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This article extends a recent methodological workflow for creating realistic and
computationally efficient neuron models whilst capturing essential aspects of single-
neuron dynamics. We overcome the intrinsic limitations of the extant optimization
methods by proposing an alternative optimization component based on multimodal
algorithms. This approach can natively explore a diverse population of neuron model
configurations. In contrast to methods that focus on a single global optimum, the
multimodal method allows directly obtaining a set of promising solutions for a single
but complex multi-feature objective function. The final sparse population of candidate
solutions has to be analyzed and evaluated according to the biological plausibility and
their objective to the target features by the expert. In order to illustrate the value of
this approach, we base our proposal on the optimization of cerebellar granule cell
(GrC) models that replicate the essential properties of the biological cell. Our results
show the emerging variability of plausible sets of values that this type of neuron can
adopt underlying complex spiking characteristics. Also, the set of selected cerebellar
GrC models captured spiking dynamics closer to the reference model than the single
model obtained with off-the-shelf parameter optimization algorithms used in our previous
article. The method hereby proposed represents a valuable strategy for adjusting a varied
population of realistic and simplified neuron models. It can be applied to other kinds of
neuron models and biological contexts.

Keywords: granule cell, cerebellum, neuron model, optimization, adaptive exponential integrate-and-fire,
multimodal evolutionary algorithm

Abbreviations: AdEx, Adaptive exponential integrate-and-fire; EA, Evolutionary algorithm; GLIF, Generalized leaky
integrate-and-fire; GA, Genetic algorithm; GoC, Golgi cell; GrC, Granule cell; HH, Hodgkin-Huxley; PSO, Particle swarm
optimization; I-F, Intensity-frequency.
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INTRODUCTION

Large-scale neural network simulations composed of thousands
or millions of neurons are useful for better understanding
brain information processing primitives. Simplified single-
neuron models of low computational cost and based on a few
parameters have been proposed to reproduce neuronal firing
patterns to encode and decode the information contained
in electrophysiological recordings (Izhikevich, 2004; Shan
et al., 2017; Marín et al., 2020). These models are required
to meet efficiency and biological realism for hypothesizing
the functional impact of relevant neuron properties within
large-scale simulations. Since most simplified models (e.g.,
the integrate-and-fire neuron model family) contain abstract
parameters that prevent direct adjustment with the biological
counterpart biophysical features, optimization algorithms
represent an attractive approach for precisely setting the
parameters in this kind of neuron models (Druckmann et al.,
2007; Jolivet et al., 2008; Friedrich et al., 2014; Pozzorini et al.,
2015). However, accurately fitting their parameters to reproduce
biological data can be considered a challenging optimization
problem that still remains partially unsolved.

The cerebellum is a major center of the nervous system
involved in fine motor control, somatosensory processing, and
many other non-motor tasks (Schmahmann, 2019). One of
the cerebellar neuron types, the granule cells (GrCs) are the
most abundant neurons in the human brain (Lange, 1975;
Williams and Herrup, 1988). The GrCs are thought to regulate
the information transmission through the main afferent system
of the cerebellum (Jörntell and Ekerot, 2006). Experimental
recordings have characterized two of their main firing features,
such as regular repetitive firing and latency to the first spike
under injected step currents (D’Angelo et al., 1995, 1998,
2001; Masoli et al., 2017). Also, previous findings suggest
intrinsic spiking resonance (as enhanced bursting activity during
low-frequency sinusoidal current injections) preferentially in the
theta-frequency band (around 5–12 Hz in vitro recordings of
cerebellar GrCs in rodents; D’Angelo et al., 2001). This complex
behavior has been proposed to strengthen the transmission of
information in the cerebellar input layer (D’Angelo et al., 2001,
2009; Gandolfi et al., 2013). The definition of cerebellar GrC
models that replicate these complex patterns represents an initial
step towards understanding the functional role of resonance in
information processing and the involvement of the GrCs in the
synchronization and learning of the cerebellum.

The relevance of heterogeneity in the population of neurons
of the same type with variances in their properties has
been highlighted in computational experimentation (Lengler
et al., 2013; Migliore et al., 2018). However, the benefits
of high variance in terms of biodiversity of neurons in the
signal processing of the brain remain largely unexplored.
The variances in the neuron properties were demonstrated to
enhance the speed, responsiveness and robustness of the spiking
neuron networks. Thus, the intrinsic variability of neurons
in the brain is proposed to crucially change the network
dynamics and could have a role in information processing. The
generation of heterogeneous populations of spiking neurons

whose properties are closely matched with biological data is
of utmost necessity as a first-step in the demonstration of this
novel assumption.

As the complexity of neuron models and the available
computational power have increased, the use of different
optimization algorithms for tuning this kind of simple models
has also grown (Van Geit et al., 2008). Consequently, there
have been used optimizers for tuning the parameters of
computationally efficient neuron models and reproducing
certain biological behaviors in previous works. Some authors opt
for algorithms with a solid mathematical component, such as
the Sequential Quadratic Programming (SQP) method used to
tune the modified generalized leaky integrate-and-fire (E-GLIF)
model of a cerebellar Golgi cell (GoC; Geminiani et al., 2018).
Other examples are the Downhill simplex method and L-
BFGS-B, which are included in the open-source optimization
framework ‘‘Optimizer’’ (Friedrich et al., 2014). However,
the use of optimizers relying on randomness and nature-
inspired principles with generic and minimal mathematical
components (Lindfield and Penny, 2017) is also very popular
among authors (Van Geit et al., 2008). For instance, the
referred ‘‘Optimizer’’ framework offers Evolutionary algorithms
(EAs) and Simulated Annealing too (Friedrich et al., 2014).
The ‘‘BluePyOpt’ framework also relies on multi-objective EAs
such as Non-dominated Sorting Genetic Algorithm-II (NSGA-
II), Multi-Objective Covariance Matrix Adaptation Evolution
Strategy (MO-CMA-ES), and IBEA (Van Geit et al., 2016).
Similarly, Nair et al. (2015) fits the AdEx model of a cerebellar
GrC using Particle Swarm Optimization (PSO), and Masoli et al.
(2017) opts for the IBEA Genetic Algorithm (GA) to tune the
detailed Hodgkin-Huxley (HH) model of a cerebellar GrC with
the maximum ionic conductances.

Our previous work (Marín et al., 2020) proposed a tuning
procedure based on traditional GAs (EAs based on basic genetic
operators, such as crossover and mutation) for creating an
adaptive exponential integrate-and-fire (AdEx) model of the
cerebellar GrC. We proposed a complex objective function
defined by the inherent properties mentioned above and
measured as the accumulated distance between the in vitro
recordings and the simulated responses of the neuron model that
is being tuned. Finally, we selected and proposed a GrC model (a
specific set of parameters of an AdEx generic neuron model) as
the result of the process.

According to the previous literature review and independently
of their class, the most used optimization strategies are either
multi-objective (which by definition return a set of candidate
solutions considering several criteria concurrently) or single-
objective yet aimed at converging to a single optimal solution.
However, the application of multimodal optimizers (Sareni and
Krähenbühl, 1998; Jelasity et al., 2001; Shir et al., 2010) does
not seem to be popular even though it has been found that it
is possible to find real neurons and neuron models with very
similar behavior but different parameters (Van Geit et al., 2008).
Multi-Objective algorithms require working in parallel with
different objective functions. They can find large sets (Pareto
fronts) of equally valuable configurations at the expense of higher
conceptual complexity than single-objective methods. On the
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contrary, standard single-objective methods work in a simpler
background and aim at converging to a single solution, but this
behavior can be problematic since evaluations rely onmodels and
some of them might not be as valid as estimated. In this context,
the use of a multimodal optimizer arises as a mid-term solution
between the algorithms designed for converging to a single
solution and those considering different objective functions and
returning a set of equally valuable options for an expert to
decide. More precisely, a multimodal algorithm will focus on
a single objective function, but it will also identify different
equivalent solutions that should be ultimately filtered by an
expert on the neuron model. Moreover, taking into account
potential problems such as noise in the experimental data, low
model accuracy, and degenerate cases of the selected objective
function, experts might prefer some promising solutions over
those theoretically better (strictly in terms of the referred
objective function).

The present workflow aims to overcome the intrinsic
limitations of the current optimization approaches by identifying
a sparse population of different optimal solutions in the search
space for a single objective function integrating various features.
In this regard, this article extends the methodology presented
in Marín et al. (2020) proposing an alternative optimization
component based on a multimodal EA for building realistic and
computationally efficient neuron models. We base our proposal
on the same complex parametric optimization problem as in
Marín et al. (2020): optimizing cerebellar GrC models that
replicate the essential firing properties of the biological cell,
which are essentially the decrease of latency to the first spike
and spike frequency increase when the injected step-current
intensity is raised [intensity-frequency (I-F) curves], and spiking
resonance at the theta-frequency band during sinusoidal current
injections. The final population of candidate solutions has to be
analyzed and evaluated according to the biological plausibility
and their objective to the target features. In order to illustrate
the value of this approach, we explore the resulting diversity of
the population of cerebellar GrC models and their functional
spiking dynamics. Our results show the variability of plausible
sets of values that this type of neuron can adopt underlying these
complex characteristics.

The rest of the article is structured as follows:
‘‘Methodological Workflow’’ section describes the
methodological workflow proposed in this article. ‘‘Materials and
Methods’’ section explains the neuron model whose parameters
must be tuned, the corresponding optimization problem, and
the multimodal optimizer. ‘‘Results’’ section presents the results
achieved and the spiking dynamics simulated by the selected
neuron configurations. Finally, ‘‘Discussion’’ section contains
the conclusions and states some possible future work lines.

METHODOLOGICAL WORKFLOW

In this section, we present the structure of the proposed
optimization workflow. Figure 1 briefly depicts the workflow
chart of the methodology. The course of action runs
as follows:

Data Preparation
Firstly, the user has to select the particular firing properties
of interest of the cell under study extracted from in vitro or
in vivo electrophysiological recordings under specific stimulation
protocols. These features (also named objectives) and their
protocols define the target function that will drive the selection
during the optimization procedure.

Optimization Algorithm
The objective or fitness function, the optimization algorithm
parameters and the neuron model parameters (all described
in the sections below) correspond to the initial set-up of the
optimization architecture. The multimodal algorithm performs
an exploration of the parameter space using a simplified (point-
neuron) model template. The neuron models with specific sets
of parameters which are obtained during the search (also named
candidate solutions) are evaluated according to the objective
function. Those model configurations with the lowest total
score and different enough from the rest are selected in each
iteration and passed to the next optimization iterations during
the optimization process. The output of this stage is a sparse
population of candidate solutions that correspond to different
sets of parameters that stand out in their zone of the search space.

Selection and Interpretation of the
Candidate Solutions
Once the algorithm has selected different promising model
configurations, the user will validate the most suitable neurons
among them. This selection runs in accordance with those
neuron models which show biological plausibility of their
parameters and reproduce with high realism the firing behavior
of the real neuron.

MATERIALS AND METHODS

In order to demonstrate the potential of the optimization
workflow, we applied this methodology to the case of the
cerebellar granule cells (GrCs) as a proof-of-concept. This
approach allows us to validate the sparse population of candidate
solutions obtained and according to the features defined in
the existing literature. This section starts by describing the
computational neuronmodel, defining the optimization problem
to solve and the experimental pieces of single-cell recordings. It
ends with the technical details for simulation reproducibility and
data analysis.

Neuron Model Structure
Since GrCs have a compact electrotonic structure (Silver
et al., 1992; D’Angelo et al., 1995; Delvendahl et al., 2015),
single-compartment modeling is appropriate. One of the
widely used computationally-efficient neuron models is the
adaptive exponential integrate-and-fire (AdEx) model (Brette
and Gerstner, 2005), but other types of point-neuron models
could be considered in this first stage of the workflow (Figure 1).
The AdExmodel is capable of reproducing a diversity of neuronal
dynamics customizing a few parameters (Naud et al., 2008). Its
realism and great computational efficiency have been supported
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FIGURE 1 | Stages of the optimization framework. At the first stage, the experimental recordings of the biological cells are obtained and the characteristics of
interest are selected and calculated. Then, according to these data, a fitness (or objective) function is built and the parameters of the algorithm and the neuron model
are selected. At the second stage, the execution of the multimodal optimizer takes place. The optimization process consists in generating a number of candidates
(i.e., sets of parameter values) which are simulated and evaluated according to the objective function. Finally, as the output of this stage, a population of different
candidate solutions is returned in a single execution of the algorithm. These selected candidates are illustrative of some local optima in the search space of the
objective function. At this point, the expert interprets if the candidate solutions are as numerically valid as their scores estimate. Quantitatively and qualitatively, the
best-ranked candidate solutions are selected as the neuron models proposed.

by several comparisons with detailed models and experimental
recordings (Brette and Gerstner, 2005; Jolivet et al., 2008; Naud
et al., 2008; Nair et al., 2015; Marín et al., 2020). Accurately
fitting the model with respect to experimental measurements is
not straightforward. The adaptation state variable of the AdEx
model allows good fitness with different firing modes (e.g.,
regular discharge, bursting, delayed spiking, etc.) depending
on specific parameters values (Jolivet et al., 2008; Naud et al.,
2008). However, its nonlinearity makes the optimization of its
parameters, challenging.

The AdEx model consists of only two coupled differential
equations and a reset condition.

Cm
dV
dt
= −gL (V − EL)+ gL1T exp

(
V − VT

1T

)
+ I(t)− w (1)

τw
dw
dt
= a (V − EL)− w (2)

if V > Vpeak then V ← Vr and w← w+ b (3)

Equation (1) describes the evolution of the first state variable,
namely membrane potential (V), during current injection (I(t)).
Equation (2) describes the evolution of the second state variable,
namely adaptation current (w). When the current I(t) drives
V beyond the threshold potential (VT), then the exponential
term of the slope factor (∆T) in equation (1) dominates the

action potential until V reaches the reset threshold potential
(Vpeak). Then, the reset condition (3) determines that V is
instantaneously set to Vr and w is increased a fixed amount
named b. Both equations (1) and (2) contain 10 free parameters
that can be optimized in order to minimize an arbitrary
objective function (namely the difference of the obtained
neural model behavior with respect to a ‘‘desired behavior’’ for
instance, reproducing firing characteristics of cell recordings).
These parameters are: the total leak conductance (gL), the leak
reversal potential (EL) and the membrane capacitance (Cm) in
equation (1) that model the passive membrane mechanisms; the
parameters ∆T and VT in the exponential term of equation (1)
model the spike generation and shape; the time constant
parameter (τw), the subthreshold adaptation (a) and the spike-
triggered adaptation parameter (b) define the evolution of the
state variable w in equation (2); the parameters Vpeak and Vr that
drive the reset condition as mentioned above. These parameters
have been set within fixed ranges to constrain the exploring
process (Table 1). The membrane potential was initially set to the
same value as the leak reversal potential (Vinit = EL).

Model Context and Problem Definition
Selection of Features
In order to obtain a neuron model that replicates the behavior
of the cerebellar GrCs we have selected some features which
quantify some of the most characteristic firing properties
of this neuron type: (1) mean frequency through repetitive
firing discharge under direct current stimulation [equation (4)];

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2021 | Volume 15 | Article 663797

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Marín et al. Multimodal Optimization of Neuron Models

TABLE 1 | Model parameter ranges established for the search space of the optimization process.

Parameters Min. value Max. value Parameters Min. value Max. value

Cm 0.1 pF 5.0 pF VT −60 mV −20 mV
1T 1 mV 1,000 mV a −1 nS 1 nS
EL −80 mV −40 mV b −1 pA 1 pA
V r −80 mV −40 mV gL 0.001 nS 10.0 nS
Vpeak −20 mV 20 mV τw 1 ms 1,000 ms

(2) latency to the first spike under direct current stimulation
[equation (5)]; and (3) burst frequency in response to different
sinusoidal current stimulation (stimulation with different
oscillation frequencies) [equation (6)]. These features will be
combined into a single objective or fitness function to be
considered by the selected multimodal evolutionary optimizer.

Parameter Optimization
The parameter optimization is carried out minimizing the fitness
function by weighting the difference of these quantified features
with a reference taken from real electrophysiological recordings.
Thus, the objective function is defined as the weighted sum
of the scores of the specific features (feature_score) related to
the spiking features, according to equations (4, 5 and 6). The
definition of the objective function that contains all these features
is extracted fromMarín et al. (2020).

feature_scoreMean frequency

=

∑n

i = 1

[
abs(MFsimi −MFexpi) · wMean frequency

]
(4)

feature_scoreFirst−spike latency

=

∑n

i = 1

[
abs

(
LATsimi − LATexpi

)
·wFirst−spike latency

]
(5)

feature_scoreBurst frequency

=

∑n

i = 1

[
abs(BFsimj − BFexpj) · wBurst frequency

·

(
std(BFsimj)+ 1

)]
(6)

The feature score (score function of each feature or objective)
is calculated as the absolute distance (abs) between the feature
values extracted from the in vitro electrophysiological recordings
(expi) and the feature values extracted from the simulated traces
from the neuron model (simi). This is multiplied by the weight
associated with each feature (wMean frequency, wFirst–spike latency
and wBurst frequency). The weights of the burst frequency
(wBurst frequency) and the mean frequency (wMean frequency) were
set to 1 as they both were measured in hertz (Hz) and
show values in comparable scales. The weight of the first-
spike latency (wFirst–spike latency) was weighted to 1,000 as it
was measured in seconds (s). Hence, the algorithm equally
weights 1 Hz-error at mean frequency feature, 1 ms-lag at first-
spike latency and 1 Hz-error at burst frequency. However, the
feature score can be modified (if enhancing the focus on a
particular feature with respect to the others) or extended if some
extra aspect is to be taken into consideration. For instance, a
penalization was used in the definition of the burst frequency

score (featurescore Burst frequency) to assure the stability of bursts [as
proposed in Marín et al. (2020); Equation (6)].

Feature Measurement
The experimental recordings of the repetitive discharge are the
mean frequency (defined as the number of spikes divided by
the stimulation time) during 1-s length step-current injections
of 10, 16 and 22 pA. The latency to the first spike is defined
as the time the neuron takes to elicit its first spike upon
current stimulation. Both features are extracted from in vitro
patch-clamp recordings performed from acute cerebellar slices
of a population of cerebellar GrCs (Masoli et al., 2017). The
spiking resonance in the theta-frequency range is a complex
behavior determined by the burst frequency [as the inverse of the
average inter-spike interval (ISI) of the output neuron] during
each stimulation cycle. Then, the average burst frequencies
are measured throughout 10 consecutive cycles of sinusoidal
stimulation. As it occurred in the in vitro recordings, we have
set the burst frequency to zero when one or no spike per cycle
has been obtained in the simulated neurons. The stimulation
protocol consists of sinusoidal current injections with 6-pA and
8-pA amplitudes, sustained by a 12-pA offset during 22.5 s. They
generate spike bursts in correspondence with the positive phase
of the stimulus (sinusoidal phase of 270◦). These features are
extracted from in vitro patch-clamp recordings performed from
acute cerebellar slices of a single cerebellar GrC (D’Angelo et al.,
2001). It is worth mentioning that since the number of cells
differ in both reference sources (the former from a population
of cells and the latter from a single cell), and for the sake
of equality, we selected the mean feature value of the mean
frequency and the first-spike latency as a target type of neuron.
On the other hand, the reference data points for the resonance
frequency used in the fitness function are based on a single
neuron measurement.

Optimization Method
As introduced, the problem stated in ‘‘Model Context and
Problem Definition’’ section has been addressed with a
multimodal optimizer, i.e., an optimization algorithm designed
to concurrently obtain multiple different global and local
solutions to a problem (Sareni and Krähenbühl, 1998; Shir et al.,
2010). It is the Universal Evolutionary Global Optimizer (UEGO)
proposed by Jelasity et al. (2001).

As can be deduced from its name, UEGO is an evolutionary
optimization algorithm (Lindfield and Penny, 2017), so
it works with a population of solutions and simulates
their Darwinian evolution to progressively achieve better
solutions. However, it belongs to the memetic category
of EAs (Moscato, 1989; Molina et al., 2011). This kind of
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method is characterized by promoting the autonomous
behavior of candidate solutions as self-evolving agents in
conjunction with the underlying evolutionary environment.
Thus, in practical terms, a memetic method combines
a generic evolutionary stage of global scope with a
replaceable local search component. UEGO meets this
requirement, which makes it highly adaptable to different
optimization problems (Ortigosa et al., 2007; Redondo, 2009;
Cruz et al., 2018).

The population of UEGO consists of different species, which
is a fundamental concept for this method. Species are not plain
candidate solutions as it occurs with standard GAs. Instead, every
species combines a feasible and ranked candidate solution with
an assigned radius around it in the search space. The radius is
defined as a Euclidean distance to study the separation between
different candidate solutions, i.e., to assess their similarity. Thus,
a species defines a (hyper)sphere in the search space, and it
is treated as an exploration window to center the independent
local search component. Figure 2A depicts a sample species for
a hypothetical optimization problem of two variables. As can
be seen, the species represents both a candidate solution and a
region in the search space on which the local search will focus.
Since the referred example assumes two variables, the species can
be easily visualized as circumferences. This is not the case for the

problem at hand because the search space has 10 dimensions,
i.e., the parameters to fit, and species will be hyperspheres in
a 10-dimensional Euclidean space. Nonetheless, the underlying
idea remains unaltered, and species will be generally depicted
as circumferences for practical reasons. Figure 2B shows the
structure of every species for the target problem and how UEGO
perceives it.

As an algorithm, UEGO focuses on managing a population of
different species, which defines its evolutionary part. It executes
the steps shown in Algorithm 1. They are summarized next
for the sake of self-completeness, but the interested reader is
referred to Jelasity et al. (2001) and Ortigosa et al. (2001) for
further details.

The algorithm takes the following parameters as input: (1) the
maximum number of species to keep in the population (M);
(2) themaximumnumber of evaluations of the objective function
(N); (3) the minimum radius to keep between different species
(r); and (4) the number of search levels or full cycles (l). After
preliminary experimentation, these parameters have been set to
M = 100,N = 10,000,000, r = 0.7, and l = 50 for the present study.
The maximum number of species and function evaluations agree
with the reference values proposed by Ortigosa et al. (2001), radii
below 0.7 resulted in too many almost-equivalent solutions in
this case, and the number of levels was progressively increased up

FIGURE 2 | Species in UEGO. (A) Species in the search space for a hypothetical bi-dimensional problem. The candidate solution is a feasible point, and it is linked
to a particular radius around it to define a region to center the search. Both define a circumference in a two-dimensional Euclidean space, but the concept can be
extended to any dimensions through hyperspheres. (B) Structure of a species for the problem at hand (on the left) and its conceptual meaning (on the right). As
shown on the left, in practical terms, a species consists of three parts: (1) a feasible point in the search space with a component for each optimization variable
(colored in orange); (2) the fitness of the referred point according to the objective function (colored in green); and (3) the radius linked to this species (colored in blue).
UEGO will use the referred information to build a hypersphere from every species, and they will be ultimately treated as exploration windows in the search space. This
aspect is shown on the right side of the figure using a plain circumference due to the impossibility of showing the corresponding hypersphere.
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to ensure that the search lasts enough, and the best-performing
solutions are competitive.

Having gathered the input, the first step of UEGO is the
initialization of its population. For this purpose, it randomly
selects a point in the search space, evaluates it, and assigns
the first radius to it. By definition, the radius of the first
species is equal to the diameter of the search space, which
is computed as the Euclidian distance between the lower and
upper bounds. Therefore, the region defined by the initial
species covers the whole search space, and no solution will be
unreachable. After that, the radii assigned to species at creation,
and hence the region that they cover, will decrease. They do
in geometrical progression with the number of levels until the
last one, which is linked to the minimum radius specified
by the user (see Figure 3A). This strategy of progressively
reducing the mobility at search is known as cooling in the
field of Optimization, and it is inspired by the process of
annealing metal (Lindfield and Penny, 2017). It promotes

exploration at the beginning to find the best zones of the search
space, avoids premature stagnation, and forces convergence at
the end.

The second step in Algorithm 1 shows the memetic nature
of UEGO. Namely, it consists of launching the local search
component. This stage, also seen in step 8, independently affects
every species in the population, but at this point there only
exists the initial one. As introduced, local search is treated as an
isolated component, and the method selected is briefly described
at the end of this section. It is only required to start at the
center of the species and find a better point in its region after
several movements. Theoretically, the local search algorithm is
limited by the region of the species, i.e., the radius linked to
its starting point. Thus, no single step made by the optimizer
in a given species can be larger than the radius. However,
every time that the local search component finds a better point
in the region, it becomes the new center of that species, so
they are countinously moving in the search space. Figure 3B

FIGURE 3 | Dynamics in UEGO. (A) Evolution of the radius length linked to the species created at every level or cycle. The radius of the first level, i.e., that assigned
to the initial species, is equal to the diameter of the search space. Subsequent radii decrease in geometrical progression until the last one, which corresponds to the
minimum radius defined by the user to consider different solutions. By proceeding this way, species of the first cycles have more mobility, which promotes
exploration of the search space, and those of the last levels have more exploitation, which helps convergence. (B) Movement of a species in a hypothetical
single-dimension search space after an iteration of the local search method. The whole species is moved after finding a better center. Notice that the new point falls
within the original region defined by the species, but its new position also moves the search focus. (C) Fusing species. On the left two overlapping species, A and B,
with radii Radius A and Radius B, respectively. On the right, the species A&B that results from their fusion. This new species keeps the largest radius of both,
i.e., Radius A, which aims to keep the regions to explore as broad as possible to avoid premature convergence. Additionally, take into account that since the center
of Species A&B is that of B, it can be concluded that Species B has a better, i.e., lower value of the cost function. Finally, notice how the new species has slightly
moved from the original zones, so it will be possible to explore a new zone of the search space.
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illustrates this concept. Aside from defining the initial point and
the maximum step size for the local search method, UEGO also
controls its computational budget, i.e., its number of function
evaluations. The details about how UEGO distributes the total
function evaluations allowed are out the scope of this work, but
they are covered in depth in Jelasity et al. (2001) and Ortigosa
et al. (2001). Regardless, the principle followed is to allow more
function evaluations for later search levels, when it should be
more interesting to explore the promising regions previously
found. Also, notice that the local search algorithm should try to
save function evaluations by early terminating when it finds itself
unable to locate a better solution, so not all the allowed function
evaluations might be consumed.

The two previous steps form the first level of search for
UEGO. For this reason, the loop in Step 3 counts from 2. Notice
that if the number of levels were set to 1 by the user, the
algorithm would be mainly equivalent to launching the local
search method from a random point. The result would hence
be the single species after being locally optimized. Nonetheless,
this situation is mostly theoretical. A standard configuration of
UEGO is expected to execute several levels of search or cycles.
Each of them consists of Steps 4–9.

Step 4 defines the computation of the radius that will be
assigned to any new species created at the current level. As
introduced, they decrease in geometrical progression. This step
also involves determining the number of function evaluations
that can be consumed for creating and locally optimizing species
in Steps 5 and 8, respectively. The budget for creation is always
three times the maximum number of species allowed, but that
of local optimization increases with the number of levels as
summarized above. See Jelasity et al. (2001) and Ortigosa et al.
(2001) for further information.

Step 5 is where UEGO tries to increase its population. It
first divides the creation budget among the existing species
to calculate how many points will be allowed to evaluate.
After that, within the region defined by every species, the
algorithm randomly takes the permitted number of candidate
solutions. Then, the points of every species are systematically
paired with each other, and their middle points are evaluated.
If the solution at any of the middle point is worse than
that at its extremes, both members of the pair define new
species. This is done under the assumption that they are on
different sub-areas in the search space. The radius assigned
to these new species will be the one that corresponds to the
current level, which should be lower than any previous one. By
proceeding this way, multiple new species will appear within
the limits of every existing one and focusing on smaller regions
to concentrate the search. Additionally, notice that UEGO will
update the center of the initial species if any of the candidate
points considered in their regions is a better solution, so they
can move.

Step 6 scans the current population to check if the center
of any pair of species is closer to each other than the radius
of the current level. The goal is to avoid spending too much
computing time separately exploring the same region. Species
that overlap according to this criterion are fused into a single one.
More specifically, the center of the resulting one is that which

represents a better solution. The radius will be the largest one
of them, which aims to keep the scope of search as broad as
possible to avoid premature convergence. Figure 3C depicts this
step assuming that species B is better than A, but it has a shorter
radius. Notice that this definition ensures that there will always
be a species whose radius covers the whole search space derived
from the initial one, so it is always possible to reach any point in
the search space.

Step 7 checks the length of the current population. If there
are more species than allowed by the user through parameter M,
those with the shortest radius are removed until the population
size is in the valid range again. The removal criterion is aligned
with the previous idea of maintaining species that allow escaping
from low-performing local optima. The last two steps are both
procedures already described. Namely, Step 8 will independently
launch the local search component from every existing species,
which will make them move around the search space. Step
9 rescans the population to identify and fuse any species that
overlap after having been moved. The UEGO algorithm ends
with step 11 by returning the surviving species. According to the
process described, they are expected to be different promising
solutions. The separation between them in the search space,
i.e., degree of difference, will be the minimum radius defined
by the user at least. Therefore, as intended, the users of this
method and framework (Figure 1) have several options to
study (final candidate selection) in case those solutions with the
best numerical fitness do not appropriately meet the qualitative
requirements that can be further analyzed in a subsequent stage.

Regarding the local search component previously referred
to, the SASS or Solis and Wets’ method (Solis and Wets, 1981;
Molina et al., 2011) has been used. It is a stochastic hill-climber
that starts at the center of the given species and randomly decides
a direction to move. The amplitude of every jump cannot exceed
the radius of the species, and it is scaled depending on the
number of positive (improving) and negative (non-improving)
movements. This optimizer has been selected because it does not
require any specific properties of the objective function. Besides,
it has already been successfully used within UEGO (Ortigosa
et al., 2007; Redondo, 2009). The configuration of this method
is the recommended one. Namely, movements are made by
adding a normally-distributed random perturbation vector with
a standard deviation between 1e-5 and 1, starting at the upper
bound and ultimately rescaled by the radius of the species. The
standard deviation is doubled after five consecutive successful
movements or halved after three consecutive failed ones. Notice
that the local search method will terminate after 32 consecutive
failed or discarded movements, no matter the remaining budget.

Data Analysis
Multidimensional Scaling
To further illustrate the multimodal distribution of the
different optimal solutions, we have applied the Classical
Multidimensional Scaling (MDS) method (using scikit-learn
Python library; Pedregosa et al., 2011). The distribution of the
parameter values of the solutions through n dimensions (in
our case, n = 10 parameters that define a neuron model, also
named candidate solution) is denoted as landscape. Using MDS,
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the differences among landscapes were visualized as distances
in the bi-dimensional plane. The input vector of distance to
the MDS is calculated as a simple Euclidean distance between
landscapes (as in other analysis works, such as in Rongala et al.,
2018). Given a distance dot matrix, this algorithm recovers a
representation of D-dimensional coordinates of data (in our
case, D = 2 dimensions). This method allows studying the
different landscapes chosen during the algorithm execution and
represents their values in a 10-dimensional space embedded in a
2D plot.

Algorithm 1.- UEGO Algorithm

Input: M, N, r, l //Max. species, max. evaluation, min. radius,
levels

1.- Initialize_List_Of_Species //Create the first species
2.- Optimize_Species //Launch the local search on it
3.- for i = 2 to l do: //Main loop (Steps 1 and 2 are define the first

level)
4.- Compute_Level_Config //Manage the use of function evaluations and

radii
5.- Create_Species //Create species in the zones of the exising

ones
6.- Fuse_Species //Avoid that species overlap each other at this

level
7.- Shorten_Species_List //Remove species if there are more than

allowed
8.- Optimize_Species //Launch the local search on every existing

species
9.- Fuse_Species //Avoid that species overlap each other at this

level
10.- end for
11.- Return_Surviving_Species //The remaining species become the set of

results

Technical Details for Reproducibility
Python (version 2.7.12) and MATLAB (version 2018b)
implementations were used to launch the second stage of
the workflow (the exploration processes of the multimodal
algorithm). The proposed pipeline allows simulating the
neuron models and calculating the features scores through
the Python-NEST environment (Python Software Foundation
Python 2.7.12, 2016; van Rossum, 1995) and NEST simulator
2.14.0 (Peyser et al., 2017) and evaluating and exploring different
candidate solutions in optimization cycles through Python-
MATLAB implementations. After considering 10 independent
executions with different seeds, UEGO executes 50,000 function
evaluations on average. The one selected for further analysis
in ‘‘Results’’ section used 47,951, which approximately results
in 32 h of run time in the execution platform. In the last
stage of the workflow, the reproduction and validation of
the resulting neuron models (candidate solutions) were
analyzed using Python-NEST scripts. The Figures were
generated using Matplotlib (version 2.2.5; Hunter, 2007;
Caswell et al., 2020) and Numpy (version 1.16.6; Harris et al.,
2020) libraries. The simulations were run with an Intel Core
i7–4790 processor with 4 cores and 32 Gb of RAM. The
source code and data are available in this public repository:
https://github.com/MilagrosMarin/Multimodal-optimization-
for-fitting-cerebellar-GrCs.

RESULTS

Analytical Results
The results achieved by the optimization stage consist of a
population of up to 100 candidate solutions, which is a user-given
parameter. More accurately, the multimodal optimizer tries to
find different yet promising parameter sets in the search space,
and it uses a minimum user-given separation radius for this
purpose (see the ‘‘Materials and Methods’’ section). For this
purpose, through the search, the optimizer manages a population
of feasible configurations that are distributed over the search
space, can produce new ones, move, and absorb others when they
are considered to represent the same parameter set. Thus, the
number of candidate solutions that ultimately survive as results
for further consideration by an expert might vary. Since the
optimizer is stochastic, its results might vary between different
executions, so it has been launched 10 times as mentioned in
‘‘Technical Details for Reproducibility’’ section. Supplementary
Figure 1 shows that the results are similar between executions in
terms of search space coverage and overall numerical quality. The
one selected for further analysis in this section resulted in a final
population of 25 different candidate solutions.

These candidate solutions are minimized to the target multi-
feature objective function and their scores are represented in
Figure 4. The candidate solutions show different combinations
of feature adjustments in order to reach the minimal total score,
which reveals a well-balanced definition of the multi-feature
objective function. Not unexpectedly, the spiking resonance
feature contributed the most to the score (pink bars in Figure 4;
as this is the feature with the highest number of in vitro reference
points). Although they were selected by their well-ranked
solutions, some of them (from 18 to 25) have low-performing
configurations for some of the considered properties (mostly for
the feature of latency to the first spike, green bars in Figure 4).

The different solutions in the search space expected to
be returned by the algorithm are visualized using the MDS
algorithm, evidencing the multimodality of the search space
(Figure 5A). The candidate solutions with the lowest scores
(under 250 units, which are the solutions from 1 to 12 and
in warmer reddish colors) correspond to different high-quality
solutions. They are sparsely located along the 2-dimensional
display (zoom of the most representative candidates, and colored
based on the total score of each candidate solution, in Figure 5A).
The parameter configurations that define each of these solutions
explored a variety of values from within their boundaries (e.g.,
Vreset, EL, τw), which means that the algorithm successfully went
over the parameter space (i.e., landscapes; Figure 5B).

Reproduction of Spiking Dynamics
In the section above, the candidate solutions of most interest
(from 1 to 12) showed quantitative fitting to the supra-threshold
characteristics defined in the multi-feature objective function
with minimized scores. In this section, the top-ranked solutions
are qualitatively analyzed regarding their accuracy in capturing
this intrinsic excitability of cerebellar GrCs, i.e., firing discharge
with amean frequency increased whereas latency to the first spike
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FIGURE 4 | Scores of the candidate solutions. The total scores obtained
from minimizing the features of the candidates according to the objective
function are represented in black dots joined together by a black line. These
total scores are unwrapped by the scores of each single feature (feature
scores) for every candidate solution and represented in stacked bars. The
feature calculations are explained in “Model Context and Problem Definition”
section. The feature of burst frequency (pink bar plots) has been divided
based on the sinusoidal stimulation amplitude of 6 pA or 8 pA (the standard
deviation has not been included in the stacked bar).

firing decreased under injected currents and spiking resonance in
the theta range under sinusoidal currents.

Although the top-ranked solutions achieved lower score
values, this fact might not imply reproducing the complex
firing dynamics of the neuron. The case of the spiking
resonance is an appropriate example of this possibility: although
the experimental points are suitably adjusted to the graphic
curve, the neuron responses are larger when the neuron
behavior is extrapolated to higher sinusoidal frequencies. That
is, as mentioned in ‘‘Feature Measurement’’ in ‘‘Materials
and Methods’’ section, the burst frequencies generated with
stimulation frequencies beyond 10 Hz fell to zero because the
in vitro measurements contained either one or no spikes. Since
there are no points of burst frequencies in higher frequencies in
the biological measurements, we have avoided including them in
the objective function.

The whole subset of interesting candidates (from 1 to 12)
reproduced the complex spiking behaviors within the limits
of our electrophysiological observations. The parameter values
obtained for the set of solutions are contained in Table 2.
Candidates 1–8 manage to reproduce all the three spiking
features mentioned above (Figure 6). The spiking resonance
curves (left plots in Figure 6) were successfully replicated
(with preferred frequencies around 6–20 Hz) by the whole
subset of candidates. The intensity-frequency (I-F) plots (middle

plots in Figure 6) were almost linear between 0 and 100 Hz
and the latencies to the first spike were also replicated (right
plots in Figure 6) as in the biological piece of evidence
(D’Angelo et al., 2001).

With respect to the qualitative adjustment of the best-ranked
solutions, the top-four candidates reproduce all the three spiking
behaviors. More specifically, candidate 2 reproduces the spiking
behaviors according to experimental registers of real cells
(Figure 6A). Other best-ranked candidates, such as 1, 3 and
4, also reproduce qualitatively these behaviors as the reference
reports, but with resonance curves (around 5–20 Hz, as seen
in left plots in Figure 6A) slightly shifted out of the concrete
theta band of in vitro cerebellar GrCs (around 6–12 Hz in
D’Angelo et al., 2001).

Regarding the quantitative comparison of these best-ranked
solutions (the distance of the feature values from the
experimental measurements defined in the integrated objective
function), candidate 2 obtained the highest score for the concrete
points of the mean frequency feature (yellow bar in the dashed
box in Figure 6A), but the lowest score for the first-spike
latency feature (green bar in the dashed box in Figure 6A). That
is, candidates 1, 3 and 4 obtained lower scores for the mean
frequency feature than candidate 2.

This fact together with the shifted resonant curves in higher
preferred frequencies may indicate an incompatibility of both
firing properties (i.e., the repetitive spike discharge and the
spiking resonance), within the AdEx models, as we previously
hypothesized in Marín et al. (2020). Thus, the GrC behavior
complexity in reproducing these features, being beyond the
capabilities of these AdEx models with a single parameter
configuration (GrCs have different functioning modes).

Similarly, candidates 5, 6, 7 and 8 reproduce all the features
but with the resonance curves in slightly higher preferred
frequencies (around 6–15 Hz; left plot in Figure 6B). In addition,
candidates 5, 6 and 7 showed larger initial latencies (around
100, 80 and 300 ms, respectively) than the candidates mentioned
before (i.e., 1,2,3,4 and 8, with initial latencies around 50–60 ms)
which are closer to the experimental recordings used as reference
(right plots of Figure 6B). Example traces generated from two
of the best candidate solutions are shown in Figure 6C. In
particular, the left plots of Figure 6C show the generation of
spike bursts clustered in triplets or longer bursts in time slots
corresponding to the positive phase of the sinusoidal current,
as described in the reference report (D’Angelo et al., 2001). It is
worth mentioning that the ISI during the burst duration (i.e., the
oscillatory burst frequency defined in the fitness function) is
very similar to that from real traces. In addition, the repetitive
spike discharge, experimentally evidenced in cerebellar GrCs
(D’Angelo et al., 1995, 2001), generated by these candidates are
shown in the right plots of Figure 6C.

DISCUSSION

The present study illustrates the application of a novel
optimization framework to the case of the cerebellar GrCs:
the automated identification of different and promising
configurations of the neuron model parameters to reproduce
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FIGURE 5 | Distribution of the candidate solutions and their respective parameter values. (A) Representation of the population of solutions (n = 25) using Classical
Multidimensional Scaling (MDS). The colormap shows the total score of each candidate solution, red-colored being the solutions with the lowest scores (best
solutions). In zoom, the most representative candidates (those with scores under 250 units; n = 12). (B) Parameter distribution of the candidate solutions. Each dot
corresponds to the parameter value that defines every candidate solution with the lowest scores (those with scores under 250 units; n = 12). The colormap reflects
the total score obtained by each parameter. The boxes correspond to the interquartile ranges (IQR) between the first (Q1) and the third (Q3) quartiles. The green line
represents the median among the values obtained for each parameter. The whiskers correspond to the 5- and 95- percentile respectively.

TABLE 2 | Parameter configurations of the best-ranked candidate solutions and their total score.

Candidate Parameter configuration

solution a (nS) Vpeak (mV) VT (mV) b (pA) Cm (pF) EL (mV) gL (nS) ∆T (mV) τw (ms) Vr (mV) Total score

1 0.123 −19.981 −20.446 −0.999 4.226 −79.225 0.333 55.881 7.138 −76.638 93.992
2 0.202 −7.078 −38.149 0.140 4.400 −67.194 0.001 54.382 73.441 −43.458 102.906
3 0.223 −19.984 −54.527 −0.429 4.408 −66.527 0.003 653.468 1.700 −71.568 106.522
4 0.139 −15.731 −20.000 1.000 4.998 −76.037 0.001 792.296 12.717 −56.917 108.708
5 0.244 7.841 −24.830 −0.946 4.741 −79.985 7.413 55.820 1.039 −79.972 116.652
6 −0.010 3.859 −24.929 0.081 4.324 −63.421 3.742 36.480 790.811 −55.069 121.169
7 −0.069 −18.914 −24.208 0.089 4.303 −51.501 0.342 1.116 273.243 −77.872 126.610
8 0.126 8.171 −25.613 −0.267 3.423 −73.981 0.005 631.309 8.875 −67.973 130.303

complex spiking behavior through multimodal algorithms for
an expert to decide. The solutions produced by the multimodal
optimization process represent a valuable analysis tool that
facilitates better understanding of how certain neural model
properties are supported by a specific parameter configuration.
Two challenges were addressed: (1) the optimization of efficient
neuron models that allow the replication of complex dynamics
such as the spiking resonance in the theta frequency band while
maintaining other typical GrC dynamics such as the regular
repetitive firing and the spike timing; and (2) the generation
of a diverse population of neuron models with widely explored
configurations in sparse local minima. These challenges were
addressed by optimizing a multi-feature fitness function defined

with the distinctive characteristics of cerebellar GrCs. In this
case, the spiking resonance in the theta-frequency band of the
GrCs is a complex behavior believed to improve the information
processing in the cerebellum (D’Angelo et al., 2001, 2009;
Gandolfi et al., 2013). The mean frequency of repetitive firing
and the spike timing (latency to the first spike) are the main
properties of the GrC used to measure their intrinsic excitability.
Addressing this approach through the optimization workflow
resulted in the full-fledged exploration of a population of
efficient neuron models that sufficiently reproduce highly
realistic dynamics. Finally, it is also important to take into
consideration a validation of the neuronal firing dynamics in
order to analyze in detail the behavior of the obtained neuron
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FIGURE 6 | Intrinsic excitability of the top-ranked neuron models of cerebellar GrCs. The optimal candidate solutions are qualitatively analyzed according to the
features defined in the objective function, i.e., spiking resonance in the theta range under sinusoidal stimulation (left plots), mean frequency (middle plots) and latency
to the first spike (right plots), the last two under direct current stimulation. Black dots represent the experimental data used as reference in the optimization process.
(A) Spiking dynamics of the top-four candidate solutions of the final population. Their accumulated scores of each feature are represented as bars in the dashed box.
(B) Spiking dynamics of the candidate solutions ranked 5–8 of the final population. Their accumulated scores for each feature are represented as bars in the dashed
box. (C) Example traces from two of the best candidate solutions (top plots from candidate 5 and middle plots from candidate 6) show: on the left, spike bursts from
both neurons under sinusoidal current injection of 10-Hz frequency, 6-pA amplitude and 12-pA offset, as it is represented in the bottom plot; on the right, repetitive
spike discharge from both neurons during a step-current injection of 10 pA, which is represented in the bottom plot.

models and how the parameter diversity can be steered to
adapt the model to specific purposes or studies. The selected
neuron models are presented as efficient tools that can formulate
biological network hypotheses and shed some light on future
neuroscientific research.

To solve neuron model tuning problems, it is possible
to opt for methods based on robust mathematical principles

whenever the objective function has some properties, such as
being expressed by a particular type of analytical formulation
and being differentiable. For instance, the point-neuron model
of a cerebellar GoC proposed by Geminiani et al. (2018) was
modified in order to optimize part of its parameters using a
SQP algorithm from spike voltage traces under input current
steps. The SQP algorithm uses differential calculus in locating
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the optimum points and allows to simultaneously minimize the
objective function and the constraint function. An alternative to
these methods are the EAs, such as GAs, and the PSO, which
allow solving parameters tuning problems that classical methods
might fail for multidimensional non-linear systems, such as
the AdEx model. These algorithms provide high flexibility,
universality (being able to be applied to different cases) and
proved to be fast and efficient strategies to take into consideration
for fitting neuron models (Cachón and Vázquez, 2015; Van
Geit et al., 2016; Shan et al., 2017). This is the case of the
optimization of an AdEx model of a cerebellar granule cell
(GrC) and a Golgi cell (GoC) proposed in Nair et al. (2015).
The fitness function measured the similarity between spike
trains from spiking traces. However, the PSO algorithm was
modified since all the solutions of the search did not result
in a feasible solution due to the non-linear dynamics of the
AdEx equations. In our previous study (Marín et al., 2020), we
optimized an AdEx neuron model of a cerebellar GrC based
on specific features (not whole traces) from in vitro recordings
using ‘‘simple GA’’. In Marín et al. (2020), we proposed a
single final candidate solution as the best approximation of the
multi-feature fitness function of the cerebellar GrCs. However,
in this work we take a step further in finding and fitting
multiple neuron model configurations in a single run based
on such a complex fitness function. This allows a detailed
analysis of how neuron properties are supported by specific
parameter configurations.

The objective of the present study is not to promote UEGO
as the most effective algorithm in plain values of the objective
function. Instead, the aim is to define an alternative framework
that relies on this multimodal method for gathering and studying
heterogeneous model configurations with independence of
strictly being the best ranked. However, notice that UEGO can
numerically compete with the results achieved by the GA used
in the reference work (Marín et al., 2020). For the sake of
completeness, the mean results of the GA proposed in Marín
et al. (2020), which was the initial option for solving the
problem at hand, have been compared to the mean results of
the best-ranked solutions of the UEGO execution described in
this article (Table 3). The referred GA took 30,000 function
evaluations, but UEGO executes 50,000 on average with the
configuration proposed, which is almost twice. For this reason,
the number of cycles of the genetic method has been doubled
to increase its exploration possibilities and take comparable
computational effort. While the GA allows obtaining a unique
best solution (low score), a multimodal algorithm such as UEGO
allows generating multiple candidate solutions that reproduce
reasonably well the neuron behaviors with wider parameter
configurations (Figure 7).

Our aim is to provide a set of feasible, promising,
and well-distributed solutions that result from numerical
optimization for an expert to select the most appropriate one.
The multimodal algorithms allow adjusting the exploration and
consequent extraction of more than one candidate solution
through the parameter landscapes (understood as the ‘‘space’’
of possible parameter values that a solution can take after the
optimization process). An advantage of using a multimodal

TABLE 3 | Comparative table of best solutions from UEGO and regular GA.

Method a (nS) Vpeak (mV) VT (mV) b (pA)

UEGO 0.12 ± 0.10 −3.06 ± 14.25 −34.48 ± 14.67 −0.22 ± 0.59
GA 0.34 ± 0.09 −1.69 ± 11.24 −28.96 ± 7.23 0.48 ± 0.20

Cm (pF) EL (mV) gL (nS) ∆T (mV)

UEGO 4.23 ± 0.72 −64.87 ± 12.61 1.18 ± 2.35 353.29 ± 357.56
GA 3.49 ± 0.45 −48.59 ± 4.95 0.63 ± 0.48 15.53 ± 7.33

τw (ms) Vr (mV) Total score

UEGO 166.41 ± 236.07 −66.93 ± 11.04 127.43 ± 30.13
GA 346.13 ± 177.24 −69.26 ± 7.06 107.61 ± 5.04

The table shows the mean values and standard deviations of each neuron parameter
from the best candidate solutions of UEGO (candidate solutions from 1 to 10) and each
of the single best solutions from 10 independent executions of regular GA (with different
seeds). Note that the dispersion of the parameters is considerably wider in UEGO.

optimization method is that it results in a population of
candidate solutions which is diverse in terms of parameters
values as they best fit the target features at different areas in the
parameter space. This allows using the candidate solutions as
the substrate for a detailed parameter analysis with respect to the
neuron model desired properties. In addition, the algorithm can
adjust the parameter exploration according to different working
ranges (wide exploration within the parameter boundaries). This
population of final candidate solutions characterizes the behavior
of the neuronal dynamics across the parameter space, i.e., how
neuronal dynamics change as the parameters are modified
(they can complement or conflict with each other towards
optimizing a multi-feature fitness function, finding trade-offs
among parameters in a solution). The expert is able to match the
best parameter set ups towards optimizing one specific feature
or another, or rather select a parameter set up to fit all the
different target features at the same time (avoiding one feature to
dominate against other ones within the combined cost function).
The exploration and extraction of a diverse population of
solutions facilitate the analysis process of how specific parameters
ranges help to adjust particular features (the algorithm might
perform an unbalanced adjustment of features, focusing more
on some of them and distances to others). The multimodal
optimization, in spite of being a more specific and robust
engine (and so, more laborious), implies a suitable alternative
for detailed exploration and analysis of the neuronal dynamics
against the single candidate solution obtained by other simpler
algorithms whichmight lose biological information necessary for
the subsequent study.

Future Implications
The novel workflow presented here constitutes a flexible
and versatile tool that can be generally applied to this
level of complexity with other commonly used point-neuron
models, such as the GLIF or integrate-and-fire neuron models,
and with other types of spiking dynamics, as long as
the electrophysiological data is available. The multimodal
optimization algorithm is only led by the value of the objective
function, but this approach does not determine the goodness
of the solution (the minimized score), although it is capable
of exploring a biodiverse population of solutions according
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FIGURE 7 | Parameter distribution of candidate solutions from UEGO and GA. Comparison between the parameter values obtained from the best-ranked candidate
solutions (from 1 to 10) in the execution of UEGO (left—blue circles) and from the best single solution of 10 independent executions of the GA (right—red circles).
Each dot corresponds to the parameter value that defines every candidate solution. The boxes correspond to the IQR between the first (Q1) and the third (Q3)
quartiles. The orange line represents the median among the values obtained for each parameter. The whiskers correspond to the 5- and 95- percentile respectively.

to pre-optimized solutions with interrelated parameters. The
pre-optimization allows filtering the solutions according to
numerically promising configurations. This facilitates the
analysis of the parameter space in relation to the desired
neuron properties. The post-optimization is based on the
decision of the user. This proposal is an automatization of the
population diversity of plausible neuron models for complex
spiking behaviors.

In our results we already have seen certain biodiversity
in the parameter configurations of the final population that
can lead to a specific behavior shown by biological cells. If
the heterogeneity of GrCs is a real fact in the biology of
granule cells, then it could be also reflected in the variability
of neuronal dynamics of the neuron models that reproduce
the same target behavior (Lengler et al., 2013; Migliore et al.,
2018). Regarding the biological data used as reference, in this
article we generate a heterogeneous population of neurons
based on different parameter configurations of the AdEx model
and mimicking the neuronal behavior extracted from biological
data. In future work, it would be of outstanding interest to
optimize from a population of real cerebellar neurons that
show variations in the target behaviors so that diversity can be
explicitly captured. The construction of a multi-objective fitness
function, compounded by several error functions that all have to
be optimized simultaneously, could be a future extension of the
presented workflow in order to analyze the Pareto front of all the
possible parameter configurations. This would allow exploring
the direct relationships among parameters and single features.

Concluding Remarks
In this article, we present a novel and robust optimization
framework integrating amultimodal algorithm that co-optimizes

the spiking resonance in the theta-frequency band, the repetitive
spiking discharge and the latency to the first spike in efficient
models of cerebellar GrCs. The validity of the framework is
confirmed by analyzing the electrophysiological predictions of
the biological characteristics. The proposed methodology will be
reflected as ease-of-use through the following workflow, even
though a multimodal algorithm usually requires high knowledge
of the field and it is difficult to use for non-expert users.
The UEGO algorithm exhibits its strength in adapting to the
complex data structure associated with the neuron dynamics. The
optimization workflow helps to easily generate a population of
functional neuron models. In addition, employing a multimodal
algorithm plays a key role in the proposed workflow to help
the exploration of different local minima. The outcomes of
the optimization study show promising results that successfully
establish the solution repository considering multiple features in
the function. Such results are verified by presenting the spiking
resonance, repetitive firing and timing curves and the dominated
solutions. According to the analytical results, the candidate
solutions exhibit a consonant relationship between the features,
meaning that the algorithm does not need to make a decision
to balance the trade-off benefits (equilibrated distributions). The
efficient models and features obtained in this work are mainly
to demonstrate the feasibility of the proposed optimization
workflow. It can be easily modified by other types of point-
neuron models (such as GLIF) or other neuron characteristics
in future work. The application to the case of cerebellar GrCs
implies taking a step further towards advanced exploration
of candidate solutions. It facilitates the evaluation of models
based on different neuronal parameters which represent various
internal neuronal mechanisms to achieve the target spiking
behaviors defined in a complex fitness function.

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2021 | Volume 15 | Article 663797

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Marín et al. Multimodal Optimization of Neuron Models

DATA AVAILABILITY STATEMENT

The methodology and datasets presented in this study can be
found in an online repository. The repository can be found at:
https://github.com/MilagrosMarin/Multimodal-optimization-
for-fitting-cerebellar-GrCs.

AUTHOR CONTRIBUTIONS

MM and NC: study design. MM, MS-L, and EO: literature
and database search. NC and EO: methodology. MM, JG,
MS-L, and RC: analysis and interpretation of results. MM,
NC, and JG: writing of the article. All the results included
in this article are part of MM’s PhD thesis. All authors
contributed to the article and approved the submitted
version.

FUNDING

This article integrates work from authors from different
research groups and has been funded by the EU Grant HBP
(H2020 SGA3. 945539), the Spanish Ministry of Economy
and Competitiveness (RTI2018-095993-B-I00), the national
grant INTSENSO (MICINN-FEDER-PID2019-109991GB-I00),
the regional grants of Junta de Andalucía (CEREBIO: JA FEDER
P18-FR-2378, P18-RT-1193, and A-TIC-276-UGR18), and the
University of Almería (UAL18-TIC-A020-B).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fninf.2021.6637
97/full#supplementary-material.

REFERENCES

Brette, R., and Gerstner,W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Cachón, A., and Vázquez, R. A. (2015). Tuning the parameters of an integrate and
fire neuron via a genetic algorithm for solving pattern recognition problems.
Neurocomputing 148, 187–197. doi: 10.1016/j.neucom.2012.11.059

Caswell, T. A., Droettboom, M., Lee, A., Hunter, J., Firing, E., Stansby, D., et al.
(2020). matplotlib/matplotlib v2.2.5. Available online at: https://zenodo.org/
record/1202077#.YHqgMmc71v0.

Cruz, N. C., Redondo, J. L., Álvarez, J. D., Berenguel, M., and Ortigosa, P. M.
(2018). Optimizing the heliostat field layout by applying stochastic population-
based algorithms. Informatica 29, 21–39. doi: 10.15388/informatica.
2018.156

D’Angelo, E., De Filippi, G., Rossi, P., and Taglietti, V. (1995). Synaptic excitation
of individual rat cerebellar granule cells in situ: evidence for the role of
NMDA receptors. J. Physiol. 484, 397–413. doi: 10.1113/jphysiol.1995.sp0
20673

D’Angelo, E., De Filippi, G., Rossi, P., and Taglietti, V. (1998). Ionic mechanism
of electroresponsiveness in cerebellar granule cells implicates the action of a
persistent sodium current. J. Neurophysiol. 80, 493–503. doi: 10.1152/jn.1998.
80.2.493

D’Angelo, E., Koekkoek, S. K. E., Lombardo, P., Solinas, S., Ros, E., Garrido, J. A.,
et al. (2009). Timing in the cerebellum: oscillations and resonance in the
granular layer. Neuroscience 162, 805–815. doi: 10.1016/j.neuroscience.2009.
01.048

D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., et al.
(2001). Theta-frequency bursting and resonance in cerebellar granule cells:
experimental evidence and modeling of a slow K+-dependent mechanism.
J. Neurosci. 21, 759–770. doi: 10.1523/JNEUROSCI.21-03-00759.2001

Delvendahl, I., Straub, I., and Hallermann, S. (2015). Dendritic patch-clamp
recordings from cerebellar granule cells demonstrate electrotonic compactness.
Front. Cell. Neurosci. 9:93. doi: 10.3389/fncel.2015.00093

Druckmann, S., Banitt, Y., Gidon, A. A., Schürmann, F.,Markram,H., and Segev, I.
(2007). A novel multiple objective optimization framework for constraining
conductance-based neuron models by experimental data. Front. Neurosci. 1,
7–18. doi: 10.3389/neuro.01.1.1.001.2007

Friedrich, P., Vella, M., Gulyás, A. I., Freund, T. F., and Káli, S. (2014). A flexible,
interactive software tool for fitting the parameters of neuronal models. Front.
Neuroinform. 8:63. doi: 10.3389/fninf.2014.00063

Gandolfi, D., Lombardo, P., Mapelli, J., Solinas, S., and D’Angelo, E. (2013). Theta-
frequency resonance at the cerebellum input stage improves spike timing on
the millisecond time-scale. Front. Neural Circuits 7:64. doi: 10.3389/fncir.2013.
00064

Geminiani, A., Casellato, C., Locatelli, F., Prestori, F., Pedrocchi, A., and
D’Angelo, E. (2018). Complex dynamics in simplified neuronal models:

reproducing golgi cell electroresponsiveness. Front. Neuroinform. 12:88.
doi: 10.3389/fninf.2018.00088

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,
357–362. doi: 10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,
90–95. doi: 10.1109/mcse.2007.55

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Jelasity, M., Ortigosa, P. M., and García, I. (2001). UEGO, an abstract clustering
technique for multimodal global optimization. J. Heuristics 7, 215–233.
doi: 10.1023/A:1011367930251

Jolivet, R., Kobayashi, R., Rauch, A., Naud, R., Shinomoto, S., and Gerstner, W.
(2008). A benchmark test for a quantitative assessment of simple neuron
models. J. Neurosci. Methods 169, 417–424. doi: 10.1016/j.jneumeth.2007.
11.006

Jörntell, H., and Ekerot, C.-F. (2006). Properties of somatosensory synaptic
integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797.
doi: 10.1523/JNEUROSCI.2939-06.2006

Lange, W. (1975). Cell number and cell density in the cerebellar cortex of man
and some other mammals. Cell Tissue Res. 157, 115–124. doi: 10.1007/BF00
223234

Lengler, J., Jug, F., and Steger, A. (2013). Reliable neuronal systems: the
importance of heterogeneity. PLoS One 8:e80694. doi: 10.1371/journal.pone.00
80694

Lindfield, G., and Penny, J. (2017). Introduction to Nature-Inspired Optimization.
1st Edn. Academic Press. Available online at: https://www.elsevier.com/books/
introduction-to-nature-inspired-optimization/lindfield/978-0–12-803636–5.
Accessed January 27, 2021.

Marín, M., Sáez-Lara, M. J., Ros, E., and Garrido, J. A. (2020). Optimization of
efficient neuronmodels with realistic firing dynamics. The case of the cerebellar
granule cell. Front. Cell. Neurosci. 14:161. doi: 10.3389/fncel.2020.00161

Masoli, S., Rizza, M. F., Sgritta, M., Van Geit, W., Schürmann, F., and D’Angelo, E.
(2017). Single neuron optimization as a basis for accurate biophysical
modeling: the case of cerebellar granule cells. Front. Cell. Neurosci. 11:71.
doi: 10.3389/fncel.2017.00071

Migliore, R., Lupascu, C. A., Bologna, L. L., Romani, A., Courcol, J.-D., Antonel, S.,
et al. (2018). The physiological variability of channel density in hippocampal
CA1 pyramidal cells and interneurons explored using a unified data-driven
modeling workflow. PLoS Comput. Biol. 14:e1006423. doi: 10.1371/journal.
pcbi.1006423

Molina, D., Lozano, M., Sánchez, A. M., and Herrera, F. (2011). Memetic
algorithms based on local search chains for large scale continuous optimisation
problems: MA-SSW-Chains. Soft Comput. 15, 2201–2220. doi: 10.1007/s00500-
010-0647-2

Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms. Available online

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2021 | Volume 15 | Article 663797

https://github.com/MilagrosMarin/Multimodal-optimization-for-fitting-cerebellar-GrCs
https://github.com/MilagrosMarin/Multimodal-optimization-for-fitting-cerebellar-GrCs
https://www.frontiersin.org/articles/10.3389/fninf.2021.663797/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2021.663797/full#supplementary-material
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1016/j.neucom.2012.11.059
https://zenodo.org/record/1202077#.YHqgMmc71v0
https://zenodo.org/record/1202077#.YHqgMmc71v0
https://doi.org/10.15388/informatica.2018.156
https://doi.org/10.15388/informatica.2018.156
https://doi.org/10.1113/jphysiol.1995.sp020673
https://doi.org/10.1113/jphysiol.1995.sp020673
https://doi.org/10.1152/jn.1998.80.2.493
https://doi.org/10.1152/jn.1998.80.2.493
https://doi.org/10.1016/j.neuroscience.2009.01.048
https://doi.org/10.1016/j.neuroscience.2009.01.048
https://doi.org/10.1523/JNEUROSCI.21-03-00759.2001
https://doi.org/10.3389/fncel.2015.00093
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.3389/fninf.2014.00063
https://doi.org/10.3389/fncir.2013.00064
https://doi.org/10.3389/fncir.2013.00064
https://doi.org/10.3389/fninf.2018.00088
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1023/A:1011367930251
https://doi.org/10.1016/j.jneumeth.2007.11.006
https://doi.org/10.1016/j.jneumeth.2007.11.006
https://doi.org/10.1523/JNEUROSCI.2939-06.2006
https://doi.org/10.1007/BF00223234
https://doi.org/10.1007/BF00223234
https://doi.org/10.1371/journal.pone.0080694
https://doi.org/10.1371/journal.pone.0080694
https://www.elsevier.com/books/introduction-to-nature-inspired-optimization/lindfield/978-0{\LY1\textendash }12-803636{\LY1\textendash }5
https://www.elsevier.com/books/introduction-to-nature-inspired-optimization/lindfield/978-0{\LY1\textendash }12-803636{\LY1\textendash }5
https://doi.org/10.3389/fncel.2020.00161
https://doi.org/10.3389/fncel.2017.00071
https://doi.org/10.1371/journal.pcbi.1006423
https://doi.org/10.1371/journal.pcbi.1006423
https://doi.org/10.1007/s00500-010-0647-2
https://doi.org/10.1007/s00500-010-0647-2
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Marín et al. Multimodal Optimization of Neuron Models

at: https://citeseer.ist.psu.edu/moscato89evolution.html. Accessed
January 27, 2021.

Nair, M., Subramanyan, K., Nair, B., and Diwakar, S. (2015). ‘‘Parameter
optimization and nonlinear fitting for computational models in neuroscience
on GPGPUs,’’ in Proceedings of the 2014 International Conference on High
Performance Computing and Applications (ICHPCA) (Bhubaneswar, India:
IEEE), 22–24. doi: 10.1109/ICHPCA.2014.7045324

Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns in
the adaptive exponential integrate-and-fire model. Biol. Cybern. 99, 335–347.
doi: 10.1007/s00422-008-0264-7

Ortigosa, P. M., García, I., and Jelasity, M. (2001). Reliability and performance of
UEGO, a clustering-based global optimizer. Journal of Global Optimization 19,
265–289. doi: 10.1023/A:1011224107143

Ortigosa, P. M., Redondo, J. L., García, I., and Fernández, J. J. (2007). A population
global optimization algorithm to solve the image alignment problem in electron
crystallography. J. Glob. Optim. 37, 527–539. doi: 10.1007/s10898-006-9060-x

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,
2825–2830.

Peyser, A., Sinha, A., Vennemo, S. B., Ippen, T., Jordan, J., Graber, S., et al.
(2017). NEST 2.14.0. Available online at: http://dx.doi.org/10.5281/zenodo.
882971.

Pozzorini, C., Mensi, S., Hagens, O., Naud, R., Koch, C., and Gerstner, W.
(2015). Automated high-throughput characterization of single neurons by
means of simplified spiking models. PLoS Comput. Biol. 11:e1004275.
doi: 10.1371/journal.pcbi.1004275

Python Software Foundation Python 2.7.12. (2016). Python Lang. Ref. Version 2.7.
Available online at: http://www.python.org.

Redondo, J. L. (2009). Solving Competitive Location Problems via Memetic
Algorithms. High Performance Computing Approaches. Thesis. Almería:
Universidad Almería.

Rongala, U. B., Spanne, A., Mazzoni, A., Bengtsson, F., Oddo, C. M., and
Jörntell, H. (2018). Intracellular dynamics in cuneate nucleus neurons support
self-stabilizing learning of generalizable tactile representations. Front. Cell.
Neurosci. 12:210. doi: 10.3389/fncel.2018.00210

Sareni, B., and Krähenbühl, L. (1998). Fitness sharing and niching methods
revisited. IEEE Trans. Evol. Comput. 2, 97–106. doi: 10.1109/4235.
735432

Schmahmann, J. D. (2019). The cerebellum and cognition. Neurosci. Lett. 688,
62–75. doi: 10.1016/j.neulet.2018.07.005

Shan, B., Wang, J., Zhang, L., Deng, B., and Wei, X. (2017). Fitting
of adaptive neuron model to electrophysiological recordings using
particle swarm optimization algorithm. Int. J. Mod. Phys. B 31, 1–15.
doi: 10.1142/s0217979217500230

Shir, O. M., Emmerich, M., and Bäck, T. (2010). Adaptive niche radii and niche
shapes approaches for niching with the CMA-ES. Evol. Comput. 18, 97–126.
doi: 10.1162/evco.2010.18.1.18104

Silver, R. A., Traynelis, S. F., and Cull-Candy, S. G. (1992). Rapid-time-course
miniature and evoked excitatory currents at cerebellar synapses in situ. Nature
355, 163–166. doi: 10.1038/355163a0

Solis, F. J., and Wets, R. J. B. (1981). Minimization by random search techniques.
Math. Operations Res. 6, 19–30. doi: 10.1287/moor.6.1.19

Van Geit, W., De Schutter, E., and Achard, P. (2008). Automated neuron
model optimization techniques: a review. Biol. Cybern. 99, 241–251.
doi: 10.1007/s00422-008-0257-6

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D.,
Muller, E. B., et al. (2016). BluePyOpt: leveraging open source software and
cloud infrastructure to optimise model parameters in neuroscience. Front.
Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017

van Rossum, G. (1995). Python Tutorial, May 1995. CWI Rep. CS-
R9526, 1–65. Available online at: https://www.narcis.nl/publication/
RecordID/oai%3Acwi.nl%3A5008.

Williams, R. W., and Herrup, K. (1988). The control of neuron number. Annu.
Rev. Neurosci. 11, 423–453. doi: 10.1146/annurev.ne.11.030188.002231

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021Marín, Cruz, Ortigosa, Sáez-Lara, Garrido and Carrillo. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2021 | Volume 15 | Article 663797

https://citeseer.ist.psu.edu/moscato89evolution.html
https://doi.org/10.1109/ICHPCA.2014.7045324
https://doi.org/10.1007/s00422-008-0264-7
https://doi.org/10.1023/A:1011224107143
https://doi.org/10.1007/s10898-006-9060-x
http://dx.doi.org/10.5281/zenodo.882971
http://dx.doi.org/10.5281/zenodo.882971
https://doi.org/10.1371/journal.pcbi.1004275
http://www.python.org
https://doi.org/10.3389/fncel.2018.00210
https://doi.org/10.1109/4235.735432
https://doi.org/10.1109/4235.735432
https://doi.org/10.1016/j.neulet.2018.07.005
https://doi.org/10.1142/s0217979217500230
https://doi.org/10.1162/evco.2010.18.1.18104
https://doi.org/10.1038/355163a0
https://doi.org/10.1287/moor.6.1.19
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.3389/fninf.2016.00017
https://www.narcis.nl/publication/RecordID/oai%3Acwi.nl%3A5008
https://www.narcis.nl/publication/RecordID/oai%3Acwi.nl%3A5008
https://doi.org/10.1146/annurev.ne.11.030188.002231
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	On the Use of a Multimodal Optimizer for Fitting Neuron Models. Application to the Cerebellar Granule Cell
	INTRODUCTION
	METHODOLOGICAL WORKFLOW
	Data Preparation
	Optimization Algorithm
	Selection and Interpretation of the Candidate Solutions

	MATERIALS AND METHODS
	Neuron Model Structure
	Model Context and Problem Definition
	Selection of Features
	Parameter Optimization
	Feature Measurement

	Optimization Method
	Data Analysis
	Multidimensional Scaling
	Technical Details for Reproducibility


	RESULTS
	Analytical Results
	Reproduction of Spiking Dynamics

	DISCUSSION
	Future Implications
	Concluding Remarks

	DATA AVAILABILITY STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	SUPPLEMENTARY MATERIAL
	REFERENCES


