually annotated
PVS voxels, divided by the number of manually annotated
PVS voxels (i.e., TP plus false negative (FN) voxels). The PPV
is defined as the number of TPs divided by the sum of the
number of TPs plus the number of false positive (FP) voxels,
i.e., voxels that were wrongly predicted as PVSs. Note that in
the context of machine learning, the TPR and PPV are also
named sensitivity and precision, respectively. The Sorensen-Dice
coefficient is then computed as 1/Dice = (1/TPR+ 1/PPV)/2. The
3 metrics will be referred to as voxel-level metrics (VL) in the
following sections.

In the testing phase, only the EVAL consensus prediction
was used, and VL metrics were computed with 9 amplitude
thresholds applied to the prediction map (PredMap-Thr, 0.1 to
0.9 in 0.1 step). Additionally, cluster-level (CL) TPR and PPV
were computed as following: Clusters were defined using a 26-
neighbor connectivity rule (i.e., 1 voxel is connected to its 26
surrounding voxels) both for the manually annotated and for
the predicted PVS masks. A cluster of the predicted PVS volume
was assigned to the TP class if it included at least one voxel of
the manually annotated PVS volume. Similarly, a cluster of the
predicted PVS volume was assigned to the FP class if it included
no voxels of the manually annotated PVS volume. Conversely, a
cluster of the manually annotated PVS volume was assigned to
the FN class if it included no voxels of the predicted PVS volume.
We will refer them as TPR-CL and PPV-CL, whereas their
harmonic mean will be referred as Dice-CL. The final metrics
were computed by averaging the values of the 10 EVAL subjects
for each PredMap-Thr and each metric. Note that the EVAL
dataset (10 volumes) was not used in the training/validation step;
thus, independent scores were generated. In addition, for each
subject the Hausdorff Distance (HD, Huttenlocher et al., 1993)
between each manual traced cluster and its predicted counterpart
was computed. The subject’s metric was defined as the 95th
percentile (HD95) of the HD distribution.

PVS Segmentation Model Robustness
In order to test the reproducibility of the model, we computed
the segmentation model 4 more times. In addition, we assessed
the robustness of the model with regard to the size of the training
dataset by training the model with the reduced training set of 20
or 30 volumes. In each case, we present graphs of VL and CL TPR
vs PPV for the 9 PredMap-Thr.

Testing the PVS Segmentation Model
Against the Manual Annotation: EVAL
Subset
This section reports the results obtained using the first
segmentation model (based on 40 TRAIN participants’ data) with
the EVAL subset.

PVS Segmentation Model Performance
Algorithm performance was assessed in the BG or in
the DWM defined individually (see “Methodology of
PVS Segmentation”). For each tissue type and for each
subject of the EVAL set, the 4 quantification metrics
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(TPR-VL, PPV-VL, TPR-CL, and PPV-CL) and their
harmonic means (Dice-VL and Dice-CL) (see “PVS
segmentation model training and testing”) were computed
independently for each of the 9 PredMap-Thr (0.1 to
0.9 in 0.1 step).

PVS Segmentation Model Performance for Varying
PVS Cluster Sizes
Since enlarged PVS is of primary interest, we investigated how
TPR-CL and PPV-CL were modified if we focus on PVSs that
were larger than a given threshold. Accordingly, TPR-CL vs PPV-
CL plots with the 9 PredMap-Thr were generated for cluster size
thresholds varying from 0 to 15 voxels with a step size of one
voxel. For this analysis, the metric values were computed using all
the clusters of the EVAL set, not the average value for each subject.

To compute the TPR-CL, in this approach, we removed
all clusters with a size smaller than a given threshold from
the manually annotated map. Accordingly, TPs were clusters
of the predicted map that had at least one voxel in common
with a cluster of the thresholded annotated map. Meanwhile, to
compute the PPV-CL, we removed the clusters smaller than a
given threshold in the predicted map and compared that map
with the annotated map.

PVS Segmentation Model Performance at Predicting
PVS Cluster Sizes
Finally, to assess the ability of the model to estimate the PVS size,
we compared the size of manually annotated PVS clusters to that
of the model-predicted clusters (i.e., TP clusters). For each cluster
in the EVAL set, DWM or BG, we computed the linear fit with
the model-predicted cluster size as the independent and manually
annotated cluster size as the dependent variables, applying 3 of
the PredMap-Thrs (0.1, 0.5, and 0.9). We report both the slope
and the R2 of the fit. Note that predicted clusters encompassed
more than one manually traced cluster were not considered in
this analysis. In percentage of the total number of TP clusters, the
number of clusters removed was 7.6%, 3.6% and 2% for PredMap-
Thrs of 0.1, 0.5, and 0.9, respectively.

Testing the PVS Segmentation Model of
a Large Subset: ENCOD Subset Analysis
We used the first segmentation model (trained on 40 TRAIN
participants’ data) to estimate the PVS load in the larger ENCOD
subsets, in which the visual rating of PVSs was available for both
DWM and BG. Note that no subjects of the ENCOD set were
part of the EVAL U-net training set. For each participant, we
computed both the numbers of PVS voxels and of PVS clusters
at three values of the PredMap-Thrs (0.1, 0.5, 0.9). We examined
the relationship between the two numbers, searching for the best
polynomial fit (up to 3rd degree).

We then used the number of clusters as the proxy for the PVS
load and compared it to the visual rating score, since the visual
rating was based primarily on the evaluation of a number of PVSs.
A logistic regression analysis was used to predict the visual rating
score from the PVS cluster number for the whole, ENCOD set
individuals (N = 1,782), separately for DWM and for BG.

Assessment of the Prediction Algorithm
Interoperability
To indirectly assess the interoperability of our model, we
predicted the PVS load in the T1w images from the BIL&GIN
database (Mazoyer et al., 2016) that were acquired using a
different MRI scanner (Philips Achieva 3T) 10 years prior to
the acquisition of the data from the MRi-Share cohort, using
the segmentation model trained on the MRi-Share dataset.
T1w images were acquired using a different sequence (3D-FFE-
TFE; TR = 20 ms, TE = 4.6 ms, flip angle = 10◦, inversion
time = 800 ms, turbo field echo factor = 65, sense factor = 2,
matrix size = 256 x 256 x 180 mm3, and 1 mm3 isotropic voxel
size). From the 453 subjects included in the BIL&GIN database,
354 were selected for being aged between 18 and 35 years to match
the age range in the MRi-Share cohort. We assessed the similarity
of PVS distributions in these age-matched cohorts using a QQ
plot and tested using the Kolmogorov-Smirnov test. The tests
were also computed using cluster size thresholds varying from
0 to 15 voxels by a step size of one voxel, and distributions were
compared using the Kolmogorov-Smirnov test.

RESULTS

Manual Segmentation of PVS
The distribution of the number of voxels manually identified as
DWM PVS (Figure 2A) in 50 participants showed a bimodal
shape with 34 participants below 1500 (1.5 cm3), 14 participants
between 1500 and 3000 (1.5 and 3.0 cm3) and 2 outliers above
4000 (4 cm3). The distribution of the number of clusters in the
DWM of the same participants (Figure 2C) shows the same shape
than the voxel distribution. For the PVS in the BG (Figure 2B),
the distribution was more homogeneous, with an average of 180
voxels (or mm3) and 2 outliers above 500 voxels (or mm3). The
distribution of the number of clusters (Figure 2D) had the same
shape as the voxel distributions. Figure 2E shows representative
PVS of both categories. On average, in the whole set, a PVS in the
BG was 2 times larger than a PVS in DWM.

Segmentation Model Training and
Testing
The most time-consuming step was the autoencoder training
using the ENCOD dataset; one epoch run required ∼2000
seconds for 1,425 volumes with a validation subset of 357
volumes. Figure 3A shows the evolution of the loss function
while training the autoencoder using the ENCOD dataset. The
training was stopped after 23 epochs, and previous experiments
showed that further training the autoencoder do not improved
significantly the training speed of the U-net. Figure 3B shows
the loss evolution on the TRAIN dataset with 80/20 split
training/validation for one-fold cross-validation. In this fold, the
model with the lowest validation loss (0.4894) at epoch 119 was
selected. Training of the autoencoder took ∼12.6 h (∼2000s
per epoch) and training of the Unet took ∼12 h (∼72s per
epoch). Prediction for one subject is linear in complexity and
takes less than one second. Table 1 shows the average of the 10
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FIGURE 2 | Distribution of the manually delineated PVS voxel load in the deep white matter (A) and basal ganglia (B) of 50 participants. Distribution of the manually
delineated PVS number of clusters in the deep white matter (C) and basal ganglia (D) of 50 participants. (E) Example of delineated PVSs displayed over an MRI slice
in one participant in the deep white matter (cyan) and basal ganglia (magenta). DWM, deep white matter; BG, basal ganglia.

EVAL volume result scores for each fold and for the consensus
segmentation of the full model. Using the 40 subjects training
set, we tested the training with and without the autoencoder.
The use of an autoencoder improved both the lesion prediction
and the training speed. The DICE-VL metric (Table 1) computed
with a prediction map threshold of 0.5 increased by 7% on the
5-fold average value; the average gain for all thresholds was
13%. With the autoencoder the U-net training speed was 30%
faster than without.

PVS Segmentation Model Robustness
Analysis
Figure 4A illustrates the good reproducibility of the model
predictions across the 5 repetitions. Figure 4B shows that
even when the TRAIN dataset size was reduced to 30

individuals, performance was only slightly degraded compared
to that obtained with the 40-subject training. While trying
to train the algorithm using 20 datasets only, the algorithm
performance visibly deteriorated, especially when analyzing the
lowest PredMap-Thrs (between 0.1 and 0.4). Qualitatively, the
degraded performance manifested as some predicted PVS clusters
encompassing a large portion of the WM in some subjects of the
TRAIN dataset, producing numerous FP voxels.

Testing the PVS Segmentation Model:
EVAL-Based Subset Analysis
PVS Segmentation Model Performance
Figure 5 shows for one subject of the EVAL subset, the visual
display centered on one of the clusters identified as a TP. Such
pictures were computed for each of the TP/FP/FN clusters.
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FIGURE 3 | (A) Training loss (MSE, dashed line) and validation loss (continuous line) evolution for the 8.7.2 autoencoder training. The model with the lowest validation
loss (0.0075, epoch 23, dashed line) was selected. (B) One-fold training loss (dice loss, dashed line) and validation loss (continuous line) evolution of 8.7.2. U-net
with weights initialized from the autoencoder. The model with the best validation loss (0.49, epoch 119, dashed line) was selected. Logarithm scale is used for loss.

Figure 6 shows plots of TPRs vs PPVs of segmented PVSs
for the 9 PredMap-Thrs at both the voxel and cluster levels.
Tables 2, 3 show the metric values with Dice values. As expected,
TPRs decreased and PPVs increased with increasing PredMap-
Thrs, in both DWM and the BG, and at both VL and CL.
While the PPV was similar at both VL and CL, the TPR was
markedly higher at the cluster level. Regardless of the type of
tissue (DWM/BG) and the level (VL/CL), the Dice coefficients
were maximal for PredMap-Thrs between 0.4 and 0.6. This is
unsurprising, considering that Dice coefficient is the harmonic
mean of the TPR and PPV. More precisely, the best Dice values
were for an amplitude of 0.6 in the DWM and for an amplitude of

TABLE 1 | Dice loss, true positive rate (TPR-VL), positive predictive value
(PPV-VL), and Dice (Dice-VL) metric for each fold and for the 5-fold consensus of
the EVAL dataset (10 volumes).

Fold TPR-VL PPV-VL Dice-VL

0 0.526 0.578 0.551

1 0.541 0.579 0.559

2 0.509 0.637* 0.566*

3 0.561* 0.520ˆ 0.540ˆ

4 0.503ˆ 0.633 0.561

5-fold consensus 0.526 0.634 0.575

Note that those metrics were computed without differencing the DWM
and BG located VRS.
TPR: true positive rate, PP: positive predictive value, V: voxel level, CL: cluster level.
*Best values of the 5 folds, ˆWorst values of the 5 folds.

0.4 in the BG. When comparing Dice coefficients on both levels,
the impact of the prediction map amplitude thresholding seemed
to be higher at the CL than at the VL.

PVS Segmentation Model Performance for Varying
PVS Cluster Sizes
Figure 7 shows grid plots of TPR-CL vs. PPV-CL (Figures 7A,B
for DWM and BG PVSs, respectively) and surface plots of the
Dice-CL (Figures 7C,D for DWM and BG PVSs, respectively)
at different intensity (0.1 to 0.9) and cluster size (0 to 15 voxels)
thresholds. The values of each of these metrics are provided in the
Supplementary Material.

As expected, better performance for both metrics was
observed when the cluster size threshold was increased. At
lower values (1 to 5 voxels), the cluster size threshold had a
major impact on PPVs regardless of the intensity threshold.
For instance, for DWM PVSs, ignoring clusters made of
only one voxel increased the PPV by approximately 15%
while increasing TPRs by only a few percentage points.
Furthermore, Dice scores above 0.9 could be obtained
regardless of the threshold when removing clusters of size
15 or less (Figure 7C). Data above a cluster threshold
of 15 are not shown, as less than half of the EVAL
volumes had at least one cluster in the FP or FN classes
at this threshold.

For the BG PVSs the grid plot (Figure 7B) is less smooth than
the DWM PVSs grid plot (Figure 7A), due to a lower number
of PVSs in the BG (101 clusters on the whole EVAL dataset)
compared to the number in DWM (882 clusters). Nevertheless, a
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FIGURE 4 | Plot of true positive rates (TPRs) vs. positive predictive values (PPVs) for the 9-amplitude prediction map thresholds (PredMap-Thrs, 0.1 to 0.9 in step
sizes of 0.1) computed for replication analysis based on 40 TRAIN subjects (each of the 5 replications is shown with a different color) (A) and for training the model
with 20 (purple), 30 (yellow), and 40 (blue) subjects (B) using voxel level (VL) (left) and cluster level (CL) (right).

FIGURE 5 | Example of true positive clusters detected and displayed in coronal and axial orientations. Blue indicates TP voxels, orange indicates FP voxels, and
yellow indicates FN voxels.

marked increase was observed in both the TPR and the PPV after
removing the PVS of one voxel. The progression toward optimal
values of the PPV was faster in BG PVSs than in DWM PVSs. The
Dice metric reached 0.9 (regardless of the PredMap-Thr) using a
cluster threshold size of 7 voxels.

PVS Segmentation Model Performance at Predicting
PVS Cluster Sizes
Figure 8 shows the model-predicted PVS size vs. the size of its
corresponding manually annotated PVS. At the PredMap-Thr
of 0.5, the linear regression slopes were 0.58 (R2 = 0.72) and
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FIGURE 6 | (A) Plot of the true positive rate (TPR) vs the positive predictive value (PPV) for the 9 amplitude prediction map thresholds (PredMap-Thrs, 0.1 to 0.9 in
steps of 0.1) in the deep white matter (DWM, left) and basal ganglia (BG, right) at the voxel level (VL) (A) and cluster level (CL) (B). Each point gives the average and
standard deviation of metrics across the 10 individuals of the EVAL dataset.

0.87 (R2 = 0.93) for the DWM and BG PVSs, respectively. With
a 0.1 PredMap-Thr, the slopes were closer to 1 (0.83 and 1.2
for DWM and BG PVS, respectively) and were markedly lower
with a PredMap-Thr of 0.9 (0.39 and 0.63). In both cases, the
uncertainty analysis demonstrated that there was no bias in the
model regardless of the values.

Testing the PVS Segmentation Model of
a Large Subset: ENCOD Subset Analysis
Relation Between the Voxel and Cluster Charge
Figure 9 shows that the relation between the PVS voxel load
and the number of clusters can be modeled using a second-order
polynomial fit. The adjusted squares of the correlation were 0.94,
0.96 and 0.96 for PredMap-Thrs of 0.1, 0.5 and 0.9, respectively.

Testing the Segmentation Model Against Visual
Rating Results
The logistic regression between the number of DWM PVS
clusters (Figure 10A) and the visual grading rating (Figure 10B)
in the ENCOD set was highly significant for all 3 PredMap-Thrs
(R2

0.1 = 0.38, R2
0.5 = 0.45 see Figure 10C, R2

0.9 = 0.47, p < 0.001,
N = 1,782).

Figure 11 shows the comparison of the number of BG PVS
clusters (Figure 11A) and the first 3 levels of visual grading
(Figure 11B) in the ENCOD set. Again, the logistic regression
showed significant correspondence between the two (R2

0.1 = 0.02,
R2

0.5 = 0.05 see Figure 11C, R2
0.9 = 0.04, p < 0.001, N = 1782).

Note that there were no subjects with BG PVS category of level
4 in the visual rating scale, as such a level is more routinely
observed in elderly subjects.

Assessment of the Prediction Database
Interoperability
Figures 12A,B shows the overlap of the number of cluster
distributions in the MRi-Share and BIL&GIN datasets. Although
the datasets were age-matched, more PVSs were observed in the
BIL&GIN subjects when not filtering small clusters (Figure 12A).
Note that this result can also be clearly seen on the cumulative
plot of both distributions, also called the QQ plot, presented in
Figure 12C. The difference was quantified by a Kolmogorov-
Smirnov test, which showed a significant difference in the
distributions (d = 0.23, p-Value < 10−4). As we showed in the
previous sections that filtering out the small cluster improves
the reliability of the algorithm, we aimed to find the level of
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TABLE 2 | Voxel level (VL) detection true positive rate (TPR), positive predictive
value (PPV), and the harmonic mean (Dice) for the 9 amplitude prediction map
thresholds (PredMap-Thrs) in deep white matter (DWM) and the
basal ganglia (BG).

Tissue PredMap-Thr TPR-VL PPV-VL Dice-VL

DWM 0.1 0.62* 0.38 0.47

0.2 0.58 0.44 0.50

0.3 0.54 0.49 0.51

0.4 0.50 0.52 0.51

0.5 0.47 0.55 0.51*

0.6 0.45 0.59 0.51

0.7 0.42 0.63 0.50

0.8 0.38 0.68 0.49

0.9 0.35 0.70* 0.46

BG 0.1 0.71* 0.59 0.65

0.2 0.68 0.64 0.66

0.3 0.65 0.68 0.66

0.4 0.62 0.70 0.66*

0.5 0.59 0.74 0.66

0.6 0.57 0.77 0.65

0.7 0.54 0.79 0.64

0.8 0.51 0.82 0.63

0.9 0.46 0.82* 0.59

*Best values.

TABLE 3 | Cluster level (CL) detection true positive rate (TPR), positive predictive
value (PPV), harmonic mean (Dice) metric, and Hausdorff distance (HD95) for the 9
amplitude prediction map thresholds (PredMap-Thrs) in deep white matter (DWM)
and the basal ganglia (BG).

Tissue PredMap-Thr TPR-CL PPV-CL Dice-CL HD95

DWM 0.1 0.80* 0.37 0.50 2.05

0.2 0.76 0.46 0.57 2.02

0.3 0.74 0.52 0.61 1.99

0.4 0.71 0.57 0.63 1.96

0.5 0.68 0.61 0.64 2.01

0.6 0.66 0.65 0.66* 2.13

0.7 0.63 0.68 0.65 2.21

0.8 0.58 0.74 0.65 2.29

0.9 0.54 0.75* 0.63 2.33

BG 0.1 0.79* 0.60 0.69 1.88

0.2 0.77 0.68 0.72 1.84

0.3 0.72 0.70 0.71 1.90

0.4 0.71 0.76 0.73* 2.15

0.5 0.67 0.75 0.71 2.17

0.6 0.64 0.79 0.71 2.31

0.7 0.59 0.81 0.69 2.45

0.8 0.58 0.89* 0.70 2.73

0.9 0.52 0.86 0.65 3.32

*Best values.

cluster filtering that made the distributions more comparable.
After removing clusters below 5 voxels, both distributions (see
Figure 12B and the QQ plot in Figure 12D) were not different
according to the Kolmogorov-Smirnov test (d = 0.077, p-Value
= 0.058). The discrepancies remained (see Figure 12D) mainly

for the few subjects showing the highest number of PVSs, with
more subjects in the MRi-Share dataset having the higher number
of PVS clusters than in the BIL&GIN dataset.

DISCUSSION

Methodological Issues
Model Building
The U-net architecture for our machine learning model was
chosen for its segmentation performance with a small training set.
We initially tried to implement our algorithm with a training set
made of only 10 images, but such a small training set did not allow
us to obtain stable and reproducible results; in some cases, the
training phase did not converge on a solution or took a very long
time (more than 1000 epochs). We then observed that initializing
the U-net model with the weights determined by training the
autoencoder on the ENCOD set helped provide stable results with
fewer epochs (usually under 200 epochs).

The main hyperparameters chosen for the U-net used in our
work were based on the U-net topology described in Ronneberger
et al. (2015) adapted for 3D images and constrained by the
available RAM in a GPU where the model parameters together
with a batch of images should be stored. The initial number
of kernels for the first stage of convolutions is important since
it provides the basis for the number of features that may be
extracted at each level of resolution: the larger the number is,
the more features it can extract; however, the resolution has a
large impact on the size of the model. The number of stages
is also important since it adds information for each successive
resolution, whereas the number of convolutions for each stage,
when greater than 1, seems to be less important. As stated above,
7 stages are needed for the model for going to the bottom stage
with an image size of (1, 1, 1), which only allows for an initial
number of kernels of 8 with the GPU we used. Since training
the model took approximately 10 h, it was difficult to perform a
full grid search or even to use the kind of optimization described
in Bergstra et al. (2013). Obvious tests, such as decreasing
the number of stages to increase the number of kernels, were
performed without significant gains. Image cropping during the
preprocessing phase provided a 52% reduction in data volume
size, which authorized two larger batches and thus increased
the training speed. We also tested the segmentation using data
registered in MNI stereotaxic space with the same sampling as
the acquisition (1 mm3); however, both VL TPR and PPV metrics
were lower than without normalization (15 and 25%, respectively,
for an amplitude PredMap-Thr of 0.5). Visual analysis of the
prediction showed that it could be attributed to smoothing due
to interpolation. In fact, smoothing small elongated structures
such as PVS makes it more difficult for them to be detected
because of the induced partial volume effect. We also tested
the increase in the training set (both with and without data
stereotaxic normalization) using flipping with respect to the
interhemispheric plane, but neither case provided any significant
increases in the TPR and PPV metrics.

Finally, we tested a more complex U-net topology with
U-net++ (Zhou et al., 2020), but it proved to be a failure for the
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FIGURE 7 | (A) Cluster-level true positive rate (TPR-CL) vs. the positive predictive value (PPV-CL) of PVS detection in deep white matter (DWM) for the EVAL dataset
(N = 10). Metric values are shown with masking clusters with increasing size (dashed lines, 0 to 15 voxels) and 9 amplitude prediction map thresholds
(PredMap-Thrs, solid lines, 0.1 to 0.9 in steps of 0.1). (B) Same for detection of basal ganglia (BG) PVS, increasing the cluster size threshold from 0 to 7 voxels.
(C) Dice scores of PVS detection in deep white matter for the EVAL dataset (N = 10) at the 9 PredMap-Thr and masking clusters with increasing size (0 to 15 voxels).
(D) Same as C but for basal ganglia PVS detection.

small amplitude PredMap-Thr (0.1 and 0.2) with TPR-VL near 1
and PPV-VL near 0 and marginally better at the other amplitude
thresholds for the TPR and worst for the PPV. For the sake of
parsimony, we chose to use the more basic U-net topology.

Model Reproducibility and Robustness
The random nature of the initialization was tested and proved
not to be an issue; thus, we did not implement a double-
level procedure, such as repeating the training for each fold.
This would lengthen the training process (×5) and require the
management of 5 times the number of parameters.

The size of the training set proved to be an issue when it
was reduced to 20. At this size, using an amplitude threshold
below 0.5, the segmentation failed for some of the folds. With
a weaker reduction of the training set at 30 data points, the

only visible effect was a decrease in the TPR (and not the PPV)
of a few percentage points—values that were well below the
uncertainties of the measured values (see Figure 6). Such good
results were expected when using U-net technology. However,
to both maintain robustness and limit overlearning, the training
dataset size should be as large as possible.

Algorithm Performance
We presented our algorithm performance at both the VL and CL.
Regardless of the amplitude threshold, both TPR values and PPVs
were higher at the CL than at the VL. This discrepancy was related
to an imbalance in FNs, possibly due to the small difference in
shape between manually traced and predicted clusters. While it
was difficult to obtain a definite answer, it is probable that the full
extent of the PVS was not included in the manual tracing, leading
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FIGURE 8 | Predicted cluster size (DL_size) vs. the manual tracing size (MT_size) for deep white matter (A) and the basal ganglia (B). Both were computed with the
amplitude prediction map threshold (PredMap-Thr) of 0.5. Black line: linear regression curve; shaded area: 95% confidence interval of individual values.

FIGURE 9 | Relationship between the number of clusters and the PVS charge load at 3 amplitude prediction map thresholds (PredMap-Thrs) of 0.1 (A), 0.5 (B), and
0.9 (C). Black line: best second-order polynomial regression curve; shaded area: 95% confidence interval of individual values.

to the observed discrepancies. Nevertheless, metrics measured
at both levels exhibited a strong correlation with each other
through a monotonic second-order polynomial relationship.
Whatever the chosen metric level (voxel or cluster), TPR (resp.
PPV) decreased (resp. increased) when the amplitude threshold
increased, which led to the best Sorensen-Dice coefficient value
with a medium threshold. We proposed that the 0.5 threshold
should be used if one does not have any specific reason to favor
one of the TPR or PPV metrics.

The algorithm was trained without taking the PVS location
into account, namely, whether the PVS was located in the DWM
or in the BG. However, for the reasons explained above (see
section 1.2), the algorithm predictions on the EVAL and ENCOD
sets were analyzed independently for the two locations. From
manual tracing, we observed in this dataset of young subjects
that the deep WM-located PVS was more numerous and smaller
than the BG PVS. Averaging cluster-level metrics across the EVAL
dataset demonstrated that, regardless of the amplitude PredMap-
Thr, TPR values were equivalent for the 2 locations, whereas
PPVs were higher for BG than for DWM. As PPVs are dependent
on the FP rate, we investigated their behavior when filtering out
clusters according to their size. For both locations, filtering out
clusters of 1 voxel size led to a large increase in both metric values.
This was expected since no PVS of one voxel size was manually

traced. Nevertheless, increasing the size of filtered out clusters
led to further increases in values of both metric values with the
increase being larger for PPVs than for TPRs. To summarize, the
good performance of our DL algorithm could be improved by
considering only PVSs of larger sizes, a feature that could be very
interesting when the goal is to detect and quantify dilated PVS.

Likewise, we showed that the PVS sizes were linearly related
to the true sizes, albeit underestimated, and the degree of
underestimation depended on the chosen amplitude PredMap-
Thr. The best estimation of PVS size was obtained with the
lowest threshold, albeit at the expense of lowered PPVs and
Sorensen-Dice values.

Comparing the PVS prediction by the algorithm with their
visual rating on the ENCOD dataset provided important
information regarding the clinical utility of the algorithm.
Although a visual rating of the PVS burden was made on only
one slice for each location (DWM or BG), we observed a very
significant agreement between PVS global burdens estimated
by the algorithm and by visual rating (p < 0.0001) in both
locations. For the best results, nearly 50% of the visual rating
variance explained by the algorithm predictions was observed
for the number of DWM clusters estimated with an amplitude
PredMap-Thr above 0.5. Though also significant, the BG PVS
explained-variance was 5 times lower, due in part to very
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FIGURE 10 | Cluster analysis of the deep white matter (DWM) PVS of the ENCOD set (N = 1,782). The prediction maps were thresholded at 0.5. (A) Histogram
distribution of the number of clusters per subject. (B) visual grading. (C) Number of clusters vs. visual grading (R2

0.5 = 0.45, p-Value < 10-4). (D) Summary of PVS
load values within the 4 groups.

unbalanced frequencies of rating for the visual scale degrees;
65% of individuals were rated as degree 3 and none were
rated as degree 4.

Interoperability of imaging marker detection algorithms is
crucial, especially in the context of population neuroimaging
in which multiple databases must be jointly analyzed. This can
be achieved either by retraining the neural network for each
database or by applying the neural network previously trained on
one dataset to the other datasets. The latter approach is preferable
since the former would require manual tracing of at least 40
subjects for each dataset (30 subjects for the training validation
and 10 subjects for the test); manual tracing for this number of
subjects is time consuming and could introduce some bias if the
operators are not the same. Here, we applied the neural network
trained on the MRi-Share dataset to the detection of PVSs in
images acquired on a different scanner in a different sample
of individuals having the same age range. The PVS number
distributions were found to be very similar for the two datasets
and not significantly different when removing clusters with sizes
less than 5 voxels.

Comparison to Other Segmentation
Methodologies
As stated in the introduction, the different segmentation methods
proposed in the literature fall into two broad categories: those

based mainly on image processing designed to enhance PVS
visibility on the image and those that emphasize machine learning
classifications and increasingly, DL-based approaches. In fact,
this subdivision is not as clear-cut as some methods of the
former category often use machine learning classifiers after image
enhancement (support vector machine (SVM) (Gonzalez-Castro
et al., 2017), or random forests (Zhang et al., 2017)), while some
of the latter category used enhanced images as input for the
neural networks (Lian et al., 2018). Regardless of the category, the
performance is typically evaluated with several different metrics,
and the choice of evaluation method is dictated by what is
available as the ground truth. Briefly, the TRP (also known as
sensitivity) and PPV (also known as precision) are often reported
whenever the ground truth is based on PVS voxel manual tracing,
whereas Pearson correlation or Lin’s coefficient is used when only
the number of PVSs is available. We computed similar metrics
in order to facilitate the comparison of the performance of our
algorithm to those in the literature.

When reviewing and comparing existing PVS detection
algorithms, several other factors should be taken into account.
First is the quality and type of the input image used for the PVS
detection, such as the strength of the acquisition MR scanner
and image resolution. Some studies used data acquired either
at 1.5 T (Gonzalez-Castro et al., 2017; Dubost et al., 2020), 3T
((Ballerini et al., 2018; Boespflug et al., 2018; Sepehrband et al.,
2019; Sudre et al., 2019) and our data) or 7T (Lian et al., 2018;
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FIGURE 11 | Cluster analysis of the basal ganglia (BG) PVS of the ENCOD set (N = 1,782). The prediction maps were thresholded at 0.5. (A) Histogram distribution
of the number of clusters per subject. (B) Visual grading. (C) Number of clusters vs. visual grading results (R2

0.5 = 0.05, p-Value < 10−4). (D) Summary of PVS load
values within the 4 groups.

Jung et al., 2019). Up to 3T, the data are most commonly acquired
with approximately the same 1 mm3 sampling size, whereas
with 7T scanners, sampling is usually 8 times higher, providing
a crucial advantage for detecting small DWM PVS. Notably,
the detection of thin features like PVS, especially in DWM, is
much improved at high resolution imaging; thus, comparison
of the present work with the literature is only meaningful for
data acquired on 3T and 1.5T scanners. The imaging sequence
is another important factor, as T2-weighted sequences provide
better contrast (Zong et al., 2016) for PVS, whereas we worked
with T1w images. However, the T1w has the advantage of reduced
potential confusion between PVS and WM hyperintensities,
which is a common problem when working with T2-weighted
images. Another important advantage of an algorithm trained
with T1w is the fact that the T1w images are the most commonly
available 3D images with millimeter resolution, and it opens the
possibility to quantify PVS in datasets that were not originally
designed to detect PVS.

The type and size of the evaluation set is also a determining
factor in the comparisons. When the gold standard was a visual
rating the size of the evaluation set in previous studies ranges
from 20 (Ballerini et al., 2018) to 28 (Boespflug et al., 2018)
to 100 (Sepehrband et al., 2019). With 1782 subjects we are far
above those values. When the gold standard was manual tracing
(like our EVAL set) it ranges from 2 (Sudre et al., 2019), to 6

(Lian et al., 2018) to 19 (Zhang et al., 2017). However, it should
be noted that this last study used the same set to train and
test. If only considering studies using an independent estimation
set, our EVAL set with 10 subjects is larger than any other
published studies. One other study reported tracing from 1000
subjects for evaluation (Dubost et al., 2020). Their manual tracing
consisted of tagging the PVSs in two slices (one in the BG and
one in the DWM), in the complete volumes of the hippocampus
and the midbrain.

Overall, our algorithm exhibited better performance when
compared to the performance measures reported in previous
studies that used T2-weighted images acquired at 3T or less. In
the “image processing” category, Ballerini et al. (Ballerini et al.,
2018), using a Frangi filter on a dataset of 20 subjects, reported
a Pearson correlation between visual rating and either the total
PVS volume burden (r = 0.53) or the total PVS number (r = 0.67).
The corresponding values were 0.79 and 0.77, respectively, based
on the number of clusters derived from our algorithm (0.5
amplitude prediction map threshold) and the visual rating in
the ENCOD set (N = 1782 subjects). Using filtering techniques
and morphological constraints, Boespflug et al. (Boespflug et al.,
2018) reported correlations of 0.58 (N = 28 subjects) and
0.76 for the PVS volume and number of clusters; these values
indicated worse performance for the total volume burden and
equivalent performance for the number of PVS when compared
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FIGURE 12 | Overlap of the distribution of the number of clusters per subject for MRi-Share (red) and BIL&GIN (blue) cohorts computed at an amplitude threshold of
0.5 and without (A) and with (B) filtering clusters that were ≤5 in size. (C,D) QQ plots of the distributions shown in panels (A,B), respectively.

to ours. Finally, using the Frangi filter to create “vesselness”
images and nonlocal mean filtering techniques, Sepehrband et al.
(Sepehrband et al., 2019) reported a visual rating (N = 100
subjects) to cluster number correlation of 0.61 (filtering out the
less than 5 voxel clusters), again showing lower correlation than
ours. In the 2 studies using a DL methodology, Dubost et al.
(Dubost et al., 2020) used a convolutional neural network (CNN)
weakly supervised detection approach with attention maps to
create class activation maps and reported a cluster-like level
sensitivity (called TPR-CL in our study) of 0.51 and 0.57 for
DWM and BG PVS, respectively, whereas we reported values of
0.68 and 0.67 for the PVS in the two regions. The PPV metrics
were in the same range between our study and Dubost et al
study; they reported values equivalent to our PPV-CL index to
be 0.69 and 0.7 for DWM and BG PVS, respectively, compared
to 0.61 and 0.75 in our study. Note that the comparison is
only approximate, since we used a full 3D PVS manual tracing
on 10 subjects for the evaluation of PPV, while they used
PVS tagging on two slices in 1000 subjects, in which only the
center of mass of each PVS was traced. While we quantified the
prediction performance based on the overlap of manually traced
and predicted PVS across the whole brain, they quantified the
matching between the annotated and predicted PVS in one slice
based on a proximity distance of mass centers computed using
the Hungarian algorithm. Sudre et al. (Sudre et al., 2019), using
region-based CNN (R-CNN), based on a test set of 2 subjects,

reported a sensitivity of 0.73 (N = 2) for PVSs above 5 voxels
in size, whereas we reported a value of 0.76 and 0.86 (N = 10,
for DWM and BG, respectively) under the same conditions (see
Figure 7).

Even when comparing with studies using T2-weighted images
acquired at 7T, our results indicate competitive performance of
our algorithm: Zhang et al. (2017), using a structured random
field on extracted vascular features on 19 subjects, using the same
19 subjects to test the algorithm they reported a Dice coefficient
of 0.66, which was identical to what we obtained for BG PVS,
whereas for DWM PVS, it was lower (0.51). However, the slightly
better performance in Zhang study for DWM PVS is to be
expected, as a higher sampling rate increases the detectability
of small PVSs that are mainly located in the DWM. Similarly,
Lian et al. (Lian et al., 2018), who used a U-net approach called
M2EDN on higher resolution (0.53 mm3) T2-weighted images,
testing the algorithm on 6 manual traced subjects they reported
0.77 ± 0.04 (N = 6) Dice values (at the VL regardless of the
localization) compared to 0.66 and 0.51 (N = 10) for the BG
and DWM VRS, respectively, in our study. Without the same
resolution in the data while searching small objects, it is difficult
to interpret those quantitative differences; thus, we will discuss
the differences in the methodology. First, our implementation
allows us to process the whole-brain volume simultaneously as
opposed to patches of the volume as done in M2EDN. By doing
so, we avoid artificially cutting PVSs in 2 or more parts and thus
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make it possible to compute the number of PVS and not solely
the number of PVS voxels. This choice impacts the architecture
of the CNN; while Lian et al. (Lian et al., 2018) choose 3 stages
with 64 features per level to accommodate the local nature of
the patches with PVS, we choose 7 levels with an increasing
number of features (from 8 for the first level to 512 at the deepest
level) to accommodate both the local and global patterns of
PVS repartition in the volume (PVSs are not located everywhere
in the volume). A second difference relies on using or not
using the multiscale feature, which is equivalent to the U-net++
topology (Zhou et al., 2020) that we tested in the selection of
the best topology (see 3.1.1). We did not select it for further
analysis because of failures for the small amplitude PredMap-
Thr (0.1 and 0.2) and no univocal amelioration of the evaluation
metrics at the other thresholds. Note that Lian et (Lian et al.,
2018) did not report such failure, but they also did not report
the amplitude PredMap-Thr used to compute their algorithm
evaluation metrics. Finally, it must be emphasized that M2EDN
is based on multichannel MRI data, including raw T2-weighted
images, enhanced T2-weighted images and probability maps.
Using the probability map in what Lian et al. (Lian et al., 2018)
called “autocontext” did not demonstrate a decisive advantage,
and the procedure was limited to one iteration. In addition, we
believe that having a portable PVS detection algorithm operating
on 3D-T1w images only constitutes an important advantage
in favor of our approach since this algorithm could be easily
applied to most of the existing MRI databases and/or clinical
brain MRI protocols that often include a high-resolution 3D
T1w acquisition.

Additionally we tested two promising methods applied in
medical imaging but not yet to the segmentation of PVS. Adding
the Generic Autodidactic model (Zhou et al., 2021) during the
training phase did not improve neither the DICE-VL (−1,8%)
nor DICE-CL (−1,5%) metrics. We also tested the nnU_Net
based segmentation (Isensee et al., 2021). Compared to our
method, decreases in performance were observed for the DICE-
VL (−12%) and DICE-CL (−10%).

Limitations and Potential Solutions
The first limitation of the work is the number of subjects included
in the training set. While 40 fully traced subjects is more than
what is typically used in the previously published methods, a
higher number could improve the prediction. The 3-Dimensional
tracing is a very complex and time consuming task and the PVS
are very small objects thus sometimes difficult to detect. One
solution proposed by Lutnick et al. (2019) consists of integrating
an iterative annotation technique in the training loop. At the first
iteration the prediction map of a set subject’s data not included
in the training set is reviewed by an expert and cluster detected
tagged either true PVS or artefacts. At the second iteration
those data are added to the initial training set and the neural
network retrained.

Similarly 10 subjects for the testing set is again above what
is used in most studies. Nonetheless, performance index values
can vary significantly across subjects, partly depending on
their PVS load, making it difficult to assess the performance.
Having a larger testing set would definitely make it easier
to evaluate improvements in the model. However, it would

require more time-consuming manual tracing of subjects by an
experienced rater.

Another potential limitation is the applicability of this
algorithm trained on young subjects to the PVS prediction in
older subjects. Unlike other small vessel disease imaging markers
(such as white matter lesions, lacunes, or microbleeds), the
number of PVS can be very large even in young subjects (see
distribution in the MRi-Share database shown in the article),
since PVS is a physiological space that appears and develops with
the growth of brain vessels during the fetal life (see Introduction
section). What may be dependent on age and the age-related
brain disorders is the occurrence and number of enlarged
PVS. Since we observed better performance of the algorithm
for predicting larger PVS clusters (both better sensitivity and
precision), we expect it to perform reasonably well in older
subjects. However, the presence of other small vessel diseases
that result in hypointense T1, in particular lacunes that are rare
in young subjects, may hamper with the precision. Future work
should test the performance of the algorithm in scans from older
subjects to evaluate these issues.

It should also be noted that the present algorithm was trained
using 1 cubic millimeter sampling size voxel, and it cannot
accommodate other sample sizes without retraining. Thus, this
algorithm cannot be applied to scans obtained at a lower
resolution. For higher resolution images with sub millimetric
voxels, either the data will have to be resample to 1mm3
or the neural network needs to be trained on a new set of
manual traced data.

CONCLUSION

We implemented a U-net-based DL algorithm for the 3D
detection of PVS on T1w images both in the DWM and the BG
area. Overall, when considering images of comparable resolution,
our U-net-based DL PVS segmentation algorithm exhibited
better performance than that of previously published methods
working with T2-weighted images, whether based on signal
processing or DL methods. The algorithm performance and its
interoperability for 3T T1w data are important features in the
context of both routine clinical analysis and mega- or meta-
analysis of PVS across databases, as 3D millimeter T1 images are
available for many existing neuroimaging databases.
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reformulate the application or for further information, refusal
with reasons). If positive, applicants will have to complete
and return an application package which will be reviewed
by the principal investigator, the Steering Committee, and
the operational staff. Reviews will be based on criteria such
as the regulatory framework and adherence to regulations
(access to data, confidentiality), the scientific and methodological
quality of the project, the relevance of the project in relation
to the overall consistency of the cohort in the long term,
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currently underway, ethical aspects. De-identified data (and
data dictionaries) will be shared after (i) final approval of
the application, and (ii) formalization of the specifics of
the collaboration.

ETHICS STATEMENT

The MRi-Share protocol has been approved by the CPP-SOM
III ethics committee and the BIL&GIN protocol by the Basse-
Normandie ethics committee.

AUTHOR CONTRIBUTIONS

PB: methodology, software, validation, writing – original
draft, writing – review and editing, supervision, project
administration, and funding acquisition. AT: data curation,
writing – original draft, and writing – review and editing.
AL: software, writing – original draft, validation, writing –
review and editing, and visualization. FA: validation. ZH:
software. VN: software, writing – original draft, and writing –
review and editing. VV: software, writing – original draft,
and writing – review and editing. LL: data curation. JZ: data
curation. Y-CZ: data curation. CT: investigation, writing – review
and editing, and funding acquisition. BM: conceptualization,
formal analysis, investigation, writing – original draft, writing –
review and editing, supervision, project administration, and
funding acquisition. MJ: conceptualization, formal analysis,
investigation, writing – original draft, writing – review and
editing, visualization, supervision, project administration, and
funding acquisition.

FUNDING

This work has been supported by a grant from “La Fondation
pour la Recherche Médicale” (DIC202161236446 WAIMEA,
BM PI, AL, LL, and AT) and by a grant overseen by
the French National Research Agency (ANR) as part of the
“Investissements d’Avenir” Program ANR-18-RHUS-002. This
work was supported by a grant from the French National
Research Agency (ANR-16-LCV2-0006-01, LABCOM Ginesislab
MJ and PB PIs, ZH, VN, VV). The i-Share study has received
funding from the ANR (Agence Nationale de la Recherche)
via the ‘Investissements d’Avenir’ programme (grant ANR-10-
COHO-05, CT PI). The MRi-Share cohort was supported by
grant ANR-10-LABX-57 (BM PI) and supplementary funding
was received from the Conseil Régional of Nouvelle Aquitaine
(ref. 4370420). The work was also supported by the “France
Investissements d’Avenir” program (ANR–10–IDEX-03-0, CT
PI) and (ANR-18-RHUS-0002, S. Debette).

ACKNOWLEDGMENTS

We thank Pierre-Louis Bazin for providing the medical image
processing, analysis, and visualization software. University of
Bordeaux and CNRS provided infrastructural support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2021.641600/full#supplementary-material

“Cluster_amp_size.xls” file: TPR, PPV, and Dice-Sorensen
metrics for PVSs located in the DWM and the BG are provided
at 9 amplitude thresholds of the prediction map threshold
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