
ORIGINAL RESEARCH
published: 06 May 2021

doi: 10.3389/fninf.2021.642933

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2021 | Volume 15 | Article 642933

Edited by:

Ludovico Minati,

Tokyo Institute of Technology, Japan

Reviewed by:

Robert Andrew McDougal,

Yale University, United States

Richard C. Gerkin,

Arizona State University, United States

Nicoladie Tam,

University of North Texas,

United States

*Correspondence:

Ruben A. Tikidji-Hamburyan

rath@gwu.edu

Received: 17 December 2020

Accepted: 29 March 2021

Published: 06 May 2021

Citation:

Tikidji-Hamburyan RA and

Colonnese MT (2021) Polynomial,

piecewise-Linear, Step (PLS): A

Simple, Scalable, and Efficient

Framework for Modeling Neurons.

Front. Neuroinform. 15:642933.

doi: 10.3389/fninf.2021.642933

Polynomial, piecewise-Linear, Step
(PLS): A Simple, Scalable, and
Efficient Framework for Modeling
Neurons
Ruben A. Tikidji-Hamburyan* and Matthew T. Colonnese

School of Medicine and Health Sciences, George Washington University, Washington, DC, United States

Biological neurons can be modeled with different levels of biophysical/biochemical

details. The accuracy with which a model reflects the actual physiological processes

and ultimately the information function of a neuron, can range from very detailed to

a schematic phenomenological representation. This range exists due to the common

problem: one needs to find an optimal trade-off between the level of details needed

to capture the necessary information processing in a neuron and the computational

load needed to compute 1 s of model time. An increase in modeled network size or

model-time, for which the solution should be obtained, makes this trade-off pivotal

in model development. Numerical simulations become incredibly challenging when an

extensive network with a detailed representation of each neuron needs to be modeled

over a long time interval to study slow evolving processes, e.g., development of the

thalamocortical circuits. Here we suggest a simple, powerful and flexible approach in

which we approximate the right-hand sides of differential equations by combinations

of functions from three families: Polynomial, piecewise-Linear, Step (PLS). To obtain

a single coherent framework, we provide four core principles in which PLS functions

should be combined. We show the rationale behind each of the core principles. Two

examples illustrate how to build a conductance-based or phenomenological model

using the PLS-framework. We use the first example as a benchmark on three different

computational platforms: CPU, GPU, and mobile system-on-chip devices. We show that

the PLS-framework speeds up computations without increasing the memory footprint

and maintains high model fidelity comparable to the fully-computed model or with

lookup-table approximation. We are convinced that the full range of neuron models: from

biophysical to phenomenological and even to abstract models, may benefit from using

the PLS-framework.

Keywords: neurons, biophysical models, neurodynamics, CPU, GPU, mobile devices, phenomenological models

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.642933
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.642933&domain=pdf&date_stamp=2021-05-06
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rath@gwu.edu
https://doi.org/10.3389/fninf.2021.642933
https://www.frontiersin.org/articles/10.3389/fninf.2021.642933/full

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

1. INTRODUCTION

Biological neurons are complex computational devices. They
combine spatial and temporal input integration with non-
linear membrane electrical properties subject to modulation
on timescales from milliseconds to days. Almost a century of
effort has resulted in detailed knowledge of these processes and
equipped us with a mathematical toolbox for their numerical
modeling. Current state-of-art multicompartment and single-
compartment, conductance-based models (which we will call
biophysical models) allow for accurate modeling of a single
neuron behavior. However, biophysical models require many
parameters that are often non-existent or not feasible to measure,
requiring computationally expensive optimization procedures
to fit the free parameters. Furthermore, because these models
demand extensive computational resources, simulations of even
small networks utilizing the biophysical accuracy of cellular
dynamics requires supercomputer power.

The burden of computational load becomes a critical factor
when the studied biological phenomena evolve on a scale of hours
or even days. Computing a large-scale biophysical model over
such timescales is not feasible even for modern supercomputers.
For example the early stages of thalamocortical and subcortical
network development takes more than 2 weeks. During this
period, sensory organs generate spontaneous activity in various
forms, and this activity sculpts ascending connections initially
established by gradients of chemical cues (Cang and Feldheim,
2013). This process of activity-guided synaptic formation
and elimination that leads to circuit rearrangements, requires
synaptic plasticity that relies on local and whole-cell integration
of voltage, ionic conductances and secondary messenger systems
that are not easily captured by simple phenomenological models.
For example, during the period of initial circuit formation in the
visual thalamus and cortex, neurons produce plateau potentials
(a long-duration, spikeless depolarization) in response to retinal
drive (Colonnese, 2014). Because early synaptic transmission
mostly relies upon the slow voltage-sensitive NMDA current,
plateau-potentials can potentially change mechanisms for
synaptic plasticity similar to those of dendritic plateau-potentials
in adult neurons (Bono and Clopath, 2017). Furthermore, in
addition to the continual network reconfigurations, in both
thalamic and cortical neuron excitability is also maturing, and
these processes exist in a feedback loop. For these reasons,
modeling the development of brain networks is one of the most
challenging simulation problems.

Traditionally the issues of computational load and speed
of numerical simulation are resolved using phenomenological
models which simulate only the behavior of the cross-membrane
potential (usually called voltage v) without the details of
underlying biophysical/biochemical processes. They are very
popular because of the simplicity, small memory footprint, and
minimal number of mathematical operations per millisecond of
model time. Most critically, they usually come with parameter
sets for some neuron intrinsic dynamics (cell-types, such
as regular firing, intrinsic bursting, chattering, fast firing,
subthreshold resonance, etc.). Phenomenological models allow
for large network simulations to be carried out on ordinary

desktop computers, graphic accelerators, and mobile system-on-
chip (SoC) devices. There are several popular phenomenological
models, including: Izhikevich’s model (Izhikevich, 2003, 2004),
exponential leaky integrate-and-fire model (Brette and Gerstner,
2005; Fontaine et al., 2014; Brette, 2015), generalized linear
integrate-and-fire model (Mihalaş and Niebur, 2009), and
generalized leaky integrate-and-fire model (Teeter et al., 2018)
and many more.

While undeniably useful for many network simulations,
modeling of network and cellular dynamics during development
and plasticity requires more biophysical detail than current
phenomenological models can provide. However, it is not
possible to carry out simulations using fully biophysically realistic
models as computation of a few minutes of development can
take hours or even days of calculations on High-Performance
Computing platforms (HPC). Rather, it needs a modeling
framework with an optimal balance between (1) model fidelity,
i.e., representation of biophysical details, (2) simplicity of
mathematical foundations i.e the minimization of the amount
of computer power needed for computing 1 s of model time,
and (3) flexibility for reconfiguring the modeling network and
neuron excitability during a simulation. In addition to modeling
evolving circuits, such as during development, improving the
biophysical detail of physiological models without a significant
increase of computational loadmay be of use in robotics. Current
packages for spiking neurons in robotics include only a limited
set of phenomenological models so that package developers can
only focus on the code optimization and efficiency for real-time

performance [for example, CARLsim (Beyeler et al., 2015)].
Here we consider a framework for developing models that

can satisfy some of the problems outlined above. It consists of
three general and well-known families of functions: Polynomial,
piecewise-Linear, and Step (PLS). The components themselves
are not novel and have been widely used in many simulations
and analyses, implicitly or explicitly for many decades, if not
centuries. However, here we show that when combined into one
framework based on four core principles, they present a single,
well-balanced approach that allows one to simplify and speed
up simulations, reduce memory footprint, improve flexibility,
scalability, and easily map neuron models onto computational
hardware without sacrificing model fidelities. There is no
“PLS neuron”; the PLS is a framework, which supports the
full range of models from biophysical to phenomenological
ones. One can implement an unlimited number of neuron
models in the PLS-framework. For example, the FitzHugh-
Nagumo model (FitzHugh, 1961) is one of the many possible
models in the PLS-framework. Models implemented in PLS-
framework can run on the full range of computational devices,
including graphical processing units (GPU), central processing
units (CPU), microcontrollers, and system-on-chip (SoC) mobile
hardware. Moreover, the representation of a neuron in the PLS-
framework can help future implementation of this model into
dedicated electronic or optical devices.

This paper is organized as follows: In section 2, we go through
several kinds of reductions for a biophysical model. This section
aims to develop the reader’s intuition and provide benchmarks
for performance, memory footprint, and fidelity of reduced

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

models compared with the original one. This section is not
obligatory and can be skipped. Section 3 defines PLS-framework
and gives general guidelines for implementation. In section 4,
we consider another example of how to build phenomenological
models using the PLS-framework. Section 5 compares two
other popular phenomenological neuron models with the
PLS-framework in a concrete example of modeling neuron-
wise plateau-potentials. Finally, we discuss the advantages and
potential drawbacks of the PLS framework.

We stress that all models we discuss below are examples used
to develop an intuition of how to make a neuron model in the
PLS-framework.

2. EXAMPLE: REDUCTION OF WANG AND
BUZSÁKI, SINGLE-COMPARTMENT,
CONDUCTANCE-BASED MODEL

Here we will consider four different kinds of reduction for
a single-compartment model of hippocampal PV+ fast-spiking
basket cell, suggested by Wang and Buzsáki (WBM) (Wang
and Buzsáki, 1996). This model is one of the most well-studied
conductance-based models on the one hand, and it is simple
enough for developing intuition on the other. It represents
membrane potential (voltage v) of the neurons in the standard
Hodgkin-Huxley (HH) formalism, where the gating variable for
fast sodium activation m is instantaneous and substituted by
steady-state function [m∞(v)]:

c
dv

dt
= I+ gl(El − v)+ gkn

4(Ek− v)+ gNam
3
∞(v)h(ENa− v) (1)

where c = 1µF is a membrane capacitance, gl = 0.1, gNa = 35,
gK = 9 (mS) are conductance for leak, sodium, and potassium
ion-channels with reversal potentials El = −65, ENa = 55, and
EK = −90 (mV), correspondingly. I is an input current, which
may be a constant applied current (I = Iapp) or sum of synaptic
currents if the model is embedded into a network.

Two other gating variables aremodeled by first-order ordinary
differential equations, in which steady-states and time constants
depend upon voltage:

dn
dt

= φ
(

αn(v)(1− n)− βn(v)n
)

=
φ

τn(v)

[

n∞(v)− n
]

dh
dt

= φ
(

αh(v)(1− h)− βh(v)h
)

=
φ

τh(v)

[

h∞(v)− h
] (2)

where the indices h and n indicate sodium slow-inactivation
and potassium activation gating variables, respectively. αx(v) and
βx(v) are rate functions for an increase or decrease of gating
variables (x can be h or n: x ∈ {h n}). The equations for
gating variables can be transformed into a form where time-
constants τx(v) = 1/

(

αx(v)+ βx(v)
)

and steady-state values
x∞(v) = αx(v)/τx(v) are explicitly separated (most right, right-
hand-side in the Equation 2). The m∞(v) in the Equation
(1) is obtained in the same way. Overall the WBM has six
rate functions, one α(v) and one β(v) function for each m, h,
and n. These functions were fitted to represent the biological
neuron accurately and, therefore, will be considered here as the

target model for different approximations. Each rate function
contains one exponential function and needs to be computed
at least 100 times per millisecond. We refer to the solution
obtained with computing all the required exponential functions
as the original or “fully computed” model. Computation of 600
exponential functions for each millisecond of model time is not
an enormous computational load and can be done on modern
desktop computers in real-time. However, as soon as the network
size increases, the computations needed to compute amillisecond
of model time increase proportionally. As a result, modeling 1
s of dynamics of the rat CA1 hippocampal inhibitory network,
which consists of ∼6,000 interneurons, requires HPC (Tikidji-
Hamburyan et al., 2019).

2.1. Lookup-Table Approximation
The lookup-table approximation is a classical method for
computation acceleration in a numerical problem of these kinds,
known for centuries. It is extensively used in such software
as NEURON and GENESIS (Hines, 1984; Tikidji-Hamburyan
et al., 2017). This approximation is based on a straightforward
algorithm: First, before simulation, one needs to pre-compute
lookup tables for values ofm∞(v), h∞(v), n∞(v), τh(v), and τn(v)
in a full range of voltages. Usually, this range goes between the
lowest possible to the highest possible voltages. The range is
divided into intervals with constant steps. For example, this may
be a range from −100 to 60 mV with 1 mV step. With pre-
computed tables, one solves differential equations (1, 2) using
linear interpolation between table rows instead of computing
exponential functions. The voltage at a current time moment
of a numerical solution is used to find indices of two rows in
the lookup table closest to the membrane voltage. Using these
two indices, one can query values for all steady-states and time
constants of gating variables and linearly interpolate between
these values (see Supplementary Figure 1 and pseudo code
below). The table size defines the deviation of a result obtained
with this approximation from the fully computed solution. Due
to the digital nature of modern computers, this approximation
error is approaching zero when the lookup table’s step approaches
the double float point precision; therefore, the accuracy of a
solution is limited only by lookup-table size and the available
memory. The usual rule of thumb is to compute the lookup-table
with 1 mV. This step size gives <5% error for the classical HH
model, while the 0.1 mV step decreases the approximation error
to<3% (Tikidji-Hamburyan et al., 2017).

One of the critical features of the lookup-table approximation
is that all computations can be simply mapped on the hardware.
Indeed, linear interpolation can be performed in the constant
and fixed numbers of operations, known in advance. In other
words, the number of elementary operations is invariant to the
dynamical system state and the accuracy of the approximation.
The table has a constant voltage offset between rows; therefore,
row indexing is a matter of subtraction, division, and casting
a result to an integer number. The pseudo-code is shown in
Listing 2.1.

In our example, we use the lookup table from EK to ENa
with 200 rows (0.725 mV offset per row), which leads to a table

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

Listing 2.1: Pseudo-code of lookup table implementation.

index = int((v - EK)/tbl_step)
tbl_v0 = table[index][0]
scale = (v - tbl_v0)/tbl_step
minf = table[index][1] + (table[index+1][1]-table[index][1])*scale
hinf = table[index][2] + (table[index+1][2]-table[index][2])*scale
htau = table[index][3] + (table[index+1][3]-table[index][3])*scale
ninf = table[index][4] + (table[index+1][4]-table[index][4])*scale
ntau = table[index][5] + (table[index+1][5]-table[index][5])*scale

size of 3.9 kilobytes. Figure 1A shows voltage traces for the
original model’s solution (black line) and a solution obtained with
a 200-row lookup table (red line). Although, as we will show
later, the lookup table approximation is one of the fastest and
most accurate methods to simplify computations in right-hand-
sides (RHS) of differential equations, it comes with a significant
increase of memory footprint. There are two major problems
with lookup tables—large memory footprint and unpredictable
random access to the table rows. During a simulation, a solver
randomly accesses the rows in the table. That is not a sequential
reading from the table, and therefore order in which the rows
are read is unpredictable. For modern CPUs, this random access
requires a memory allocation for the whole table in a relatively
small cache memory. Even for our toy-model, the lookup table
holds more than 6% of CPU L1 cache. With an increase in
the number of ion-channels and the number of segments with
heterogeneous channels, the size of the required memory for
lookup tables increases rapidly. As a result, the frequent access
to the main memory acts as a “bottle-neck” in massive lookup-
table based computations. Moreover, suppose the model consists
of a heterogeneous population of neurons. In this case, the
dynamical property of some of the ion-channels may gradually
change within the population; requiring that lookup tables for
these channels are pre-computed for each neuron in the model

independently. This heterogeneity may easily challenge even the
size of the main memory in modern computers.

One can try to overcome the first obstacle by reducing the
number of rows in the lookup-tables. However, this results in a
second problem: due to the requirement of even steps between
rows, the table’s accuracy deteriorates with a decrease in the
number of rows. For a small number of rows, the lookup-table
may have several segments where there should only be one long
section, and, at the same time, one segment of the table can
linearize a part of the function where a few short pieces can
dramatically increase accuracy. That means the points where
linear interpolation switches to another slope should not be
evenly distributed in the range of voltages (see further discussion
of lookup-tables in the subsection 6.3). This problem is solved by
the piecewise-linear approximation.

2.2. Polynomial and piecewise-Linear
Approximations
Other approaches widely used in theoretical analyses are to use
polynomial (P) or piecewise-linear (L) approximations for the
same functions m∞(v), h∞(v), n∞(v), τh(v), and τn(v). For our
example, we will use just a 2 or 3 point L-functions as follows:

L2(x, a0, x0, y0, a1) =

{

y0 + a0(x− x0) x ≤ x0
y0 + a1(x− x0) x > x0

(3)

L3(x, a0, x0, y0, x1, y1, a2) =







y0 + a0(x− x0) x ≤ x0
y0 + a1(x− x0) x0 < x ≤ x1
y1 + a2(x− x1) x > x1

(4)
where a1 =

y1−y0
x1−x0

and a2 =
y2−y1
x2−x1

should be pre-
computed before simulations. Polynomial (P) functions can also
approximate the same functions for voltage-dependencies of
steady-states and taus. Taking into account that the number of
operations in the L3 function is equivalent to the number of
operations in the 5th order polynomial series, we compare these
approximations against each other. Although L approximation
produces slightly better results, both P (blue lines) and L (orange
lines) approximations do not show a good match to the original
model (black lines) in Figure 1B. Moreover, due to a bigger
error, P approximation spikes even at zero current. As discussed
in section 6.8, these results can be improved by increasing
the polynomial order or number of points in piecewise-linear
optimizations. However, both approaches increase the number
of computations and the amount of memory needed to hold
coefficients. Note that nested (P, L, and S) functions can deliver a
much better approximation than was achieved here (see section
6.8 for a brief discussion). For the further increase in speed
of the Wang–Buzsáki, we can perform Rinzel’s reduction of a
3-dimensional dynamical system (1, 2) into a 2-dimensional one.

2.3. 2D Reduction and PL Approximation
As Rinzel pointed out in the seminal paper (Rinzel, 1985), if the
dynamics of h and n gate variables have similar time constants
and trajectory in the h − n plane and can be approximated
as a linear function [for example, in the standard Hodgkin-
Huxley model (Hodgkin and Huxley, 1952)], the dimensionality
of the dynamical system is lower than the full system. The
Supplementary Figure 3 shows the WBM trajectory and best
linear approximation of it in the h−n plane, which reaches more
than 90% accuracy. Therefore the reduced dynamical system can
be derived as follows:

c dv
dt

= I + gl(El − v)+ gkn
4(Ek − v)

+gNam
3
∞(v)(ǫ + κn)(ENa − v)

dn
dt

=
φ

τn(v)

[

n∞(v)− n
]

(5)

where ǫ and κ are coefficients of linear regression. The system
(5) can be analyzed using the standard graphical method on

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

FIGURE 1 | Constructing approximations of Wang and Buzsáki biophysical model. (A) Voltage traces for the original model (black line) overlapped with solution based

upon lookup-table approximation (red line). (B) Top from left to right: Steady-state for fast sodium activation (m∞(v)), inactivation (h∞(v)), and delay-rectifier potassium

activation (n∞(v)) and time constants for sodium inactivation (τh(v)) and potassium activation [τn(v)] for the original model and two approximations: black lines—original

model, blue lines—5th order polynomial interpolation, orange lines—piecewise-Linear approximation. Bottom: Voltage traces for the same approximations. (C) Top
left: voltage nullclines at different applied currents (I = Iapp) for the original model reduced to 2 dimensions. Top center: Construction of only polynomial (green line) or

Polynomial+piecewise-Linear approximation (PL 2D, red dashed line) from the original model after the reduction (black line). Top right: nullclines for the PL2D model

(the same color-code and applied currents as in the left plot) Bottom: Voltage traces for original model (black line) and PL2D approximation (red line).

the phase-plane. The vector field switches the direction along
the lines dv/dt = 0 and dn/dt = 0, called nullclines.
Nullclines for the system (5) are shown in Figure 1C (top
row left). With an increase of the applied current I = Iapp,
the N-shaped voltage nullcline (dv/dt = 0) is rising (color

lines for different Iapp) and loses two intersections with the
n-nullcline (dn/dt = 0, black line). The intersection points
manifest stable and unstable fixed points, which collide and
annihilate, and therefore the dynamic system undergoes the
saddle-node bifurcation.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

To simplify this system, we can approximate nullclines by one
of the P or L-functions above. At I = Iapp = I0 ≈ 0.13µA, the
v-nullcline touches n = 0 line at v0 = 60.6 mV. The second
intersection with n = 0 appears at sodium reversal potential
v1 = ENa = 55 mV. Therefore one can try to substitute v-
nullcline by a 3rd order polynomial a0(v − v0)

2(v1 − v) (green
curve on Figure 1C top row center). Although this approximation
is close to the right branch of the voltage nullcline, it cannot
approximate the left branch well. To fix this discrepancy, we can
divide the polynomial term by L1 function, with the point of the

slope changing at the same v0 voltage, and therefore the change
of slopes in L1 function cannot change the smoothness of the

overall nullcline (red curve).
That is the critical concept of the PLS-framework, which

allows us to have a smooth and continuous solution of the
dynamical system, even though the governing system consists

of non-smooth or discontinuous functions. Finally, we can
substitute n-nullcline with the same L3 curve as in the previous L-
approximation. Overall, our approximation shows a good match
for voltage nullclines at different currents (Figure 1C top right
and in the Supplementary Figure 4). By substitution of τn(v) to
L3 approximation and by introduction voltage time constant as
L1 function we can construct a reduced PL-approximation of
WBM as follows:

L1(v, sv0, vτ , τv0, sv1)
dv
dt

= I − I0 + a0
(v−v0)

2(v1−v)
L2(v,1,v0 ,1,0)

+ gkn
4(Ek − v)

L3(v, snτ ,0, vnτ ,0, nnτ ,0, vnτ ,1, nnτ ,1, snτ ,2)
dn
dt

= L3(v, sn∞ ,0, vn∞ ,0, nn∞ ,0, vn∞ ,1, nn∞ ,1, sn∞ ,2)− n
(6)

Although this system contains a lot of constants, which can
be found in Supplementary Code along with full reduction and
tests, surprisingly, it provides a better approximation for the
original model than P or L separately (Figures 1B,C bottom) and
close to lookup table approximation (Figure 1A bottom). We will
refer to this system as the PL2D reduction.

2.4. Quantitative Assessment of WBM
Approximations
To quantitatively assess accuracy, performance, and memory
footprint of different approximations, we perform two tests: (1)
a single run of all approximations a single neuron model for
10 min of model time (60,000,000 iterations of Euler method
with constant 0.01 ms time-step) on different computational
platforms, and (2) a standard 10 s ramp-protocol to obtain F-
I curves (Figure 2A). Note that we use the odeint method built
into the scipy library for the second test because we seek an
assessment of the approximation accuracy. However, the Euler
method with a constant 0.01 ms step, produces similar results
(see Supplementary Code with the Euler method). We did not
use these runs for performance benchmarks because we could not
control the total number of elementary steps that odeint performs
due to the adaptive time-step algorithm.

For the performance assessment, all approximations were
implemented in C-language. Tests were run on four different
platforms: as a single thread process on Intel Core i5-5257UCPU,
on Raspberry Pi 1 and 4 ARM CPUs, and as 256 independent
threads on NVidia GeForce RTX 2080 Ti GPU. We consider
ARM-based single-core CPU in Raspberry Pi 1 and quad-core

CPI in Raspberry Pi 4 as representative examples of system-on-
chip mobile devices. Unfortunately, we cannot present the same
benchmarks for microcontrollers because the lookup-table size
exceeds the 2 kb static random-access memory of the Arduino
microcontroller available for this project. We assess performance
as the minimum wall-clock time required to compute the
task normalized by the minimum wall-clock time required to
compute the original model (see Materials and Methods for
more details).

Overall any approximation is twice as fast compared to the
original model (Figure 2B1). Again, PL2D approximation offers
the best or the second after best speedup of the performance,
potentially because differential equations were reduced to 2D.
Although, as expected, the lookup-table approximation has
the largest memory footprint (Figure 2B2) and offers the best
approximation of the original model (Figure 2B3), it is not
always the fastest approximation. An accuracy of just P or
just L approximation is low: the maximum absolute error for
P exceeds 30% of the model dynamic range, the error for L
approximation is higher than 20% of the dynamic range, while
the PL2D error is<4% of the dynamic range (Figure 2B3). Thus,
the P or L approximations of the original model cannot offer
a better approximation than a mix of PL functions, although
these approximations model a full 3D dynamical system, not the

2D reduction. Overall, this example shows that combinations of
P and L-functions can provide appropriate accuracy of neuron
dynamics, significant computational speedup, and lowermemory
footprint compared to other reductions. With an additional class
of Step functions, which appears in phenomenological models,
we now can formally define the PLS-framework.

3. DEFINITION OF THE PLS-FRAMEWORK

A neuron’s dynamics are modeled in PLS-framework as

• a system of continuous (without resetting) dynamical

variables,
• the right-hand sides of differential equations consist of

linear combinations of Polynomial, piecewise-Linear, and Step
functions;

• specific points of these functions can be aligned to make
governing differential equations smooth and continuous if
needed;

• specific points of both families of L and S functions are
not bifurcation points or fixed points of the dynamic system
themselves, and therefore, right-hand sides of the system
are smooth, continuous, and continuously differentiable in a
neighborhood of bifurcation/fixed points.

The family of Polynomial functions, used in this framework
is better to present as a recursive hierarchy with the first-order
linear function P1(x, x0) = (x0 − x) as the core function. All
higher orders can be defined as follows:

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

P2(x, x0, x1) = P1(x, x0)P1(x, x1)
P3(x, x0, x1, x2) = P2(x, x0, x1)P1(x, x2)
...

As we saw in the example above, it is also useful to define P-
functions with one root less than the order of the polynomial.
For example, a polynomial of 3rd order with two roots (P32), etc.

P32(x, x0, x1) = P1(x, x1)
[

P1(x, x0)
]2

P43(x, x0, x1, x2) = P2(x, x1, x2)
[

P1(x, x0)
]2

...

Similarly, we can define the core function of the piecewise-Linear
family as L0(x, x0, y0, a0) = y0 + a0(x − x0). L0 function is a
continuous linear function that represents a linear segment in

FIGURE 2 | Comparison of original Wang and Buzsáki model with different approximations. (A) FI-curves, used for accuracy assessment. (B1) Performance Of 3D

lookup table (red), 3D piecewise-Linear (L, yellow), 3D Polynomial (P, green), and 2D Polynomial+piecewise-Linear approximations (PL2D, brown) in comparison with

the original 3D model (blue) computed on four different platforms: CPU—Intel Core i5-5257U, RPI1—Raspberry Pi 1, RPI4—Raspberry Pi 4, and GPU—NVidia

GeForce RTX 2080 Ti. (B2) Assessment of memory size needed for model constants in the total number of single, double, or long double precision numbers. (B3)
Standard squared error between FI-curve of the original model and four different approximations.

FIGURE 3 | Examples of functions, which comprise the PLS-framework.

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

all other L functions. Therefore, the L1 function can be defined
as follows:

L1(x, x0, y0, a0, a1) =

{

L0(x, x0, y0, a0) x ≤ x0
L0(x, x0, y0, a1) x > x0

Recursively, L2 can be defined as

L2(x, x0, y0, x1, y1, a0, a2) =

{

L0(x, x0, y0, a0) x ≤ x0
L1(x, x1, y1,

y1−y0
x1−x0

, a2) x > x0

and L3 as

L3(x, x0, y0, x1, y1,
x2, y2, a0, a3)

=

{

L0(x, x0, y0, a0) x ≤ x0
L2(x, x1, y1, x2, y2

y1−y0
x1−x0

, a3) x > x0

and so on.
Finally, the family of Step functions also has a core-function,

that is

Listing 3.1: Implementation of PLS functions in C-language.

#define P1(X,X0) (X0-X)
#define P2(X,X0,X1) (P1(X,X0)*P1(X,X1))
#define P32(X,X0,X1) (P1(X,X0)*P1(X,X0)*P1(X,X1))
#define P3(X,X0,X1,X2) (P1(X,X0)*P1(X,X1)*P1(X,X2))

#define L0(X,X0,Y0,A0) (Y0+A0*(X-X0))
#define L1(X,X0,Y0,A0,A1) ((X <= X0)?L0(X,X0,Y0,A0):L0(X,X0,Y0,A1))
#define L2(X,X0,Y0,X1,Y1,A0,A2) ((X <= X0)?L0(X,X0,Y0,A0):L1(X,X1,Y1,(Y1-Y0)

/(X1-x0),A2))
#define L3(X,X0,Y0,X1,Y1,X2,Y2,A0,A3) ((X <= X0)?L0(X,X0,Y0,A0):L2(X,X1,Y1,X2,Y2,

(Y1-Y0)/(X1-x0),A3))

#define S1(X,X0,Y0,Y1) ((X<X0)?(Y0):((X>X0)?(Y1):((Y1+Y0)*0.5)))
#define S2(X,X0,X1,Y0,Y1,Y2) (S1(X,X0,Y0,S1(X,X1,Y1,Y2)))
#define S3(X,X0,X1,X2,Y0,Y1,Y2,Y3) (S1(X,X0,Y0,S2(X,X1,X2,Y1,Y2,Y3)))

Listing 3.2: Implementation of PLS functions in Python.

P1 = lambda x,x1 : x1-x
P2 = lambda x,x1,x2 : P1(x,x1)*P1(x,x2)
P32 = lambda x,x1,x2 : P1(x,x2)*P1(x,x1)**2
P3 = lambda x,x1,x2,x3 : P2(x,x1,x2)*P1(x,x3)
L0 = lambda x,x0,y0,a : y0 + a*(x-x0)
L1 = lambda x,x0,y0,a0,a1 : L0(x,x0,y0,a0) if x<=x0 else L0(x,x0,y0,a1)
L2 = lambda x,x0,y0,x1,y1,a0,a2 : L0(x,x0,y0,a0) if x<=x0 else L1(x,x1,y1,(y1-y0)/

(x1-x0),a2)
L3 = lambda x,x0,y0,x1,y1,x2,y2,a0,a3 : L0(x,x0,y0,a0) if x<=x0 else L2(x,x1,y1,x2,y2,

(y1-y0)/(x1-x0),a3)
S1 = lambda x,x0,y0,y1 : y0 if x < x0 else (y1 if x >x0 else (y0+y1)/2)
S2 = lambda x,x0,x1,y0,y1,y2 : S1(x,x0,y0,S1(x,x1,y1,y2))
S3 = lambda x,x0,x1,x2,y0,y1,y2,y3 : S1(x,x0,y0,S2(x,x1,x2,y1,y2,y3))

S1(x, x0, y0, y1) =







y0 x < x0
y1+y0

2 x = x0
y1 x > x0

and therefore all higher-order S functions can be
defined recursively:

S2(x, x0, x1, y0, y1, y2) = S1(x, x0, y0, S1(x, x1, y1, y2))
S3(x, x0, x1, y0, y1, y2, y3) = S1(x, x0, y0, S2(x, x1, y1, y2, y))
...

Examples of the basic functions and recursive
hierarchical functions for each family are shown
in Figure 3.

3.1. Implementation Note
Although the recursive notation used above is extremely
compact and easy to understand, it is not optimal for many
programming languages. In C and C++, it is better to define
a macro of a core family function and then define macros
for each hierarchical function. Here we provide a possible
implementation of PLS functions in C (Listing 3.1) and in
Python (Listing 3.2).

The reader can find C/C++, Python, and XPP (Ermentrout,
2002) implementations as well as a module for Brian-2 simulator
(Stimberg et al., 2019) in ModelDB (McDougal et al., 2017)
at http://modeldb.yale.edu/266863. Note that C/C++ macros

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2021 | Volume 15 | Article 642933

http://modeldb.yale.edu/266863
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

can be used directly in both Cython and NEURON’s NMODL
extensions (Hines and Carnevale, 2000).

3.2. Analytical Note
There is the most common potential mistake during the
construction of neural models in the PLS-framework, that is
constructing a bifurcation or fixed point as a specific point of L
or S function only. One can use L or S functions to change slopes
for P functions in RHS, as we did in the example above. In this
case, RHS is still continuous and continuously differentiable at
the bifurcation point, where the slope of the P function is zero,
as at any fixed point. Alternatively, it is tempting to substitute a
cubical P32 in our example by 3 or 4 branches L3 or L4 functions.
However, this is a recipe for a model with unpredictable

behavior. The roots of such strange and sometimes “paradoxical”
behavior is, in fact, that a saddle-node bifurcation appears at
the local minimum of P32, i.e., at the v0. If we substituted
P32 by any L-functions, the bifurcation would happen at the
L function’s specific point, and this implicitly violates the last
core principle. As a result, the RHS of differential equations
would not be continuously differentiable at the saddle-node. This
dynamical systemwould not have a unique solution in this case.
In practice, this problemmaymanifest itself as extreme sensitivity
to time-step size up-to picoseconds or as an exponential run
away to nan when a model should be at resting stable fixed
point, or a model can rest at currents way above the threshold.
To avoid such a behavior, any PLS model must be designed to

be continuous, smooth, and continuously differentiable at any

bifurcation or fixed point. That is not obvious but critical for
obtaining predictable and “well-behaved” models.

4. EXAMPLE: CONSTRUCTING
PHENOMENOLOGICAL MODELS OF
INTEGRATING AND RESONANT NEURONS

The PLS-framework provides a flexible approach to model
neurons, from detailed biophysical to phenomenological models.
This section shows how to build phenomenological, simplified
models of an integrating neuron (also known as Type 1 or
Class 1 neurons) and a resonant neuron (known as Type 2
or Class 2 neurons) in the PLS-framework. We develop here
basic models without adaptation or any complex behaviors.
However, a curious reader can find examples of linear and non-
linear adaptation, as well as some non-traditional/non-biological
adaptation models in the Supplementary Code. It should be
stressed that all of these models must be considered as just

examples (“use cases”), not as specific neuronmodels. In contrast
to other phenomenological models, which usually suggest a single
dynamical system (i.e., system of differential equations) with a
set of parameters for each different neuron dynamics, the PLS-
framework offers a set of functions and core principles for model
development. A large variety of dynamical systems, dynamics,
and models can be implemented in the PLS-framework.

Usage of the PLS-framework can speed up computations
ranging from multicompartment models on hardware with
limited memory, to point-model with simplified dynamics on

GPUs. The goal of the section below is to illustrate the logic
behind the development of a phenomenological model.

4.1. Integrating Neuron
Integrating neural excitability, also known as an integrator, was
first described by Hodgkin as the class 1 excitability of giant
squid axons. It can produce and sustain very slow spike rates
(Hodgkin, 1948). Such an ability to produce an infinitely slow
firing rate is usually linked to a specific dynamic system with
a saddle-node bifurcation at the spiking threshold (Rinzel and
Ermentrout, 1998; Izhikevich, 2007; Gerstner et al., 2009). The
saddle-node bifurcation happens when stable and unstable fixed
points collide and annihilate each-other. In a two-dimensional
system, fixed points are the intersections of the system nullclines,
i.e., lines where the rate of change of one of two dynamic variables
is zero. The intersection of two nullclines indicates values of
the variables where both rates are zero, and therefore in these
particular points, the system does not move. Fixed points can be
of two types—stable and unstable. For an unstable fixed point,
a small perturbation will lead to run away from the fixed point,
while in a stable fixed point, dynamics will return the system to
the fixed point. For spiking neurons, such a system comprises
an inverted N-shaped voltage nullcline (dv/dt = v̇ = 0, aka
v-nullcline) and sigmoidal slow variable nullcline.

In Rinzel’s reduction, activation of a delayed rectifier
potassium current is considered a slow variable, as in section
2 above. However, a different variable w is usually assigned for
the slow variable in phenomenological models, referred to as an
adaptation variable. We will use this notation here and consider
w slow variable and w-nullcline (dw/dt = ẇ = 0) in the current
and next sections.

To construct stable and unstable intersections, one can use
cubical polynomial v-nullcline with three roots and L3 instead
of a sigmoidal function for the construction of a w-nullcline.
The v-nullcline left and right branches with a negative slope are
stable branches, while a middle branch with a positive slope is
unstable. However, in the biophysical model the left branch is
formed by a hyperbolic curve that runs to infinity when voltage
is approaching the potassium reversal potential. Therefore, the
left branch on the voltage nullcline is much steeper than the
middle or right branches, and a P3 function alone is not enough
for accurate modeling of the spike’s downstroke. This part is
usually omitted in phenomenological models with resetting. As
in the example above, one can make the left branch of the
polynomial steeper by multiplying it by an S or L function, with
a specific point at is the most negative root of P3. We will use the
P3()L1() combination below to make the slope onset smoother
and remove the none-biological artifact(notch) in after-spike
hyperpolarization.

As the next step, one needs to choose scales for voltage
and slow variables. It is most natural for physicists and
mathematicians to normalize both variables so they would have
the unit range. However, normalization canmake challenging the
interpretation of model results for biologists; therefore, the usual
approach is to keep the standard biological range in millivolts for
voltage variable.

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

The choice of the voltage scale requires to scale the slow
variable in the whole model or on the right-hand side of the
voltage equation. In the former approach, the slow variable is
not limited. It may have arbitrary values, like in Izhikevich’s
model. In contrast, the scaling of the slow variable in RHS of
the voltage equation requires a scaling factor, which can be seen
as a “conductance-like” multiplayer. Such a multiplayer can be
hidden by scaling the P3 function and the time-constant of
voltage dynamics. Note that the Brian simulator (Goodman and
Brette, 2008, 2009; Stimberg et al., 2014) converts dynamical
variables, constants, and parameters into the International
System of Units (SI) and balances units automatically. Therefore,
if the voltage is set to be in mV or V units, the slow variable
should have units of electric current (pA |nA |uA |mA |A) or
voltage units (mV |V) if voltage time constant is aggregated into
a common denominator and has units of time.

Saddle-node bifurcation is necessary but not sufficient to
produce arbitrary slow oscillations because type 1 excitability
needs a trajectory that passes through the half-stable fixed point
at the bifurcation (Knowlton et al., 2020). In other words, a
limit circle should go through the saddle-node, and therefore this
bifurcation is known as a saddle-node on an invariant curve or
cycle (SNIC). To guaranty SNIC bifurcation, we can slow down
w in the range where v-nullcline has an unstable middle branch.
The simplest way is to introduce S2 function for w time constant
and L1 function for the v time constant, which leads us to the
simple system of two ordinary differential equations.

L1(v, v3, r0, r1, 0)v̇ = P3(v, v0, v1, v2)L1(v, v0, a0, a1, 0)+ I − wk

S2(v, v6, v7, s0, s1, s2)ẇ = L2(v, v4, 0, v5, 1, 0, 0)− w
(7)

where I is an input current, k is the power for the slow variable
(usually 1, 2, or 4), and the rest are parameters. All parameters are
indicated on the phase-plane and time-constant graphs for this
dynamic system, shown in Figures 5A,B. At rest (I = Iapp = 0),
the voltage nullcline (blue curve) intersects w-nullcline (black
curve) at three fixed points. The most left fixed point is stable
(filled circle), while the two others are unstable (open circles).
An increase of input current moves v-nullcline up, and two
stable and unstable fixed points shift toward each other. At the
applied current I = Iapp = I0 ≈ 0.039 (a yellow curve on
Figure 5A), these two fixed points collide, creating one half-
stable fixed point (half-filled circle). With a further increase in
input current, nullclines lose intersection, stable and unstable
fixed points annihilate, manifesting saddle-node bifurcation. The
rate of change approaches zero as the dynamic variable gets
close to its nullcline. Therefore these rates are minimal in the
gap between the two nullclines at the bifurcation. Thus, the gap
(also called a bottleneck or slow channel) can hold the trajectory
arbitrarily long, making possible arbitrary low firing frequency
for the integrator. Critically, the further increase in input current
brings voltage nullcline closer to the upper branch of w-nullcline,
creating another saddle-node bifurcation at (I = Iapp = I1 ≈

0.32, the red curve on Figure 5A), with a reverse sequence of
fixed points annihilation. The model stops pacing at I1 and stays
at high voltage due to the appearance of a stable fixed point

between the right branch of v-nullcline and the upper branch of
w-nullcline. This phenomenon is called the depolarization block
in biology, and it plays a critical role in epilepsy (Connolly, 2016;
Beck et al., 2019) or in blocking dopamine neurons (Richards
et al., 1997; Lammel et al., 2008) for example. Figure 5C shows
that the integrator model can spike at very low frequencies
and blocks spiking exactly at I1. Note that the bifurcation of
the depolarization block can be changed to more biologically
plausible Poincaré–Andronov–Hopf bifurcation with a minor
change in parameters given in Supplementary Code. Also, the
same Supplementary Code shows how to include linear or non-
linear adaptation into the model.

4.2. Resonant Neuron
Resonant neuron excitability, Hodgkin’s class 2 excitability of
giant axons, Type 2 excitability, or simply resonator, cannot
spike sustainably at low frequencies. This type of excitability
is usually phenomenologically modeled by a dynamical system
with Poincaré–Andronov–Hopf bifurcation, also referred to as
“Hopf.” A two-dimensional system undergoes this bifurcation
when a stable fixed point loses stability, and a stable limit cycle
appears around the unstable fixed point. A phenomenological
model should undergo the subcritical Hopf bifurcation to model
the phenomenon of sudden onset of high-amplitude oscillations.

We can recycle our integrating model (7). Because the
dynamical system needs only one fixed point all the time for Hopf
bifurcation, we can substitute P3() with a cubical polynomial with
only two roots P32. To avoid any confusion, we will omit the v1
parameter in this model, where all other parameters will have the
samemeanings as in the integratingmodel. Therefore, the system
became even simpler than 7):

L1(v, v3, r0, r1, 0) v̇ = P32(v, v0, v2)L1(v, v0, a0, a1, 0)+ I − wk

S2(v, v6, v7, s0, s1, s2) ẇ = L2(v, v4, 0, v5, 1, 0, 0)− w
(8)

We seek a system with only one fixed point. Because we chose
only two roots in the polynomial, we can create a stable fixed
point by setting v4 more hyperpolarized than v0. To maintain
only one intersection with v-nullcline, we need to set the middle
branch of the w-nullcline steeper than the unstable (middle)
branch of v-nullcline. Finally, to have a reasonable range of
currents between the onset of spiking and depolarization block,
we slightly scaled-down the polynomial by the a0 coefficient. The
a0 coefficient controls the overall scaling of the polynomial curve
and, therefore, the decrease of a0 reduces the maximum of P32
function (the peak of the curve), and increases the gap between
the v-nullcline and w-nullcline at higher voltages. As a result, the
dynamical range of the model (where it spikes) increases and the
model does not fall into a depolarization block shortly after the
onset of spiking.

Overall, nullclines at rest are shown in Figure 5D (blue
and black curves), while time-constants are the same for the
integrator (Figure 5B). The resting potential can be found
by solving the 4th order equation analytically or numerically.
An input current at the bifurcation point can also be found
analytically or numerically. We used a semianalytical approach
combining the SymPy symbolic solver to find Jacobian and

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

FIGURE 4 | Phase-Plane Analysis and dynamics for phenomenological models of Integrating and Resonant neurons. Phase-portrait (A) and time constants (B) for the
integrator model with parameters: v0 = −65 mV, v1 = −45 mV, v2 = 55 mV, a0 = 3.5 10−6, a1 = −10−4(mV)−1, v3 = −35 mV, r0 = 0.04 ms, r1 = −0.004 ms/mV, v4 =

−40 mV, v5 = −5 mV, v6 = −55.45 mV, v7 = 18.78 mV, s0 = 5 ms, s1 = 7.6 ms, s2 = 1.8 ms, k = 2. Voltage nullclines are shown for zero current at resting (blue curve),

for saddle-node bifurcation at the onset of pacing (I0, yellow curve), and for saddle-node bifurcation at the onset of depolarization block (I1, red curve). (C) Protocol
(top) and voltage trace (bottom) of integrator dynamics. The model was held almost at the bifurcation point (I0) for 500 ms, and then the applied current slightly

increases at the point marked by triangle for 9 s. At the last second, a ramp of the input current traverses from 0.9I1 to 1.1I1 to show the depolarization block. (D)
Phase-plane analysis for the resonator, with the same as for integrator parameters except for v1—is not used in this model, and a0 = 3.25 10−6, v4 = −75 mV, v5 =

−5 mV, v6 = −55.5 mV, v7 = 18 mV. Voltage nullclines are shown for zero current at resting (blue curve), for Andronov-Hopf bifurcation (I0, yellow curve), and for

saddle-node bifurcation at the onset of depolarization block (I1, red curve). (E) Dynamics of the resonator. The protocol is the same as for the integrator.

NumPy to find its eigenvalues. Note that this analysis can be
easily done in PyDCTool and in such software as XPPAUTO
or Matlab. Nullclines at the bifurcation current are shown in
Figure 5D (yellow and black curves). Finally, this model shows
a depolarization block with saddle-node bifurcation (Figure 5D
red and black curves) similar to the integrator. The dynamics of
the resonant model with the same protocol as for integrator is
shown in Figure 5E. Note that a firing rate around 4 spikes/s is
the lowest frequency at which this model can oscillate. The reader
can find two versions of adaptations that can be embedded in this
model as well as a test for bistability in the Supplementary Code.

5. EXAMPLE: PLATEAU-POTENTIAL IN
PHENOMENOLOGICAL NEURAL MODELS

We have seen how the second, third, and fourth core principles
of the framework work in biophysical and phenomenological

models. However, it may not be obvious why we included the
first requirement of continuity for model dynamics and did
not relax the PLS-framework to include discontinuous models
with resetting. This section will show an example of modeling
a well-known biological phenomenon of a prolonged spikeless
depolarization at about−20 mV called Plateau-potentials (PP) in
five different phenomenological models. The section’s main point
is to show that the first core rule is essential and pivotal in the
PLS approach.

In adult cortical pyramidal neurons, PP are generated in
dendrites by NMDA glutamatergic receptors and are believed
to play a crucial role in synaptic plasticity and learning
(Bono and Clopath, 2017; Malik and Johnston, 2017). In the
developing cortex, PP appears in response to spontaneous
bursting activity generated in sensory organs and propagating
into the cortex through the thalamus (Colonnese and Phillips,
2018). For example when a wave generated in the retina passes
a location that projects to a specific thalamic relay neuron,

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

FIGURE 5 | Reproduction of immature, neuron-wide Plateau-Potential in five phenomenological models. (A1) Evoked and (A2) Spontaneous Plateau-Potentials

recorded in vivo in rat visual cortex. Graphs reproduced from the data and by the scripts reported previously (Colonnese, 2014). (B) Five phenomenological models

responses on input similar to dLGN neuron firing during the same period of the development. (B1) Izhikevich’s model in regular firing mode, (B2) Exponential Leaky
Integrate-and-Fire model with linear adaptation, (B3) Exponential Leaky Integrate-and-Fire model with non-linear adaptation, (B4) Type 1 neuron implemented in

PLS-network (parameters are the same as in Figures 4A–C), (B5) Type 2 neuron implemented in PLS-network (parameters are the same as in Figures 4B,D,F). For
each model, subplot BX.2 is the zoomed burst on subplot BX.1. Synaptic conductance was adjusted to obtain a realistic 0.7–1 Hz firing rate outside the burst. For

(B3), synaptic conductance was set higher than the adjusted level in an attempt to obtain PP for the stronger synaptic drive.

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

the thalamocortical neurons’ firing rates increase from 0.9 to
13 Hz (Murata and Colonnese, 2018). This increase in firing
triggers neuron-wide PP in cortical neurons (Colonnese, 2014)
(Figure 5A).

For the sake of simplicity, we considered a simple single-
compartment phenomenological model, which receives inputs
from 30 Poisson processes. The firing rate of sources is at 0.9 Hz
all the time, except 1 s when it is 13 Hz. PP is a result of the non-
linear activation of the dominant NMDA glutamate receptors.
Therefore, we model two synaptic currents for each connection:
a fast and weak AMPA current and a strong and slow NMDA
current with magnesium block (see Materials and Methods for
more details).

We first examined the two-dimensional model suggested
by Izhikevich (2004, 2003, 2010). This model comprises a
voltage variable with a quadratic polynomial on the right-
hand side and a slow variable with a linear RHS. Because a
quadratic polynomial does not have the second stable branch,
the voltage increase is not limited. Therefore both the voltage
and the slow variable must be reset to new values as soon as
voltage crosses the 30 mV threshold. Parameters of Izhikeevich’s
model control time scale, the nullcline slope for the slow
variable, and resetting values. The hybrid nature of this model
allows mimicking different firing patterns of somatic spikes.
Moreover, a modified version of Izhikevich’s model was used
for modeling active membrane properties in multicompartment
models of hippocampal pyramidal neurons (Venkadesh et al.,
2018); therefore, it is critical to test whether NMDA-driven
PP can be reproduced in this dynamical system for modeling
dendritic PP in these neurons.

Figure 5B1 shows voltage dynamics in Izhikevich’s model
in regular firing mode. We tried a few other modes, namely
resonator, regular bursting, and chattering neurons, which
produce similar firing patterns. None of those modes offers
PP-like voltage dynamics. All of them produce bursts of spikes
with unrealistically high firing rates. To reproduce PP-like voltage
dynamics, the NMDA current needs to create a stable fixed point
at potentials close to −20 mV. A synaptic current with zero
reversal potential shifts v-nullcline to the right, bringing the
minimum closer to zero voltage. As the w-nullcline must pass
w = 0 at zero voltage in this model, and therefore the w-nullcline
is not reachable for the stable branch of the v-nullcline. However,
we did not pursue the further analysis of this model, but it seems
unlikely that this system can lose and gain back stable intersection
without non-linearity in w-nullcline.

A similar problem appears with an exponential leaky
integrate-and-file model with linear adaptation (adExLIF) (Brette
and Gerstner, 2005; Brette, 2015). This model combines linear
(leaky) and exponential terms in the RHS of the voltage equation.
The slow variable has a linear RHS; it is included in the voltage
equation as a linear term. The behavior of adExLIF is similar to
Izhikevich’s model (Figure 5B2). Again because strong NMDA
current shifts v-nullcline right, it is unlikely that there are
parameter sets when the system loses and then gains stability with
an increase of input current.

In contrast, an exponential leaky integrate-and-fire model
with non-linear adaptation may potentially be able to reproduce

PP. In this model, the slow variable controls the voltage at which
the dv/dt = v̇ changes the sign and exponentially increases
(so-called knee point). Moreover, the slow variable non-linearly
integrates membrane potential, and therefore, there may be a
parameter set when prolonged depolarization promotes the slow
variable to the value when a new stable fixed point appears at
high voltage (v̇ = ẇ = 0). Although it seems feasible to
model PP in ExLIF with non-linear adaptation, we could not
find an appropriate parameter set for that regime; therefore, we
leave this question to the authors of the model and the readers.
The dynamics of the membrane potential of non-linear adapting
ExLIF with one of the parameter sets provided by the original
publication (Fontaine et al., 2014) is shown in Figure 5B3. As
with all other discontinuous models above, non-linear ExLIF
in these parameters also produces an unrealistic high-frequency
firing rate instead of PP.

One of the major advantages of the PLS-framework is the
continuity of all dynamical variables. Instead of discontinuous
variables, the governing system of equations switches from one
continuous set of equations to another. One can imagine the
trajectory jumps between adjoining phase-planes in regions with
similar vector fields (see Interpretation of a Dynamical System
With L and S Functions on the Right-Hand Side of Differential
Equations in the Discussion and Figure 6). The continuous
dynamics offers a critical property: close to bifurcation/fixed
point—the dynamical system is continuous and simple due to
reduction to just linear and polynomial functions. Therefore,
for both phenomenological examples developed above (see
Equations 7 and 8 in section 4), a strong NMDA current can
“clamp” voltage just below zero millivolts. A dynamical system
analysis shows that the NMDA current shifts the v-nullcline
right, creating a stable fixed point at the intersection of two
nullclines. This intersection is in the range of −30 to −10 mV,
relatively close to the observed intracellularly in vivo values
(Colonnese, 2014) (Figures 5B4,B5 for integrator and resonator,
respectively).

Moreover, for both integrator and resonator, the system
undergoes supercritical Hopf bifurcation, resulting in a
gradual reduction of spike amplitude and spiraling into
a stable fixed point. Such a behavior is a critical feature
of PP’s onset in the real neuron in the developing cortex,
but with fewer periods of oscillation (spikes) before
PP. Note that we use our phenomenological examples
without any adjustment for modeling PP. Obviously,
a better match for PP onset can be achieved with
parameter fitting.

Overall this example illustrates the critical requirement for
consideration of a continuous dynamical system of neural
models. Understanding this requirement and, at the same time,
searching for a simple, fast, and scalable framework led to the
development of the PLS-approach.

6. DISCUSSION

We suggested here a simple, fast, and scalable framework that
consists of three simple and computationally inexpensive families

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

FIGURE 6 | Interpretation of piecewise-Linear w-nullcline as a trajectory jumps between two phase-plans with pure linear w-nullclines. (A) The phase-plan of PLS

model, similar to Figure 1C. Note that trajectory goes through two voltage ranges, where w-nullcline has different slopes. (B) Two phase-plans for each voltage range.

The trajectory jumps from one phase-plan to another then crosses −40 mV line (C) Visualization of this two phase-plans as an adjacent spaces which intersect along

−40 mV switching line. Horizontal phase-plan corresponds to the system when the voltage is higher than −40 mV and a vertical phase-plan for voltages between

−70 and −40 mV. Similarly, for the PL2D reduction of the Wang and Buzsáki model (Figure 1), two phase-plans are v-n spaces.

of functions, namely Polynomial, piecewise-Linear, and Step
functions (PLS). By combining these well-known functions such
that specific points of the discontinuous functions (L and S)
are aligned with the minima or maxima of the P functions
allows of the generation of a continuously differentiable right-

hand side of the differential equations at fixed and bifurcation
points. Although some discontinuous models can be formally

defined in PLS-framework (for example Izhikevich’s model is a
P2 function for voltage and a L1 function for the slow variable),
we constrained our PLS-framework to continuous dynamics

modeling only (section 3) and showed an example to support
that constraint. Each PLS function can be performed in a fixed

number of elementary operations and can be easily mapped
on hardware and multithreaded software. We provided two
use-case examples for conductance-based [Level III detailed
model in classification (Herz et al., 2006)] and phenomenological
(Level III–IV) models to show the main reasoning behind
this approach. Using the first example as a benchmark, we

showed that PLS-framework allows both 3- to 5-fold speed-up
of computation and minimal, <50 single or double precision
numbers memory footprint, while keeping the simulation results
close to fully-computed original mode with maximal absolute
error <4% of the model dynamic range (Figure 2). We believe
that implementation of this framework will make it possible
to model slow evolving processes (like cortical development)
with biophysically accurate representations of single neurons,
will enable long simulations of large neural networks on
modern desktop computers, and will speedup biophysically
accurate neuron models to the level when they can be used for
real-time applications of spiking neural networks in robotics
and AI.

6.1. Modeling Slowly Evolving Processes
During Cortical Circuitry Development
The development of thalamocortical circuits is a complex process
that spans a few weeks to years depending on the species. During
this timeframe there are massive changes in the membrane
electrical behavior of individual neurons which, in combination
with synaptic rearrangements, transform network dynamics
(Colonnese and Phillips, 2018). One of the developing cortex’s
critical features is the rapid change in intrinsic excitability and
firing patterns in primary cortical neurons (McCormick and
Prince, 1987; Etherington andWilliams, 2011; Kroon et al., 2019).
During development neurons decrease action potential duration
while increasing amplitude, develop active conductances leading
to the emergence of cell-type specific firing behaviors, and
become less electrically compact (McCormick and Prince, 1987;
Luhmann and Prince, 1991; MacLeod et al., 1997). Early circuits
are characterized by high excitatory convergence and absent
or even excitatory GABAergic inputs (Chen and Regehr, 2000;
Ben-Ari et al., 2007; Murata and Colonnese, 2020). As result
of these early cellular and circuit configurations the developing
thalamocortex produces unique patterns of neural activity, such
as “spindle-bursts” and “early gamma” which are generated in
response to spontaneous activity in the sense organ (Leighton and
Lohmann, 2016; Luhmann and Khazipov, 2018; Blumberg et al.,
2020). In-vivo recordings in the maturating visual cortex showed
intracellular membrane potential dynamics during the early
developmental period that include prominent plateau potentials
at the neural cell body: prolonged spikeless depolarizations with
the membrane potential above −20 mV during spindle-bursts
(Colonnese, 2014). Similar potentials are observed in the relay
thalamus, where they are critical to the normal development

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

of thalamic circuits (Dilger et al., 2011, 2015). Interestingly,
plateau-potentials have also been observed in the basal dendrites
of adult cortical pyramidal neurons where they play a pivotal
role in synaptic plasticity (Gambino et al., 2014; Bono and
Clopath, 2017; Malik and Johnston, 2017). The modeling of
these phenomena during development is specifically challenging
because it requires long simulations of large-size networks
of cortical and thalamic neurons with the dynamics of each
neuron reconstructed with enough fidelity for modeling plateau-
potentials and network spindle-burst oscillations. We show here
(Figures 1, 2, 5) that a PLS-approach allows model fidelity close
to the fully-computed model, but with acceleration and small
memory footprint sufficient to enable long enough simulations
to study network formation during the development period.

The PLS-framework represents complex steady-state and tau
functions as a combination of simpler P, L, and S functions.
A PLS representation breaks full ranges of dynamic variables
into segments between specific points of L and S functions,
where the system comprises just linear and polynomial right-
hand sides. In other words, a PLS representation segments
the phase-space of the model into easier analyzable pieces.
This may enable comparison between developmental stages and
help answer questions, such as what is the role of different
channels in developing neuron excitability, and what are the rules
for channel homeostasis during cell development? Potentially,
tracking similar phase-space segments at different ages will
show the contribution of different channels at each segment
and elucidate the evolution of this contribution along the
developmental trajectory.

6.2. Continuous vs. Discontinuous
Dynamics in Phenomenological Models
One of the salient features of PLS-framework is the explicit
requirement of continuous dynamics (the first core principle in
section 3). We demonstrated the importance of this requirement
in the example in section 5. Note that any continuous
phenomenological model, such as FitzHugh-Nagumo (FitzHugh,
1955, 1961) or Morris-Lecar (Morris and Lecar, 1981) can
reproduce plateau-potentials, just because of the continuity of
the dynamical system. On the other hand, models with resetting
can reproduce phenomena which are not possible to model if
the system is continuous and low-dimensional; for example, a
model the intrinsic bursting cell-type requires a 3D continuous
system (Hindmarsh and Rose, 1984; Drion et al., 2015; Knowlton
et al., 2020), but can be reproduced in 2D discontinues
models (Izhikevich, 2003, 2004; Brette and Gerstner, 2005;
Destexhe, 2009). The hybrid nature of discontinuous models,
which mix continuous dynamics with mapping [resetting
(Izhikevich, 2010)], reduces the number of differential equations
and the required elementary operations per second of model
time. Although hybridization allows some authors to achieve
astonishing precision in somatic voltage behavior at the onset
of the spike (Brette, 2015), long-term spike prediction for
somatic noise current injection (Gerstner and Naud, 2009), or
visual similarity of spike patterns with intracellular recordings
(Izhikevich, 2003, 2004; Destexhe, 2009), the real neuron

dynamics are continuous and do not have any discontinuity.
Therefore, hybrid models can catch the essence of neural
dynamics in some subranges (spike initiation for continuous
equations or spike-patterns for mapping). However, there is no
hope that they cover the full range. That is true specifically for
slow dendritic dynamics with calcium spike propagation and
prolonged spikeless depolarizations, such as plateau-potentials
or a depolarization block. The PLS-framework suggests another
approach: keep the system dynamics continuous without
resetting. Instead of a hybrid of continuous and discontinuous
dynamic variables (for example, voltage—continuous until reach
threshold and then discontinuously reset), the PLS-framework
uses continuous and discontinuous functions on the right-hand
side of differential equations but keeps all dynamic variables
continuous. The only one potentially negative consequence of
our approach is that the PLS instantiations demonstrated in
section 4 could not generate intrinsic bursts in response to
applied current injection. Both integrator and resonator are 2D
continuous systems, and therefore, they require at least one
additional differential equation, a “super slow” dynamic variable
for controlling burst duration and spiking termination. Although
an introduction of such a dynamic variable is not a problem, it
requires additional computations, while hybrid models can burst
without extra computational expenses.

6.3. PLS vs. Lookup-Table Approximations
Although different model approximations in section 2 aim
to introduce the PLS concept, it may also raise a question:
do we really need another framework, or is a lookup table
approximation is good enough? To answer this question, one
needs to consider at least two critical points: First, as we
mentioned above, the lookup table size cannot fit into even
middle-range microcontroller memory. The reduction of rows
in the table may help to solve this problem at first glance.
However, to reach the same accuracy as the PL2D approximation,
the lookup table needs at least 20 rows, which requires almost
three times more memory than the PL2D approach (see
Supplementary Figure 2). In the case when computations are
performed on a large network of lightweight microprocessors
or microcontrollers, like SpiNNaker (Furber et al., 2013),
where each neuron or very small subpopulation of neurons is
computed at each node, having large tables for each channel
can be challenging, even with a smaller footprint. Moreover, the
“memory-hungry” algorithms may be a critical obstacle for GPU
implementation of the heterogeneous network (see below), in
which lookup tables should be precomputed for some subset of
channels of each neuron independently.

The second critical disadvantage of the lookup table
approximation can be clearly seen from the point of modeling
brain network development. During the pre- and post-natal
development, the excitability of neurons is gradually changing
(McCormick and Prince, 1987; Kroon et al., 2019). This is
presumably due to the maturation of compositions of subunits
for many ion channels. To model development, one would have
to recompute the lookup tables for each subunit composition,

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

for each channel, at each development stage. In contrast, PLS-
framework may need only adjustment of coefficients—a quick
and simple change which can potentially be done “on the fly.”

6.4. Does PLS Framework Offer
Good-Enough Model Fidelity?
As we stated several times above, PLS is a framework, which
can be used in many different models and in many different
ways; therefore, the model fidelity is the question of concrete
realization and the concrete task at hand. The PLS-framework
application and the choice of approximation accuracy depend
upon how stable network dynamics and whether it operates
closer to stability boundary. The closer the system is to this
boundary, the better the accuracy of an approximation should be.

For example, during the first post-natal week in the rodent
visual system, the spontaneous activity generated in the retina
provides the initial drive for 90% of thalamic and cortical
firing (Murata and Colonnese, 2016, 2019). In the absence of
retinal drive the thalamocortical system remains fairly silent
for many hours, if not days. Also, the thalamocortical network
does not show prolonged “run-off” after the retinal burst and
returns to the resting state after a few seconds of spiking. The
approximation may not be perfect in this example, but the error
will not accumulate due to resting between the bursts. Although
the burst dynamics may be slightly different, the approximation
must reproduce the salient features of the real neuron activity,
such as plateau-potentials. Therefore it is critical to have a
framework in which such an activity can be reproduced even in
simple phenomenological models (see section 5).

What if the system is on the border of its stability,
for example, a network of neurons in a “balance state,”
when excitation and inhibition compensate each-other, keeping
neurons in a subthreshold range with irregular firing? The
general recommendation, in this case, is to construct an
approximation in the PLS-framework with maximal accuracy
in the subthreshold range of voltages, therefore reducing the
accumulation error. Obviously, the approximation can diverge
from the fully-computed model due to the non-linear nature of
the neuron and network dynamics. However, the construction of
an approximation with maximum accuracy in the most sensitive
regions can mitigate this divergence or slow it down, at least.
Giving such a recommendation, we should admit that at this
moment, there are not good tools for the automated fitting of
PLS functions to a given fully-computed model or detection of
sensitive regions. These are the critical topics of future research
and development in the PLS-framework (see below).

6.5. PLS Framework Can Improve Modeling
Heterogeneous Population on GPU
Parallel computing on GPU, with single instruction multiple data
(SIMD) architecture, can significantly accelerate many scientific
computations from fluid dynamics to artificial intelligence. GPU
can substantially speed up spiking neural networks (SNN)
simulations and potentially be used to calculate biophysical
accurate models. However, SIMD architecture, where each thread
computes a single neuron, requires, if not homogeneous, but at

least isotropic population of neurons, where each neuron has
the same dynamic equations. The parameters of these equations
can be different for each neuron. They are treated as data for
each thread, which are passed through the same formulas. If
one wants to accelerate GPU computations using a lookup table
approximation, it can be easily done if all neurons within a
population have the same steady-state and tau functions, i.e., the
same composition of channels. The lookup table can then be
precomputed and held in shared multiprocessor memory, which
is serving for all threads. However, if the neuron population is
truly heterogeneous and different neurons may express different
subunits of ion channels and synaptic receptors (which resembles
more closely the real brain networks), the lookup table should
be precomputed for every subunit combination. Considering that
the flagship NVidea Ampere (C) GPU vector accelerator has just
192 kB of combined super-fast shared memory and L1 cache per
multiprocessor, these lookup tables could be fitted into larger
but slower L2 40 mB cache or even move to DDR5 40 gB main
memory. We believe it will significantly reduce the overall speed
increase for lookup table approximation.

On the other hand, PLS approximation offers a much
smaller memory footprint. In general, the heterogeneity in
ion-channel compositions will create an independent set of
parameters for each neuron, which can fit even in small but
super-fast L1/shared-memory. Moreover, we anticipate that
further development of the PLS-framework will identify a subset
of nested functions for accurate approximation of sigmoid
and bell-shaped functions (see below). This may potentially
allow modeling even heterogeneous and anisotropic neuron
populations on GPU multiprocessors. Again, this will be in the
focus of future research and development of PLS-framework.

6.6. Interpretation of a Dynamical System
With L and S Functions on the Right-Hand
Side of Differential Equations
To choose a good approximation for the neural model in hand,
it is useful to imagine a phase-portrait of a dynamical system.
Discontinuity in RHS of differential equations can be a difficult
obstacle for “mental manipulations” with such a system. In our
practice, we usually consider L and S functions as a set of
straight lines. For example, one can imagine the n∞(v) function
in PL2D approximation as a set of 3 straight lines (branches of
L3, Figure 1C). In a spiking regime, the trajectory goes into the
range of voltages where only two of them are active. Therefore,
one can imagine a trajectory jumping from one phase-plan with
linear nullcline for the slow variable to another one (Figure 6).
This figure shows that the system has a stable fixed point at
higher voltages (black filled circle on the horizontal phase-plan).
However, when the trajectory moves toward this stable fixed
point and crosses −40 mV, it switches to the system with an
unstable fixed point (open circle on the vertical phase-plane).
Although these two nullcline configurations are very different,
they have similar vector fields at the intersection line, and
therefore, the phase-portrait for the simplified system is close to
the original model. This example shows that appropriate specific
points for L and S functions can be chosen from a consideration

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

of a vector field close to the line (plan/space) at the intersection
of two phase-plans (spaces).

6.7. Different L Approximations
There are two ways to construct an L-approximation. The first
locates switching points on the curve (Hamann and Chen, 1994),
creating lines at each arch base. The second approach uses linear
regression for each arch and minimizes overall error for the
approximation (Goncharenko and Gopinathan, 2008). However,
the second L-approximation does not place switching points on
the curve, and moreover, there is no guarantee that lines will
intersect somewhere close to the segment borders. Although
the first approximation can introduce a systematic error that
is hard to debug, it can be performed automatically, while the
second approach can reliably be used and find intersections
only for strictly convex or concave curves (Goncharenko and
Gopinathan, 2008). We were not able to develop a robust
algorithm for reliable automatic construction of the second kind
of L approximation for an arbitrary curve, which should be the
topic for future research.

6.8. Order of P, Number of Branches in L,
and Nested S(P) Functions
An increase in the order of P approximations and an increase
in the number of branches in L and S functions can help
improve model accuracy. However, while an increase in the
number of rows in a lookup-table will not increase the number
of elementary operations needed for computing one step of
the simulation, an increase in order/branching of P, L, and S
functions will add more computations in each step and slow-
down simulations. Therefore, in practice, there is always a trade-
off between accuracy and memory consumption for lookup-table
approximation and a trade-off between accuracy and simulation
speed for the PLS-framework.

For each additional order of P approximation, one
multiplication and one addition operation is needed. Moreover
one additional constant is required to be kept in the memory.
Each additional branch of L and S functions adds at least three
constants, one multiplication, one addition, and one comparison.
Note that all operations in conditional statements are computed
in modern GPU, but then the results are discarded due to the
SIMD architecture. The order/branching for the P, L, and S
functions should be carefully chosen to balance performance and
model accuracy appropriately.

Alternatively, one can consider a nested S(P) function
as a standard cubical-spline interpolation. For example
S3(v,V0,V1, 0,ψP32(v,V0,V2), 1) can be a good approximation
for standard sigmoidal (Boltzmann’s) function. In this
approximation, ψ scales the P32 function to have zero in
the local minimum and one in local maximum, V1 is the
argument of P32 in maximum, and V0 is an onset of and V1

a saturation of input-output transferring. Note that one can
dramatically improve approximation accuracy without a heavy
increase in orders or the number of branches in this case. This
approximation is smooth and continuously differentiable at any
point. We did not use such nested functions in this paper as our
concern is to express the core principles of the PLS-framework,

without including overcomplicated techniques. However, the
PLS-framework is very flexible, and we encourage the usage of
nesting P, L, and S functions.

6.9. Linear–Non-linear Models
The full range of models from Level I to Level IV can benefit from
the usage of the PLS-framework, including cascade Linear–Non-
linear (NL) models. NL models require at least one non-linear
component for whole neurons, when it is a single compartment
model or one non-linear component for each compartment, if
it is a cascade NL model [for example, in each dendrite (Herz
et al., 2006; Shai et al., 2015)]. Therefore NL significantly reduces
the computational load for a single neuron compared with
conductance-based multicompartment, multisegment models.
The non-linear term in NL models is usually a sigmoid function
with one exponential function in the denominator. However,
taking into account the number of neurons and their diversity
even in the same cortical region, this reduction in computation
may not be enough for simulation of a large-scale model on
a desktop computer. The PLS-framework offers reductions of
the sigmoid function to L3–Ln non-smooth, multistep threshold
function S1–Sn, or nested S(P32) smooth approximations. In all
cases, the number of elementary computations can be reduced by
two orders of magnitude.

6.10. Future Research and Development of
PLS-Framework
The main contribution of this paper is the introduction of
the PLS-framework, its core functions and principles. We hope
that the paper presents clearly the PLS-framework to a broad
community of scientists and engineers and will speed up further
development of tools and functions libraries in this framework.
Here we outline the steps which should be the focus of future
R&D.

• While we have uploaded Python, XPP, C/C++, and Brian-
simulator implementations of core PLS function in the
ModelDB record associated with this paper (see below),
further optimization of the code is needed. We will launch a
GitHub repository shortly after the publication of this paper
and update the ModelDB record;

• Nested PLS functions can provide a better fit to standard
sigmoidal (Boltzmann’s) steady-state functions and bell-
shaped tau functions. The development of a library that
standardizes PLS approximations for these functions can
significantly simplify applications of PLS-framework. The
library abovemust be equipped with automatic tools to fit such
standard approximations to the required functions;

• A toolkit that will detect all potential points of instability
for PLS approximations is a critical step to the automated
transformation of a fully-computed model into a PLS
approximation;

• Finally, another fitting procedure should be developed to
minimize overall error in model dynamics. In contrast
to fitting independent steady-state and tau functions, this
procedure will control the accuracy of the transformed model

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2021 | Volume 15 | Article 642933

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

and help optimize the accuracy-speedup-memory footprint
trade-off.

We deeply believe that the PLS-framework will be a useful
and valuable tool in the computational neuroscience field,
from detailed multi-compartment models to formal models and
theoretical or semianalytical research.

7. MATERIALS AND METHODS

For the benchmark simulations used in the first example, the
original model and all its reductions were written in C-language
and compiled with standard GCC 8.2 compiler under Linux
operating system. Rasbian 2019-09-26 “buster-lite” version of
Linux OS was used for Raspberry PI tests and Ubuntu 20.04 for
desktop and GPU tests. Any graphical interfaces were disabled
for all benchmarks, and only minimal necessary programs
were running in the background during benchmark runs. Each
benchmark was run ten times, the time of performance was
recorded using standard Unix-shell command time, and user
wall-time were collected. Although the minimum wall-time is
reported in Figure 2B1 to avoid any issues from background
processes, the differences between average and minimal time
were below 1% and can be ignored.

Models for the second example were implemented as Python
3 scripts in the Jupyter-notebook environment.

Brian 2.4.2 simulator (Stimberg et al., 2014, 2019) was used for
implementation models in section 5. The synaptic current was
modeled as the sum of fast voltage-independent AMPA current
and slow NMDA current with a magnesium block:

Isyn = gampasampa(Esyn − v)+ gnmda

(bnmda − anmda)(Esyn − v)/(1+ [Mg2+]e−0.062 v/3.57)
ṡampa = −sampa/τampa

ȧnmda = −anmda/τnmda1

ḃnmda = −bnmda/τnmda2

where τampa = 2 ms, τnmda1 = 1 ms, and τnmda2 = 200
ms are time constants; Esyn = 0 mV is synaptic reversal
potential; [Mg2+] = 1 is magnesium concentration. The
conductance of NMDA receptors was set to be four times
stronger than AMPA: gnmda = 4gampa Simulations and code
for this example also were developed as Python 3 scripts in the
Jupyter-notebook environment.

CODE AVAILABILITY STATEMENT

The source code of the models and required scripts can be
found in the supplementary zip archive. It will also be made
publicly available via the ModelDB website (McDougal et al.,
2017) after publication of this article: http://modeldb.yale.edu/
266863.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

MC provided experimental data and biologically motivated
research, and provided the funding. RT-H designed the research,
and performed the research and analysis. RT-H and MC wrote
the paper.

FUNDING

Support for this work was provided by R01EY022730 and
R01NS106244 to MC.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of Dr. Rachel
Atkinson in editing the manuscript and the comments of Dr.
Christopher Knowlton and Dr. Yakov Kazanovich on the early
version of themanuscript.We were thankful for Backyard Brains’
survey on neuronmodels for the Arduinomicrocontroller during
the computational neuroscience social event at SfN 2019, which
precipitated this paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2021.642933/full#supplementary-material

Supplementary Figure 1 | Illustration of lookup table approximation, as a linear

interpolation between values in the table (red lines at the base of each arch).

Supplementary Figure 2 | Memory footprint (A) and accuracy (B) of lookup
table approximation. Results for the PL2D approximation are also shown for

comparison. Note that to reach the accuracy of the PL2D approximation, lookup

table needs at least 20 rows, which requires three times larger memory footprint

than PL2D one.

Supplementary Figure 3 | The trajectory of the Wang and Buzsáki model in

spiking regime on the h-n plane (black curve) and linear approximation of the

trajectory obtained by linear regression (red line).

Supplementary Figure 4 | Head-to-head comparison of voltage nullcline for

original model 2D reduction (black curves) and PL2D reduction (red curves) at six

different applied currents (Iapp).

Supplementary Data Sheet 1 | Listing of Python 3 Jupyther-notebook page with

all steps of model reduction in section 2.

Supplementary Data Sheet 2 | Listing of Python 3 Jupyther-notebook page with

two phenomenological models described in section 4.

Supplementary Data Sheet 3 | Listing of Python 3 Jupyther-notebook page with

all five model tests in section 5.

Frontiers in Neuroinformatics | www.frontiersin.org 18 May 2021 | Volume 15 | Article 642933

http://modeldb.yale.edu/266863
http://modeldb.yale.edu/266863
https://www.frontiersin.org/articles/10.3389/fninf.2021.642933/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

REFERENCES

Beck, V. C., Hull, J. M., and Isom, L. L. (2019). Beyond dravet syndrome:

characterization of a novel, more severe scn1a-linked epileptic encephalopathy.

Epilepsy Curr. 19, 266–268. doi:10.1177/1535759719858339

Ben-Ari, Y., Gaiarsa, J. L., Tyzio, R., and Khazipov, R. (2007). Gaba: a pioneer

transmitter that excites immature neurons and generates primitive oscillations.

Physiol. Rev. 87, 1215–1284. doi:10.1152/physrev.00017.2006

Beyeler, M., Carlson, K. D., Ting-Shuo Chou, Dutt, N., and Krichmar, J. L. (2015).

“Carlsim 3: a user-friendly and highly optimized library for the creation of

neurobiologically detailed spiking neural networks,” in 2015 International Joint

Conference on Neural Networks (IJCNN) (Killarney), 1–8. doi:10.1109/IJCNN.

2015.7280424

Blumberg, M. S., Dooley, J. C., and Sokoloff, G. (2020). The developing

brain revealed during sleep. Curr. Opin. Physiol. 15, 14–22. doi:

10.1016/j.cophys.2019.11.002

Bono, J., and Clopath, C. (2017). Modeling somatic and dendritic spike mediated

plasticity at the single neuron and network level. Nat. Commun. 8:706. doi:

10.1038/s41467-017-00740-z

Brette, R. (2015). What is the most realistic single-compartment model of spike

initiation? PLoS Comput. Biol. 11:e1004114. doi:10.1371/journal.pcbi.1004114

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi:10.1152/jn.00686.2005

Cang, J., and Feldheim, D. A. (2013). Developmental mechanisms of topographic

map formation and alignment. Annu. Rev. Neurosci. 36, 51–77. doi:

10.1146/annurev-neuro-062012-170341

Chen, C., and Regehr, W. G. (2000). Developmental remodeling of the

retinogeniculate synapse. Neuron 28, 955–966. doi:10.1016/S0896-6273(00)

00166-5

Colonnese, M. T. (2014). Rapid developmental emergence of stable depolarization

during wakefulness by inhibitory balancing of cortical network excitability. J.

Neurosci. 34, 5477–5485. doi:10.1523/JNEUROSCI.3659-13.2014

Colonnese, M. T., and Phillips, M. A. (2018). Thalamocortical function in

developing sensory circuits. Curr. Opin. Neurobiol. 52, 72–79. doi:10.1016/j.

conb.2018.04.019

Connolly, M. B. (2016). Dravet syndrome: diagnosis and long-term course. Can. J.

Neurol. Sci. 43, S3–S8. doi:10.1017/cjn.2016.243

Destexhe, A. (2009). Self-sustained asynchronous irregular states and up-down

states in thalamic, cortical and thalamocortical networks of nonlinear integrate-

and-fire neurons. J. Comput. Neurosci. 27:493. doi: 10.1007/s10827-009-0164-4

Dilger, E. K., Krahe, T. E., Morhardt, D. R., Seabrook, T. A., Shin, H. S., and

Guido, W. (2015). Absence of plateau potentials in dlgn cells leads to a

breakdown in retinogeniculate refinement. J. Neurosci. 35, 3652–3662. doi:10.

1523/JNEUROSCI.2343-14.2015

Dilger, E. K., Shin, H. S., and Guido, W. (2011). Requirements for synaptically

evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus

of the mouse. J. Physiol. 589, 919–937. doi:10.1113/jphysiol.2010.202499

Drion, G., Franci, A., Dethier, J., and Sepulchre, R. (2015). Dynamic input

conductances shape neuronal spiking. eNeuro 2:ENEURO.0031-14.2015. doi:

10.1523/ENEURO.0031-14.2015

Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems:

A Guide to XPPAUT for Researchers and Students. Philadelphia, PA: SIAM.

Etherington, S. J., and Williams, S. R. (2011). Postnatal development of intrinsic

and synaptic properties transforms signaling in the layer 5 excitatory neural

network of the visual cortex. J. Neurosci. 31, 9526–9537. doi:10.1523/

JNEUROSCI.0458-11.2011

FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve

membrane. Bull. Math. Biophys. 17, 257–278.

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of

nerve membrane. Biophys. J. 1:445.

Fontaine, B., Peña, J. L., and Brette, R. (2014). Spike-threshold adaptation predicted

by membrane potential dynamics in vivo. PLoS Comput. Biol. 10:e1003560.

doi:10.1371/journal.pcbi.1003560

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the spinnaker system architecture. IEEE Trans. Comput. 62,

2454–2467. doi:10.1109/TC.2012.142

Gambino, F., Pagès, S., Kehayas, V., Baptista, D., Tatti, R., Carleton, A., et al. (2014).

Sensory-evoked ltp driven by dendritic plateau potentials in vivo. Nature 515,

116–119. doi: 10.1038/nature13664

Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2009).Neuronal Dynamics.

Cambridge: Cambridge University Press.

Gerstner, W., and Naud, R. (2009). How good are neuron models? Science 326,

379–380. doi:10.1126/science.1181936

Goncharenko, I., and Gopinathan, A. (2008). “Optimal yield rates in enzymatic

reactions with undesirable intermediate states,” in Proceedings of The World

Congress on Engineering and Computer Science (San Francisco, CA: WCECS

2008), 24–26.

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in python. Front. Neuroinform. 2:5. doi:10.3389/neuro.11.005.2008

Goodman, D., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3:26.

doi:10.3389/neuro.01.026.2009

Hamann, B., and Chen, J. L. (1994). Data point selection for piecewise linear

curve approximation. Comput. Aided Geometr. Des. 11, 289–301. doi:10.1016/

0167-8396(94)90004-3

Herz, A. V.M., Gollisch, T.,Machens, C. K., and Jaeger, D. (2006).Modeling single-

neuron dynamics and computations: a balance of detail and abstraction. Science

314, 80–85. doi:10.1126/science.1127240

Hindmarsh, J. L., and Rose, R. (1984). A model of neuronal bursting using three

coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221,

87–102. doi:10.1098/rspb.1984.0024

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.

Biomed. Comput. 15, 69–76. doi:10.1016/0020-7101(84)90008-4

Hines, M. L., and Carnevale, N. T. (2000). Expanding NEURON’s repertoire

of mechanisms with NMODL. Neural Comput. 12, 995–1007. doi:10.1162/

089976600300015475

Hodgkin, A. L. (1948). The local electric changes associated with repetitive action

in a non-medullated axon. J. Physiol. 107, 165–181. doi:10.1113/jphysiol.1948.

sp004260

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117:500.

Izhikevich, E. (2007). Dynamical Systems in Neuroscience. Cambridge, MA: MIT

Press.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi:10.1109/TNN.2003.820440

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 15, 1063–1070. doi:10.1109/TNN.2004.832719

Izhikevich, E. M. (2010). Hybrid spiking models. Philos. Trans. R. Soc. Lond. A

Math. Phys. Eng. Sci. 368, 5061–5070. doi:10.1098/rsta.2010.0130

Knowlton, C. J., Baxter, D. A., Byrne, J. H., and Canavier, C. C. (2020). Repetitive

Action Potential Firing. American Cancer Society. Available online at: https://

onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000084.pub3

Kroon, T., van Hugte, E., van Linge, L., Mansvelder, H. D., and Meredith, R. M.

(2019). Early postnatal development of pyramidal neurons across layers of

the mouse medial prefrontal cortex. Sci. Rep. 9:5037. doi: 10.1038/s41598-019-

41661-9

Lammel, S., Hetzel, A., Häckel, O., Jones, I., Liss, B., and Roeper, J. (2008).

Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic

dopamine system. Neuron 57, 760–773. doi:10.1016/j.neuron.2008.01.022

Leighton, A. H., and Lohmann, C. (2016). The wiring of developing

sensory circuits–from patterned spontaneous activity to synaptic plasticity

mechanisms. Front. Neural Circuits 10:71. doi:10.3389/fncir.2016.00071

Luhmann, H. J., and Khazipov, R. (2018). Neuronal activity patterns in

the developing barrel cortex. Neuroscience 368, 256–267. doi:10.1016/j.

neuroscience.2017.05.025

Luhmann, H. J., and Prince, D. A. (1991). Postnatal maturation of the gabaergic

system in rat neocortex. J. Neurophysiol. 65, 247–263. doi:10.1152/jn.1991.65.2.

247 PMID: 1673153

MacLeod, N., Turner, C., and Edgar, J. (1997). Properties of developing lateral

geniculate neurones in the mouse. Int. J. Dev. Neurosci. 15, 205–224. doi:10.

1016/S0736-5748(96)00088-3

Malik, R., and Johnston, D. (2017). Dendritic girk channels gate the integration

window, plateau potentials, and induction of synaptic plasticity in dorsal but

Frontiers in Neuroinformatics | www.frontiersin.org 19 May 2021 | Volume 15 | Article 642933

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000084.pub3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000084.pub3
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tikidji-Hamburyan and Colonnese PLS-Framework for Modeling Neurons

not ventral ca1 neurons. J. Neurosci. 37, 3940–3955. doi:10.1523/JNEUROSCI.

2784-16.2017

McCormick, D. A., and Prince, D. A. (1987). Post-natal development of

electrophysiological properties of rat cerebral cortical pyramidal neurones. J.

Physiol. 393, 743–762. doi:10.1113/jphysiol.1987.sp016851

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore,

M., et al. (2017). Twenty years of ModelDB and beyond: building essential

modeling tools for the future of neuroscience. J. Comput. Neurosci. 42, 1–10.

doi: 10.1007/s10827-016-0623-7

Mihalaş, S., and Niebur, E. (2009). A generalized linear integrate-and-fire neural

model produces diverse spiking behaviors.Neural Comput. 21, 704–718. doi:10.

1162/neco.2008.12-07-680

Morris, C., and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle

fiber. Biophys. J. 35:193.

Murata, Y., and Colonnese, M. T. (2016). An excitatory cortical feedback loop gates

retinal wave transmission in rodent thalamus. eLife 5:e18816. doi:10.7554/eLife.

18816

Murata, Y., and Colonnese, M. T. (2018). Thalamus controls development and

expression of arousal states in visual cortex. J. Neurosci. 38, 8772–8786. doi:10.

1523/JNEUROSCI.1519-18.2018

Murata, Y., and Colonnese, M. T. (2019). Thalamic inhibitory circuits and network

activity development. Brain Res. 1706, 13–23. doi:10.1016/j.brainres.2018.10.

024

Murata, Y., and Colonnese, M. T. (2020). Gabaergic interneurons excite neonatal

hippocampus in vivo. Sci. Adv. 6:eaba1430. doi: 10.1126/sciadv.aba1430

Richards, C., Shiroyama, T., and Kitai, S. (1997). Electrophysiological and

immunocytochemical characterization of gaba and dopamine neurons in

the substantia nigra of the rat. Neuroscience 80, 545–557. doi:10.1016/

S0306-4522(97)00093-6

Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models.

Fed. Proc. 44, 2944–2946.

Rinzel, J., and Ermentrout, G. B. (1998). “Analysis of neural excitability and

oscillations,” in Methods in Neuronal Modeling: From Ions to Networks eds

Koch, C., and Segev, C. (Cambridge, MA: MIT press), Vol. 2, 251–291.

Shai, A. S., Anastassiou, C. A., Larkum, M. E., and Koch, C. (2015). Physiology

of layer 5 pyramidal neurons in mouse primary visual cortex: Coincidence

detection through bursting. PLoS Comput. Biol. 11:e1004090. doi:10.1371/

journal.pcbi.1004090

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8:e47314. doi:10.7554/eLife.47314

Stimberg, M., Goodman, D., Benichoux, V., and Brette, R. (2014). Equation-

oriented specification of neural models for simulations. Front. Neuroinform.

8:6. doi:10.3389/fninf.2014.00006

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., et al. (2018).

Generalized leaky integrate-and-firemodels classifymultiple neuron types.Nat.

Commun. 9:709. doi:10.1038/s41467-017-02717-4

Tikidji-Hamburyan, R. A., Leonik, C. A., and Canavier, C. C. (2019). Phase

response theory explains cluster formation in sparsely but strongly

connected inhibitory neural networks and effects of jitter due to sparse

connectivity. J. Neurophysiol. 121, 1125–1142. doi: 10.1152/jn.0072

8.2018

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-Ghazawi, T. A.

(2017). Software for brain network simulations: a comparative study. Front.

Neuroinform. 11:46. doi:10.3389/fninf.2017.00046

Venkadesh, S., Komendantov, A. O., Listopad, S., Scott, E. O., De Jong, K.,

Krichmar, J. L., et al. (2018). Evolving simple models of diverse intrinsic

dynamics in hippocampal neuron types. Front. Neuroinform. 12:8. doi:10.3389/

fninf.2018.00008

Wang, X. J., and Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a

hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Tikidji-Hamburyan and Colonnese. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2021 | Volume 15 | Article 642933

https://doi.org/10.1126/sciadv.aba1430
https://doi.org/10.1152/jn.00728.2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Polynomial, piecewise-Linear, Step (PLS): A Simple, Scalable, and Efficient Framework for Modeling Neurons
	1. Introduction
	2. Example: Reduction of Wang and Buzsáki, Single-Compartment, Conductance-Based Model
	2.1. Lookup-Table Approximation
	2.2. Polynomial and piecewise-Linear Approximations
	2.3. 2D Reduction and PL Approximation
	2.4. Quantitative Assessment of WBM Approximations

	3. Definition of the PLS-Framework
	3.1. Implementation Note
	3.2. Analytical Note

	4. Example: Constructing Phenomenological Models of Integrating and Resonant Neurons
	4.1. Integrating Neuron
	4.2. Resonant Neuron

	5. Example: Plateau-Potential in Phenomenological Neural Models
	6. Discussion
	6.1. Modeling Slowly Evolving Processes During Cortical Circuitry Development
	6.2. Continuous vs. Discontinuous Dynamics in Phenomenological Models
	6.3. PLS vs. Lookup-Table Approximations
	6.4. Does PLS Framework Offer Good-Enough Model Fidelity?
	6.5. PLS Framework Can Improve Modeling Heterogeneous Population on GPU
	6.6. Interpretation of a Dynamical System With L and S Functions on the Right-Hand Side of Differential Equations
	6.7. Different L Approximations
	6.8. Order of P, Number of Branches in L, and Nested S(P) Functions
	6.9. Linear–Non-linear Models
	6.10. Future Research and Development of PLS-Framework

	7. Materials and Methods
	Code Availability Statement
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

